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Introduction /1

Data mining also known as Knowledge 
Discovery in Databases or KDD (Piatesky-
Shapiro 1991), is the process of extracting 
useful hidden information from very large 
databases in an unsupervised manner.
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Introduction /2

Central themes of data mining are:
! Classification
! Cluster analysis
! Associations analysis
! Outlier analysis
! Evolution analysis
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ARM /1
(association rules mining)

" Formally introduced in 1993 by Agrawal, 
Imielinski and Swami (AIS) in connection with 
market basket analysis

" Formalizes statements of the form:
What is the percentage of customers that 

together with cheese buy beer ?
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ARM /2

" We have a set of items I={i1,i2,..}, and a set of transaction T={t1,t2..}. Each 
transaction (like a supermarket bill) is a set of items (or better as it is called an 
itemset)

" If U and V are disjoint itemsets, we call support of U=>V the fraction of transactions 
that contain U ∪ V and we indicate this with s(U=>V) 

" We say that an itemset is frequent if its support is greater than a chosen threshold 
called minsupp.

" If A and B are disjoint itemsets, we call confidence of A=>B and indicate with 
c(A=>B), the fraction of transactions containing A that contain also B. This is also 
called the Bayesian or conditional probability  p(B|A). 

" We say that a rule is strong if its confidence is greater than a threshold called 
minconf.
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ARM /3

ARM  can then be formulated as:
Given a set I of items and a set T of transactions over I,  

produce in an automated manner all association rules 
that are more than x% frequent and more than y% 
strong.
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ARM /4

On the right we have 6 
transactions T={1,2,3,4,5,6} 
on a set of 5 items 
I={A,B,C,D,E}

The itemset BC is present in the 
transactions {1,2,3,4,5} so its 
support  s(B=>C) = 5/6

The confidence of B=>C, given 
that BC is present in 5 
transactions and B is present 
in all 6 transactions, is  
c(B=>C) = s(B=>C)/s(B)=5/6



10 May 2002 Roberto Innocente 8

ARM /5

Another possible representation is 
the matrix representation, that 
can combine the properties of the 
so called horizontal and vertical 
format.
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ARM /6

All algorithms divide the search in two phases :
- Find frequent itemsets
- Find the strong association rules for each 

frequent itemset
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ARM /7

The second phase can in principle be quite simple.
To find the strong association rules associated with an itemset U, 

simply :

for each proper subset A of U :
If s(U)/s(A) is more than minconf then 

the rule A=>(U-A) is strong

For this reason, in what follows, only the search for frequent 
itemsets will be investigated.
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Quantitative rules mining
It is possible to consider the case where an attribute is not boolean (true or false), 

but assumes a value. For example age in census data is such an attribute.
It is possible to reduce this case to the case of boolean attributes binning the 

range of the attribute value. For example age can be translated to the 
following boolean attributes:

# Young (age 0-30)
# Adult (31-65)
# Old (66-)

The expression level of a gene (0-255) can be represented by :
# Low (0-50)
# Medium(51-205)
# High(206-)
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Sequential mining /1

In this case the database rows are eventsets with a timestamp:
!110 A,B,E
!150 E,F
!160 A

We are interested in frequent episodes (sequences of eventsets), 
like :
! (A,(B,E),F)

(where (B,E) is an eventset) occurring in a time window:
event A precedes the eventset (B,E) that precedes F.
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Sequential mining /2

100 110 120 130 140

A
B
E

E
F A

150 160
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Sequential mining /3

" It’s been applied for example to the alarms of 
the finnish telephone network

" It can be applied to  temporal series of gene 
expression
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Posets /1

Given a set U,  a binary relation ≤
reflexive, antisymmetric and 
transititve, is called a partial order 
(or an order tout-court), and (U,≤) 
is called a partially ordered set ( 
or a poset)

A poset is frequently represented with a 
Hasse diagram, a diagram in 
which if a ≤ b, then there is an 
ascending path from a to b. The 
binary relation on N, is divisor of 
(usually represented with |) is a 
partial order on N.

12

4 6

32

1

Hasse diagram of the
divisors of 12
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Posets /2

In a poset, an element that is not less 
than any other is said to be 
maximal. Clearly, there can be 
many maximal elements.

If a maximal element is comparable 
with all other elements, then it is 
the only maximum. 

