
Energy levels of atoms and ions.  

Single electron (Hydrogen-like) atoms or ions.  

Positive nucleus of charge +Ze and mass M, only one electron (mass 𝑚, 

charge −𝑒). Since the Hamiltonian does not explicitly depend on the 

spin,  the Schrödinger equation for Hydrogen-like atom is (in CGS 

units): 

𝐇 =  −
ℏ2

2𝑀
 ∇𝒓𝑛𝑢𝑐𝑙𝑒𝑢𝑠

2 −
ℏ2

2𝑚
 ∇𝒓𝑒

2 −
𝑍𝑒2

|𝒓𝑛𝑢𝑐𝑙𝑒𝑢𝑠 − 𝒓𝑒|
 

The three terms are the operators for kinetic energy of nucleus, of the 

electron, and the Coulombian potential energy.  

In the center of mass reference system,  the motion of the center of mass 

can be factored out. The Hamiltonian for the reduced mass is :  

𝐇 =  −
ℏ2

2𝜇
 ∇𝒓

2 −
𝑍𝑒2

𝑟
 

with 𝜇 = 𝑀𝑚/(𝑀 + 𝑚) is the reduced mass and 𝑟 is the relative 

coordinate 𝑟 = |𝒓𝑛𝑢𝑐𝑙𝑒𝑢𝑠 − 𝒓𝑒|. 

Electrons are spin ½ particles; the spin projection onto the z axis, in 

units of ℏ ,  is the spin quantum number, 𝑚𝑠. It can take the values ± 
1

2
.  

The Hamiltonian, however, does not depend on the spin. The 

wavefunction can be written as the product of the spatial component 

and of the Spin component: 

ψ(𝐪) = 𝜒𝑠,𝑚𝑠
ψ(𝒓) 

Where 𝜒𝑠,𝑚𝑠
  are the eigenfunctions of the S, S2 operators, with 

eigenvalues ½,  ±
1

2
 , and  ψ(𝒓) is the solution of the Schrödinger 

equation: 
𝐇ψ(𝒓) = 𝐸ψ(𝒓) 

Introducing the angular moment, we can group all the angular 

dependence on the angular momentum operator 𝐋 = 𝐫 × 𝐩  and  

express the Schrödinger equation in polar coordinates: 



[−
ℏ2

2𝜇
 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

𝐋 2

2𝜇𝑟2
−

𝑍𝑒2

𝑟
]  Ψ(𝑟, ϑ, φ) = 𝐸Ψ(𝑟, ϑ, φ) 

It can be shown that   (both angular momentum and its projections are 

conserved); then the spatial eigenfunctions can be written as  

 Ψ(𝑟, ϑ, φ) = 𝑅(𝑟) 𝑌ℓ,𝑚ℓ
(ϑ, φ),  

where we introduced the spherical harmonics 𝑌ℓ,𝑚ℓ
(ϑ, φ), which are 

defined as the simultaneous eigenfunctions of the operators L2 and   𝐋𝑧 .  

They satisfy the eigenvalues equations: 

 L2 𝑌ℓ,𝑚ℓ
(ϑ, φ)=ℏ2ℓ(ℓ + 1) 𝑌ℓ,𝑚ℓ

(ϑ, φ) 

 𝐋𝑧𝑌ℓ,𝑚ℓ
(ϑ, φ) = ℏ𝑚ℓ𝑌ℓ,𝑚ℓ

(ϑ, φ) 

The magnetic quantum number 𝑚ℓ (also written as 𝑚) represents the 

projection  of L onto the z-axis, in units of ℏ. It can take on 2ℓ + 1 values:    

𝑚ℓ = −ℓ, … , −1,0,1, … , ℓ. It characterizes the orientation of orbital. The 

eigenvalue of L is ℏ√𝓵(𝓵 + 1).  

The angular dependence of the wavefunctions, and of the angular 

distribution of electric charge in the orbitals, is enclosed in  the 

spherical harmonics.  

𝑌ℓ,𝑚ℓ
(ϑ, φ)= 

1

√2𝜋
𝑒𝑖𝑚ℓ𝜑Pℓ,𝑚ℓ

(𝜃)   normalized by  

∫|𝑌ℓ,𝑚ℓ
(ϑ, φ)|

2
𝑑Ω=∫|𝑌ℓ,𝑚ℓ

(ϑ, φ)|
2

𝑠𝑖𝑛𝜃 𝑑θdφ 

The parity (behavior under 𝒓 → −𝒓) of spherical harmonics is (−1)ℓ. 

Pℓ,𝑚ℓ
(𝜃)   are the associated Legendre polynomials.  

Radial component of the wavefunction.  

The radial component of the wavefunction and the energy eigenvalues 

can be found by solving the radial equation: 

 



[−
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]  𝑅(𝑟) = 𝐸𝑅(𝑟) 

 

Defining 𝑅(𝑟) = 𝑋(𝑟)/𝑟  we obtain the radial  equation: 

 

[−
ℏ2

2𝜇
 

𝑑2

𝑑2𝑟
+

ℏ2ℓ(ℓ + 1)

2𝜇𝑟2
−

𝑍𝑒2

𝑟
]  𝑋(𝑟) = 𝐸𝑋(𝑟) 

 

We notice that 𝑉𝑒𝑓𝑓(𝑟) ≡
ℏ2ℓ(ℓ+1)

2𝜇𝑟2 −
𝑍𝑒2

𝑟
  represents a Coulombian 

potential shielded by the centrifugal force of the electrons with ℓ ≠ 0.  

