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Objective
In this poster, we present a computational approach tailored for biomedical applications, leveraging parametrized optimal control problems (OCPµ) and reduction techniques. Our
method involves solving unsteady Navier-Stokes (N-S) equations using a Galerkin finite element approach, with specified initial and/or boundary conditions, while minimizing a cost
functional. Choosing appropriate boundary conditions is crucial, particularly in biomedical simulations of the cardiovascular system. These conditions heavily influence computed
pressure and flow rates, both clinically significant parameters. To address this, we employ control as an outflow boundary, coupled with proper orthogonal decomposition reduction
methods, to compute flow fields in three-dimensional bifurcation vascular networks efficiently.

Problem Definition
Considering a spatial-temporal domain Ω×(0, T ) ⊂ Rnsd×(0, T ), where nsd = 3 represents
the spatial dimension and T is the final time of the physiological event. The boundary
Γ = Γw ∪ Γin ∪ Γout, where Γw, Γin, and Γout, respectively, represent the wall, inlet,
and outflow boundaries of the computational geometry. We aim at solving OCPµ with
parametric dependence, for which the optimal solution depends on the parameter vector
µ ∈ D, where D ∈ RP is the parameter space with P ≥ 1.
The parametrized optimal control problem (OCPµ) reads:

find u(t,µ) ∈ U , u(t,µ) = argmin (J (v(t,µ), u(t,µ);µ)) , (1)

for any given µ ∈ D, where u(t,µ) ∈ U is the control variable, J(·, ·;µ) is the cost
functional, and v(t,µ) (= (v(t,µ), p(t,µ))) ∈ V × P is the solution of the following state
equation represented by the unsteady, incompressible N-S equations with the given initial
and boundary conditions. Consider the functional spaces: V = L2
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0, T ; [H1

Γ(Ω)]
nsd

)
∩

H1
(
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∗]nsd

)
, and P = L2

(
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)
are known as state spaces of velocity

and pressure, respectively. The symbol ∗ represents the dual space of the funcational
space, also consider the control space U as L2

(
0, T ; [L2(Ω)]nsd

)
.

The cost functional J is expressed as:

J (v, u;µ) =
1

2

∫ T

0

∫
Ω

m(v(µ)−vd(µ),v(µ)−vd(µ);µ)+
α
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∫ T

0

∫
Ω

n(u(µ), u(µ);µ), (2)

where m(v(µ)− vd(µ),v− vd(µ)) = ∥v(µ)− vd(µ)∥2V a symmetric, continuous and non-
negative form associated with the velocity state space over Ω while n(u(µ), u(µ);µ) =
∥u(µ)∥2U is symmetric, coercive and bounded bilinear form associated with the control
space.
The cost functional is subjected to the Galerkin variational formulation of the parametrized
unsteady N-S equations, state equations, reads:

∂v(µ)

∂t
+ (v(µ) · ∇) v(µ)+∇p(µ) = ν∆v(µ), in Ω× (0, T ) ,

∇ · v(µ) = 0, in Ω× (0, T ) ,

v(µ) = − ν

Rin

(
1− r2

R2
in

)
nin, on Γin × (0, T ) , (3)

v(µ) = 0, on Γw × (0, T ) ,

(ν∇v(µ)− p(µ)) · n = u(µ), on Γout × (0, T ) ,

v(µ) (x, 0) = v0(µ), on Ω× {0},

wherein p represents the pressure, v denotes the velocity vector, and n signifies the unit
outward normal vector on the boundary Γ. The kinematic viscosity is denoted by ν. Addi-
tionally, wherein r represents the radius of cross-sections computed using centerlines, Rin

denotes the radius of inlet cross-sections, and u(µ) is the control set as an outflow bound-
ary. Here, α > 0 is a predetermined constant, and vd(µ) ∈ Z represents a desired velocity
within the observation space Z ⊃ V. The strategies for solving OCPµ are elaborated
in the reports [1, 3, 4], addressing diverse types of parametrized PDEs that define the
dynamical systems. Our methodology follows the optimize-discretize-reduce approach. In
the optimization step, we formulate a coupled optimality system satisfying the first-order
Karush-Kuhn-Tucker optimality conditions for the Lagrangian operator (L) with the
adjoint variable z, which is

∇L(v, u, z;µ)[s, q, κ] = 0. (4)

Reduced Order Methodology
We apply the Galerkin finite element (FE) method to discretize the system described
in 3, which is computationally demanding with the dimension of N . To address this
challenge, we employ proper orthogonal decomposition (POD)-Galerkin [2], a technique
that effectively reduces computational costs while preserving the essential physical fea-
tures of the model. For any parameter µ ∈ D, we aim to find the reduced basis pair
(xN (µ), pN (µ)) ∈ V× P× U , where N ≪ N , is given as:

A(xN , ω;µ) +B(ω, pN ;µ) + E(vN , sN , ω;µ)

+E(sN , vN , ω;µ) =
∫ T

0
⟨F(µ), wN ⟩dt, ∀ω ∈ V,

B(xN , κ;µ) + E(vN , vN , κ;µ) =
∫ T

0
⟨G(µ), κ⟩dt, ∀κ ∈ Q.

(5)

These terms represent the variational operators of the system of equations (2-4) in low-
dimensional form. We used the offline-online strategy for solving the FE assembled sys-
tem.

Numerical Results
In the cardiovascular system, achieving accurate initial conditions is crucial, often
requiring optimization through periodicity computations over the heartbeat; there-
fore, we consider v0(µ) = 0 in this computation. We consider the dependent pa-
rameter µ as ν ∈ (0.0, 50.0], and time T = 1.0s with time-step ∆t = 0.05s.

(a) 3D Model (b) Desired Velocity (vd)

Velocity Distribution (ν = 1.5, T = 0.5s ) (Left: FOM , Right: ROM)

Control (ν = 1.5, T = 0.5s) ((a): FOM, (b): ROM) (c) Eigenvalues

Pressure Distribution (ν = 1.5, T = 0.5s)(Left: FOM, Right: ROM)
The flow fields and control exhibit comparable behavior in both offline and online phases.
Future perspective: We will extend our analysis to patient-specific models, exploring
various configurations of boundary conditions and controls.

Software

RBniCS
https://www.

rbnicsproject.org/

multiphenics
https://mathlab.sissa.it/
multiphenics
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