Maximal
elements

Maximum

Minimal
elements
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Posets /3

If  (U, ≤) and (V, ≤) are two posets, a pair of 
functions f:U->V and g:V->U such that 
(u,u’ ∈ U; v,v’∈ V) :

" if u ≤ u’ then f(u’) ≤ f(u)
" if v ≤ v’ then g(v’) ≤ g(v)
" u ≤ g(f(u))
" v ≤ f(g(v))
are said to be a Galois connection between 

the two posets.
From the above properties we can deduce: 

f(g(f(u))) = f(u) and g(f(g(v)))=g(v)

U V

anti-
homo

morphism

f

In this example U and V
are linear orders

g
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Lattices /1

A poset in which for each pair of 
elements u, v it exists an 
element z that is the least 
upper bound (or join or lub) 
and an element w that is the
greatest lower bound (or 
meet or glb) is said to be a 
lattice. 

This  allows us to define 2 binary 
operators :

z  = join(u,v) = u ∪ v
w = meet(u,v) = u ∩ v

f

c

This poset
is not a lattice
because there is
no lub for (b,c)

ed

b

a
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Lattices /2

We say that a lattice is complete 
if it has glb and lub for each 
subset. Every finite lattice is 
complete. 

A poset is called a join 
semilattice (meet 
semilattice) if only the join 
(meet) exists.

The powerset of a set ordered by 
inclusion is a complete 
lattice.

Frequent sets are only a meet-
semilattice.

All lattices of order 5
(up to ismorphism)
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Lattices /3
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Algorithmic families /1

There are  two ways in which you can run over the lattice of subsets in bottom-up order. 
These ways correspond to two families of algorithms : 

" breadth first 
" depth first 
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Algorithmic families /2

Infrequent itemsets, have the property that all their supersets are also 
infrequent. Infrequent itmesets form a join semilattice. Minimal
infrequent itemsets are sufficient to completely specify the semilattice.

So it makes sense to run over the lattice also in top-down order. Or better, 
as in hybrid algorithms, mixing bottom-up with top-down.

Furthermore the search can be performed for :
! all frequent itemsets
! only maximal frequent itemsets 
! closed frequent itemsets (will be defined later)
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Apriori /1

Presented by Agrawal and Srikant in 1994.
Fast algorithms for mining Association Rules
(IBM Almaden Research Center)
essentially based on the hereditary property that :
All subsets of a frequent itemset are also frequent
It performs a breadth first search. 
If l is the maximum length of frequent itemsets then it performs l 

scans of the database.
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Apriori /2

F(1) = { frequent 1-itemsets}
for (k=2; F(k-1) not empty; k++) {

C(k) = generate_candidates(F(k-1));
forall transactions t in T {

Ct = subset(C(k),t); // Ct are the C(k)
// candidates present in t

forall candidates c in Ct  { c.count++: }
}
F(k) = {c in C(k) and c.count >= minsup}

}
Answer =  {all F(k) }
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Apriori /3

generate_candidates(F(k-1) {
join  : 

for each pair l1,l2 in F(k-1){
if l1 and l2 are (k-1)-itemsets pairs in F(k-1) that differ just in the last item then

l1 ∪ l2 is a k-itemset candidate
}

pruning:
foreach k-itemset candidate {

if one of its (k-1)-subsets is not frequent then
prune it

}
}



10 May 2002 Roberto Innocente 26

Apriori /4
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Apriori /5
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Apriori /6

" To find a frequent k-itemset it requires k passes over 
the database

" Frequent itemsets of over 50-60 items are not feasible. 
Apriori needs to run over all 2^60-1 frequent subsets 

" Just a small example : find all itemsets with 
minsup=0.5 in the 2 transactions:

(a1,a2,........,a100)
(a1,a2,........,a100,a101,...,a200)
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Partition /1

Presented by Savasere, Omiecinski, Navathe in VLDB conference 1995, it requires 2 
passes over the database

" It partitions the database into a number of non-overlapping partitions 
" Each partition is read and vertical tidlist (lists of transaction ids) are formed for each 

item
" Then all locally (local to the partition) frequent itemsets are generated via tidlist 

intersection
" After having scanned all partitions,  all local frequent itemsets are merged to form the 

global candidates
" Itemsets frequent over all partitions are clearly frequent and so eliminated from the 

following pass
" A new scan of the database is performed, it is transformed in the tidlist format and 

counts of the global candidates are performed using tidlist intersection
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Partition /2

This algorithm uses the vertical format (tidlists).
It performs only 2 scans of the database.
Partitions are calculated in such a way to be able to keep all their tidlists in 

memory.
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FP-growth /1

Presented by Han, Pei, Yin in 2000.
This method does'nt require candidate generation, but stores in an 

efficient novel structure, an FP-tree (a Frequent Pattern tree, a 
version of a prefix tree ), the transaction database.