The normalization is the following: 

∫|Ψ(𝑟, ϑ, φ)|2𝑟2𝑑𝑟𝑑Ω = 1 = ∫|𝑌ℓ,𝑚(ϑ, φ)|
2

𝑑Ω 

 

∫|𝑌ℓ,𝑚(ϑ, φ)|
2

𝑑Ω|𝑅(𝑟)|2𝑟2𝑑𝑟 = ∫|𝑅(𝑟)|2𝑟2𝑑𝑟 = 1 

⟹ ∫|𝑋(𝑟)|2𝑑𝑟 = 1  

 

dV = 𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜑 

 

The solutions of the radial equation are analytical and can be written 

with the associate Laguerre polynomials ℒ. They are labeled with the 



values of the principal quantum number 𝑛 and the orbital quantum  

number ℓ: 

𝑅𝑛,ℓ(𝑟) = 𝑁𝑛,ℓ𝑒−
𝜌
2ℒ 𝑛+ℓ

2ℓ+1(𝜌) 

With 𝜌 = 2
𝑍

𝑛
 

𝑟

𝑎0
 

𝜇

𝑚
    and 

 𝑎0 =  
ℏ

𝑚𝑐𝛼
=  Bohr radius  

The Bohr radius is the radius of the innermost orbit of the electron, in 

the fundamental Hydrogen state.  

α is the fine structure constant = (in CGS units)  
𝑒2

ℏ𝑐
=

1

137 
 

The  probability density  (probability in an infinitesimal volume 

element) of a configuration in space  is given  by 

 |Ψ(𝑟, 𝜃, 𝜑)|2 = Ψ(𝑟, 𝜃, 𝜑) ∙ Ψ∗(𝑟, 𝜃, 𝜑).  

 

The spatial wavefunctions are then defined by three quantum numbers, 

𝑛, ℓ, 𝑚ℓ :  

Ψ(𝑟, ϑ, φ) = 𝑅𝑛,ℓ(𝑟) 𝑌ℓ,𝑚ℓ
(ϑ, φ), 

And the corresponding  energy eigenvalues are:  

𝐸𝑛 = −
1

2
𝜇𝑐2 (𝑍𝛼)2

𝑛2 =  −R(𝜇)
𝑍2

𝑛2 =  −
𝜇

𝑚
 R∞

𝑍2

𝑛2    

where  R∞ = 12.6 eV = 109737 cm−1 = 2.17 × 10−18 J    is the Rydberg 

constant. If there is no applied magnetic field, the energy of the orbital 

is independent of 𝑚ℓ  and of  𝑚𝑠.  

We notice that: 

1) There are infinite discrete levels, the Coulombian potential slowly 

tends to zero, so that the levels thicken at high 𝑛.  

2) The energy eigenvalues depend on 𝑛 only.  



3) The states are degenerate in 𝑚ℓ and ℓ (the degeneracy in ℓ is 

“accidental”, it depends on the 1/𝑟 dependence of the Coulombian 

potential.  

4) The degeneracy of the energy levels is: 

𝑑 = 2 ∑ (2ℓ + 1) = 2𝑛2𝑛−1
ℓ=0   , where we used the fact that ℓ =

0, … , 𝑛 − 1, and that, for any value of ℓ, there are (2ℓ + 1) possible 

values of 𝑚ℓ, and the spin degeneracy (𝑚𝑠 = ±1/2).  

A given pair of quantum numbers 𝑛, ℓ (subshell) refers to 

2(2ℓ + 1) distinct electronic wave functions, which differs for the 

values of 𝑚ℓ , 𝑚𝑠.  

Finally, we have built the electron wavefunction as simultaneous 

eigenfunction of the operators 𝐻, 𝐿2, 𝐿𝑧 , 𝑆2, 𝑆𝑧 .  

 

ψ(𝐪) = 𝜒𝑠,𝑚𝑠
Ψ𝑛,ℓ,𝑚ℓ

(𝒓) =  𝜒𝑠,𝑚𝑠
R𝑛,ℓ(𝑟)𝑌ℓ,𝑚ℓ

(𝜃, 𝜑)  

 

The quantum numbers are related by:  

𝑛 = 1,2,3 … 

ℓ = 0, … , 𝑛 − 1 

                                                   𝑚ℓ = −ℓ, −ℓ + 1, … , ℓ − 1, ℓ 

                                                    𝑚𝑠 = −
1

2
 ,

1

2
 

A value of ℓ can be expressed as an “orbital”. Orbitals with  ℓ =

0,1,2,3 are indicated with the letters  𝑠, 𝑝, 𝑓, 𝑑. 

The “shell” 𝑛 is sometimes indicated with letters: 𝑛 = 1,2,3,4 … 

corresponding to shells K,L,M,N and so on. (I will not use this notation 

in the present notes, to avoid confusion with other literal symbols).  

 

Configurations.  

An atom or ion with a single electron can have its electron in any of the 

allowed orbitals or wave functions. The orbitals, in order of increasing 

energy, are 1s,2s,2p,3s,3p,4s,3d,4p,5s, and so on (Aufbau principle). 



