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Abstract

We propose a reduced basis (RB) method for the rapid and re-
liable solution of parametrized optimal control problems gov-
erned by PDEs. In particular, we develop the methodology
for parametrized quadratic optimization problems with either
coercive elliptic equations or Stokes equations as constraints.
Firstly, we recast the optimal control problem in the frame-
work of saddle point problems in order to take advantage of
the already developed RB theory for Stokes-type problems.
Then the usual ingredients of the RB methodology are pro-
vided: a Galerkin projection onto a low-dimensional space
of basis functions properly selected by an adaptive proce-
dure; an affine parametric dependence enabling to perform
competitive Offline-Online splitting in the computational pro-
cedure; an efficient and rigorous a posteriori error estimation
on the state, control and adjoint variables as well as on the
cost functional.

1. Problem definition

Let Ω ⊂ Rd be an open and bounded domain with boundary
Γ and D ⊂ Rp be a p-dimensional parameter set, with p ≥ 1.
The state space Y is chosen such that H1

0(Ω) ⊂ Y ⊂ H1(Ω),
while Q ≡ Y denote the space for the adjoint variable. The
control space is given by U = L2(ω), where ω ⊂ Ω or ω ⊂ Γ;
finally, Z shall denote the observation space.
The state equation is given in the form

a(y, q;µ) = c(u, q;µ) + 〈G(µ), q〉 ∀q ∈ Q, (1)

where the bilinear form a(·, ·;µ) represents a linear elliptic op-
erator, the bilinear form c(·, ·;µ) expresses the action of the
control while G(µ) ∈ Q′ acts as a forcing term. The quadratic
cost functional to be minimized is given by

J(y, u;µ) =
1

2
m(y − yd(µ), y − yd(µ);µ) +

α

2
n(u, u;µ), (2)

where α > 0 is a given constant and yd(µ) ∈ Z is a given
parameter-dependent observation function.

The parametrized optimal control problem (OCPµ) reads:
for any given µ ∈ D

min J(y(µ), u(µ);µ) s.t. (y(µ), u(µ)) ∈ Y × U solves (1).

• The main assumption in order to ensure the well-
posedness of the problem is the (weakly) coercivity of the
bilinear form a(·, ·;µ).
•We shall make an additional assumptions, crucial to Offline-

Online procedures, by assuming the bilinear and linear
forms to be affine in the parameter µ.

2. Saddle-point formulation

We first define the product space X = Y × U and denote
with x = (y, u) ∈ X, w = (z, v) ∈ X its variables. We can
reformulate the OCPµ as: given µ ∈ D,min J (x;µ) =

1

2
A(x, x;µ)− 〈F (µ), x〉, subject to

B(x, q;µ) = 〈G(µ), q〉 ∀q ∈ Q.
(3)

where F (µ) = m(yd(µ), ·) ∈ X ′ and

A(x,w;µ) = m(y, z;µ) + αn(u, v;µ), ∀x,w ∈ X,

B(w, q;µ) = a(z, q;µ)− c(v, q;µ), ∀w ∈ X, q ∈ Q.
The constrained optimization problem (3) falls into the frame-
work of saddle-point problems. The assumptions of Brezzi
theorem [1] can be easily verified [3] and therefore, for any
µ ∈ D, the optimal control problem has a unique solution
x(µ) ∈ X that can be determined by solving the following
saddle-point problem (i.e. the optimality system):

given µ ∈ D, find (x(µ), p(µ)) ∈ X ×Q such that{
A(x(µ), w;µ) + B(w, p(µ);µ) = 〈F (µ), w〉 ∀w ∈ X,
B(x(µ), q;µ) = 〈G(µ), q〉 ∀q ∈ Q, (4)

where p(µ) is the Lagrange multiplier associated to the con-
straint. Thanks to the affine parameter dependence assump-
tion, an affine decomposition holds also for the bilinear and
linear forms in (4).

3. Reduced basis approximation

The RB method [5] gives an efficient way to compute an ap-
proximation to the FE truth solution (xN (µ), pN (µ)) by consid-
ering only a small subspace of the FE space XN × QN . We
thus take a suitably selected (by a greedy algorithm) set of pa-
rameter values µ1, . . . ,µN (N � N ) and the corresponding
FE solutions (xN (µ1), pN (µ1)), . . . , (xN (µN ), pN (µN )). The
reduced basis control space is given by

UN = span{λn := uN (µn), n = 1, . . . , N},

while, in order to guarantee the stability of the RB approxima-
tion, we define the following aggregated reduced basis space
for the state and adjoint variables

YN ≡ QN = span{ζn := yN (µn), ξn := pN (µ), n = 1, . . . , N}.

Let XN = YN ×QN , the reduced basis approximation reads:

given µ ∈ D, find (xN (µ), pN (µ)) ∈ XN ×QN such that{
A(xN (µ), w;µ) + B(w, pN (µ);µ) = 〈F (µ), w〉 ∀w ∈ XN ,
B(xN (µ), q;µ) = 〈G(µ), q〉 ∀q ∈ QN .

