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Abstract |

Recent work on shape optimization problems [3, 4] has shown that volume-based shape
parameterizations, such as the free-form deformation, are a powerful tool in representing a
large class of admissible domains, even at a low parametric dimension, and can be coupled
to the reduced basis method to obtain rapid and reliable solutions of the state problem. How-
ever, the choice of the degrees of freedom of the parameterization is a critical issue: it can
be based, in simple cases, on an a priori knowledge of some physically relevant properties of
the problem; unfortunately, when the complexity of the model and/or of the domain increases,
it is usually quite difficult to devise optimal choices. We present a sensitivity-driven algorithm
for the automatic selection of the degrees of freedom of the free-form deformation, and some
numerical results with applications to fluid dynamics problems. The efficiency of the method
will be highlighted on a test case by a comparison with more classical shape deformation
tools (e.q. local boundary variation) and the available analytical solution.

‘ 1. Introduction |

Shape optimization problems have become extremely popular during the last decades,
mainly because of several advanced applications in physics or engineering, in which the
optimal design of a device greatly enhances the efficiency or the mechanical behavior of a
system. In particular we consider the following shape optimization problem
(1 = argmin J(£y,),
QHEOad

in the framework of computational fluid dynamics, dealing with three-dimensional steady
Stokes flows and the minimization of the dissipated energy

i) = T =5 [ V)]’ da,

where u(f2,) is the velocity in the domain ¢, € O,4, Which is the image of a fixed refer-
ence domain under the free-form deformation (FFD) of parameters u, under the additional
constraint of constant volume.

Exploiting, as in [1], the formulation of the free-form deformation as a perturbation of identity
I+60,, and recalling, as in [5], that the optimality conditions of the shape optimization problem

read
dJ(Qy; 0 ):—3/ e )2 0, n=0
p Y 2 Jo, |0 v I )
we can compute the sensitivity
5w
of the cost functional to each displacement n;, ¢« = 1,..., P, and design a sensitivity anal-

ysis averaging over a box B ¢ R by Monte Carlo integration methods with N uniformly
distributed samples.

2. Body in a Stokes flow |

-ree-form deformation is a powerful tool for shape parameterization based on tensor
product of splines, that allows global deformations of a reference domain (in this case,
the complement of a spherical immersed body) by acting on a small set of control
points, some of which will be fixed a priori (blue markers): we perform the sensitiv-
ity analysis for each displacement of the remaining control points (gray markers).

Figure 1: FFD parameterization of an immersed body.

The case of the body in a steady Stokes flow is interesting because, as for the sensitivity
analysis, empirical considerations suggest that it is reasonable to enable the control points
closest to the surface of the immersed body and, as for the shape optimization problem, we
can compare the FFD optimal shape with the analytical one studied by Pironneau and Bourot
in [2]. Moreover, FFD shape parameterization outperforms classical local boundary variation
methods, because both reach convergence in a small number of iterations (less than 10) but
FFD has a considerably smaller number of degrees of freedom and does not require any
regularization of the shape between each iteration.
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Figure 2: Comparison between the FFD optimal shape and the Pironneau-Bourot profile,
employing six displacements chosen according to empirical considerations.
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The simulations are carried out with the finite element library LifeV, considering a mesh of
60000 volume elements, B = [—1, 1] and N = 200.

The scatter plot of absolute value of the mean E; = ﬁ Bg—j(mdu vs standard deviation

. 2
\/%' fB (%(u) — Ez) dp of each gradient component ¢ = 1,..., P shows that the most
significant displacements are in the direction of the flow (z direction).
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Figure 3: Sensitivity analysis: absolute value of the mean vs standard deviation, for each
component of the gradient of the (parametrized) cost functional j(u).

The analysis of the mean values shows that the sensitivities are symmetric, as expected
since it can be shown that the optimal body is axisymmetric; on average, each steepest de-
scent iteration will stretch the body in the direction of the flow. Moreover, considering each
plane of (not fixed) control points which is orthogonal to the direction of the flow, the highest
mean sensitivity values are obtained in the second and second-to-last planes. The diametral
plane (the fourth one) is the only one with null mean sensitivity in the direction of the flow,
and the mean sensitivity vector is tangent to the surface of the ball; however, even if the
magnitude of the mean values in this plane is small, we are not willing to disable the four
displacements suggested by our empirical considerations, because they grant us the validity
of the volume constraint.
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Figure 4: Sensitivity analysis: mean values of each component of the gradient of j(u).

The results of the sensitivity analysis allow us to improve the FFD optimal shape: indeed, em-
ploying the same number of displacements, the Pironneau-Bourot profile is recovered with
an higher accuracy.
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Figure 5: Comparison between the FFD optimal shape and the Pironneau-Bourot profile,
employing six displacements chosen according to the sensitivity analysis.
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Figure 6: Comparison of the flow in the reference and in the optimal shape.
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