Note from the figure that 4s,5s..are out of order: e.g., 4s subshell is closer 

to nucleus and effective potential gives it more binding energy then 3d.  

According to the quantum mechanical theory of multielectron atoms, it 

is a good first approximation to think of the electrons as occupying 

“single-electron orbitals” , characterized by integer quantum numbers 

𝑛 and ℓ: n=1,2,3... and    0 ≤ ℓ < 𝑛 .   

When the atom has more than one electron, the Pauli exclusion 

principle prevents two electrons to share the same wavefunction. In any 

subshell there can be at most 2(2ℓ + 1) electrons.   

The number of electrons occupying a subshell 𝑛, ℓ is designated by a 

superscript: for example, the neutral Sodium, with eleven electrons, has 

ground state configuration 1s22s22p63s. The value of 𝑚𝑠 for the electron 

in the 3s subshell, however, is undetermined.  

Another example: the ground state configuration of neutral Carbon is 

1s22s22p2. The two electrons in the subshell 2p may be in any of the 

three 2p orbitals (2px,2py,2pz) and with any of two the possible spin 

orientations allowed.  

 

 

 

Aufbau principle: how 

electrons fill the orbitals 

in the atom ground 

state.  



 

 

Multielectron atoms and spectroscopic terms.  

For a given electronic configuration of a multielectron atom, its state 

depends on its total angular momentum, including spin and orbital 

components. 

As seen above, the atomic electron configurations are ambiguous, as 

they do not specify in which orbital in the subshell the electrons are, in 

an uncomplete subshell. If a subshell has more than one electron and 

less than 4ℓ + 1 electrons, there is more than one way in which the 

electrons can arrange. Since, in principle, their energies may be 

different, it is important to remove any ambiguity. 

 In light atoms (Z ≤ 30), electron spins si interact among themselves  
(spin-spin interactions) so they combine to form a total spin angular 
momentum S. The same happens with orbital angular momenta ℓi, 
(orbit-orbit interactions) forming a total orbital angular momentum L. 
The interaction between the quantum numbers L and S is called 
Russell–Saunders coupling or L-S coupling.1 Coupling occurs between 
the resultant spin and orbital momenta of an electron which gives rise 
to J the total angular momentum. The idea is to determine the total 
orbital  angular momentum L and the total spin S, and then to 

 
1 Notice: This is true if the interactions ℓi si   , the interactions between spin and orbital momentum of 

the single electron 𝑖, are smaller than the couplings with orbital momenta or spin of other electrons 

(coupling ℓi ℓj    or  si sj  ).  For heavy atoms, the individual spin-orbit coupling of  an electron may be as 

large as the spin-spin or orbit-orbit interactions with the other electrons; in that case, the jj coupling is 

used in place of the L-S coupling. Russell-Saunders is spin-orbit coupling, where spin-orbit coupling 

is small (light atoms where the electrons aren't particularly relativistic). In this case, the total orbital 

angular momentum and the total spin angular momentum are both good quantum numbers 

(meaning their operators commute with the Hamiltonian to a good approximation). So we obtain 

total angular momentum simply by adding total spin and total orbital angular momentum: J= L+S.  

In heavier atoms, where the electrons are relativistic, the individual spin-orbit coupling is quite 

large, and total spin/orbital angular momentum are no longer good quantum numbers. In this case, 

we have to add the spin and orbital angular momenta for each electron separately ( 𝓵𝑖  and 𝒔𝒊, 

respectively) to get total angular momentum : 𝑱 = ∑ (𝓵𝑖  +  𝒔𝑖)𝑖 .  (jj coupling).  



vectorially sum them to obtain the total angular momentum J. 2 In the 
all-electron system, the total quantum numbers for orbital L, spin S,  
and total J angular momenta are all good quantum numbers 3, which are 
conserved.  The result of the Russell-Saunders approach is presented as 
an atomic term symbol , or spectroscopic term, which has the form:   
2S+1L J .   

 A term symbol is an abbreviated description of the total spin and 

orbital angular momentum quantum numbers of the electrons: it 

specifies the total for all electrons in an atom (but may be also used to 

describe electrons in a given subshell).  

Each allowed combination of L,S is a spectroscopic term. In an atomic 

term symbol, J is the total angular momentum quantum number, L is the 

total orbital  angular momentum, and S is the total spin. The quantity 

2S+1 is called spin multiplicity. 

As we assigned the letters s,p,d,f, … to the values ℓ=0,1,2,3, …, we create 

the correspondence: L=0,1,2,3, … with the letter S,P,D,F… .  

For an atom with N electrons, the orbital angular momentum L is, in the 

L-S coupling approach, the vectorial sum of the electrons orbital angular 

momenta. Similarly, the individual electrons spins add (vectorially)  to 

give a total spin angular momentum S.  

𝐋 = ∑ 𝓵𝑖
𝑁
𝑖=1    ;      𝐒 = ∑ 𝒔𝑖

𝑁
𝑖=1   

For the module of 𝐋 it is still holding the relation |L|= ℏ√𝑳(𝑳 + 𝟏)  

where L is the quantum number for total orbital angular momentum.  

