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Introduction - 1
Motivations
• The numerical resolution of the incompressible Navier-Stokes equations is re-

quired in many different engineering fields and life sciences (e.g. aeronautical/-
naval/civil/mechanical/environmental engineering, hemodynamics.)

• When a large number of different system configurations are in need of being tested
(e.g. uncertainty quantification, optimization) or a small computational cost
is required (e.g. real-time control), the numerical resolution of the equations using
standard high order discretization techniques (FEM-SEM-FVM-FDM) becomes not
feasible. The development of efficient and reliable Reduced Order Models (ROMs)
could be a great advantage.

• It is well known that Galerkin based ROMs of the incompressible Navier-Stokes
equations suffer from stability issues for what concern the pressure term.

Examples of possible applications

Industrial Engineering Aeronautical Engineering Naval Engineering

Methodology-Overview
Development and comparison of different stabilization techniques for the recovery of the
pressure term in the contest POD-Galerkin ROMs of the incompressible Navier-Stokes
equations. The developed methodology is based on the following flowchart:
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Stability issues

• High Fidelity simulation of the physical problem trough the finite volume solver
OpenFOAM R©. (BOX 2)

• Collection of the snapshots and construction of the reduced basis space Vrb using
a POD [1] approach. (BOX 3)

• Projection of the unsteady Navier-Stokes equation onto the reduced basis space Vrb

in order to construct the POD-Galerkin dynamical system. [2, 3]. (BOX 4)

• Development and comparison of different stabilization techniques for the pressure
term. [4] (BOX 4)

High Fidelity problem - 2
Governing Equations
The physical problem is modelled using the unsteady incompressible Navier-Stokes
equations. The considered system of PDEs are the unsteady parametrized incom-
pressible Navier Stokes Equations. The space discretization of the equations has
beed performed using a finite volume approach.

∂u
∂t + (u ·∇)u−∇ · ν∇u = −∇p in Ω

∇ · u = 0 in Ω

u = u(µ) on ∂Ω,in

u = 0 on ∂Ω,0

(ν∇u− pI)n = 0 on ∂Ω,out

(1)

Construction of Vrb - 3
The reduced order space Vu and Qp are constructed using a SVD on the snapshots
matrices of velocity and pressure:

U ′ = WuΣuVuT , Wp = [φ1,φ2, ...,φn], Σu
ii = λui (2)

P = WpΣpVpT , Wp = [χ1,χ2, ...,χn], Σp
ii = λpi (3)

We can truncate the dimension of the reduced basis space looking at the eigenvalues and
we can finally construct the reduced basis spaces for the Galerkin projection:

VNu
= span(φ1,φ2, ...,φNu) QNp = span(χ1,χ2, ...,χNp)

The POD-Galerkin Dynamical system - 4
The Galerkin Projection
Performing a standard Galerkin projection of the governing equations onto the POD
spaces of velocity and pressure and approximating the fields with the POD spaces one
obtains: {

ȧ = µBa− aTCa−��Kb

�����
KTa = 0

(4)

Due to the divergence-free property of the velocity modes, the terms with red
strikethrough are in most of the cases numerically zero so the resulting system suffer
from stability issues. Normally only the first equation is solved and only the velocity
field is recovered.
The Poisson equation for pressure
One possible way to reconstruct the pressure is to exploit a Poisson equation for
pressure obtained taking the divergence of the momentum equation and exploiting the
divergence-free constraint. The momentum equaton is then projected onto the POD
velocity space and the Poisson equation for pressure is projected onto the POD pressure
space: {

(∂u
∂t + (u ·∇)u−∇ · ν∇u+ ∇p,φ)(L2(Ω) = 0 ∀φ ∈ VNu

(∆p+ ∇ · ((u ·∇)u),χ)(L2(Ω) = 0 ∀χ ∈ QNp

(5)

{
ȧ = Ba− aTCa−Kb
b = D−1(aTGa)

(6)

The Supremizer Stabilization
We know that in a Galerkin approach to ensure the solvability and stability of the
problem the reduced basis spaces must fulfill the LBB parametrized inf-sup condition.

inf
q∈Q

sup
v∈V

b(q,v;µ)

‖q‖Q ‖v‖V
= β(µ) > 0 (7) b(q,v) =

∫
Ω

q∇ · vdx (8)

In order to fulfil this condition at reduced order level a supremizer
problem is solved, and the velocity space is enriched with the addi-
tional modes obtained applying the POD onto the supremizer solutions.{

∆s = −∇p in Ω

s = 0 on ∂Ω
(9)

Ṽu = span{φ1, ...,φNu} ⊕ span{ψ1, ..,ψNs} (10)

Results and Outlooks - 5
The methodology is tested studying the laminar flow (RE= 100) around a circular cylin-
der.
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Comparison of the lift coeff. for different models

HF
SUP
PPE

εU εp comp. t SU
NO stab (4φ, 4χ) NaN NaN NaN NaN
NO stab (4φ) 1.25% - 1.80 s 823
with sup. (4φ, 4χ, 4s) 1.95% 0.67% 21.73 s 68
with PPE (4φ, 4χ) 1.25% 0.51% 2.93 s 506

Velocity Reconstruction
HF, t = 20∆t PPE, t = 20∆t SUP, t = 20∆t

Pressure Reconstruction
HF, t = 20∆t PPE, t = 20∆t SUP, t = 20∆t

Outlook
As future outlooks it would be interesting to test the presented methodologies for UQ
problems, to investigate the stability for higher values of the Reynolds number
and to test the stability for long time integrations.
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