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ABSTRACT
Fractional calculus is a generalization of classical (integer-order) derivatives,
where the order can be arbitrary. Paradoxically, these are non-local opera-
tors, addressing anomalous diffusion processes. Recently, fractional deriva-
tives have found applications in real world phenomena, such as turbulence
(Mehta et. el, 2019; Mehta, 2023). In order to solve for fractional differential
equations, fractional physics-informed neural networks (fPINNs) were intro-
duced in Pang et el. (2019) for forward problems. This was further extended
for inverse problems in Mehta et. el. (2019) and furthered in Mehta (2023)
for learning the by developing pointwise fPINNs and extended to tempered
definitions.
It is to be noted that the underlying stochastic process governed by fractional
operators has an infinite second moment, which is not the case for real world
scenarios. Thus, a tempered definition was introduced producing finite sec-
ond moments; also truncated definitions, which not only has finite second
moment but also addresses the computational challenges. Thus, in this pre-
sentation, I will also present the algorithms developed in Mehta (2023) for
application to both these definitions and numerically determine the equiva-
lence between these two operators. As a result, I will introduce and compute
the horizon of non-local interactions.
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INTRODUCTION TO FRACTIONAL
CALCULUS

4.1 Riemann-Liouville Definition
Recall the Cauchy’s formula for repeated integration (1) for p ∈ N,
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(x− τ )p−1f (τ )dτ (1)

Here, p ∈ N, to generalise this formula (1) introduce Γ(p) = (p−1)!, where Γ(.)
is the Euler gamma function, thus the Riemann-Liouville fractional integral is
defined as (2) for (p ∈ R+)

aI
p
xf (x) :=

1

Γ(p)

∫ x

a

(x− τ )p−1f (τ )dτ (2)

Subsequently, the Riemann-Liouville (RL) fractional derivative is defined as
(3) for p ∈ R+ and k ∈ N,
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(x− τ )k−p−1f (τ )dτ , k − 1 ≤ p < k (3)

here, (dk/dxk) is the classical integer-order derivative.

4.2 Caputo Definition
Although, the RL derivative is mathematically well established, there are two
key problems (a) for a constant function RL derivative is non-zero (b) It’s prob-
lem with specifying initial conditions.
As a remedy, Caputo defined a fractional derivative as (4) for p ∈ R+ and
k ∈ N,
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Remark 1. For homogeneous conditions the Caputo fractional derivative is
equivalent to the Riemann-Liouville fractional derivative.

FORWARD PROBLEM
(MEHTA ET EL., 2019)

Given the fractional order α(y+) and the boundary conditions, we aim to solve
D

α(y+)
y+

U+ = 1 for the mean-flow velocity U+(y+) for y+ ∈ (0,Reτ ]. We ap-
proximate U+(y+) by a multi-layer feedforward neural network U+

NN(y
+;θ). To

determine the parameters θ, we minimize the following loss function with re-
spect to θ
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Given a fixed integer M , we employ the L1 scheme to approximate the frac-
tional derivative in the loss function
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where cM,k = (M − k)1−α(y+i ) − (M − k − 1)1−α(y+i ), U+,k
NN := U+

NN(kh(y
+
i )), and

h(y+i ) = y+i /M . Upon obtaining the optimal θ we can predict the velocity
profile at any location y+ ∈ (0,Reτ ] using U+

NN(y
+;θ).

INVERSE PROBLEM (POINTWISE)
(MEHTA, 2023)

6.1 Inverse problem: computing fractional order
(pointwise) (Mehta, 2023)

For the inverse problem the goal is to find the fractional order (α(y+)) given
the function U+ and τ+ satisfying (7)
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U+ = τ+, y+ ∈ (0, Reτ) (7)

Here we developed a pointwise strategy (Mehta, 2023), this implies that we
train the neural network for a single training point at a time.

The input of feed forward neural network is single location y+i (only one train-
ing point), where i = {1, 2, . . . , N} for N training points. Indeed, the fractional
order (the output of neural network) is evaluated that location (y+i ). The loss
function only comprises of the equation term (Le) given in (8) written for the
ith training point.

Loss = Le =
[
MD

αNN (y+i )

y+i
(U+

DNS)− τ+(y+i )
]2

(8)

For numerical discretisation of the fractional derivative we employ an L1
scheme (Mehta, 2023) for the left- and right-sided derivative.
The merit of pointwise strategy are summarised as follows (Mehta, 2023):

• Given that the fractional order exists, it does not require boundary condi-
tions, which earlier required to impose unity in Mehta et el. (2019). Thus
for more complex situations we can find a physically consistent fractional
order.

• There are cases, where the fractional order is a discontinuous function
or the neural network collapses during training process; a pointwise algo-
rithm mitigates all the limitations. However, for forward problem, we rarely
encounter any problems during its training as demonstrated in Mehta et el.
(2019).

ALGORITHMS FOR TEMPERED AND
TRUNCATED FRACTIONAL

DEFINITIONS (MEHTA, 2023)

7.1 Investigating the influence of tempering pa-
rameter over fractional order (Mehta, 2023)

In the first investigation, we evaluate the influence of fractional order for tem-
pered or truncated fractional two-sided model, associated with the temper-
ing parameter λ and δ+, respectively. Algorithm 1 is the modified pointwise
fractional physics-informed neural network algorithm, where we additionally
supply the tempering parameter λ or δ+. Please note, again for this point-
wise algorithm, NO boundary conditions are required for solving the inverse
problem of determining the fractional order.
The left- and right- sided tempered fractional derivative as (9) and (10), re-
spectively.
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The loss function for the feed forward neural network uses the discrete form
for the left- (9) and right-sided (10) definition.

Loss = Le =

[
1

2

(
C
0 D

(α(y+i ),λ)

y+i
(U+) − C

y+i
D

(α(y+i ),λ)

2Reτ
(U+)

)
− τ+(y+i )

]2
(11)

For the truncated definition, we employ the same finite difference scheme,
over the same grid for truncated left-sided as (12) and right sided as (13).
The only difference the domain, for the fractional derivative the domain was
[0, 2Reτ ], while for the truncated definition the domain is [y+ − δ+, y+ + δ+],
where δ+ is a composite function (refer Mehta, 2023) and y+ ∈ (0, 2Reτ).
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The loss function for the feed forward neural network uses the discrete form
for the left- (12) and right-sided (13) definition, given a truncating parameter
δ+.
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7.2 Horizon of non-local interactions and finding
the equivalence between the truncated and
tempered fractional derivative (Mehta, 2023)

Recognise, the parameter δ+ associated with the truncated definition is also
the horizon of non-local interactions.

Definition 7.1. The horizon of non-local interactions ( δ+) is a distance beyond
which no long-range interactions occur.

If there exist such a distance δ+, such that the fractional derivative defined
over a infinite (or semi-infinite) domain is equivalent to its truncated defi-
nition with a compact support, then (15) holds. Following our notations,
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Equivalence of tempered and truncated definitions: In order to compute
δ+, we start with the tempered definition, compute the fractional order for a
given λ, then use this fractional order to compute the parameter δ+ (of trun-
cated definition) by gradually increment δ+ until (16) or (17) holds. It is NOT
assumed a-prior that δ+l and δ+r are a constant function, but treated as spa-
tially varying function, as we find the δ+l and δ+r in a pointwise sense. For δ+

being constant function or δ+l = δ+r are just a special case of our considera-
tion. ∣∣∣ 0
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