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Einstein’s coefficients
Kirchhoff’s law, relating emission and absorption for a thermal emitter, must imply a 

relationship between emission and absorption at a microsopic level. Discovered by 

Einstein with a simple analysis. Suppose we have an atom with two energy levels with 

an energy difference of  E=hν0 . Einstein coefficients describe the transition rates 

caused by the interaction of radiation with these discrete energy levels.  Einstein 

identified  three processes:

1) Spontaneous emission: this occurs when the system in level 2 drops in level 1 by 

emitting a photon, and it occurs even in the absence of a radiation field. We define the 

Einstein-A coefficient by:

 

A21= transition probability per unit time for spontaneous emission (sec -1). 

2) Absorption: this occurs in the presence of photons of energy hν0 . The system makes 

a transition from level 1 to level 2 by absorbing a photon. To describe the background 

radiation field, we use  the spherically averaged specific intensity Jν (absorption does

not depend on direction). However, there are uncertainties in the energy-level

separations, i.e. atoms absorb photons that are not perfectly tuned to E. To

incorporate this, we use the line profile function, 𝜙(𝜈) , the relative absorption 

probability around  ν0 ,  subject to the requirement −∞

+∞
𝜙 𝜈 𝑑𝜈 = 1.

                                                                                                               

Note, the line profile function has dimension of 
the inverse of a frequency, i.e. time



We can approximate the width of  Φ(ν) as an effective width  ν  which is affected by many factors (to be discussed later). 

The transition probability per unit time associated with spontaneous absorption is then the Einstein B-coefficient:

B12
ҧ𝐽  = transition probability per unit time for absorption (sec -1)   ,     where ҧ𝑗 ≡ 0

∞
Jν Φ(ν) dν      

3)Stimulated emission : Einstein foud that to derive Planck’s law another process is required, that is proportional to ഥ 𝐽  and causes emission of a 

photon. As before, we define:

B21
ഥ 𝐽  = transition probability per unit time for stimulated emission (sec -1). 

Relations between Einstein coefficients

In thermodynamic equilibrium, the  number of transitions per unit time per unit volume out of state 1 must equal the number of transitions per 

unit time per unit volume into state 1. Being n1 and n2 the number densities of atoms in levels 1 and 2, 

Solving for ҧ𝐽 , 

Using the Boltzmann distribution (thermodynamic equilibrium),                                              and 

In thermal equilibrium,  Jν = (for isotropy) = Iν = Bν  (Planck function). 

Since Jν varies slowly on the scale of ν,   then  ҧJ = Jν  0

∞
Φ(ν) dν = Jν = Bν 

Multiplicity of the level

Einstein’s coefficients



In order this equation to hold for every temperature, we must have the following Einstein relations:

          𝑔1𝐵12 =  𝑔2𝐵21

 𝐴21 =
2ℎν3

𝑐2   𝐵21

Rewriting jν and αν in terms of the Einstein coefficients. 

• In a small volume dV,  the energy emitted per unit solid angle, frequency and time is dE = j ν dV dΩ dt dν  . Since each atom contributes an energy 

hν0 distributed over a solide angle 4π for each transition, this may also be expressed as :  dE =
hν0

4π
 Φ(𝜈) 𝑛2𝐴21𝑑𝑉𝑑Ω𝑑𝜈𝑑𝑡 ,   implying:

     𝑗 𝜈 =

hν0

4π
 ϕ(𝜈) 𝑛2𝐴21

• The energy absorbed in time dt and volume dV  is :   dE= dV dt hν0 n1 B12 ҧ𝐽  ,     so the energy absorbed out of a beam in a frequency range dν, solid 

angle dΩ time dt and volume dV is :

 𝑑𝐸 =  ϕ(𝜈) 𝑑𝜈 𝑑𝑉 𝑑𝑡 ℎν0 𝑛1 
𝐵12

𝐼ν 𝑑Ω

4π
 

Einstein’s coefficients

= Bν(T)

ҧ𝐽  is averaged on solid agle and
integrated on the line profile!

Connect atomic properties and have no reference to T (unlike Kichhoff’s law, which hold in 

LTE): they must hold whether or not the atoms are in thermodynamic equilibrium . They 

extend Kirchhoff’s law to include nonthermal emission.  Example of detailed balance relation,  

connecting a microcopic process to its inverse.



It follows that    α ν   = 
hν0

4π
𝜙(ν) n1 B12

The stimulated emission is proportional to the intensity and only affects the photons along the given beam, in close analogy to the absorption process.  

