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Abstract

We propose a reduced basis (RB) framework for the numer-

ical solution of optimal control problems for parametrized

viscous incompressible flows. We mainly focus on control

problems for the (Navier-) Stokes equations involving infinite-

dimensional control functions, thus requiring a suitable reduc-

tion of the whole optimization problem, rather than of the

sole state equation. The method is applied to the solution

of a data assimilation problem arising in haemodynamics and

a problem of vorticity minimization through suction/injection

of fluid.

1. Problem definition

We consider the following parametrized optimal control prob-

lem:

given µ ∈ D, find a triple (v, π,u) such that the cost func-

tional

J (v, π,u;µ) = F(v, π;µ) + G(u;µ) (1)

is minimized subject to the steady (Navier-)Stokes equa-

tions:

−ν∆v + δ(v · ∇)v + π = 0 in Ωo(µ)

div v = 0 in Ωo(µ)

v = ρ1u1 on ΓoD(µ)

−πn + ν∇v · n = ρ2u2 on ΓoN(µ).

(2)

Here Ωo(µ) ⊂ R2 is a parametrized domain with bound-

ary ∂Ωo = ΓoD ∪ ΓoN, being ΓoD the Dirichlet portion of the

boundary and ΓoN the Neumann portion. The PDE constraint

is given by the Navier-Stokes (Stokes) equations if δ = 1

(δ = 0); the state variables v and π denote the velocity and

pressure fields, respectively. The boolean variables ρi satisfy

ρ1 + ρ2 = 1, so that the control variable u may represent

either a boundary velocity on ΓoD (u1) or a Neumann flux

on ΓoN (u2). F(v, π;µ) represents the objective to be min-

imized, while G(u;µ) is a regularization term ensuring the

well-posedness of the problem. Possible choices for F are

the viscous energy dissipation and vorticity type functionals

or velocity tracking type functionals.

The optimal control problem (1)-(2) can be formulated in

the following general form [2]: given µ ∈ D,

min
x∈Xo

Jo(x ;µ) s.t. Eo(x) = 0 in X ′o, (3)

where Xo and Qo are two Hilbert spaces, x = (v, π,u) ∈ Xo
is the optimization variable and the operator Eo : Xo → Q′o
describes the state equation. We assume that the original do-

main Ωo(µ) can be obtained as the image of a reference (pa-

rameter independent) domain Ω = Ωo(µref) through a (affine

or nonaffine) parametrized mapping T (·;µ) : R2×D → R2.

The parametrized formulation of the optimal control problem

can be derived by tracing (3) back on the reference domain

Ω [6]:

given µ ∈ D, min
x∈X
J (x ;µ) s.t. E(x ;µ) = 0, (4)

where the cost functional and the state operator are linked

to the “original” ones through the mapping T (·;µ).

By introducing the Lagrangian functional L(x, p;µ) =

J (x ;µ) + 〈E(x ;µ), p〉, we can derive the first order nec-

essary optimality conditions:{
Jx(x ;µ) + Ex(x ;µ)∗p = 0, in X ′

E(x ;µ) = 0, in Q′,
(5)

being p(µ) ∈ Q the Lagrange multiplier (adjoint variable) as-

sociated to the constraint.

2. Reduced basis approximation

The RB method gives an efficient way to compute an ap-

proximation to the FE truth solution (xh(µ), ph(µ)) by con-

sidering only a small subspace of the FE space Xh×Qh. We

thus take a suitably selected (by a greedy algorithm) set of

parameter values µ1, . . . ,µN (N � Nh) and the correspond-

ing FE solutions (xh(µ1), ph(µ1)), . . . , (xh(µN), ph(µN)).

The stability of the RB approximation can be fulfilled by in-

troducing suitable supremizer solutions [5] and by defining

suitable aggregated spaces for the state and adjoint variables

[6]. The reduced basis approximation reads:

given µ ∈ D, find (xN(µ), pN(µ)) ∈ XN ×QN such that{
Jx(xN(µ);µ) + Ex(xN(µ);µ)∗pN(µ) = 0, in X ′N
E(xN(µ);µ) = 0, in Q′N,

3. Stokes constraint: main ingredients

Since the cost functional is quadratic and the state equation

is linear, the optimality system is linear and features a saddle-

point structure. At the algebraic level we obtain the linear

system (
AN(µ) BTN(µ)

BN(µ) 0

)
︸ ︷︷ ︸

KN(µ)

(
xN(µ)

pN(µ)

)
=

(
FN(µ)

GN(µ)

)
︸ ︷︷ ︸

fN(µ)

. (6)

Thanks to the affine assumption, we can write

KN(µ) =

Qk∑
q=1

Θq
k(µ)Kq

N, fN(µ) =

Qf∑
q=1

Θq
f (µ)f qN ,

where Kq
N and f qN are µ-independent, and we can therefore

provide the usual Offline-Online computational decomposi-

tion.

