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Introducing RDF The Ingredients

The benefits of Reduced Basis, Domain Decomposition and Finite Elements

for parametrized PDEs in networks of repetitive blocks with heterogeneus parametrizations Reduced Basis

Method

Domain
Decomposition

Finite Element
Method

RDF — + + The Finite Element method consists in solving a PDE The Domain Decomposition Method consists in The Reduced Basis method consists in solving a

problem by variational approach, performing a Galerkin partitioning the domain Q into the union of smaller parametrized PDE problem by variational approach,

< L/ projection on a given discrete space V. Given a regular subdomains € and in solving smaller local problem. In performing a Galerkin projection on a particular

triangulation Th of the domain Q, the FE method order to assure that the local solutions are the discrete space Vn. Particularly, a set of solutions

RDF is a numerical framework to perform rapid and reliable simulations by combining Reduced Basis (RB), Domain Decomposition (DD) corresponds to choosing Vi as the space of the restriction of the global solution, suitable coupling corresponding to different values of the parameters is

and Finite Elements (FE) techniques, for solving parametrized problems (UPDEs) in networks made up by repetitive blocks with functclons that are globally continuous on Q and that, Fondltlons must be provided on the. fictitious |nt-e.rnal precomputed during an offline stage by FEM (g-reedy).

. ) ) . . . . .. restricted to an element K € Thare polynomial. interfaces, I;, introduced by the domain decomposition. In @ many query context, each new evaluation is then

heterogeneous parametrizations. The method is applicable to general time-independent linear yPDEs and the continuity of the global performed in an online step by choosing Vi as the space
solution is assured by a classical domain decomposition approach. generated by the precomputed solutions.

The idea Where does the
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u: Exact solution ure: FE solution uror : RDF solution
n Consider every block as a parametric deformation of a reference block. usc: Auxiliary FE function that, among the ones whose trace on I is a linear combination of the local Variational Formulation Algebraic Formulation Variational Formulation

BC nodal values, minimizes ||ure - usc||v

Build offline local reduced basis spaces by computing once and for every single up € Vi alup,vn) = F(vp) Vop €V uny € VN au(un,vn) = Fu(vn) Yoy € Vy
reference block, some representative solutions for different values of the u - Urprlly < 1lu - urelly + [lUee - Usclly + ||usc - Urprlly : , , )
parameters through FE. The reduced basis must be able to approximate different ” ” || || || || ” ” Space for the discrete solution A, 0 0 A uy £, Space for the discrete solution
boundary conditions (a basis for the trace of the solution) on the boundaries @ Can be reduced by improving the local FE discretization of the reference blocks by Vi = {vr € CY(Q) : vp|lx € Px VK € T} 0o . 0 : S Vi = span{uj ™ ()i = 1,.. ., Nyample }
corresponding to the internal interfaces I' of the network. decreasing the mesh size h. 0 0 Ay, Anr uy, fi,

Algebraic Formulation Ar1 ... Arn, Ar ur fr Algebraic Formulation

Partition the mesh nodes in the subsets Crs, where the solution will be obtained by @ Can be reduced by enriching the local RB space to account for more possible

: ; s .. FE.. _ ¢FE T AFE _ . T¢FE
RB, and Qfg, where the solution will be obtained by FE. boundary conditions. A= g=£F L AM Uy =WV f‘u

&) Recover online the global solution by a Galerkin projection on the reduced basis @ Can be reduced by increasing the number of local reduced basis functions as it is

spaces in Qrg and on the finite element spaces in Qre. proportional to the RB greedy error.

RDF in Action

All you need to know, for the thermal fin problem

30 Blocks 50 RB for each Block 8 Fourier BC on the internal interfaces

12.5x online speedup and 10-¢ Relative Error compared to FE Strong Formulation Variational Formulation

4y (1,0) = Fu(v)

The problem
Consider the problem of the heat conduction in a thermal

disspator made of a certain number R of blocks with fins pclu = 0 in Q,

of variable length. This problem may be described as a o v = 1 only T R Oy Vo d
parametric Laplace problem where the parameters vector o = 0 onToy ulwv) = Z«r-:lfsz“g”c e v an
M includes the length of each fin pyg and the heat fegy = 0 onlwanr  F,(v) = —Zf‘zlfﬂigugVRg.w dx

conductivity of each block .

