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| ntroduction /1

Data mining also known as Knowledge
Discovery in Databases or KDD (Piatesky-
Shapiro 1991), isthe process of extracting
useful hidden information from very large
databases In an unsupervised manner.
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| ntroduction /2

Central themes of data mining are:
s Classification
s Cluster analysis
s Associations analysis
s Outlier analysis
= Evolution analysis
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ARM /1
(association rules mining)

¢ Formally introduced in 1993 by Agrawal,
Imielinski and Swami (AlS) in connection with
market basket analysis

¢ Formalizes statements of the form:

What is the percentage of customers that
together with cheese buy beer ?
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ARM /2

¢ Wehaveaset of items1={i1,i2,..}, and a set of transaction T={t1,t2..}. Each
transaction (like a supermarket bill) is a set of items (or better asitiscalled an
itemset)

¢ |f UandV aredisjoint itemsets, we call support of U=>V the fraction of transactions
that contain U [0 V and we indicate this with S(U=>V)

¢ Wesay that an itemset is frequent if its support is greater than a chosen threshold
called minsupp.

¢ |f A and B are digoint itemsets, we call confidence of A=>B and indicate with
c(A=>B), the fraction of transactions containing A that contain also B. Thisisalso
called the Bayesian or conditional probability p(BJA).

® Wesay that aruleis strongif its confidence is greater than athreshold called
minconf.
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ARM /3

ARM can then be formulated as:

Givenaset | of itemsand aset T of transactions over |,
produce In an automated manner all association rules
that are more than x% frequent and more than y%
strong.
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ARM /4

Onttrgﬁ;%gto\l{]vse -Pi{/ig 3,4,5,6) Trans | ltemset ltem | Transactions
on aset of 5items 1| BCDE A | 2458
I={A,B,C,D,E} 2 | ABC B | 123456

Theitemset BC is present in the 3 | BCDE C | 12345
transactions { 1,2,3,4,5} so its 4 | ABCE D | 1356
support s(B=>C) =5/6 5 | ABCDE E | 1345

The confidence of B=>C, given 6| ABD
that BC ispresent in 5
transactions and B Is present Horizontal Vertical

In al 6 transactions, IS format
c(B=>C) = §(B=>C)/s(B)=5/6

format

10 May 2002 Roberto Innocente 7



ARM /5

Another possible representation is ltems

the matrix representation, that  Transaction | A B ¢ D E

can combine the properties of the 1 1 1 1 1

so called horizontal and vertical 2 1 1 1

format. 3 1 1 1 1
4 1 1 1 1
5 11 11 1
6 1 1 1

Matrix representation
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ARM /6

All algorithms divide the search in two phases
- Find frequent itemsets

- Find the strong association rules for each
frequent itemset
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ARM /7

The second phase can in principle be quite smple.

To find the strong association rules associated with an itemset U,
simply :

for each proper subset A of U :
IT s(U)/s(A) 1s more than minconf then
the rule A=>(U-A) 1s strong

For this reason, in what follows, only the search for frequent
Iitemsets will be investigated.
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Quantitative rules mining

It is possible to consider the case where an attribute is not boolean (true or false),
but assumes a value. For example age in census data is such an attribute.

It is possible to reduce this case to the case of boolean attributes binning the
range of the attribute value. For example age can be translated to the
following boolean attributes:

@® Y oung (age 0-30)
® Adult (31-65)
® Old (66-)
The expression level of agene (0-255) can be represented by :
® Low (0-50)
® Medium(51-205)
® High(206-)
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Seguential mining /1

In this case the database rows are eventsets with a timestamp:
Hm110AB,E
W 150 E,F
W 160 A

We are interested in frequent episodes (sequences of eventsets),
like :
m(A,(B,E)F)
(where (B,E) is an eventset) occurring in atime window:
event A precedes the eventset (B,E) that precedes F.
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Seguential mining /2

10 May 2002

Roberto Innocente
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Sequential mining /3

* |t"s been applied for example to the alarms of
the finnish telephone network

* |t can be applied to temporal series of gene
expression
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Posets /1

Givenaset U, abinary relation <
reflexive, antisymmetric and
trangititve, iscalled apartial order
(or an order tout-court), and (U,<
Iscalled apartially ordered set (
or aposet)

A poset is frequently represented with a
Hasse diagram, adiagram in
which if a< b, then thereisan
ascending path from ato b. The
binary relation on N, is divisor of
(usually represented with |) isa
partial order on N.
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Posets /

In a poset, an element that is not less
than any other is said to be
maximal. Clearly, there can be
many maximal el ements.