It is then convenient to treat it as a negative absorption. These two processes always occur together. Correcting for stimulated emission, 

𝛼 𝜈 
=

hν0

4π
𝜙(𝜈) (𝑛1 

𝐵12 –  𝑛2 
𝐵21 ) 

Using the Einstein’s relations, the absorption coefficient can be rewritten as

𝛼 𝜈 
=

hν0

4π
𝜙 𝜈 𝑛1 

𝐵12 1 −
𝑔1𝑛2

𝑔2𝑛1
 

The source function Sν = jν /αν can also be rewritten in terms of the Einstein coefficients, 

                                 𝑆ν= 
𝑛2𝐴21

𝑛1𝐵12−𝑛2𝐵21
    = 

2ℎν3

𝑐2

𝑔2𝑛1

𝑔1𝑛2
− 1

−1
         Generalized Kirchhoff’s law

Einstein’s coefficients

Problem. 
If we neglect the stimulated 
emission, we do not find the 

Planck’s law, but only the 
Wien law (BB part of the 

spectrum for ℎ𝜈 ≫ 𝑘𝑇) . 
Why? 

Hint: stimulated emission is 
proportional to 𝑛2, while 

absorption to 𝑛1. 



Three interesting cases can be identified.

1- Thermal emission. If the matter is in equilibrium with itself (but not necessarily with radiation) (LTE), then

𝑛1

𝑛2
=

𝑔1

𝑔2
 exp

ℎ𝜈

𝑘𝑇𝑒𝑥
   . In this case,

 α ν   =
hν0

4π
𝜙(𝜈) 𝑛1 B12 1 − exp −

ℎ𝜈

𝑘𝑇𝑒𝑥
   , 𝑆𝜈=  𝐵𝜈(𝑇𝑒𝑥)

This thermal value for the source function is just a statement of the Kirchhoff’s law. The new result is the exponential correction in the absorption 

coefficient, which is due to the stimulated emission. 

2- Nonthermal emission. 
𝑛1

𝑛2
≠  exp

ℎ𝜈

𝑘𝑇
  . This occours in a plasma, for example, if the radiating particles have a non-Maxwellian veocity distribution 

(e.g., they have a power law distribution of energies), or if the atomic populations do not obey the Maxwell-Boltzmann distribution. The generalized 

law can also be applied when scattering is present. 

3- Inverted populations: Masers.  For  system in thermal equilibrium, 
𝑛2𝑔1

𝑛1𝑔2
= exp −

ℎ𝜈

𝑘𝑇
< 1 so that 

𝑛1

𝑔1
>

𝑛2

𝑔2
    , usually satisfied even when the material 

is out of equilibrium. In that case we say there are normal populations. It is possible to have inverted populations by putting enough atoms in the 

upper state, so to have 
𝑛1

𝑔1
<

𝑛2

𝑔2
 . In this  case, the absorption coefficient is negative, α ν<0 : the intensity increases along a ray. The amplification can 

be very large. A negative optical depth of ~100 can, for example, lead to amplifications by a factor 1043. 

Einstein’s coefficients



Radiative transitions

Transition: a particle change its (position from one) quantum state to another. Here, we refer to electrons.  There are two types of transitions: radiative and non 

radiative.   In radiative transitions,  energy is delivered as photons during the transition between different quantum states. According to Bohr’s theory of atoms,  

when an electron drops from an higher energy level 𝐸𝑚 to a lower energy level 𝐸𝑛 , a photon of frequency

       𝜈 =
𝐸𝑚−𝐸𝑛 

ℎ
  is emitted.

When the electron is in a given quantum state, it doesn’t release any photon. 

For simplicity, consider a system in which the electron moves in the x-direction only.  The one-dimensional wave function for any free particle having energy E is 

given by:

  Ψ = 𝐴 𝑒−
𝑖

ℏ
(𝐸𝑡−𝑝𝑥) = 𝐴   𝑒−

𝑖

ℏ
𝐸𝑡  𝑒+

𝑖

ℏ
𝑝𝑥     ≡ 𝜓 𝑒−

𝑖

ℏ
𝐸𝑡           

  Ψ(𝑥, 𝑡) is the product of the time dependent function 𝑒−
𝑖

ℏ
𝐸𝑡   and the position dependent function 𝜓 𝑥 = 𝐴𝑒+

𝑖

ℏ
𝑝𝑥  . 