Recasting the problem in the general Babuška framework [5]

we can provide an efficient and rigorous a posteriori error

estimate on the solution variables (as well as on the cost

functional [4]):

‖(xh(µ), ph(µ))− (xN(µ), pN(µ))‖X×Q ≤
‖r(·;µ)‖
βLB(µ)

= ∆N(µ)

where 0 < βLB(µ) ≤ βh(µ) is a lower bound of the inf-sup

constant of the optimality system.

4. A boundary inverse problem

We consider an inverse boundary problem in haemodynamics

(inspired by the work in [1]) where the state equation models

the blood flow (supposed to obey the Stokes equations) in

a parametrized arterial bifurcation and we suppose to have a

measured velocity profile on the a transverse section, but not

the Neumann flux on ΓC that will be our control variable.
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Figure 1: An (idealized) example of inverse boundary problem in haemodynamics. Given a geometrical

configuration and some velocity measurements on some sections of the domain (both obtainable via

medical image and data assimilation devices, e.g. MRI), we want to retrieve the whole pressure and

velocity fields in order to detect possible pathologies, e.g. occlusions or flow disturbance in arterial

bifurcations.

With respect to the formulation (1)-(2) we consider a Neu-

mann control (thus ρ2 = 1) and the following cost functional

J (v , π; u;µ) =
1

2

∫
Γobs

|v − vd(µobs)|2 dΓ

+
α1

2

∫
ΓC

|∇u|2dΓ +
α2

2

∫
ΓC

|u|2dΓ.

•Geometrical parametrization: Free Form Deformation

the geometrical parameter µg is related to the angle of

rotation of the lower branch.

•Parametrized measured velocity profiles:

Number of FE dof Nh 4 · 104

Number of parameters P 3
Number of RB functions N 17
Affine components Qk 20
Linear system size red. 150:1
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5. Navier-Stokes constraint: main ingredients

In this case, the optimality system (5) forms a non-linear

system to which we can apply Newton’s method: for k =

1, 2, . . . , seek (skx , s
k
p ) ∈ X ×Q such that{

Lxx(xk, pk;µ)skx + Ex(xk;µ)∗skp = −Lx(xk, pk;µ),

E(xk;µ)skx = −E(xk;µ),

and then set (xk+1, pk+1) = (xk, pk) + (skx , s
k
p ).

The main ingredients of our reduction strategy are the fol-

lowing:

• in the Online stage we solve the reduced optimization prob-

lem by first projecting the optimality system on the RB

spaces and then applying Newton’s method;

• the Offline/Online computational stratagem is preserved

thanks to the quadratic nature of the nonlinear terms ap-

pearing in both first and second order derivatives;

• in order to derive an posteriori error estimate on the state,

adjoint and control variables, we apply the Brezzi-Rappaz-

Raviart theory on the optimality system.

6. Vorticity minimization past a bluff body

As a preliminary benchmark test, we consider the problem of

vorticity minimization through suction/injection of fluid in the

downstream portion of a bluff body embedded in a 2-D flow.

In this case we do not consider a geometrical parametriza-

tion, yet we take as parameters the Reynolds number and the

regularization constant in the cost functional. In the figures

below we show the convergence of the RB approximation, a

comparison between an uncontrolled and a controlled flow,

and the value of the cost functional with respect to the pa-

rameters.

Number of parameters P 2

FE evaluation tFE (s) ≈ 60

RB evaluation tonl ineRB (s) 0.9

Number of RB functions N 36

Uncontrolled (left) vs controlled (right) flow.
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Cost functional J (µ) (left) and convergence (right).
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Swiss Numerics Colloquium 2013, École Polytechnique Fédérale de Lausanne, MATHICSE, April 5, 2013.