4. Offline-Online decomposition

Algebraic formulation:(
AN (µ) BTN (µ)
BN (µ) 0

)
︸ ︷︷ ︸

KN(µ)

(
xN (µ)
pN (µ)

)
=

(
FN (µ)
GN (µ)

)
︸ ︷︷ ︸

fN(µ)

. (5)

From the affine assumption, we can write

KN (µ) =

Qk∑
q=1

Θ
q
k(µ)K

q
N , fN (µ) =

Qf∑
q=1

Θ
q
f (µ)f

q
N ,

where Kq
N and fqN are µ-independent. Offline-Online compu-

tational strategy:
• in the Offline stage, performed only once, we compute the

basis function and form the µ-independent matrices K
q
N

and the vectors fqN .
• in the Online stage, performed for each new value µ, we

assemble the full matrix KN and the vector fN and then
solve the reduced system of dimension 5N × 5N to obtain
(xN ,pN ). The Online operation count depends on N and
Q∗ but is independent of N .

5. A posteriori error estimation

Recasting the problem in the general Babuška framework
[5, 4] we can provide an efficient and rigorous a posteriori
error estimation on the solution variables:

‖(xN (µ), pN (µ))− (xN (µ), pN (µ))‖X×Q ≤
‖r(·;µ)‖
β̂LB(µ)

= ∆N (µ)

• 0 < β̂LB(µ) ≤ β̂N (µ) is a lower bound of the inf-sup con-
stant of the bilinear form B(·, ·;µ) = A(x,w;µ) +B(w, p;µ) +
B(x, q;µ) given by the Successive Constraint Method [4];
• ‖r(·;µ)‖ is the dual norm of the residual of the optimality

system.
With standard arguments we can also easily obtain the fol-
lowing a posteriori error estimation on the cost functional:

|JN (µ)− JN (µ)| ≤ 1

2

‖r(·;µ)‖2

β̂LB(µ)
= ∆J

N (µ).

6. Numerical results: boundary control for a Graetz
convection-diffusion flow

We consider the following optimal control problem

min J(y(µ), u(µ);µ) =
1

2
‖y(µ)− yd(µ)‖2

L2(Ω̂)
+
α

2
‖u(µ)‖2L2(ΓC)

s.t.


− 1

µ1
∆y(µ) + x2(1− x2)

∂y(µ)

∂x1
= 0 in Ω(µ)

1

µ1
∇y(µ) · n = u(µ) on ΓC(µ)

+ BCs on ΓN and ΓD.

Ω1 Ω2(µ)

(1 + µ2, 0)

(1 + µ2, 1)(1,1)(0,1)

(0,0) (1,0)

ΓN

ΓC

ΓCΓD

ΓD

ΓD

Ω̂o

Ω̂o

yd(µ) = µ3χΩ̂o

observation domain
Ω̂o(µ) ⊂ Ω2(µ)

D = [6, 20]× [1, 3]× [0.5, 3]

By tracing the problem back to a reference domain (through
affine geometrical mappings) we obtain the parametrized for-
mulation (4).

No. of FE dof N 8915
No. of parameters P 3
No. of RB functions N 39

Linear system dim. reduction 50 : 1
FE evaluation tFE (s) 14.5
RB evaluation tonlineRB (s) 0.1

In the figure below we compare the a posteriori error bound
∆N (µ) with the error (on the left) and the a posteriori error
bound ∆J

N (µ) with the error on the cost functional (on the
right).
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Implementation in the MATLAB environment: MLife + rbMIT libraries.

7. Stokes contraints: control of a Couette flow and an
application in haemodynamics

The methodology has been extended to treat OCPµ with
Stokes constraints:

min J(v, p,u;µ) =
1

2
m(v − vd(µ),v − vd(µ);µ) +

α

2
n(u,u;µ)

s.t.

{
a(v, ξ;µ) + b(ξ, p;µ) = 〈F (µ), ξ〉 + c(u, ξ;µ) ∀ξ ∈ H1

b(v, τ ;µ) = 〈G(µ), τ〉 ∀τ ∈ L2.

The stability of the RB approximation can be fulfilled by intro-
ducing suitable supremizer operators [4] and by defining suit-
able aggregated spaces for the state and adjoint variables.

Numerical example: distributed control of a Couette flow

min J(v(µ), p(µ),u(µ)) =
1

2
‖v1(µ)− x2‖2L2(Ω) +

α

2
‖u(µ)‖2L2(Ω)

s.t.


− ν∆v +∇p = f (µ) + u in Ω(µ)

divv = 0 in Ω(µ)

+ BCs on ΓN and ΓD.

where f (µ) = (0,−µ2), Ω(µ) = [0, 1] × [0, µ1] and D =
[0.5, 2]× [0.5, 1.5].

No. of FE dof N 17439
No. of parameters P 2
No. of RB functions N 15

Linear system dim. reduction 80 : 1
FE evaluation tFE (s) 16.1
RB evaluation tonlineRB (s) 0.1

In the figure below we compare the a posteriori error bounds
with the errors.
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As a possible application, we consider an inverse boundary
problem in haemodynamics (inspired by the work in [2]) where
the state equation models the blood flow (supposed to obey
the Stokes equations) in a parametrized arterial bifurcation:
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Figure 1: An (idealized) example of inverse boundary problem in haemodynamics. Given a
geometrical configuration and some velocity measurements on some sections of the domain
(both obtainable via medical image and data assimilation devices, e.g. MRI), we want to
retrieve the whole pressure and velocity fields in order to detect possible pathologies, e.g.
occlusions or flow disturbance in arterial bifurcations.
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