For an electron in a state of quantum number 𝑛 and energy 𝐸𝑛 ,  the time dependent wave function Ψ𝑛 𝑥, 𝑡 =  𝜓𝑛(𝑥) 𝑒−
𝑖𝐸𝑛𝑡

ℏ     ;    𝜈𝑛 ≡
𝐸𝑛

ℏ
   .

The complex conjugate of Ψ(𝑥, 𝑡) is : 

Ψ𝑛
∗ 𝑥, 𝑡 =  𝜓𝑛

∗ 𝑥  𝑒
𝑖𝐸𝑛𝑡

ℏ   . 

Now we have to find the position of the electron. We calculate the expectation value of the position of the electron in quantum state 𝑛 and energy 𝐸𝑛 ∶

𝑥 = ∞− 

+∞
𝑥 Ψ𝑛

∗ Ψ𝑛𝑑𝑥 = −∞

+∞
𝑥 𝜓𝑛

∗  𝜓𝑛 𝑒
+

𝑖𝐸𝑛𝑡

ℏ  𝑒−
𝑖𝐸𝑛𝑡

ℏ 𝑑𝑥 = −∞

+∞
𝑥 𝜓𝑛

∗  𝜓𝑛 𝑑𝑥  independent of time. When an electron is present inside any quantum state, 

the expectation value of its position does not change in time: the position of the electron does not oscillate – the electron does not radiate any photon, energy stays 

constant.  

Independent of time



Now consider an elecron that goes from one energy state to another,  say 𝐸𝑛 → 𝐸𝑚 because of some interaction.

During the transition, the electron exists in both states; the composite wavefunction is a linear combination of the initial and final states:

Ψ = 𝑎Ψ𝑛 + 𝑏 Ψ𝑚    ; its complex conjugate is Ψ∗ =  𝑎∗Ψ𝑛
∗ + 𝑏∗Ψ𝑚

∗

𝑎∗𝑎 = |𝑎|2gives the probability for the electron to be in state Ψ𝑛 , 𝑏∗𝑏 = |𝑏|2gives the probability for the electron to be in state Ψ𝑚 . The total 

probability is always 1 : |𝑎|2+ |𝑏|2= 1. 

When the electron is in the state 𝑛, 𝑎 = 1, 𝑏 = 0. In the state 𝑚, 𝑎 = 0, 𝑏 = 1. In either state, no radiation emitted.

But when the electron is in the middle of the transition , 𝑎 and  𝑏 have both non zero values: that is the time in which electromagnetic fields are 