The z-components  : 

Lz ≡ ML = ∑ ℓ𝑧,𝑖
𝑁
𝑖=1 = ∑ 𝑚ℓ,𝑖

𝑁
𝑖=1   ;         Sz ≡ MS = ∑ sz,i

N
i=1 = ∑ 𝑚𝑠,𝑖

𝑁
𝑖=1    

 
2 This is an approximation holding  if external magnetic fields are weak: otherwise, L and S  decouple, 
producing a different splitting pattern in the energy levels : that is the Paschen-Back effect. 
 
3 Given an operator O with eigenvalues and eigenvectors  given by 𝑂|𝑞𝑖⟩ = 𝑞𝑖 | 𝑞𝑖⟩, the 𝑞𝑖 are said to be 
good quantum numbers  if every eigenvector  | 𝑞𝑖⟩ remains an eigenvector of O  with the same 
eigenvalues as time evolves, meaning that O is a constant of motion, and O commutes with the 
Hamiltonian, [𝐻, 𝑂] = 0. 

https://en.wikipedia.org/wiki/Good_quantum_number


While the angular momentum sums up as a vector, the z-components 

sum up as scalars.  

In analogy with the z-component of ℓ, which can take the 2ℓ + 1 values 

𝑚ℓ = −ℓ, −ℓ + 1, … ,0, … , ℓ, also the z-component of L can take 2L+1 

values  Lz = ML = −L, −L + 1, … ,0, … , L.  

Similarly, MS can have 2S+1 values: MS =  −S, −S + 1, … ,0, … , S. The 

spin multiplicity is thus representing the number of projections that the 

total spin can have on the z-axis.  

Now we want to learn how to relate microscopic configurations to 

spectroscopic terms. 

Consider the electronic configuration 𝑛𝑠2 (two electrons in an orbital 

𝑛𝑠, 𝑖. 𝑒. ℓ = 0). There is only one set of values, 𝑚ℓ1, 𝑚𝑠1, 𝑚ℓ2, 𝑚𝑠2: 

 

𝑚ℓ1    𝑚𝑠1    𝑚ℓ2    𝑚𝑠2     ML     MS  

                                        0       ½       0         - ½      0         0 

The fact that there is only one value of  ML = 0 implies that L=0. In the 

same way, the fact that the only one value of MS = 0 implies that S=0.  

The total angular momentum is J=L+S . The z-component is  Jz ≡ MJ =

Lz + Sz =  ML + MS = 0 which implies that 𝐉 = 0.                                                                                                                                                                              

It follows that an electronic configuration  𝑛𝑠2 , L=S=J=0. The 

corresponding spectroscopic term 2S+1LJ  is (indicating L=0 with the 

letter S) 1S0 (Singlet S zero).  

Also an electronic configuration like 𝑛𝑝6 will have a term 1S0   ; indeed, 

the six electrons in 𝑛𝑝6 will have quantum numbers 𝑛, ℓ, 𝑚ℓ, 𝑚𝑠 given 

by: (𝑛, 1,1, ±
1

2
) ; (𝑛, 1,0, ±

1

2
) ; (𝑛, 1, −1, ±

1

2
). Summing up all the 𝑚ℓ 

we obtain 0, as when we sum up  all the 𝑚𝑠.  

Then ML = 0 and MS = 0  and, as before, the term is 1S0    . 

Notice that ML and MS are necessarily =0 for totally filled subshells, 

because for any electron with negative 𝑚ℓ there is a corresponding 



electron with positive 𝑚ℓ which cancels it out. Same for the 𝑚𝑠. We can 

thus ignore all the electrons which are in filled subshells, when 

discussing electronic configurations. For example, in the Carbon atom, 

we can neglect the  1𝑠22𝑠2 electrons contribution in the configuration    

1𝑠22𝑠22𝑝2  of that atom . 

 

An electronic configuration which has a spectroscopic symbol different 

than 1S0 is the excited electronic configuration of the Helium atom 
1𝑠12𝑠1. Since ℓ1 = ℓ2 = 0, the maximum value of 𝑚ℓ1and 𝑚ℓ2 is zero. 

Then, the maximum value of ML = 0, thus L= 0 is the only possible 

value of the total orbital angular momentum.  Let us build a table with 

the possible MS values in the columns, and fill it with the set of values of 

𝑚ℓ1, 𝑚𝑠1, 𝑚ℓ2, 𝑚𝑠2:                           

 

                                                              MS  (macrostate) 

                                           1                0              0              -1 

  ML (macrostate)                       

               0                        0+0+         0+0−       0−0+        0−0−       (microstates) 

 

 

The notation 0+ means that one electron has 𝑚ℓ = 0 and 𝑚𝑠 = +1/2, 

while 0− means that it  has 𝑚ℓ = 0 and 𝑚𝑠 = −1/2. The sets of possible 

values of 𝑚ℓ1, 𝑚𝑠1, 𝑚ℓ2, 𝑚𝑠2 corresponding to  each pair (ML ,MS) are 

called microstates.  In the table above there are four microstates 

because there are two possible spins (±1/2) for the electron in the 

orbital  𝑛𝑠 and two possible spins (±1/2) for the electron in 𝑛′𝑠. Notice 

that we included both 0+0− and 0−0+ because the two electrons are in 

nonequivalent orbitals (1s and 2s). Since all the values of ML are zero,  

they must correspond to L=0. In addition, the maximum value of MS is 

1. Therefore, S = 1  and MS  = -1,0,1. The corresponding term will be 



2S+1LJ= 3SJ .   This 3SJ term accounts for one microstate in each of the 

columns of the previous table. The central column contains two 

microstates, and it makes no difference which one we choose: after 

eliminating one microstate from each column (0+0+;   0−0−; and 0+0− 

or 0−0+), we are just left with the element having ML=0, MS=0 (either 

0+0− or 0−0+): this implies L= 0 and S=0, corresponding to a term 
2S+1LJ= 1SJ These two couples of macrostates, (ML=0,  MS=0) and 

