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‘ Abstract |

We propose a reduced basis (RB) framework for the numer-
ical solution of optimal control problems for parametrized
viscous incompressible flows. We mainly focus on control
problems for the (Navier-) Stokes equations involving infinite-
dimensional control functions, thus requiring a suitable reduc-
tion of the whole optimization problem, rather than of the
sole state equation. The method Iis applied to the solution
of a data assimilation problem arising in haemodynamics and

a problem of vorticity minimization through suction/injection
of fluid.

‘ 1. Problem definition |

We consider the following parametrized optimal control prob-
lem:

given u € D, find a triple (v, 7, u) such that the cost func-
tional

T, moup)=F(v, m;m)+ G(u; p) (1)

is minimized subject to the steady (Navier-)Stokes equa-
tions:

—VAvV+6(v-VIv+ 1 =0 in Qo(w)
divv =0 in Qo()
_ 0 (2)
V = pi1l on 'A(w)
—7n + Vv - n = pou; on [y(w).

Here Q,(u) C R? is a parametrized domain with bound-
ary 082, = ['5 UTYR, being ['% the Dirichlet portion of the
boundary and ['§, the Neumann portion. The PDE constraint
is given by the Navier-Stokes (Stokes) equations if 6 = 1
(0 = 0); the state variables v and 7 denote the velocity and
pressure fields, respectively. The boolean variables p; satisfy
p1 + 0o = 1, so that the control variable u may represent
either a boundary velocity on I'% (u;) or a Neumann flux
on 'S, (up). F(v, ;1) represents the objective to be min-
imized, while G(u; i) is a regularization term ensuring the
well-posedness of the problem. Possible choices for F are
the viscous energy dissipation and vorticity type functionals
or velocity tracking type functionals.

The optimal control problem (1)-(2) can be formulated in
the following general form [2]: given u € D,
min Jo(x; ) st. Ey(x) =0 in X, (3)

xeXo

where X, and Q,, are two Hilbert spaces, x = (v, 7, u) € X,
is the optimization variable and the operator £,: X, — Q/,
describes the state equation. We assume that the original do-
main $2,(w) can be obtained as the image of a reference (pa-
rameter independent) domain €2 = Q, () through a (affine
or nonaffine) parametrized mapping 7 (-; ) : R? x D — R?.
T he parametrized formulation of the optimal control problem
can be derived by tracing (3) back on the reference domain

Q [6]:

given u € D, mi)rg Jx;w) st. Ex;u)=0, (4)
XeE

where the cost functional and the state operator are linked
to the “original” ones through the mapping 7 (-; u).

By introducing the Lagrangian functional L(x, p;u) =
J(x; )+ (E(x;w), p), we can derive the first order nec-
essary optimality conditions:

{ Txw)+Eu)'p =0, inX

E(x; 1) =0, InQ ()

being p() € Q the Lagrange multiplier (adjoint variable) as-
soclated to the constraint.

2. Reduced basis approximation |

The RB method gives an efficient way to compute an ap-
proximation to the FE truth solution (x,(w), pr(e)) by con-
sidering only a small subspace of the FE space X, x Q. We
thus take a suitably selected (by a greedy algorithm) set of
parameter values pt, . . ., p" (N < Nj) and the correspond-

ing FE solutions (xs(u!), pa(pet)), . . ., (xn(™), pr(p™)).

The stability of the RB approximation can be fulfilled by In-
troducing suitable supremizer solutions [5] and by defining
suitable aggregated spaces for the state and adjoint variables
[6]. The reduced basis approximation reads:

given u € D, find (xy(w), py(pe)) € Xy x Qpn such that

{ Txn(w); ) + Exxn(); w) pv(e) =0, in X
Exn(p); w) =0, inQf,

3. Stokes constraint: main ingredients

Since the cost functional is quadratic and the state equation
s linear, the optimality system is linear and features a saddle-
point structure. At the algebraic level we obtain the linear
system

(61 ) () - @) e

™~ ~~ o ~—
Kn(w) fn(p)
Thanks to the affine assumption, we can write
op Qr
Ku(p) =Y OJWKG  fu(w) =D Olw)fy,
g=1 g=1

where K}, and f,/ are p-independent, and we can therefore
provide the usual Offline-Online computational decomposi-
tion.

Recasting the problem in the general Babuska framework [5]
we can provide an efficient and rigorous a posteriort error
estimate on the solution variables (as well as on the cost
functional [4]):

Ir(-; )|
Bre(w)
where 0 < B, () < Br(u) is a lower bound of the inf-sup

constant of the optimality system.

‘ 4. A boundary inverse problem |

We consider an inverse boundary problem in haemodynamics
(inspired by the work in [1]) where the state equation models
the blood flow (supposed to obey the Stokes equations) in
a parametrized arterial bifurcation and we suppose to have a
measured velocity profile on the a transverse section, but not
the Neumann flux on [ ¢ that will be our control variable.

[(Xa(e), pr()) — (xn(), Pn(w)) [ xxq <

5. Navier-Stokes constraint: main ingredients

In this case, the optimality system (5) forms a non-linear

system to which we can apply Newton's method: for k =

1,2,..., seek (sf, s5) € X x Q such that

— _LX(in pk; I»L),
—E(xX*; ),

[ LX<, 5 p)sE + (x5 p) sk
E(XK sy

and then set (x**1, p**1) = (x*, p*) 4 (&, s¥).
The main ingredients of our reduction strategy are the fol-
lowing:

e In the Online stage we solve the reduced optimization prob-
lem by first projecting the optimality system on the RB
spaces and then applying Newton’'s method;

e the Offline/Online computational stratagem is preserved
thanks to the quadratic nature of the nonlinear terms ap-
pearing In both first and second order derivatives;

e In order to derive an posteriori error estimate on the state,
adjoint and control variables, we apply the Brezzi-Rappaz-
Raviart theory on the optimality system.

= An(p)

Y — ONLI
I_/'n
Mc(pg)

g(/-l'in) Vd(u'obs) rC(I-\"Q)

given new geometrical configuration (pg)
and parametrized measurements Lops

find the unknown Neumann boundary

on the red section condition on ¢ and retrieve the

whole velocity and pressure fields

With respect to the formulation (1)-(2) we consider a Neu-
mann control (thus p, = 1) and the following cost functional

1
j(v,w; U;I—l') :i/ ’V_Vd(u'obs)’z dl
robs
+ & wuPar +22 | jupar.
2 Jr. 2 Jr.

e Geometrical parametrization: Free Form Deformation
the geometrical parameter u, Is related to the angle of
rotation of the lower branch.

e Parametrized measured velocity profiles:

Number of FE dof N, 4.10%
Number of parameters P 3
Number of RB functions N 17
Affine components Qx 20
Linear system size red. 150:1

H

—
_ o — Velocity
¥
12

H

H
i1

Examples of reconstructed velocrty fields
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6. Vorticity minimization past a bluff body

As a preliminary benchmark test, we consider the problem of

vorticity minimization through suction/injection of fluid in the

downstream portion of a bluff body embedded in a 2-D flow.
In this case we do not consider a geometrical parametriza-
tion, yet we take as parameters the Reynolds number and the
regularization constant in the cost functional. In the figures
below we show the convergence of the RB approximation, a
comparison between an uncontrolled and a controlled flow,
and the value of the cost functional with respect to the pa-
rameters.

Number of parameters P 2
-E evaluation tre (s) ~ 60
RB evaluation t25'"¢ (s) 0.9
Number of RB functions N 36
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Uncontrolled (left) vs controlled (right) flow.
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Cost functional J () (left) and convergence (right).
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