produced and emitted in the form of photons

The expectation value of the position during the transition is 

𝑥 = ∞− 

+∞
𝑥 Ψ∗Ψ𝑑𝑥= −∞

+∞
𝑥 𝑎∗Ψ𝑛

∗ +  𝑏∗Ψ𝑚
∗ 𝑎Ψ𝑛 +  𝑏 Ψ𝑚 𝑑𝑥 ∞− =

+∞
𝑥 |𝑎|2Ψ𝑛

∗Ψ𝑛 +  𝑏∗𝑎Ψ𝑚
∗ Ψ𝑛 + 𝑎∗𝑏Ψ𝑛

∗Ψ𝑚 + |𝑏|2Ψ𝑚
∗ Ψ𝑚 𝑑𝑥 = 

= |𝑎|2 ∞− 

+∞
𝑥 𝜓𝑛

∗  𝜓𝑛 𝑑𝑥 + |𝑏|2 ∞− 

+∞
𝑥 𝜓𝑚

∗  𝜓𝑚 𝑑𝑥 + 𝑏∗𝑎 −∞

+∞
𝑥 𝜓𝑚

∗  𝑒+
𝑖𝐸𝑚𝑡

ℏ  𝜓𝑛𝑒−
𝑖𝐸𝑛𝑡

ℏ 𝑑𝑥 + 𝑎∗𝑏 −∞

+∞
𝑥 𝜓𝑛

∗  𝑒+
𝑖𝐸𝑛𝑡

ℏ  𝜓𝑚𝑒−
𝑖𝐸𝑚𝑡

ℏ  𝑑𝑥  = 

 = |𝑎|2 ∞− 

+∞
𝑥 𝜓𝑛

∗  𝜓𝑛 𝑑𝑥 + |𝑏|2 ∞− 

+∞
𝑥 𝜓𝑚

∗  𝜓𝑚 𝑑𝑥 + 𝑏∗𝑎 −∞

+∞
𝑥 𝜓𝑚

∗  𝜓𝑛 𝑒
𝑖(𝐸𝑚−𝐸𝑛)𝑡

ℏ  𝑑𝑥 + 𝑎∗𝑏 −∞

+∞
𝑥 𝜓𝑛

∗  𝜓𝑚𝑒−
𝑖(𝐸𝑚−𝐸𝑛)𝑡

ℏ  𝑑𝑥 = 

=  |𝑎|2 ∞− 

+∞
𝑥 𝜓𝑛

∗  𝜓𝑛 𝑑𝑥 + |𝑏|2 ∞− 

+∞
𝑥 𝜓𝑚

∗  𝜓𝑚 𝑑𝑥 + 𝑏∗𝑎 −∞

+∞
𝑥 𝜓𝑚

∗  𝜓𝑛 cos 𝜃𝑡 + 𝑖 sen𝜃𝑡 𝑑𝑥+ 𝑎∗𝑏 −∞

+∞
𝑥 𝜓𝑛

∗  𝜓𝑚 cos 𝜃𝑡 + 𝑖 sen𝜃𝑡 𝑑𝑥    

with 𝜃 ≡
(𝐸𝑚−𝐸𝑛)

ℏ
        and     cos 𝜃𝑡 = cos 2𝜋

(𝐸𝑚−𝐸𝑛)𝑡

ℎ
 = cos 2𝜋 𝜈𝑚𝑛𝑡 = cos 𝜔𝑚𝑛𝑡 . 

The expectation value of the electron position oscillates with frequency 𝝂𝒎𝒏 = (𝐸𝑚−𝐸𝑛)/ℎ .  Dipole oscillation producing radiation. 

Constant in time (expectation values of  x in the n or m quantum states)

Time dependent



Time-dependent perturbation theory
Consider a system whose Hamiltonian can be written 

𝐻(𝑡) = 𝐻0 + 𝐻1(𝑡)

Here, H0 is a simple time-independent Hamiltonian whose eigenvalues and eigenstates are known exactly. H1 represents a small time-dependent external 

perturbation. Let the eigenstates of H0 take the form 

𝐻0𝜓𝑚 = 𝐸𝑚𝜓𝑚

If the system is in one of these eigenstates, in the absence of an external perturbation, it remains in this state for ever. 

However, a small time-dependent perturbation can give rise to a finite probability that if the system is initially in some eigenstate 𝜓𝑛 of the unperturbed 

Hamiltonian , it will be in some other eigenstate at a subsequent time (because 𝜓𝑛 is no longer an exact eigenstate of the total Hamiltonian).

 A time-dependent perturbation allows the system to make transitions between its unperturbed energy eigenstates. Let us investigate such transitions. 



Suppose that at t=0 the state of the system is represented by is some linear superposition of the unperturbed energy eigenstates 𝜓𝑚 (independent 
of time) , with complex coefficients  𝑐𝑚 ∶

𝜓 0 = σ𝑚 𝑐𝑚 𝜓𝑚      .               In the absence of the time-dependent perturbation, the time evolution of the system is simply

𝜓 𝑡 = 

𝑚

𝑐𝑚 𝑒𝑥𝑝 −
𝑖𝐸𝑚𝑡

ℏ
𝜓𝑚

Assuming the unperturbed eigenstates to be orthonormal, that is,   ⟨𝑛|𝑚⟩ = 𝛿𝑛𝑚  , the probability of finding the system in state 𝑛 at time 𝑡 is 

𝑃𝑛(𝑡) = |⟨𝜓𝑛|𝜓⟩|2 = |𝑐𝑛 exp(−𝑖𝐸𝑛𝑡/ℏ)|2 = |𝑐𝑛|2 = 𝑃𝑛(0)

When 𝐻1 ≠ 0, 𝑃𝑛 and 𝑐𝑚 vary in time:                    𝜓 𝑡 = σ𝑚 𝑐𝑚 𝑡 𝑒𝑥𝑝 −
𝑖𝐸𝑚𝑡

ℏ
𝜓𝑚        ⇒ 𝑃𝑛(𝑡) = |𝑐𝑛(𝑡)|2 ≠ 𝑃𝑛(0) 

Here, we have separated the fast phase oscillation of the eigenstates, which depends on the unperturbed Hamiltonian, from the slow (*) variation 
of the amplitudes 𝑐𝑚 𝑡  which depends entirely on the perturbation. The time-dependent Schrödinger equation  yields: 

𝑖ℏ
𝜕𝜓(𝑡)