A little bit of Reduced Basis &
a little bit of Finite Elements

From the deformed configuration
to the reference blocks

Deformed Network Domain Reference Network Domain Reference Block Piecewise linear Lagrangian basis for BC Fourier Basis for BC

Local greedy algorithms &
the missing boundary conditions

Galerkin projection
put everything together

3 possible combination of FE (red nodes) and RB (blue nodes) Galerkin projection elements and algebraic form of the problem
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RDF method deals with three different geometries. The deformed network domain, where Classical greedy techniques are used on the reference blocks to build the local RB RDF method allows to arbitrarily mixing reduced basis and finite elements on each The final step of our method consists in performing a Galerkin projection on the discrete
we are interested in obtaining the solution, the reference network domain, where the spaces. The fin lenght pg is the only parameter to take into account as the heat block. Once the local reduced bases have been obtained, we select the nodes to be RDF space which is obtained by direct product of the local discrete FE and RB spaces.
variational problem is formulated and the solution is obtained in the online phase and conductivity does not modify the local solution for this specific problem. treated by the FE method and the ones to be treated by the RB method. Once proper extension operator E;are introduced that prolongate globally to zero the
the reference blocks, where the local reduced basis spaces are built in the offline phase. A dicotomy appears at this stage: the global solution is unknown and so is its trace on Usually, zones where the solution does not depend smoothly on the parameters or local functions, deducing the algebraic form of the problem is straightforeward.
Affine maps are used to easily pass from one geometry into another and let us the local boundaries mapped into internal interface of the global network. However, where the RB error is concentrated are the ones where the usage of the FE method is Particularly we can reorganize the terms to isolate the single subdomains and the single
incorporate the geometrical parameters in the variational formulation: some boundary conditions (BC) must be provided for building the RB spaces. The idea is indicated. On the other side, where the solution depends smoothly on the parameters, FE and RB contribution. The extra-diagonal blocks provide the correct coupling
to perform the greedy by choosing the solutions in a set where both pg and the RB method can be used effectively. Once the division is made, we drop the component conditions. Besides the RDF matrix can be obtained by pre and post multiplying the
au(u,v) = Yy o meVu-Vvdx =35, [y p Gl V&-Cp‘;" VP idetCP; dx boundary condition vary. Ideally the boundary conditions should constitute a basis for corresponding to the FE nodes from the local reduced basis and we orthonormalize the global FE matrix by a proper block diagonal matrix P that contains identity blocks in
% = i o |ai on oy g - o the trace of the FE solution on the internal interfaces. We used either a piecewise linear set of basis functions to improve the properties of the local reduced basis. correspondence of the FE nodes and the local RB functions blocks in correspondence to
= e Zijhe [( 4 Cu) i =T i,-_,- o, 0x; Ox; = Lm 2 O3) aiy @, 9) Lagrangian basis (of different amplitude) or a Fourier basis (with different modes). the RB nodes.
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RDF Performances & Errors

Averaged results on 100 casual parametric samples of a 3 blocks network
configuration with a mesh of 37505 nodes and 65 local interface nodes

Total relative error (H' norm) Total relative error (H' norm) Total relative error (H' norm) Total relative error (H' norm) Computational time with respect to FE
as function of the # of local RB functions and the # of interface BC as function of the # of local RB functions and the # of interface BC as function of the # of FE layers and the # of interface BC as function of the # of FE layers and the # of local RB functions as function of the # of FE layers and the # of local RB functions
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Number of local boundary conditions
Number of local boundary conditions
Number of local boundary conditions
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Number of reduced basis functions for each block Number of reduced basis functions for each block Number of reduced basis functions for each block Number of local boundary conditions Number of reduced basis functions for each block Number of reduced basis functions for each block
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Type of local BC: Piecewise Linear Lagrangian Type of local BC: Fourier Type of local BC: Fourier Type of local BC: Fourier Type of local BC: Fourier Type of local BC: Fourier
Number of FE Layers: 0 Number of FE Layers: 0 Number of FE Layers: 5 (FE nodes are 4.3% of the total) Number of local RB: 50 Number of local BC: 5 Number of local BC:  Result independent of the number of local BC

