Radiative processes in Astrophysics- F. Perrotta, SISSA. 2023-2024

Problem set #2.

Bremsstrahlung radiation.

Problem 11. For a single electron-ion interaction, and for a fixed electron velocity, the maximum total radiated energy corresponds to the minimum allowed impact parameter.

Show that this cannot exceed the kinetic energy of the electron, either for $b_{min} = b_{min,1}$ and for $b_{min} = b_{min,2}$ (useful to remember that $2\pi e^2 / 2m_e c = \alpha = 1/137$)

Problem 12. Consider an electron moving at a speed of $v = 1000 \text{ km s}^{-1}$.

a) Calculate the frequency of the emitted radiation in case it would radiate all its kinetic energy in a single interaction (a single photon).

b) In case this electron belongs to a population of particles at thermal equilibrium for which the typical speed is $v = 1000 \text{ km s}^{-1}$, determine which is the temperature of the plasma.

Problem. 13. Evaluate b_{min} for the warm plasma in the Lagoon nebula observed at 1 GHz, selecting if we have to use the classical or quantum value.

Problem 14. An HII region is generated by an O-type star. Suppose it has a spherical volume of radius 1pc filled by pure Hydrogen plasma, at a temperature $T = 1.6 \times 10^4$ K and numerical density $n_e = 10$ cm⁻³. Calculate the specific emissivity and the bolometric one. If the star was removed, after how much time will the region stop to emit? If the region is at a distance 250 pc, calculate the flux observed by a radiotelescope at 10 GHz. (Assume the emission is optically thin at this frequency).

Useful formulae: flux $S_{\nu} = \frac{\varepsilon_{\nu}(T) \cdot V}{4\pi D^2}$ $L = \varepsilon(T) \cdot V$

Problem 15. (Worked example) Suppose we take the matter in our own Galaxy and heat it to $T=10^6$ K in a spherical region of order the Sun's distance from the Galactic center, $R\approx 10$ Kpc. Assume the cloud to be **fully ionized H**, with uniform density and total mass $M=10^{11}$ M_{\odot}

What electron density is required to make the cloud optically thick?

Problem 16. The mean density of free electrons in the Universe is $\sim 10^{-5}$ cm⁻³. Show the Universe is optically thin to electron scattering. UV photons from a distant cloud like the one above would be nevertheless very hard to see. Why?

Problem 17 Derive a general expression for the cooling time for a thin plasma, via thermal bremsstrahlung, in terms of the electron density n_e , the ion density n_i , ion charge Z, radius R and temperature T.

Synchrotron radiation.

Problem 18: Indicating with $\beta = v/c$, show that:

the acceleration is given by $a = \frac{q\beta B}{\nu m}$;

the radius of gyration is $r = \frac{\gamma mc^2\beta}{qB}$;

the period of gyration is $P = \frac{2\pi\gamma mc}{eB}$;

the frequency of gyration is $\varpi_B = \frac{2\pi}{P} = \frac{qB}{\gamma mc}$

Problem 19. Show that the radiation emitted by a relativistic electron moving in a magnetic field is $P = \frac{2}{3}r_0^2$ c $\beta_{\perp}^2\gamma^2B^2$, with $\beta_{\perp} = \frac{v_{\perp}}{c} = \beta \sin \alpha$, and $r_0 = e^2/m_e$ c² ($\approx 2.8 \times 10^{-15}$ m) is the classical electron radius.

Problem 20 A relativistic charge in its own reference frame is emitting cyclotron power with a dipolar distribution $P(\theta) = P(0) \cos^2 \theta$. Show that at 99.9% of the speed of light:

- Radiation originally emitted at 45 to the direction of the velocity is seen by an external observer only 1 away from it.
- The points of null radiation, at 90° to the velocity in the electron's frame, appear directed 2.5° away from it to the external observer.
- Show that the null power points of the emission in the electron's frame in general appear at an angle γ^{-1} radians in the external frame.

Problem 21: The nebula emits X-rays at 10^5 eV ($\sim 10^{-19}$ Hz), which can be associated with the peak of the synchrotron spectrum at 0.29 v_c .

The magnetic field in the nebula has a strength of B $\approx 10^{-4}$ Gauss.

Compute the energy of the electrons producing this radiation, and the synchrotron power radiated per electron if they are isotropic. How long can the electrons radiate X-rays at this rate? Show that this is much shorter than the known age of the Crab (900 years).

Problem 22: The synchrotron spectrum of the Crab shows a **change of slope** at around 10^{15} Hz (~ 4 eV), thought to be due to the high energy electrons, which radiate their energy away in a time shorter than the age of the nebula. Show that at this frequency the electrons have a lifetime which is *about* the same as the age of the Nebula, if the magnetic field strength is $B = 10^{-4}$ Gauss.