𝜕𝑡
= 𝐻 𝑡 𝜓 𝑡 = 𝐻0 + 𝐻1 𝑡 𝜓 𝑡 = 

𝑚

𝑐𝑚(𝑡) 𝑒𝑥𝑝 −
𝑖𝐸𝑚𝑡

ℏ
(𝐸𝑚+𝐻1)𝜓𝑚

We also have 

𝑖ℏ
𝜕𝜓(𝑡)

𝜕𝑡
= 

𝑚

 𝑖ℏ
𝑑𝑐𝑚

𝑑𝑡
+ 𝑐𝑚(𝑡)𝐸𝑚 𝑒𝑥𝑝 −

𝑖𝐸𝑚𝑡

ℏ
𝜓𝑚

Equating the right-hand sides of the previous two equations, 

σ𝑚 𝑖ℏ
𝑑𝑐𝑚

𝑑𝑡
𝑒𝑥𝑝 −

𝑖𝐸𝑚𝑡

ℏ
𝜓𝑚 = σ𝑚 𝑐𝑚(𝑡) 𝑒𝑥𝑝 −

𝑖𝐸𝑚𝑡

ℏ
 𝐻1 𝜓𝑚                                                                                                            (*) ℎ=4.1357 × 10−15 𝑒𝑉 𝑠



Projecting out the component of the previous equation which is proportional to 𝜓𝑛 , we see that only the off-diagonal matrix elements give rise to the time 

variation of the coefficients 𝑐𝑛 :

                                                                                 𝑖ℏ
𝑑𝑐𝑛

𝑑𝑡
 = σ𝑚 𝐻𝑛𝑚 𝑡  exp 𝑖𝜔𝑛𝑚𝑡  𝑐𝑚(𝑡)          where 𝐻𝑛𝑚 𝑡 = 𝑛|𝐻1 𝑡 |𝑚  and 𝜔𝑛𝑚 =

𝐸𝑛−𝐸𝑚

ℏ

Suppose that there are N  linearly independent eigenstates of the unperturbed Hamiltonian: the time dependence of the set of N coefficients 𝑐𝑛, which 

specify the probabilities of finding the system in these eigenstates at time t, is determined by N coupled first-order differential equations.  We cannot 

generally find exact solutions to  these equations. Instead, we have to obtain approximate solutions via suitable expansions in small quantities. 

However, for the  simple (but important) case of a two-state system (i.e., N=2), it is actually possible to solve the system without approximation. 

Two-state systems. 

Consider a system in which the time-independent Hamiltonian possesses two eigenstates:

𝐻0𝜓1 =  𝐸1𝜓1   ;   𝐻0𝜓2 =  𝐸2𝜓2  (suppose 𝐸2 > 𝐸1)

Suppose, for simplicity, that the diagonal elements of the time-dependent perturbation Hamiltonian are zero: 1 𝐻1 1 = 2 𝐻1 2 = 0

The off-diagonal elements are assumed to oscillate sinusoidally at some frequency:

1 𝐻1 2 = 2 𝐻1 1 ∗= 𝛾ℏ𝑒𝑖𝜔𝑡 , where 𝛾 and 𝜔 > 0 are real. Again, only the off-diagonal matrix elements give rise to the effect which we are interested in

(transitions between states 1 and 2). The time evolution of the two 𝑐𝑛 becomes:

 𝑖
𝑑𝑐1
𝑑𝑡

 = γ exp +𝑖(𝜔 − 𝜔12)  𝑐2(𝑡)  

 𝑖
𝑑𝑐2
𝑑𝑡

 = γ exp −𝑖(𝜔 − 𝜔21)  𝑐1(𝑡)               with 𝜔21 =
𝐸2−𝐸1

ℏ
> 0



The previous two equations can be combined into one second order equation for 𝑐2:

𝑑2𝑐2

𝑑2𝑡
+ 𝑖 (𝜔 − 𝜔21)

𝑑𝑐2

𝑑𝑡
 +𝛾2𝑐2 = 0   . Once we solve for 𝑐2 , we find 𝑐1 directly  from the system of diff. equations. 