If amaximal element is comparable Minimal
with all other elements, thenitis elements
the only maximum.

Maximal

Maximum
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Posets /3

If (U, <)and(V, <) aretwo posets, apair of U V
functionsf:U->V and g:VV->U such that o
(u,u OU; vv' V) :

¢ jfusu thenf(u') <f(u) v\ anti-

¢* ifvsv theng(V') <g(v) «— homo ( O

* u=gltw) morphism

¢ v=i(g(v) D

are said to be a Galois connection between
the two posets. O

From the above properties we can deduce: In this example U and V

f(g(f(u))) = f(u) and g(f(a(v)))=a(v) are linear orders

f —» g «—
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Lattices/1

A poset in which for each pair of i
elementsu, v it exists an _
element z that is the least This poset
upper bound (or join or lub) ¢ = IS not a lattice

and an element w that is the because there is
greatest lower bound (or

meet or glb) issaid to be a b ¢ holubfor (b,c)
lattice.

This allows usto define 2 binary a
operators::

z =join(u,v) =ulv
w =meet(u,v) =unv
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L attices /2

We say that alatticeis complete 7
if it has glb and lub for each @
subset. Every finite latticeis Q

compl ete. S

A poset iscaled ajoin

O
semilattice (meet
semilattice) if only thejoin
(meet) exists.
The powerset of a set ordered by

Inclusion is acomplete
|attice.

Frequent sets are only a meet-
semilattice.

All lattices of order 5
(up to ismorphism)

10 May 2002 Roberto Innocente 19



L attices /3

ABCDE

ABCD  ABCE ABDE ACDE  BCDE
T :'-'_"---._' i _ = - -_‘."e"'_. — A R~

P ] '\..__.-. ) e e S - o I_l ) ..-____-.-_ .
ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

!

e - S .

AB__AC_ ﬁjD AE BC BD BE CD CE DE

A B & D E

0

Hasse diagram of the powerset of {A,B,C,D,E} ordered
by inclusion
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Algorithmic families/1

ABCDE ABCDE

ABCD  ABCE ABDE ACDE BCOE ABCD ABCE ABDE ACDE BCDE

- = _ ==l

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ITlAB_'c ABD ABE ACD ACE ADE/BCD BCE BDE CDE

— 1l
AB  AC AD AE BC BD BE CD CE DE
. == _FT_..-- —— _;_--_ = =
i B C D E
1 =
(1]
Breadth first algorithms (or level wise) Depth first algorithms

There are two ways in which you can run over the lattice of subsetsin bottom-up order.
These ways correspond to two families of algorithms::

+ Dbreadth first
o depthfirst
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Algorithmic families/2

| nfrequent itemsets, have the property that all their supersets are also
Infrequent. Infrequent itmesets form a join semilattice. Minimal
Infrequent itemsets are sufficient to completely specify the semilattice.

SO it makes sense to run over the lattice also in top-down order. Or better,
as in hybrid algorithms, mixing bottom-up with top-down.

Furthermore the search can be performed for :
= all frequent itemsets
=« only maximal frequent itemsets
= closed frequent itemsets (will be defined |ater)

10 May 2002 Roberto Innocente 22



Apriori /1

Presented by Agrawal and Srikant in 1994.

Fast algorithmsfor mining Association Rules
(IBM Almaden Research Center)

essentially based on the hereditary property that :
All subsets of a frequent itemset are also frequent
It performs a breadth first search.

If | 1sthe maximum |length of frequent itemsets then it performs|
scans of the database.
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Apriori /2

F(1) = { frequent 1l-i1temsets}
for (k=2; F(k-1) not empty; k++) {
C(k) = generate candidates(F(k-1));
forall transactions t In T {
Ct = subset(C(k),t); 7/ Ct are the C(k)
// candidates present iIn t
forall candidates c In Ct { c.count++: }

}
F(k) = {c 1n C(k) and c.count >= minsup}

by
Answer = {all F(k) }

10 May 2002 Roberto Innocente
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Apriori /3

generate candidates(F(k-1) {

join :

for each pair 11,12 in F(k-1){

If 11 and |12 are (k-1)-itemsets pairsin F(k-1) that differ just in the last item then
|10 [2isak-itemset candidate