Relative error (in H' norm) between the RDF solution and the FE solution. Relative error (in H' norm) between the RDF solution and the FE solution. Relative error (in H' norm) between the RDF solution and the FE solution. Relative error (in H' norm) between the RDF solution and the FE solution. Relative error (in H' norm) between the RDF solution and the FE solution. The graph shows the computational time of the RDF method as
For a fixed number of local BC, the error decreases by augmenting the For a fixed number of local BC, the error decreases by augmenting the For a fixed number of local BC, the error decreases by augmenting the The error diminishes by increasing the number of FE layers (percentage The error diminishes both by increasing both the number of local RB percentage of the FE method applied to the global problem. The
number of local RB functions and reaches a plateau that depends on the number of local RB functions and reaches a plateau that depends on the number of local RB functions and reaches a plateau that depends on the of FE nodes with respect to the total) and it is non monotonic w.r.t. the functions and the number of FE layers (percentage of FE nodes with computational time increases both augmenting the number of local RB
number of BC considered. For a fixed number of local RB functions the number of BC considered. For a fixed number of local RB functions the number of BC considered. For a fixed number of local RB functions the number of local interface BC. This is due to the fact that, at fixed number respect to the total). Starting from the internal interfaces, each layer adds functions and the number of FE layers (percentage of FE nodes with
error diminishes by increasing the number of local BC, however, if the error diminishes by increasing the number of local BC, however, if the error diminishes by increasing the number of local BC, however, if the of local RB functions, too many different local BC cannot be properly to the FE domain the nodes of the triangles contiguous to the previous respect to the total). Starting from the internal interfaces, each layer adds
number of local RB functions is too small, the error increases as the RB is number of local RB functions is too small, the error increases as the RB is number of local RB functions is too small, the error increases as the RB is approximated with the RB method. This result shows that the expansion layer. Therefore, increasing the percentage of FE nodes is a viable strategy to the FE domain the nodes of the triangles contiguous to the previous
not large enough to accurately approximate solutions corresponding to not large enough to accurately approximate solutions corresponding to not large enough to accurately approximate solutions corresponding to of FE nodes by adding layers proximal to the internal interfaces at fixed to decrease the error. When FE nodes are 100% of the total (limit case), layer. Selecting a reference time gain, it is possible to use isolines to
all the different local BC. FE are used only for the nodal value on the all the different local BC. FE are used only for the nodal value on the all the different local BC. In this case the FE zone at the interface has number of local RB functions is particularly effective for a specific range RDF correspond to the FE method on the global domain. The graphs search the best combination between the number of FE layers and that of
internal interfaces. internal interfaces. been expanded locally by adding 5 additional FE layers. of the number of local BC. relative to different number of local BC present similar patterns. local RB functions that minimizes the error.

A little more about RDF

Tuning RDF,
flexibility in your hands

Conclusions &
Remarks

Increasing the Blocks

Averaged results for casual parametric network configurations made of R blocks
with 40 local RB functions, 3 Fourier BC functions and 0 FE layers (FE nodes only on I')

mm RDF method retains its efficiency when increasing the number of RDF:

blocks R. The relative error remains almost constant depending on

RDF method is very flexible. In fact, to achieve a desired accuracy for the RDF solution in a competitive time, RDF let you
modify the number of local RB functions, the number (and the type) of local BC used for building the RB spaces and the
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ratio between the FE nodes and the total number of nodes. In general, by increasing the value of these parameters one ACELRSIE 3.4e-5 5.8e-6 12e-5 5.6e-6 125 the |ocal RB spaces while the computational gain slightly decreases. w |s a new computational framework, effectively combining RB, FE and DD

improves the accuracy of the numerical RDF solution, however, it may also increase the online or offline computational fETime Ratic IR ERI  EI T However DD preconditioning strategies may be adopted to improve . . . o )

times. o e = = e the efficiency of the method for large number of blocks. YW Is part|CU|ar|y SU|tab|e for iJPDES N nEtworkS made up by rEpet|t|Ve geometnes

Number of local RB functions Number of local BC for the interface Number of FE layers \'Af Is appllcable to general tlmE'lndependent linear ”PDES
(already implemented and tested on Laplace and Stokes problems)
Slower online RDF Slower offline Slower online RDF S |
solution greedies solution ome y¢ Drastically reduces the offline time for large networks
i @ Error Decreases Riggen fulland)smalier Error Decreases '\ ipp ooy Error Decreases S —— Refe rences (w.rt. the RB method applied on the whole domain, as the greedy is made only on the local reference blocks)
sparse local for the same greedy’s smaller full local . : : .
Bl ot e il | - N | | W Allows a flexible balance of accuracy, offline and online time
. L.lapichino, M. Lesinigo, A. Quarteroni and G.Rozza _ > G.Rozza,D.B.P. Huynh, and A.T. Patera - _ (by changing the number of local RB, the kind and number of local interface BC and the percentage of FE nodes)
Reduced basis, finite element method and domain decomposition: a combined Reduced basis approximation and a posteriori error estimation for affinely
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solution greedies solution (In preparation, 2012) Arch. Comput. Methods Engrg, 15:229-275, 2008. w |s suitable for applying classical algebraic DD preconditioning strategies
%%, L.lapichino, A. Quarteroni, and G. Rozza "% G.Rozza Dirichlet-Neumann, Neumann-Neumann and Robin-Robin algebraic preconditioners have already been
‘ Bigger sparse and 27 ERaEs Less local RB needed G AR Bigger full and smaller Error Increases A reduced basis hybrid method for the coupling of parametrized domains Reduced-basis methods for elliptic equations in sub-domains with a posteriori i(m lemented and tested for a 2 domain confiauration on the Lapla Cge I’Ob|erTF1)) y
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