Let us search for a solution in which the system at time t=0 is certain to be in state 1 :       𝑐1(𝑡 = 0) = 1   ,  𝑐2(𝑡 = 0) = 0    (remember that the sum over 

all the | 𝑐𝑛 |2 = 1 for the probabilistic meaning of these coefficients). With these initial conditions,  it is easily demonstrated that the solutions are:

𝑐2 𝑡 =
−𝑖𝛾

Ω
 exp 

−𝑖 (𝜔−𝜔21)𝑡

2
sin (Ω𝑡)

𝑐1 𝑡 = exp 
+𝑖 (𝜔−𝜔21)𝑡

2
 cos (Ω𝑡) −

+𝑖 (𝜔−𝜔21)𝑡

2Ω
 exp 

+𝑖 (𝜔−𝜔21)𝑡

2
sin (Ω𝑡)

where   Ω = 𝛾2 + (𝜔 − 𝜔21)2/4

Now, the probabilities for each state at time t are:   𝑃2 𝑡 = | 𝑐2 (𝑡)|2 =
𝛾2

𝛾2+(𝜔−𝜔21)2/4
sin2 (Ω𝑡)   ; 𝑃1 𝑡 = | 𝑐1(𝑡) |2= 1 −  𝑃2 𝑡    .  

This result is known as Rabi’s formula.   It exhibits all the feature of the classical resonance: when the frequency of the perturbation 𝜔 matches the 

frequency 𝜔21 ,  we find that :   𝑃2 𝑡 = sin2 (γ𝑡)  ;    𝑃1 𝑡 = cos2 (γ𝑡) .   (Ω → 𝛾 when 𝜔 → 𝜔21 )

Thus: the system starts at time t=0 in state 1.  After a time interval Δ𝑡 =
1

𝛾

𝜋

2
   , the system is in state 2. After a further time interval Δ𝑡 =

1

𝛾

𝜋

2
 ,  i.e.  at    

𝑡 =
𝜋

𝛾
 , the system is again in state 1.  Thus, the system periodically flip-flops between states 1 and 2 under the influence of the time-dependent 

perturbation. This implies that the system alternatively absorbs and emits energy from the source of the perturbation. 



The absorption-emission cycle also takes place away from the resonance, i.e. 𝜔 ≠ 𝜔21 . However, in this case the amplitude of the oscillations of 𝑐1(𝑡)  

and 𝑐1(𝑡)  is reduced, since   Amplitude = 
𝛾2

𝛾2+(𝜔−𝜔21)2/4
< 1.   This means that the  maximum value of 𝑃2 𝑡  is no longer unity, nor is the  the 

minimum of 𝑃1 𝑡   zero. 

In fact, if we plot the maximum value of 𝑃2 𝑡   as a function of the applied frequency 𝜔, we obtain a resonance curve whose maximum (=1)  lies at 

the resonance (𝜔 = 𝜔21) and whose full-width half-maximum (in frequency) is 4𝛾. Thus, if the applied frequency differs from the resonance 

frequency by more than 2𝛾 , the transition probability from the state 1 to state 2 is always very small. The time-dependent perturbation is effective 

at causing transitions between 1 and 2 only if its frequency lies in the approximate range 𝜔21 ± 2𝛾 . Of course, the weaker the perturbation  (i.e. the 

smaller 𝛾 becomes) the narrower the resonance. 

The amplitude of Rabi oscillations (maximum value of 𝑃2 𝑡  ) as a function of the frequency 𝜔 of the external driving field . The maximum amplitude 
occurs at 𝜔 =  𝜔𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 . The resonance width is defined to be the difference of the two  𝜔 values at which the amplitudes are 1/2. Symmetric w.r.t.
x=1 (x>0)

𝑥 = 𝜔/𝜔𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒

Isidor Rabi (1898-1988)
Nobel Prize in Physics in 
1944 for NMR discovery. 

𝐹𝑊𝐻𝑀 =  𝜔𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 ± 2𝛾 



Perturbation expansion

In the presence of a small time-dependent perturbation 𝐻1 𝑡  to the time-independent unperturbed Hamiltonian 𝐻0, we can attempt a perturbative 

solutions of the system:

𝑖ℏ
𝑑𝑐𝑛

𝑑𝑡
 = σ𝑚 𝐻𝑛𝑚 𝑡  exp 𝑖𝜔𝑛𝑚𝑡  𝑐𝑚(𝑡)  .   (**)

Suppose that at time t=0 the system is in some initial energy eigenstate labeled 𝑖 .  The initial conditions are then 𝑐𝑛 𝑡 = 0 = 𝛿𝑛𝑖 . Since these 

coefficients are constant in time in the absence of perturbations,  the zero-th order solution is simply:

𝑐𝑛
0

𝑡 = 𝛿𝑛𝑖

The first-order solution is obtained, via iteration, by substituting the zeroth-order solution into the right-hand side of (**):

𝑖ℏ
𝑑𝑐𝑛

(1)