}
pruning:

foreach k-itemset candidate {

If one of its (k-1)-subsetsis not frequent then
prune it

}
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Apriori /4
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Apriori /5

F

C({k) candidates are kept In an Hash tree
AB
D.E
G

Hash tree

- - Level 1
Hash function: (1st item considered)
h{A)=h{B)=left edge
h{G)=center
h({D)=h{E)=right edge Level 2

b o nem

When an interior node
is overflowed a new leaf is created
and candidates are redistributed
according to their I-th item
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Apriori /6

+ Tofind afreqguent k-itemset it requires k passes over
the database

* Freguent itemsets of over 50-60 items are not feasible.
Apriori needsto run over all 2*60-1 frequent subsets

¢ Just asmall example: find all itemsets with
minsup=0.5 in the 2 transactions.

(al,a2,........,a100)
(al,a2,........,a100,a101,...,a200)
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Partition /1

Presented by Savasere, Omiecinski, Navathe in VLDB conference 1995, it requires 2
passes over the database

* |t partitions the database into a number of non-overlapping partitions

® Eaxch partition isread and vertical tidlist (lists of transaction ids) are formed for each
item

® Thenall locally (local to the partition) frequent itemsets are generated via tidlist
Intersection

®  After havi ng scanned all partitions, all local frequent itemsets are merged to form the
global candidates

¢ |temsets frequent over al partitions are clearly frequent and so eliminated from the
following pass

® A new scan of the database is performed, it is transformed in the tidlist format and
counts of the global candidates are performed using tidlist intersection
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Partition /2

This algorithm uses the vertical format (tidlists).
It performs only 2 scans of the database.

Partitions are calculated in such away to be able to keep all their tidlistsin
memory.
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FP-growth /1

Presented by Han, Pel, Yin in 2000.

This method doesnt require candidate generation, but storesin an
efficient novel structure, an FP-tree (a Frequent Pattern tree, a
version of aprefix tree), the transaction database.

It scans the database once to find frequent items. Frequent items F

are then sorted in descending support count and kept inalist L.

Another scan of the databases is then performed, and for each

transaction: infreguent items are suppressed and the remaining
Items are sorted in L-order and inserted in the FP-tree.

10 May 2002 Roberto Innocente
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FP-growth /2

A null root node is created. Then for each normalized (w/o
Infrequent items and sorted in L-order) transactiont :
insert _tree(t,tree) {
iIT tree has a child node equal to head(t) then
increment the child count by 1
else
create a new child node and set i1ts count to 1
IT rest(t) 1s non empty then
insert_tree(rest(t),tree.child(head(t))
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FP-growth /3

During the construction of the FP-tree, for each frequent item, alist
linking all its presences in the FP-tree is kept updated.

Now all the information needed to mine frequent patternsis
available in the FP-tree.

Having sorted the itemsinside transactionsin L order, increases the
probability to share prefixes.

It often happens that the FP-tree is much more compact than the
original database.
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FP-growth /4

FP-Tree

B(6)
cw;

Al4 BCA(3) | BAD(1)
R —E /\Q —]E

BCAE(1)| 1 BCDE(2)

&
6
Items ‘ m
m

. . \E.
BCDE BCADE(1)
BCA
BCDE
BCAE
BCADE
BAD

r )
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FP-growth /5

Now, for each frequent item alpha (in reversed L-order):
FP-growth(alpha,tree) {
IT tree has a single path P:
for each combination U of nodes in P:
form alpha 0O U with support equal to the minsupport
of 1tems In U
else:
for each child c of tree:
form beta = c¢ U alpha with support supp(c)
construct the tree of prefixes FP-tree(beta)
iIT FP-tree(beta) 1s not empty:
FP-growth(beta,FP-tree(beta)

10 May 2002 Roberto Innocente
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Graphs/1

G=(V,E)
V={vl,v2,v3,v4}
E={(v1,v2),(v2,v3),(v3,v4),

¢ A graph has aset of vertices
V, and aset of edges E

¢ A subgraph G' of agraph G (v4,v1),(v1,v3)}
has part of the vertices of G 2
and part of the edges G has vl
between those vertices N
v4 V3
G'=(V',E’) (blue subgraph)
V'={vl,v2,v3)

E'={(vl,v2),(v2,v3),(v3,vl)}
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Graphs/2

¢ A bi-partitegraphisa

U
graph in which the 1 v
vertices can be partitioned Z>@ vl
Into two sets U and V u2
(with void intersection) U3 V2
and all the edges of the V3
graph have avertex in U u4
andoneinV (thereareno 4 i anite graph
edges between vertices in (U.V.,E)

U orinV)
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¢ A graphissadto be

Graphs/3

complete if for each pair
of verticesthereis an edge

connecting them
¢ Complete graphs are

usually indicated by K
¢ A bi-partite graph is said

to be completeif ...

