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1. Introduction
Reduced basis method and stochastic collocation method have been developed
with many ideas in common to solve parametric and stochastic problems [1,2,3].
In this work, 1. we compare their convergence rate from the nonlinear approx-
imation point of view and computational cost; 2. present similar computational
reduction techniques such as sparse/adaptive/hierarchical collocation points and
efficient greedy sampling strategies (e.g. “hp" type) in parameter space of reduced
basis; 3. and analyze different strategies for dealing with high dimensional prob-
lems, e.g., dimension adaptation and analysis of sensitivity or variance (ANOVA).

2. Mathematical Formulation
Physical processes such as heat conduction with non-homogeneous conductivity
or fluid flow through porous media with random porosity field can be characterized
by the following parametric or stochastic elliptic problems:

Find u(µ) ∈ X s.t. a(u(µ), v;µ) = f (v), ∀v ∈ X, (1)

where a and f are the bilinear form and the linear functional; µ = (µ1, µ2, . . . , µN)
can represent either parameters or random variables. We are interested in a func-
tional s(u;µ) or its statistics, for instance, the expectation E[s(u;µ)].
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Figure 1: Approximation by reduced basis (left) and stochastic collocation (right)

Reduced basis method:[2] S1: Decompose the functionals by affine assumption
S2: Compute and save the parameter free quantities. S3: Select samples and
compute snapshots by a greedy algorithm based on a posteriori error estimate.
S4: Evaluate s(u;µ) for new µ by Galerkin projection in the reduced basis space.
Stochastic collocation method:[1] S1: Choose appropriate collocation points,
e.g. Clenshaw-Curtis, Gauss, Chebyshev, etc. S2: Compute and save solution at
the collocation points. S3: Evaluate s(u;µ) for new µ by Lagrangian interpolation
or compute statistics E[s(u;µ)] by numerical integration over the collocation points.
Methodological comparison: Galerkin projection on “snapshots" or the solution
itself vs Lagrangian interpolation or projection on Lagrangian polynomials.

3. Convergence Rate and Computational Cost

Theorem 1 Suppose that the solution u(µ) is analytic with respect to µ, we have[8]∣∣E[s(u;µ)]−E[s(uNRB;µ)]∣∣ ≤ Ce−αN
β

vs
∣∣E[s(u;µ)]−E[s(uNSC;µ)]∣∣ ≤ CN−r, (2)

provided that the Kolmogorov width of reduced basis approximation dN ≤ Ce−αN
β

holds[4], where uNRB and uNSC are reduced basis approximation and stochastic col-
location approximation, respectively; C, α, β, r are constants independent of N .

Figure 2: Convergence rate for expectation E[s(u;µ)] with five affine terms by
reduced basis method (left) and stochastic collocation method (right)

Let Nrb := # reduced bases � Nsc := # collocation points � ntrain := # training
samples, Qa := # affine terms, Ws := work for solving the elliptic problem once,
Wp := work for evaluating a posteriori error estimate once� Ws, we have[8]

computational cost construction evaluation
reduced basis O(Nrb ×Ws) +O(Nrb × ntrain ×Wp) O(QaN

2
rb +N 3

rb)

stochastic collocation O(Nsc ×Ws) O(Nsc)

Table 1: Approximate cost of reduced basis and stochastic collocation methods
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4. Computational Reduction Techniques

In order to diminish the computational cost for both the reduced basis method and
the stochastic collocation method, we take advantage of the following techniques:
• tensor product→ hierarchical sparse structure, reduction for construction;[1]
• isotropic→ anisotropic structure, reduction for anisotropic problems;[1]
• global→ local adaptive p-refinement, reduction for low regularity problems;[6]
• one→ domain decomposition h-refinement, reduction for evaluation.[5]
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Figure 3: 1).full tensor product grid; 2). sparse grid; 3). anisotropic sparse grid;
4). local p-refinement; 5). h-refinement for RB; 6). h-refinement for SC.

5. Toward High Dimensional Problems

Both methods suffer from “curse-of-dimensionality" for high dimensional problems.
Recipe: dimension adaptation[6] and sensitivity analysis or ANOVA[7].
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Figure 4: 1). heat conduction; 2). sensitivity or ANOVA; 3). RB approximation;
4). flow in porous medium; 5). dimension adaptation; 6). SC approximation.

6. Concluding Remarks

In summary, reduced basis method achieves better accuracy than stochastic col-
location method at comparable cost, while the latter one possesses hierarchical
and anisotropic properties to deal with low regularity and high dimensional prob-
lems. A promising research is to combine them to achieve efficient sampling and
computational reduction for solving parametric and stochastic problems.
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