𝑑𝑡
 = σ𝑚 𝐻𝑛𝑚 𝑡  exp 𝑖𝜔𝑛𝑚𝑡  𝑐𝑚

(0)
(𝑡) = 𝐻𝑛𝑖  exp 𝑖𝜔𝑛𝑖𝑡    subject to the boundary condition 𝑐𝑛

1
0 = 0 

The solution to the previous equation is 

𝑐𝑛
1

𝑡 = −
𝑖

ℏ
0

𝑡
𝐻𝑛𝑖 𝑡′  exp 𝑖𝜔𝑛𝑖𝑡′ 𝑑𝑡′

It follows that, up to first-order in our perturbation expansion,

𝑐𝑛(t)= 𝑐𝑛
0

𝑡 + 𝑐𝑛
1

𝑡 + …  = 𝛿𝑛𝑖 −
𝑖

ℏ
0

𝑡
𝐻𝑛𝑖 𝑡′  exp 𝑖𝜔𝑛𝑖𝑡′ 𝑑𝑡′ + … (terms of higher order in 𝐻𝑛𝑚 ) 

Hence, the probability of finding the system in a  final energy eigenstate labeled  𝑓 at time t , given that it is in the energy level 𝑖 at time zero, is:

𝑃𝑖→𝑓 𝑡 = 𝑐𝑓(𝑡)
2

= −
𝑖

ℏ
න

0

𝑡

𝐻𝑓𝑖 𝑡′  exp 𝑖𝜔𝑓𝑖𝑡′ 𝑑𝑡′

2

Note, finally, that the perturbative solution is clearly only valid provided 𝑃𝑖→𝑓 𝑡 ≪ 1. 



For 𝑡 → ∞,  non negligible only if 𝜔 = −𝜔𝑓𝑖  or if 𝜔 = 𝜔𝑓𝑖

Harmonic Perturbations

𝐻1 𝑡 = 𝑉 exp 𝑖𝜔𝑡 + 𝑉† exp −𝑖𝜔𝑡    where V is in general a function of position, momentum and spin operators, with 𝜔 > 0.  

It follows, form the first -order perturbative calculations, that 

𝑐𝑓(𝑡) =  𝛿𝑓𝑖  −
𝑖

ℏ
0

𝑡
𝑉𝑓𝑖exp 𝑖𝜔𝑡′ + 𝑉𝑓𝑖

†  exp −𝑖𝜔𝑡′  exp 𝑖𝜔𝑓𝑖𝑡′ 𝑑𝑡′     

where 𝑉𝑓𝑖 = 𝑓 𝑉 𝑖    ,    𝑉𝑓𝑖
† = 𝑓 𝑉† 𝑖  = 𝑖 𝑉 𝑓 ∗ . Integrating in 𝑑𝑡′,

 𝑐𝑓(𝑡) = 𝛿𝑓𝑖  −
𝑖𝑡

ℏ
𝑉𝑓𝑖 exp 𝑖 𝜔 + 𝜔𝑓𝑖

𝑡

2
sinc 𝜔 + 𝜔𝑓𝑖

𝑡

2
 + 𝑉𝑓𝑖

† exp −𝑖 𝜔 − 𝜔𝑓𝑖
𝑡

2
sinc 𝜔 −𝜔𝑓𝑖

𝑡

2

where sinc 𝑥 ≡
sin 𝑥

𝑥

The function sinc(𝑥) takes large values only for 𝑥 ≲  𝜋 and is negligible when 𝑥 ≫ 𝜋 . 

The two sinc(𝑥) terms in 𝑐𝑓(𝑡) are, respectively, non negligible only when:

𝜔 + 𝜔𝑓𝑖 ≲
2𝜋

𝑡
      and      𝜔 − 𝜔𝑓𝑖 ≲

2𝜋

𝑡
 

Eventually, when t increases, the range in 𝜔 in which the two terms are non negligible gradually shrinks in size. When 𝑡 ≫
2𝜋

|𝜔𝑓𝑖|
 the two ranges 

becomes strongly peaked and non-overlapping.  