It scans the database once to find frequent items. Frequent items F  
are then sorted in descending support count  and kept in a list L.

Another scan of the databases is then performed, and for each 
transaction:  infrequent items are suppressed and the remaining 
items are sorted in L-order and inserted in the FP-tree.
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FP-growth /2
A null root node is created. Then for each normalized (w/o 

infrequent items and sorted in L-order) transaction t :
insert_tree(t,tree) {

if tree has a child node equal to head(t) then
increment the child count by 1

else
create a new child node and set its count to 1

if rest(t) is non empty then
insert_tree(rest(t),tree.child(head(t))

}
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FP-growth /3

During the construction of the FP-tree, for each frequent item, a list 
linking all its presences in the FP-tree is kept updated.

Now all the information needed to mine frequent patterns is 
available in the FP-tree.

Having sorted the items inside  transactions in L order, increases the 
probability to share prefixes.

It  often happens  that the FP-tree is much more compact than the 
original database.
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FP-growth /4
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FP-growth /5

Now, for each frequent item alpha (in reversed L-order):
FP-growth(alpha,tree) {
If tree has a single path P:

for each combination U of nodes in P:
form alpha ∪ U with support equal to the minsupport 

of items in U
else:
for each child c of tree:

form beta = c ∪ alpha with support supp(c)
construct the tree of prefixes FP-tree(beta) 
if FP-tree(beta) is not empty:

FP-growth(beta,FP-tree(beta)
}
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Graphs /1

G=(V,E)
V={v1,v2,v3,v4}
E={(v1,v2),(v2,v3),(v3,v4),

(v4,v1),(v1,v3)}

" A graph has a set of vertices
V, and a set of edges E 

" A subgraph G' of a graph G 
has part of the vertices of G 
and part of the edges G has 
between those vertices

v2v1

v3v4
G’=(V’,E’) (blue subgraph)
V’={v1,v2,v3)
E’={(v1,v2),(v2,v3),(v3,v1)}



10 May 2002 Roberto Innocente 37

Graphs /2

" A bi-partite graph is a 
graph  in which the 
vertices can be partitioned 
into two sets U and V 
(with void intersection) 
and all the edges of the 
graph have a vertex in U 
and one in V (there are no 
edges between vertices in 
U or in V)

U
V

u1
v1

u2
v2u3
v3u4

A bi-partite graph
(U,V,E)
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Graphs /3

" A graph is said to be 
complete if for each pair 
of vertices there is an edge 
connecting them

" Complete graphs are 
usually indicated by K

" A bi-partite graph is said 
to be complete if ...
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Graphs /4

" A complete subgraph is said to 
be a clique

" A clique that is not contained 
in another is said to be a 
maximal clique
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Graphs /5
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Max clique /1

Presented by M.Zaki, Parthasarathy, Ogihara, Li in 1997.
It computes frequent 1-itemsets and 2-itemsets as Apriori.
But then it tries to find only all maximal frequent itemsets.
A maximal frequent itemset is a frequent itemset not contained 

in another frequent itemset.
All frequent itemsets are subsets of a maximal frequent itemset.
This algorithm is a depth-first algorithm.

It uses the vertical format (tidlists)
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Max clique /2
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Max clique /3
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Max clique /4

Maximal clique generation algorithms are well known and the 
following can be used :

" Mulligan and Corneil,1972 (modified Bierstone’s) JACM
" Bron & Kerbosch 1973,CACM
" Chiba & Nishizeki, 1985,SIAM JC
" Tsukiyama et al. 1977,SIAM JC
After having found the maximal cliques, their support is to be 

checked to verify that they are really frequent.
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Closure operators/systems

If  (A, ≤ ) is a complete lattice and 
we have a function :
cl: A -> A

such that (u,v ∈ A) :
" if u ≤ v then cl(u) ≤ cl(v)
" u ≤ cl(u )
" cl(cl(u)) = cl(u)
we say that cl is a closure operator

and cl(u) is said to be the closure 
of u.