(ML=0,  MS=1) can be resumed in this way: 

 

L=0, S=1                                                                L=0,S=0 

ML=0,  MS = -1,0,1                                                ML=0,  MS = 0 

MJ= ML  +MS  = -1,0,1                                          MJ= ML  +MS  = 0 

which requires J=1                                             which requires J=0 

Spectroscopic term: 3S1                               Spectroscopic term:  1S0 

(“Triplet S one”)                                                        (“Singlet S zero”) 

These two spectroscopic terms correspond to two electronic states 

having different energies: the triplet state 3S1 having lower energy than 

the singlet one.  

 

As a final example on the deduction of the atomic term symbols, let us 

consider the Carbon atom in its fundamental state, 1s22s22p2 

We have shown that we don’t need to consider the completely filled 

subshells, since they necessarily have null values of ML  and MS .  We can 

focus on the configuration  𝑛p2 .  We will build a table as we did before, 

with the possible values of  𝑚ℓ1, 𝑚𝑠1, 𝑚ℓ2, 𝑚𝑠2  . We have to assign two 

electrons to two of six possible spin-orbitals:  

𝑛 = 2, ℓ = 1, 𝑚ℓ = 1, 𝑚𝑠 =
1

2
 

   𝑛 = 2, ℓ = 1, 𝑚ℓ = 1, 𝑚𝑠 = −
1

2
 



𝑛 = 2, ℓ = 1, 𝑚ℓ = 0, 𝑚𝑠 =
1

2
 

   𝑛 = 2, ℓ = 1, 𝑚ℓ = 0, 𝑚𝑠 = −
1

2
 

𝑛 = 2, ℓ = 1, 𝑚ℓ = −1, 𝑚𝑠 =
1

2
 

                                         𝑛 = 2, ℓ = 1, 𝑚ℓ = −1, 𝑚𝑠 = −
1

2
 

 

We have, for the first electron, six possible choices. For the second 

electron, just five. In total, we have 6×5= 30 choices. Since electrons are 

undistinguishable, the order of the two spin-orbitals is irrelevant. Then, 

we have to divide by 2 the 30 possible choices, and we are left with 15 

possible choices, i.e. 15 distinguishable ways to assign the two electrons 

to the six spin-orbitals above. In general, the number of distinguishable 

modes to assign N electrons to G spin-orbitals belonging to the same  

electronic shell (equivalent orbitals, e.g. all 2p) is given by  

𝐺!

𝑁!(𝐺−𝑁)!
 = (𝐺

𝑁
)    .  For G=6 and N=2, this expression gives the value 15.  

To find the 15 possible sets of 𝑚ℓ1, 𝑚𝑠1, 𝑚ℓ2, 𝑚𝑠2 in the case of an 

electronic configuration 𝑛𝑝2, let’s first determine the possible values of 

ML and MS .  Since 𝑚ℓ1, 𝑚ℓ2 can  both reach 1 as maximum value, ML will 

be, at most, ML = 2, so its possible values will be -2,-1,0,1,2. Analogously, 

since 𝑚𝑠1 and 𝑚𝑠2 can both have ½ as maximum value, MS will be, at 

most, 1: then, the possible values of MS are MS = -1,0,1.  

Using these informations, let’s build a table with columns headed with 

the possible values of MS and the lines headed with the possible values 

of ML , where, for example, the notation 1+-1−  stays for  

𝑚ℓ1 = 1, 𝑚𝑠1 = +
1

2
, 𝑚ℓ2 = −1, 𝑚𝑠2 = −

1

2
 

Differently from the previous example, in which we treated non-

equivalent orbitals, we now do not include both 1+0−  and 0−1+ in the 



cell MS =0, ML =1, because  in this case the orbitals are equivalent (two 

orbitals 2p): the two microstates 1+0−  and 0−1+ are indistinguishable. 

 

                               

                                                              MS  (macrostate) 

                                           1                                0                                      -1 

  ML (macrostate)                       

               2                    1+1+                         1+1−                                              1−1− 

               1                    1+0+                    0+1−   ;  0−1+                              1− 0− 

               0             0+0+  ; 1+-1+          0−0+ ;  -1+1− ;  -1−1+         -1−1−  ;  0−0− 

             -1                -1+0+                                -1+ 0−  ;   -1−0+                           - 1−0− 

             -2                -1+-1+                      -1+ -1−                                            - 1−- 1− 

                                                                                      

                                                                         (microstates 𝑚ℓ1, 𝑚𝑠1, 𝑚ℓ2, 𝑚𝑠2  𝑓𝑜𝑟 𝑎  𝑛𝑝2 𝑠ℎ𝑒𝑙𝑙  ) 

 

Now we have to deduce the values of L and S from the tabulated values 

of MS and ML .  The six microstates circled in grey are excluded from the 

Pauli’s principle: indeed, if the two electrons in the shell 𝑛𝑝 have the 

same value of  𝑚ℓ, they must have opposite spins. We cancel those states 

from our table.  

