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Abstract

Reduced Basis (RB) method has successfully been used in 2D to solve scalar and vectorial parametrized problems. The rbMIT software is a library developed in Matlab to solve this kind
of problems. The idea is to interface the rbMIT library (in Matlab) with the COMSOL Multiphysics to extend the library to solve 3D problems. COMSOL is a powerful tool for solving

and modelling engineering problems based on PDEs. It permits to create your own 3D geometry and to generate meshes. We present two Worked Problems, the Thermal Fin and the Graetz
Flow and we compare two reduced order modelling techniques: the Greedy-RB and the Proper Orthogonal Decomposition (POD).

The Steady Thermal Fin Problem

The main function of a heat sink is to transfer heat from an object at a higher
temperature to another one at a lower temperature with greater heat capacity.

The heat sink comprises of a
base/spreader which in turn supports
a number of plate fins exposed to
flowing air. Examples of systems
that require a heat sink to reduce
their temperature are microproces-
sors and refrigeration. The output
is the average temperature on Γo2.

Parameters

µ1 is the Biot number µ2 is the height of the fin
µ3 is the conduction ratio

Equations


−µ3∆uo(µ) = 0 in Ωo1(µ) and −∆uo(µ) = 0 in Ωo2(µ)
µ3

∂
∂nuo(µ) = 1 on Γo2,

∂
∂nuo(µ) = 0 on (∂Ωo1\Γo2) ∪ (∂Ωo2\Γo10) ,
∂
∂nuo(µ) + µ1uo(µ) = 0 on Γo10 (Heat transfer by convection)

Comparison between Greedy-RB and POD

Error between the FE and the RB solution in L2 and L∞ norm.
Visualization

Representative solutions for µ = (0.5, 2.75, 10) (left) and µ = (0.01, 8, 1) (right).

The Time-Dependent Graetz Flow Problem

This is a classical problem in literature dealing with forced heat convection combined
with heat conduction in a duct. The duct is separated in two parts, one with cold walls

and the other one with
hot walls. The tem-
perature at inlet is im-
posed and the flow has
a known given convec-
tive field. The output
is the average tempera-
ture in the duct.

Parameters

µ1 is the height of the duct µ2 is the length of the hot zone
µ3 is the Peclet number

Equations


∂uo(t;µ)
∂t − (µ3)−1∆uo(t;µ)+ xo2(1− xo2) ∂

∂x1
uo(t;µ) = 0 in Ωo(µ), t ∈ [0, T ]

uo(t;µ) = 0 on cold walls, t ∈ (0, T ]
uo(t;µ) = g(t) on hot walls t ∈ (0, T ]
∂
∂nuo(t;µ) = 0 on Γo11, t ∈ (0, T ]
uo(t = 0;µ) = 0 in Ωo(µ) (Initial condition)

Chosen parameters with the Greedy-RB
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Chosen parameters by the Greedy-RB and convergence.
Visualization

Representative solutions for µ = (1, 2, 10) (left) and for µ = (2, 8, 10) (right).

Computational Time (Thermal Fin)

tOffline(N ) = Time to construct the reduced basis
Time to evaluate the output with the FE = 1158 (break-even)

tOnline(N , N) = Time to evaluate the output with the RB
Time to evaluate the output with the FE = 0.006.

Computational Time (Graetz flow)

tOffline(N ) = Time to construct the reduced basis
Time to evaluate the output with the FE = 32.4 (break-even)

tOnline(N , N) = Time to evaluate the output with the RB
Time to evaluate the output with the FE = 0.005.

Reduced basis method

The reduced basis method is used to evaluate any kind of outputs se(µ) (maximal or average temperature, flow rates, heat transfer rates, etc.) which depends on a field variable ue(µ), solution
of a parametric PDE

a (ue(µ), v;µ) = f (v;µ), ∀v ∈ Xe,

where Xe is a functional space, a : Xe×Xe×D −→ R is a continuous (coercive) parametric bilinear form and f is a continuous parametric linear functional (the superscript e refers to exact).
The parameter µ ∈ D ⊂ RP may represent boundary condition and sources, geometric configuration or physical properties. The set D is the parameter set and P is the number of parameters:
The idea is to be able to evaluate the output for a great number of parameters at a reduced cost.
For a given finite element space XN of dimension N , the idea is to construct, for 1 ≤ N ≤ Nmax ∈ N, a N -dimensional space XN , with N << N and to take the Galerkin projection on the
space XN . So, we have to choose N parameters µ1, . . . ,µN and compute N finite element solution ξN1 , . . . , ξNN associated to the parameters, called snapshots.
After orthonormalization, these solutions will be the base of XN and then for an arbitrary value µ∗ ∈ D, we can compute the solution associated to this parameter (denoted uNN (µ∗)) taking a
good linear combinations of ξNk , k = 1, . . . , N . Then, the evaluation of the output will not depend on N but only on N .
There exists numerous way to choose the snapshots to construct the reduced basis. Here, we consider two of them. The Greedy-RB and the POD. The Greedy-RB is an algorithm which chooses
at each step the parameter µK which maximizes the error uN (µ) − uNK (µ), where uN is the finite element solution and uNK ∈ XK is the reduced basis solution and it minimizes the error in
L∞-norm. For the POD, we have to solve an eigenvalue problem and it minimizes the error in L2-norm.
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