
The “strategy” we want to
apply to solve the problem

--- e.g. PINN

Solver
Physics-informed paradigm, the solver minimizes the physical residual

PINN, GPINN, CausalPINN, CompetitivePINN, SAPINN, ...

Supervised learning paradigm, the solver minimizes the difference between data and network
output

SupervisedSolver, GAROM, MessagePassingNeuralPDE, ReducedOrderModellingSolver ...

Abstract Interfaces to easily build new solvers
SolverInterface, PINNInterface, ...

The architecture to apply
--- e.g. DeepONet

Model
Standard and customizable deep learning architectures

FeedForward, MultiFeedForward, ResidualFeedForward, ...

Specific Neural Operator architectures
FourierNeuralOperator, LowRankNeuralOperator, AveragingNeuralOperator, MIONet,
DeepONet, ...

.Easily build your PytorchModel or use our abstract Interfaces
KernelNeuralOperator, Network, ...

The minimal brick that can
be used to build a Model

--- e.g. SpectralConv

Layer
Many PyTorch implementations of deep learning Layers

ContinuousConvBlock, ResidualBlock, EnhancedLinear
SpectralConvBlock1D, SpectralConvBlock2D, SpectralConvBlock3D,
FourierBlock1D, FourierBlock2D, FourierBlock3D,
PODBlock, PeriodicBoundaryEmbedding, AVNOBlock, LowRankBlock

Adaptive Activation Functions

AFFILIATIONS

SISSA mathLab, Trieste, Italy
FAST Computing Srl, Trieste, Italy

AUTHORS

Dario Coscia, Nicola Demo, Gianluigi Rozza

dario.coscia@sissa.it
nicola.demo@fastcomputing.net
gianluigi.rozza@sissa.it

Documentation online
Fully documented package
Installation and contribution guidelines
Tutorials for getting start with the software

PINA is built upon PyTorch Lightning
CPU GPU and TPU training support
Loggers and Checkpoints for monitoring training
Gradient Clipping, SWA, Gradient accumulation
Callbacks for Solvers and Trainer

Tested for several operating systems
Fully compatible and tested for Python ≥ 3.7
Running on Windows macOS and Ubuntu

High-level design
Modular components and object-oriented structure
Abstract interfaces to easily add new components
Natively support PyTorch Model compilation

LabelTensor
Extension of PyTorch Tensor class to handle labels
Easily extract variables with strings and compute
differential operator in symbolic notation
Compatible with PyTorch main Tensor operations

Easy installation
pip install pina-mathlab

New release the 1st of any month

Training
Optimize the Model with the specific Solver
strategy with all the additional Pytorch
Lightning feautures

Problem definition
Specify the mathematical problem aimed to
be solved and the specific physical condition
to be satified

Model & Solver selection
Build a Model as a PyTorch Module and
choose the Solver strategy to optimize the
model and solve the problem

Sample the domain
Prepare the input of the model by
discretising the physical domain, or import
data from numerical solvers

Highlights

PINA: a PyTorch Framework for Solving
Differential Equations by Deep Learning for

Research and Production Environments

A hierachical perspective: Solver, Model, Layer

Traslate your problem into PINA language

Spatial, Time-dependent,
Inverse, and Parametric
problems are already available!

We implemented the most common
differential operators for easiness
of usage.

grad
div
laplacian

Triangular, cartesian, and elliptic
shapes can be used to define the
problem domain. Moreover,
boolean operations have been
implemented to make possible the
definition of complex domains!

PINA makes available the latest methodologies for equation learning. To maximize flexibility and
modularity, the methodological implementation is divided into Solver, Model, and Layer

Check the Github Page &
leave us a Star ⭐

PINA is an open-source software powered by PyTorch and Lightning, designed for solving
differential equations with neural networks. It supports Physics Informed Neural Networks and
Neural Operators, offering flexibility for users to craft models tailored to their needs. PINA is

modular and adaptable to different hardware setups, including GPUs and TPUs.

SOlve your Differential Equation
step by step