If u = cl(u) , we say that u is close.

(Topological closure is a special 
case.)

For any Galois connection G=(f,g) 
between the complete lattices 
(P,≤) and (Q,≤), the mapping 
cl=f•g is a closure on P and 
cl’=g• f is a closure operator on 
Q.

The restriction of f to cl-closed 
elements is a bijection between 
cl-closed elements of P and cl’-
closed elements of Q.
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Formal Concept Analysis /1

" Introduced  by Rudolf Wille around 1982,  
Darmstadt (Germany) 

" It is an application of lattice theory
" Re-flourished in the last 6/7 years
" The name refers to the fact that the method 

applies mainly to the analysis of data, using a 
mathematical abstraction of concept (this is the 
reason behind the formal prefix)
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Formal Concept Analysis /2

Given a set of Objects O, a 
set of Attributes A, and 
a binary relation I ⊆ O x 
A, we say that :
! (O,A,I) is a formal 

context
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Formal Concept Analysis /3

Through the binary relation I ⊆
O x A we can define two 
functions f and g  such that 
for each subset U of O  :

f(U) = {attributes that apply to 
all objects in U}

and conversely for each subset V 
of A :

g(V) = {objects for which all 
attributes in V apply}

The pair (f,g) is also called the 
polarity on O and A 
determined by I. 
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Formal Concept Analysis /4

we have that h is a closure operator 
on O and h’ is a closure 
operator on A.

The Galois connection establishes a 
duality between the two closure 
systems on O and  A.

It is a bijective map between closed 
subsets of O and closed subsets 
of A.

It can be easily demonstrated 
that the polarity (f, g) of a 
relation is a Galois 
connection between the 
powerset of O and the 
powerset of A, ordered by 
inclusion.

Furthermore, called :
" h =  g• f
" h' = f•g
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Formal Concept Analysis /5

A concept is a pair (U,V)  that comprise  a closed 
set of objects U, together with a closed set of 
attributes connected by the Galois connection.

U is called the extent (or extension) of the 
concept and V is called the intent (or 
intension)of the concept.
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Formal Concept Analysis /6
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Formal Concept Analysis /7

Concepts form a lattice : the lattice of concepts.
If (U,V) is a concept, then you can't extend the extension U of 

the concept  in such a way that all the attributes of V apply, 
and conversely, you can't extend the intension V such  that 
it applies to all objects in U.

In the previous slide the  sets of objects having an empty set of 
attributes, and the sets of attributes having an empty set of 
objects are not displayed. Their situation in the Hasse 
diagram is very simple: they are connected only to the 
empty set and to the complete set. Their closure is the 
complete set of objects/attributes.
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A-Close /1

Proposed by Pasquier,Bastide, Taouil, Lakhal in 1999.
It is based on Formal Concept Analysis. Let us think to the 

set of items as the the set of objects and the set of 
transactions as the set of attributes. Then, an itemset is 
closed if there is no superset of it that appears in the same 
set of transactions.

Conversely, a set of transaction is closed if it's not contained
in a superset of transactions containing the same items.
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A-Close /2

What is important is that the support of an itemset is the same 
as that of its closure:

s(A) = s(cl(A))
Therefore, you need to remember only the closed itemsets and 

their support, to be able to count the support of any itemset.
Further, if you are interested only in frequent itemsets, then 

you need only to remember the support of frequent closed 
itemsets.

In fact maximal frequent itemsets are closed.
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A-Close /3
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A-Close /4
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A-Close /5

From the lattice of closed itemsets it is easy to 
count the support of every subset. 

For example 
s(A)=s(cl(A))=s(AB)=4

and
s(BDE)=s(cl(BDE))=s(BCDE)=3
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A-Close /6
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CHARM

An efficient algorithm for mining closed frequent sets, was 
proposed by Zaki and Hsiao in 2001.

" It enumerates closed itemsets using a dual itemset/tidset search tree, and 
a hybrid search algorithm

" It uses diffsets to reduce memory requirements
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Parallel algorithms 

" Count distribution : counts are performed locally and re-distributed 
between processors

" Candidate distribution: candidates are generated locally and re-
distributed

" Data distribution:  transaction are re-distributed

" Parallel frequent closed prefix-tree : what we are 
implementing
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Summary

" Summary
" Discussion
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