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1. Introduction |

Reduced basis method and stochastic collocation method have been developed
with many ideas in common to solve parametric and stochastic problems [1,2,3].
In this work, 1. we compare their convergence rate from the nonlinear approx-
imation point of view and computational cost; 2. present similar computational
reduction techniques such as sparse/adaptive/hierarchical collocation points and
efficient greedy sampling strategies (e.g. “hp" type) in parameter space of reduced
basis; 3. and analyze different strategies for dealing with high dimensional prob-
ems, e.g., dimension adaptation and analysis of sensitivity or variance (ANOVA).

2. Mathematical Formulation |

Physical processes such as heat conduction with non-homogeneous conductivity
or fluid flow through porous media with random porosity field can be characterized
by the following parametric or stochastic elliptic problems:

Find wu(p) € X st alu(p),v;p) = f(v), VYveX, (1)

where a and f are the bilinear form and the linear functional; © = (u1, po, . . ., pin)
can represent either parameters or random variables. We are interested in a func-
tional s(u; u) or its statistics, for instance, the expectation E|s(u; u)].
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Figure 1: Approximation by reduced basis (left) and stochastic collocation (right)

Reduced basis method:[2] S1: Decompose the functionals by affine assumption
S2: Compute and save the parameter free quantities. S3: Select samples and
compute snapshots by a greedy algorithm based on a posteriori error estimate.
S4: Evaluate s(u; 1) for new p by Galerkin projection in the reduced basis space.

Stochastic collocation method:[1] S1: Choose appropriate collocation points,
e.g. Clenshaw-Curtis, Gauss, Chebyshev, etc. S2: Compute and save solution at
the collocation points. S3: Evaluate s(u; 1) for new p by Lagrangian interpolation
or compute statistics E'|s(u; u)] by numerical integration over the collocation points.

Methodological comparison: Galerkin projection on “snapshots” or the solution
itself vs Lagrangian interpolation or projection on Lagrangian polynomials.

| 3. Convergence Rate and Computational Cost |

Theorem 1 Suppose that the solution u () is analytic with respect to 1., we have[8]
| E[s(u; )] — Els(upg:p)]] < Ce  vs | Els(u; p)] — Els(uge: p)]] < CN77, (2)
provided that the Kolmogorov width of reduced basis approximation dy < Ce N

holds[4], where uy 5 and vy are reduced basis approximation and stochastic col-
location approximation, respectively; C, a, 8, r are constants independent of N.
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Figure 2: Convergence rate for expectation F|s(u; i)| with five affine terms by
reduced basis method (left) and stochastic collocation method (right)

Let V,, := # reduced bases <« N,. := # collocation points < ny,.i, := # training
samples, (), := # affine terms, W, := work for solving the elliptic problem once,
W, := work for evaluating a posteriori error estimate once < Wy, we have[8]

construction evaluation
O(Nypy X W) + O(Nyp X ngrain X W) O(QuNZ% + N3 )
O(Nsc X Ws) O(NSC)

Table 1: Approximate cost of reduced basis and stochastic collocation methods

computational cost
reduced basis
stochastic collocation
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4. Computational Reduction Techniques |

n order to diminish the computational cost for both the reduced basis method and
the stochastic collocation method, we take advantage of the following techniques:

e tensor product — hierarchical sparse structure, reduction for construction;[1]
e iISotropic — anisotropic structure, reduction for anisotropic problems;[1]
¢ global — local adaptive p-refinement, reduction for low regularity problems;[6]
e ONe — domain decomposition h-refinement, reduction for evaluation.[5]
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Figure 3: 1).full tensor product grid; 2). sparse grid; 3). anisotropic sparse grid,
4). local p-refinement; 5). h-refinement for RB; 6). h-refinement for SC.

| 5. Toward High Dimensional Problems |

Both methods suffer from “curse-of-dimensionality” for high dimensional problems.
Recipe: dimension adaptation[6] and sensitivity analysis or ANOVA[/].
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Figure 4: 1). heat conduction; 2). sensitivity or ANOVA; 3). RB approximation;
4). flow in porous medium; 5). dimension adaptation; 6). SC approximation.

| 6. Concluding Remarks |

In summary, reduced basis method achieves better accuracy than stochastic col-
location method at comparable cost, while the latter one possesses hierarchical
and anisotropic properties to deal with low regularity and high dimensional prob-
lems. A promising research is to combine them to achieve efficient sampling and
computational reduction for solving parametric and stochastic problems.
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