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Abstract

Reduced order techniques speed up the computational time with rapid and efficient models which al-
low to approximate numerically fluid flows in complex and realistic configurations where geometrical
features are recurrent and similar. The proposed reduced basis hybrid method (RBHM) is a reduced
order strategy developed upon techniques combining reduced basis method and domain decompo-
sition methodologies. It takes advantage of repetitive geometries of the computational domain when
solving incompressible fluid flows problems modeled by steady Stokes equations. In particular it al-
lows to improve the regularity of the global solution at the interfaces of the subdomains by minimizing
the jump of the velocity and of the pressure solutions, and by combining reduced basis solutions on
a fine grid with a coarse finite element solution.

1. Reduced Basis Hybrid Method

Carrying out simulations almost in real time and in a many query context with a reasonable level
of accuracy may really increase the importance of cardiovascular simulations in daily diagnosis or
risk evaluation procedure. The RBHM takes advantage of both the reduced basis (RB) [5] and the
domain decomposition (DD) concepts by adding some new extension to the reduced basis element
method (RBEM) [4]. We consider the following steady Stokes problem in a domain Ω ⊂ R2 with mixed
boundary conditions on Γ = Γin ∪ Γout ∪ Γw:

−ν∆u +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on Γw

ν ∂u∂n̂ − pn̂ = σ̄ on Γ \ Γw

with σ̄ =

{
σ̄in on Γin

σ̄out on Γout
(1)

where Ω is a domain occupied by a fluid of constant density, u is the fluid velocity, p
the pressure, f a force field, ν the kinematic viscosity and n̂ the normal unit vector to
the domain boundary. The domain Ω is given by a non-overlapping union of R sub-
domains Ωr, and each sub–domain is a deformation of a reference domain Ω̂k through regu-
lar enough, and non-affine, maps T kµr : Ω̂k → Ωr, so that Ω =

⋃R
r=1 Ωr =

⋃R
r=1 T

k
µr

(Ω̂k).

The parameter µ ∈ D ⊂ RP (with P ≥ 1) represents the geometric deformation associated to each
sub–domain. The parametric maps, their Jacobians Jk and the corresponding determinants Jk allow
to define the parametric weak formulations of problem (1) for each sub-domain Ωr on Ω̂k after the
transformation. Find (u, p) ∈ Y k ×Mk such that{

ak(u, v, µr) + bk(v, p, µr) = f k(v, µr, σ
in
r , σ

out
r ) ∀v ∈ Y k = H1

Γw
(Ω̂k)

bk(u, q, µr) = 0 ∀q ∈Mk = L2(Ω̂k)
(2)

where ak(v, w, µ) = ν
∫

Ω̂k
J −Tk ∇v · J

−T
k ∇w|Jk| dΩ̂, bk(v, q, µ) = −

∫
Ω̂k
q∇ · (J −1

k v)|Jk|dΩ̂ and

f k(w, µ, σin, σout) =

∫
Ω̂k

f · v|Jk|dΩ̂ +

∫
Γ̂in

σinv · n|Jk|dΓ̂ +

∫
Γ̂out

σoutv · n|Jk|dΓ̂.

If Ωr is a sub-domain associated with the inflow boundary, we use σinr = σ̄in and σoutr = 0; if Ωr

is a central sub-domain, we impose σinr = 0 and σoutr = 0; while if Ωr is a sub-domain associated
with the outflow boundary, we impose σinr = 0 and σoutr = σ̄out, so that the local solutions have zero
stress on the internal interfaces. The RB method allows to find the solution of parametrized prob-
lem (2) as projection of previously precomputed solutions (vh(µ

i), ph(µ
i)) for certain instances of the

parameters µi, i = 1, · · · , N (properly selected by an exploration in the parametric space, carried
out through a greedy algorithm based on residuals, [6]) using P2- P1 Taylor-Hood finite elements
(FE) on an accurate fine mesh. We define the reduced basis spaces in each reference domain:
Zk
N = span

{
ukh(µ

i), i = 1, ..., Nk

}
,Mk

N = span
{
pkh(µ

i), i = 1, ..., Nk

}
.

In order to fulfill the inf-sup condition the velocity basis has been enriched, [6]:
Y k
N = Zk

N ⊕Xk
N , Xk

N = span
{
vkh(µi), i = 1, ..., Nk

}
, vkh(µi) = arg supw∈Z

b(w,pkh(µi),µi)

||w||Z
.

Each basis function in each reference subdomain is computed considering zero-stress conditions at
the internal interfaces, the continuity of the stresses (non-zero) at the interfaces is recovered by a
coarse finite element solution on the global domain Ω, while the continuity of velocities is guaran-
teed by Lagrange multipliers. A Galerkin FE solution (uH, pH) of the problem (1) is obtained in a very
quick way by using a coarse mesh for the whole domain Ω. Together with the supremizer solution
vH, we restrict these functions to each subdomain, we map them back to the corresponding reference
domain and we include them in the reduced basis spaces:
Y kr
N = span

{
uH|Ωr, vH|Ωr, ukh(µik), vkh(µik), i = 1, ..., Nk

}
,Mkr

N = span
{
pH|Ωr, pkh(µik), i = 1, ..., Nk

}
.