10 May 2002

Roberto Innocente
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Graphs /4

¢ A complete subgraph issaid te
beaclique

+ A cliquethat is not contained K4
In another issaidto be a
maximal cligue

The blue subgraph
iIs a maximal clique
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Graphs/5

There is an edge between a transaction and an item if the item is
present in the transaction.

Transactions

Bi—partite 1 2 3 5 6
graph \ " "
Maximal cliques:
Kz 3= GEQ)
E K3,4= (B1 éDSE)

Items

maximal frequent itemsets are maximal cliques of the bi—partite

graph
Finding the maximal cliques in a bi—parite graph is a Khown
NP—-complete problem.
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Max clique/1

Presented by M.Zaki, Parthasarathy, Ogihara, Li in 1997.
It computes frequent 1-itemsets and 2-itemsets as Apriori.
But then it triesto find only all maximal frequent itemsets.

A maximal frequent itemset is a frequent itemset not contained
In another frequent itemset.

All frequent itemsets are subsets of a maximal frequent itemset.
This algorithm is a depth-first algorithm.
It uses the vertical format (tidlists)
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Max clique /2

ABCDE

\

ABCD E ADE B
“,—-— *‘h%ﬁ <

/'»Wﬂ S
(ABC ABD ABE ACD ACE ADE BCD B

//%v AT

AB AC AD AE BC BD E CD E DE
DQEERE
[~ e
A B C D E
¢

meet semilattice of frequent itemsets, with maximal frequent
itemsets ABC and BCDE in red.
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Max clique /3

D E D E D E
Graph of frequent Maximal cliques K;: ABC
2—itemsets : K,: BCDE

two items are joined : : , ,
i o Maximal cligues are candidate maximal
if the pair is frequent frequent itemsets : in our case the 2 cliques
are in effect maximal frequent itemsets
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Max clique/4

Maximal cligue generation algorithms are well known and the
following can be used :

+ Mulligan and Corneil, 1972 (modified Bierstone’'s) JACM
¢ Bron & Kerbosch 1973,CACM

¢ Chiba & Nishizeki, 1985,SIAM JC

¢ Tsukiyamaet a. 1977,SIAM JC

After having found the maximal cliques, their support isto be
checked to verify that they are really frequent.
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Closure operator s/systems

If (A, <) isacomplete lattice and
we have afunction :

cl. A->A
such that (u,v O A) :
¢ fu<svthencl(u) <cl(v)
* u<cl(u)
¢ cl(cl(u)) = cl(u)
we say that cl isaclosure operator

and cl(u) issaid to be the closure
of u.

If u=cl(u), wesay that uis close.

(Topological closureisaspecia
case.)

For any Galois connection G=(f,g)
between the compl ete | attices
(P,<) and (Q,<), the mapping
cl=fegisaclosure on P and
cl’=gef Isaclosure operator on
Q.

The restriction of f to cl-closed
elements is a bijection between

cl-closed elements of P and cl’ -
closed elements of Q.
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Formal Concept Analysis/1

¢ Introduced by Rudolf Wille around 1982,
Darmstadt (Germany)

* |t isan application of lattice theory
+ Re-flourished inthe last 6/7 years

¢ The namerefersto the fact that the method
applies mainly to the analysis of data, using a

mathematical abstraction of concept (thisisthe
reason behind the formal prefix)
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Formal Concept Analysis/2

Given aset of Objects O, a Objects Attributes
set of Attributes A, and 0, A
abinary relation | [J O x 02\/A2
A, we say that : OSQAB
= (O,A)l) isaformal 04/A4

context Os
Attributes A, and A,
apply to the object O,
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Formal Concept Analysis/3