 The largest value of ML  is 2, (both electrons have 𝑚ℓ, =1),  which 

appears only when MS= 0. Then, there must exist a state with L=2 and 

S=0, i.e. 1D.  Since L=2, ML = -2,-1,0,1,2 , and 1D will contain a microstate 

for each line in the table. For those lines which contain more than one 

microstate (the second, the third and the fourth), it is not important 

which microstate one chooses. We can choose arbitrarily  one of the 

microstates   0+1− , -1+1−, -1+0−.  We choose -1+1−  and we circle in 

red the microstates associated to 1D. Since its multiplicity is 

(2S+1)(2L+1)=1 × 5, it will account for 5 of the 15 possible quantum 



states. As for the value of J, remember that MJ = ML + MS. For the

five elements corresponding to 1D,  MJ = −2, −1,0,1,2, which implies 

J=2. The complete term symbol is then 1D2   . Notice that the degeneracy 

of this state is (2J+1)=5.  

The largest remaining value of ML  is 1, implying L=1. There are 

microstates with ML=-1,0,1  associated to MS= -1,0,1, circled in cyan. 

These nine microstates correspond to L=1, S=1, i.e. 3P  (P triplet). For 

the nine microstates of 3P ,  MJ = ML + MS = 2,1,0,1,0,-1, 0,-1,-2 .  

We can then associate five microstates (with MJ =2,-1,0,1,2) to a value 

J=2,  three microstates (MJ =-1,0,1) to J=1, and one microstate (MJ=0) 

to J=0. We see that the state 3P has three possible J values, 

corresponding to three atomic terms  3P0  ,  3P1  , 3P2  .     

The only microstate left has ML=0 and MS=0 at the table’s center, which 
implies L=0=S  (S singlet 1S0).  A term with L = 0 or S = 0 can have only 
one value of J . The multiplicity of the term 2S+1can take values 1,2,3,4 
and leads to the designation of singlet, doublet, triplet, quartet, and so 
on. 
 
In summary, the electronic states associated to an 𝑛𝑝2 configurations 

are  two singlets 1D2  , 1S0  and three triplets,  3P0  ,  3P1  , 3P2  :     

                                    1D2   , 3P0  ,  3P1  , 3P2  , 1S0  .  

The values J of the atomic terms can be determined in relation to L and 

S, since J= L+S. The maximum value of J corresponds to L and S pointing 

to the same direction,  J=L+S, while the minimum is when L and S point 

to opposite direction. i.e.  J= |L-S|. The intermediate values are: 

J= L+S, L+S-1, L+S-2, …, |L-S|.           (*) 

This equation has a graphical representation: L and S are summed up in 

all the modes in which their sum is  vector of length 0,1,2… if S is integer,  

or ½, 3/2, 5/2, … if  S=1/2, 3/2, 5/2 and so on.  For example, if L=2 and 

S=1, then L and S can be summed as vectors in this way: 

 



 

 

 

 

 

 

 

Applying equation  (*) to the previous 3P  (S=1, L=1) term, we see that 

the values of J are given by J=(1+1), (1+1)-1, 1-1 . Thus we have J= 2, 

1,0, as previously determined. Counting the possible MJ for each J, we 

see that 3P correspond to 9 macrostates.  

 

Energy of the terms.  

Different terms (e.g. for an 𝑛𝑝2configuration, the three possible terms 
3P, 1D and 1S) will differ in energy by a significant fraction of the total 

binding energy of the electrons in the partially filled subshell. For atoms 

and low-ionization ions, the energy differences between different terms 

of the ground state configuration will be of order a few eV.  Table 1 lists 

the terms for the ground state configurations of atoms and ions where 

the outermost subshell is ns or np. Higher energy states can be 

constructed by taking one of the electrons out of the ground state 

configuration and putting it into a higher orbital. For example, in the 

case of atomic carbon, this can be done by removing one of the 2s 
electrons and promoting it to a 2p orbital, giving 1s22s12p3 – the 

electrons in this configuration can also be organized into different 

terms. The energy levels are established by Hund’s rules, which assume 

that the repulsion between the outer electrons is much greater than the 

spin–orbit interaction (L-S coupling regime): 

S 

S 

S 

L 

L 

L J J 

J 



1) For a given electron configuration, the term with maximum 
multiplicity 2S+1 has the lowest energy. 4 

2) For a given multiplicity, the term with the largest value of the total 
orbital angular momentum J quantum number has the lowest 
energy. 

3) For a given term (S and L fixed), in an atom with outermost 
subshell half-filled or less, the level with the lowest value of the 
total angular momentum quantum number J  lies lowest in energy. 
If the outermost shell is more than half-filled, the level with the 
highest value of J is lowest in energy. 