The problem (1) in the reduced basis hybrid approximation is: find uN(µ) =
⋃R
r=1 uN(µr) and

pN(µ) =
⋃R
r=1 pN(µr) such that, for r = 1, · · · , R, (uN(µr), pN(µr)) ∈ (Y kr

N ×Mkr
N ){

ak(uN(µ), w, µr) + bk(w, pN(µ), µr) = f k(w, µr, σ
in
r , σ

out
r ) ∀w ∈ Y kr

N

bk(uN(µ), q, µr) = 0 ∀q ∈Mkr
N

(3)

and
∫

Γkl
(uN(µ)|Ωk − uN(µ)|Ωl)ψds = 0, ∀ψ ∈ Wk,l, ∀k, l ∈ {1, · · · , R} where Γkl is the interface

between two adjacent sub-domains denoted with the indexes k and l respectively and Wk,l is a low
order polynomial space defined on this interface.

2. Transfinite map

The geometrical parametrization of the domain is obtained through the transfinite map which induces
non-affine parameter dependence: an empirical interpolation technique (EIM), [1], is used to recover
an affine parameter dependence and a subsequent offline/online decoupling of the reduced basis
procedure in order to reduce considerably the problem complexity and the computational times. The
blocks deformations are obtained, through the transfinite map T kµr : Ω̂k → Ωr, by a linear combination
of parametrized functions describing the boundaries of Ωr [3].

• Each boundary Γri ⊂ ∂Ωr = ∪nri=1Γri is described by a parametrized function ψri (·, µ) : [0, 1]→ Γri ;

• For each boundary Γ̂ki ⊂ ∂Ω̂k we define a weight function ϕki : Ω̂k → [0, 1] solving a proper Laplace
problem on Ω̂k;

• For each boundary Γ̂ki ⊂ ∂Ω̂k we build a projection function πki : Ω̂k → [0, 1] as the solution of a
second Laplace problem on Ω̂k.

Denoting with nr the number of boundaries of Ωr, x ∈ Ωr is defined as x = T kµr(x̂) =∑n
i=1[ϕki (x̂)ψri (π

k
i (x̂), µr) − ϕki (x̂)ϕki+1(x̂)ψri (1, µr)], where x̂ ∈ Ω̂k, so that T kµr : Ω̂k → Ωr. In

the figures below we show an example of deformed bifurcation obtained with the transfi-
nite map using three parameters: µ1 = length, µ2 = thickness, µ3 = bifurcation span.

3. Numerical results

We solve a Stokes problem to model the blood flow through a stenotic artery, a multi-block domain
has been considered by combining pipes with a curved and parametrized wall. In an off-line stage,
we compute all the expensive ingredients involving high resolution: the EIM for the affine decom-
position, the FE matrices and the basis functions, the greedy algorithm for choosing the parameters
µ1, · · · , µN . In the online stage we find the coarse solution for the Stokes problem in the whole domain
and we use the stored matrices to assemble and solve the system (3), [2]. The deformation of the
stenotic blocks depends on the amplitudes, µ1 ∈ [0, 2] and µ2 ∈ [0, 2], on the upper and lower walls.

In the figures below we report the reductions of the H1 and L2 relative errors on velocity and pressure
for an increasing number of basis (on the left) and the computational times of FE solutions and the
online RBHM increasing the number of stenosis blocks (on the right).

In order to show the advantages of the reduced model proposed, we report in the Table the values of
the CPU times for different number K of sub-domains. The computational time for the matrix assem-
bling is 0.76s for each of the sub-domains considered.

K Fine FEM Coarse FEM RB Linear RBHM %

solution solution System
5 31.13 1.73 0.06 2.72 8.76

10 132.18 4.86 0.14 5.68 4.30
15 311.44 10.18 0.23 11.08 3.56
20 557.57 16.77 0.28 17.81 3.19
25 880.54 23.86 0.60 25.22 2.86
30 1183.5 34.81 0.78 36.35 3.07
35 1895.7 49.74 1.02 51.52 2.71
40 2484.6 70.44 1.56 72.76 2.92

The error tolerance for the EIM is εEIMtol = 10−6. The
greedy tolerance is εtol = 10−5. The number of the
mesh nodes is 200 for the coarse grid and 1583 for
the fine grid. We can see that, in terms of computa-
tional cost, the fine solution computed with RBHM is
comparable to the one obtained on the coarser grid
with standard FEM method. The CPU time spent for
FEM simulation with 5 blocks is on par with a RBHM
simulation with 27 blocks, still retaining the continuity
of velocities and pressure at interfaces.
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