Through the binary relation| [ ~ Objects Attributes
O x A we can define two
functionsf and g such that O; Aq
for each subset U of O : O, Ay
f(U) = {attributes that apply to 0; == Ag
all objectsin U} 04//13\4
and conversely for each subset V'~ Os
ofA: U= {01,03}
g(Va)tt:_ |{O objects for which all f([,)z { A1 A3} (red lines)
ributesin’V apply} a(f(U))={01,03,04} (blue lines)

The pair (f,g) isalso called the
polarity on O and A
determined by |.
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Formal Concept Analysis/4

It can be easily demonstrated we have that h isaclosure operator
that the polarity (f, g) of a onOandh’ isaclosure
relationisaGalois operator on A.
connection between the The Galois connection establishes a

powerset of O and the

powerset of A, ordered by duality between the two closure

systemson O and A.

Inclusion.
Furthermore, called : It is a bijective map between closed
e h= gef subsets of O and closed subsets
-9 of A.
¢ h = fog
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Formal Concept Analysis/S

A concept iIsapair (U,V) that comprise aclosed
set of objects U, together with a closed set of
attributes connected by the Galois connection.

U is called the extent (or extension) of the
concept and V Is called the intent (or
Intension)of the concept.
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Formal Concept Analysis/6

Concepts (closed object/attribuie sets pairs): Obects Attributes
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Lattice of concepts
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Formal Concept Analysis/7

Concepts form alattice : the lattice of concepts.

If (U,V) Isaconcept, then you can't extend the extension U of
the concept in such away that all the attributes of V apply,
and conversaly, you can't extend the intension V such that
It appliesto all objectsin U.

In the previous slide the sets of objects having an empty set of
attributes, and the sets of attributes having an empty set of
objects are not displayed. Their situation in the Hasse
diagram is very simple: they are connected only to the
empty set and to the complete set. Their closure isthe
complete set of objects/attributes.
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A-Close /1

Proposed by Pasguier,Bastide, Taouil, Lakhal in 1999.

It 1s based on Formal Concept Analysis. Let usthink to the
set of Items as the the set of objects and the set of
transactions as the set of attributes. Then, an itemset is
closed If there 1s no superset of it that appears in the same
set of transactions.

Conversaly, a set of transaction is closed if it's not contained
IN a superset of transactions containing the same items.
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A-Close /2

What is important is that the support of an itemset is the same
as that of its closure:

S(A) = s(cl(A))
Therefore, you need to remember only the closed itemsets and
their support, to be able to count the support of any itemset.

Further, if you are interested only in frequent itemsets, then
you need only to remember the support of frequent closed
Itemsets.

In fact maximal frequent itemsets are closed.
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A-Close /3

ABCDE
TsT
ABCD ABCE ABDE ACDE BCDE
R
ABD AEADAEAEBCDBﬁDECE
245 5_12.5%1 125 125
__1_:“*»._,__1 T
/% T S H“:T"
AB AC A A BC BD BE CD CE
2456 245 56 a5 1245 125
- e
A B C D E
2458 12245 1355 1245
¢

123456

Closed itemsets have their tidlist in a black box
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A-Close /4

ABCDE

AB CD AE!-GE ABDE  ACDE

AB' AC AD AE BC BD BE [CD CE DE

[[z44] 243 F;ﬂ“:;#i:::?ﬁ“lllll IIII tH5 1 136 125

p
A B C D E
455 @ 12345 13% 1H5

|attice of closed itemsets
¢ and thelr support

123456
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A-Close /5

From the lattice of closed itemsets it is easy to
count the support of every subset.

For example
S(A)=s(cl(A))=s(AB)=4

and
S(BDE)=s(cl(BDE))=s(BCDE)=3
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A-Close /6

BCDE
3
ABRC BCE
3 Fal
AB BC B[
4 |42
B
6

Closed frequent temsets
meet semilattice
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CHARM

An efficient algorithm for mining closed freguent sets, was
proposed by Zaki and Hsiao in 2001.

¢ |t enumerates closed itemsets using a dual itemset/tidset search tree, and
a hybrid search agorithm

¢ |t uses diffsets to reduce memory requirements
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Parallel algorithms

¢ Count distribution : counts are performed locally and re-distributed
between processors

¢ Candidatedistribution: candidates are generated locally and re-
distributed

¢ Datadistribution: transaction are re-distributed

+ Parallel freguent closed prefix-tree : what we are
Implementing

10 May 2002 Roberto Innocente
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¢ Summary
¢ Discussion
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