According to these rules, we can say, for example, that, in order of 
increasing energy, 3P >1D>1S , etc., as in Table 1: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
4 According to the first rule, electrons always enter an empty orbital before they pair up. Electrons are negatively 

charged and, as a result, they repel each other. Electrons tend to minimize repulsion by occupying their own 

orbitals, rather than sharing an orbital with another electron. Furthermore, the electrons in singly occupied 

orbitals are less effectively  shielded from the nucleus. Besides the Coulomb repulsion , there's also a quantum 

mechanical effect. The exchange energy (which is favorable) increases with the number of possible exchanges 

between electrons with the same spin and energy. In transitioning from the top state to the middle state of figure 

below, we remove the Coulomb repulsion between electrons in the same orbital. Moreover, i transitioning from 

the middle state to the bottom state (most stable state predicted by Hund's first rule), we gain the exchange 
energy, because these two electrons are indistinguishable.  

 

Table 1 

https://en.wikipedia.org/wiki/Electron_configuration
https://en.wikipedia.org/wiki/Term_symbol#Terms,_levels,_and_states
https://en.wikipedia.org/wiki/Multiplicity_(chemistry)
https://en.wikipedia.org/wiki/Total_angular_momentum_quantum_number


 
 
 
 
Fine-structure splitting due to spin-orbit interaction.  
 
Remember that a term is defined as a couple (L,S).  The multiplicity of 

a term with total spin S and orbital angular momentum L is g = (2S + 

1) × (2L + 1). Thus, for example,  the 3P term, with S = 1 and L = 1, has 

multiplicity 3 × 3 = 9. 

When relativistic effects are small, a level (term) with a given L≠ 0 and 

a given S≠ 0 is split in a number of distinct levels with different values 

of J, because of the spin-orbit coupling. This coupling is a results of the 

interaction of the magnetic moment of the electron spin with the 

magnetic moment of the orbital motion. This fine-structure splitting is 

a small perturbation-of the order of 𝛼2𝑍2 with 𝛼 the fine-structure 

constant, and Z the nuclear charge. Transitions among the fine-

structure levels occur therefore at near to far-IR wavelength: the 

fractional energy shifts are of order ∼ 10−2 eV. This  splitting of energy 

levels is the “fine structure”.   In other words, as long as L and S are both 

non null, there are different ways in which L and S can combine to give 

total angular momentum J, corresponding to different energies: the 

spin-orbit interaction led to the “fine-structure” energy splitting of the 

terms, as in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
Note that the adopted notation for designating energy levels overlooks 
possible hyperfine structure arising from interaction of the electrons 
with the magnetic moment of the nucleus. 
 

    Exercise. Find the terms describing 𝑛𝑠 𝑛𝑝 (e.g., CIII with one electron 

in an excited state: instead of being 1s2 2s2, one of the electrons jumped 

to the 1p orbitals.) 

You should obtain 1P1 , 3P2 ,   3P1 , 3P0.  

 

Parity of the state.  

In the spectroscopic notation, it is customary to indicate in the 

spectroscopic term also  the parity of the state, so the energy level in 

spectroscopic notation will be  

2S+1 ℒ𝐽
𝑝

        where L=0,1,2,3… (ℒ =S,P,D,F) and  

p= 𝑏𝑙𝑎𝑛𝑐𝑘 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 even parity;  o for state of odd parity.  

Fine structure 

splitting for 

the triplet  
3
P 

Figure 1 

singlet 

singlet 



The parity of an energy level is “even” or “odd” depending on whether 
the electronic wave function changes sign under reflection of all of the 
electron positions through the origin. If ℓ𝑖 are the orbital angular 
momenta of the individual electron orbitals, then the parity is: 
even if  ∏ (−1)ℓ𝑖

𝑖 =1    (∑ ℓ𝑖𝑖  =  𝑒𝑣𝑒𝑛) 
odd if ∏ (−1)ℓ𝑖

𝑖 = -1    (∑ ℓ𝑖𝑖  =  𝑜𝑑𝑑) 
 

Hyperfine splitting: interaction with nuclear spin.  

If the nucleus has nonzero spin, it will have a nonzero magnetic 
moment. If the nucleus has a magnetic moment, then fine-structure 
levels with nonzero electronic angular momentum J can themselves be 
split due to interaction of the electrons with the magnetic field 
produced by the nucleus. Each term with nonzero value of J is indeed 
still degenerate with respect to the orientation of J: J is space quantized 
in a magnetic field. Designating MJ as the component of J along the 
magnetic field, MJ can take the values J,(J-1), (J-2)…,-J (i.e., 𝑔𝐽 = 2𝐽 + 1). 

For example, the 3P term correspond to nine macrostates, with L=1, 

S=1 and J=0,1,2, and MJ varying accordingly from -J to J. Each of the J 

values corresponds to 2J+1 values of MJ.  

 
 Generally, the nuclear spin is of little concern: this “hyperfine” splitting 
is typically of order 10−6 eV. However, for HI, the hyperfine structure, 
resulting from the interaction of the magnetic moment of the electron 
and the nucleus, is of particular interest because it gives rise to the 
21cm line (ℎ𝜈 =  5.9 × 10−6 𝑒𝑉).  
 

