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__ Abstract [ CNN-based Super Resolution Technique

We present a novel approach to high-fidelity wind turbine wake prediction using CNN Architecture:
convolutional neural networks (CNN)-based super-resolution techniques. * Input Layer: Low-resolution CFD data.
 Convolution Layers: Multiple layers with RelLU activation functions to extract
Wind turbine wakes, which significantly impact the efficiency and lifespan of features.
downstream turbines, have traditionally been challenging to model accurately due * Upsampling Layers: To increase the resolution of the feature maps.
to their complex, dynamic nature. By employing CNNs to enhance low-resolution e Qutput Layer: High-resolution wake prediction.
computational fluid dynamics (CFD) simulations, our method substantially
improves the spatial resolution and predictive accuracy of wake profiles. Equation:
The CNN model can be mathematically described by the following function:
This advancement allows for more precise predictions of wake characteristics, such
as velocity deficits and turbulence intensity, over a range of atmospheric Y = f(X;0)
conditions. * X represents the input low-resolution data.

* 0O represents the learnable parameters of the CNN.
Y represents the output high-resolution data.

High-Fidelity Simulation (LES)

Large Eddy Simulation (LES) is used to simulate the detailed turbulent flow
structures in the wind turbine wakes. LES solves the filtered Navier-Stokes ' //
equations: | ) J
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Figure 2: Decoder architecture for CNN-based super-resolution techniques
* U; is the filtered velocity.

* pisthe filtered pressure.
* pis density.

CHB molecular viscosity Our approach demonstrates a significant improvement in the prediction of wind

Yy .|s the f||terec.zl, or resolved scale strain rate tensor turbine wakes, which can lead to better design and optimization of wind farms.
® T;j is the sub-grid scale stress tensor. Future work will focus on further refining the model and exploring its application to
other types of fluid dynamics problems.
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