Zeeman effect  

When a static magnetic field B0 is applied, each of the fine-structure 
levels  splits into 2J+1 energy levels, with energies depending on the 
value of J·B0. The energy splittings are small, 𝜇𝐵B0≈ 5.78 ×10−15(B0/
𝜇𝐺) eV, where 𝜇𝐵 ≡ 𝑒ℏ/2𝑚𝑒𝑐   is the Bohr magneton. 
Interstellar magnetic field strengths are of order 1−100 𝜇𝐺 and 
therefore the Zeeman shifts are too small to be measured for transitions 
in the sub-mm or shortward (ℎ𝜈 ≥ 10−4 𝑒𝑉) 
 



 

 
 
 
 
 
Radiative transitions 
 
 
 
Selection rules.  
Selection rulese for electronic transitions merely reflect conservation 
principles. Angular momentum has to be conserved under vector 
addition and, since the photon has one unit of angular momentum, this 
leads to the  
Strong transitions are driven by electric dipoles. Electric dipole 
selection rules are two types: rigorous rules - must always be obeyed; 
propensity rules – lead to weaker transitions. 
Rigorous rules: 
 

(1) ∆J =0, ± 1  with J = 0 → 0 forbidden 

(2) ∆MJ = 0, ±1  



(3) parity must change (Laporte rule): the dipole operator in the 

transition moment integral (proportional to the transition probability) 

has odd parity and hence couples states with opposing parity . 

Additional set of rules which is not rigorously satisfied by complex 

atoms (propensity rules): 

(4) ∆S=0   The spin multiplicity is unchanged. The electron spin can 

only be changed by a magnetic field. 

(5) ∆n arbitrary,  ∆l= ±1    Only one electron jumps: the configuration 

of the two states must differ by only the movement of a single electron. 

(6) ∆L=0, ±1,      with  L= 0 → 0 forbidden 

Configuration interaction weakens this rule: e.g. ground state of Be 

1s22s2 is in fact mixed with 5% contribution from 1s2 2p2. . 

In many-electrons systems, there can be transitions that violate rule 4 

and change the total spin (semi-forbidden transitions):they are called 

intercombination lines (e.g. CIII]). Semi-forbidden transitions, resulting 

in intercombination lines,  are electric dipole  transitions for which the 

selection rule of spin conservation is violated as a result of the failure of 

LS coupling . 

Transitions which violate the propensity rule 5 and/or 6 are strictly 

forbidden, and are labelled by two square brackets (e.g. [CIII]).  

Table 2 gives examples of the 3 types of transitions. 

 

 

 

 

 

 

 

 

Table 2 



How do I calculate the parity of a term?  

You don’t know it just by the term. Only electrons in odd orbitals (with ℓ odd) contribute to the total 

parity. An odd number of electrons in odd orbitals (those with an odd ℓ such as in p, f,...) correspond to 

an odd term symbol, while an even number of electrons in odd orbitals correspond to an even term 

symbol. For any closed subshell, the summation is always an even number, because there is an even 

number of electrons. We have to sum only the ℓ of electrons in open subshells of odd orbitals. For 

example,  2p3s is odd. 2p2 is even. 2s2p is odd. 2p3s is odd.  

 

 

 

Photons do not change spin usual, thus the rule ∆S=0. However, 

relativistic effects mix spin states, especially for high Z ions.  

Example: Weak spin changing transitions → intercombination lines. 

Doubly ionized Carbon, CIII or C2+ , is observed to have the semi 

forbidden transition: CIII] 2s2  1𝑆0
𝑒  - 2s2p  3𝑃1

o at λ = 1908.7 Å (in the UV 

band).  

2s2p 3𝑃1
o state is metastable - no allowed radiative decay.  

The abundant nebular emission features in the far-UV, including CIII]λλ1907, 1909, C IV 

λλ1548, 1550, HeII λ1640, O III]λλ1661, 1666 and Si III]λλ1882, 1892, are especially important 

in probing the ionized gas in HII regions. These lines can be combined to infer various physical 

parameters, such as metallicity, abundance pattern, and ionization parameter, and provide 

valuable constraints on the ionizing stellar populations. ( see, e.g. CIII] Emission in Star-forming 

Galaxies at z ~ 1" Du et al., 2017) 

Doublet : C III]λλ1907, 1909. The C III] doublet is a collisionally excited forbidden/semi-

forbidden transition, which is typically observed in HIIregions in star-forming galaxies. The 

doublet ratio is determined by the electron density.  

Other examples: transitions between singlet and triplet levels of Helium.  

Or  N II]2143.4 Å3P2−5𝑆2
𝑜 . The A-coefficients are a million times weaker 

 

 

 

 

https://arxiv.org/abs/1612.06866
https://arxiv.org/abs/1612.06866


Exercise. Is 2s2 - 2s2p allowed? Is 2s2 - 2s3d allowed? Is 2s2 - 3p2 

allowed?  

Is 1S - 1Po allowed? And is 3D - 3Po allowed? Is 1S -1So allowed? And 3S - 
3Do ? 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Allowed transitions for the 
2s3p P and 2p D levels of the 
CIII ion. Upward lines indicate 
the excitation from the ground 
level and the downward lines 
the radiative transitions. 
Dotted lines represent 
emissions in the visible 
spectra and solid lines 
emissions in the VUV spectra. 

Machida M., IEEE Trans. 
Plasma Sci. 33, 1961-1967 



 

 

 



 

Further reading  

Bransden B.H, Joachain (2003),Physics of Atoms and Molecules,   John Wiley & Sons:  provides 
a comprehensive discussion of the spectroscopy of atoms and ions. 

 