Hermitian adjoint of V (*)

−𝜔𝑓𝑖 𝜔𝑓𝑖

−𝜔𝑓𝑖 −
2π

𝑡
−𝜔𝑓𝑖 +

2π

𝑡
𝜔𝑓𝑖 −

2π

𝑡
𝜔𝑓𝑖 +

2π

𝑡

(*) The adjoint operator is defined as v V w = w V† v
∗
 



−𝜔𝑓𝑖 𝜔𝑓𝑖

−𝜔𝑓𝑖 −
2π

𝑡
−𝜔𝑓𝑖 +

2π

𝑡
𝜔𝑓𝑖 −

2π

𝑡
𝜔𝑓𝑖 +

2π

𝑡

For 𝑡 → ∞,  non negligible only if 𝜔 = −𝜔𝑓𝑖  or if 𝜔 = 𝜔𝑓𝑖

Harmonic Perturbations

𝐻1 𝑡 = 𝑉 exp 𝑖𝜔𝑡 + 𝑉† exp −𝑖𝜔𝑡    where V is in general a function of position, momentum and spin operators, with 𝜔 > 0.  

It follows, form the first -order perturbative calculations, that 

𝑐𝑓(𝑡) =  𝛿𝑓𝑖  −
𝑖

ℏ
0

𝑡
𝑉𝑓𝑖exp 𝑖𝜔𝑡′ + 𝑉𝑓𝑖

†  exp −𝑖𝜔𝑡′  exp 𝑖𝜔𝑓𝑖𝑡′ 𝑑𝑡′     

where 𝑉𝑓𝑖 = 𝑓 𝑉 𝑖      𝑉𝑓𝑖
† = 𝑓 𝑉† 𝑖  = 𝑖 𝑉 𝑓 ∗ . Integrating in 𝑑𝑡′,

 𝑐𝑓(𝑡) = 𝛿𝑓𝑖  −
𝑖𝑡

ℏ
𝑉𝑓𝑖 exp 𝑖 𝜔 + 𝜔𝑓𝑖

𝑡

2
sinc 𝜔 + 𝜔𝑓𝑖

𝑡

2
 + 𝑉𝑓𝑖

† exp −𝑖 𝜔 − 𝜔𝑓𝑖
𝑡

2
sinc 𝜔 −𝜔𝑓𝑖

𝑡

2

where sinc 𝑥 ≡
sin 𝑥

𝑥

The function sinc(𝑥) takes large values only for 𝑥 ≲  𝜋 and is negligible when 𝑥 ≫ 𝜋 . 

The two sinc(𝑥) terms in 𝑐𝑓(𝑡) are, respectively, non negligible only when:

𝜔 + 𝜔𝑓𝑖 ≲
2𝜋

𝑡
      and      𝜔 − 𝜔𝑓𝑖 ≲

2𝜋

𝑡
 

Eventually, when t increases, the range in 𝜔 in which the two terms are non negligible gradually shrinks in size. When 𝑡 ≫
2𝜋

|𝜔𝑓𝑖|
 the two ranges 

becomes strongly peaked and non-overlapping.  

Hermitian adjoint of V



−𝜔𝑓𝑖 𝜔𝑓𝑖

−𝜔𝑓𝑖 −
2π

𝑡
−𝜔𝑓𝑖 +

2π

𝑡
𝜔𝑓𝑖 −

2π

𝑡
𝜔𝑓𝑖 +

2π

𝑡

For 𝑡 → ∞,  non negligible only if 𝜔 = −𝜔𝑓𝑖  or if 𝜔 = 𝜔𝑓𝑖

Harmonic Perturbations

𝐻1 𝑡 = 𝑉 exp 𝑖𝜔𝑡 + 𝑉† exp −𝑖𝜔𝑡    where V is in general a function of position, momentum and spin operators, with 𝜔 > 0.  

It follows, form the first -order perturbative calculations, that 

𝑐𝑓(𝑡) =  𝛿𝑓𝑖  −
𝑖

ℏ
0

𝑡
𝑉𝑓𝑖exp 𝑖𝜔𝑡′ + 𝑉𝑓𝑖

†  exp −𝑖𝜔𝑡′  exp 𝑖𝜔𝑓𝑖𝑡′ 𝑑𝑡′     

where 𝑉𝑓𝑖 = 𝑓 𝑉 𝑖      𝑉𝑓𝑖
† = 𝑓 𝑉† 𝑖  = 𝑖 𝑉 𝑓 ∗ . Integrating in 𝑑𝑡′,

 𝑐𝑓(𝑡) = 𝛿𝑓𝑖  −
𝑖𝑡

ℏ
𝑉𝑓𝑖 exp 𝑖 𝜔 + 𝜔𝑓𝑖

𝑡

2
sinc 𝜔 + 𝜔𝑓𝑖

𝑡

2
 + 𝑉𝑓𝑖

† exp −𝑖 𝜔 − 𝜔𝑓𝑖
𝑡

2
sinc 𝜔 −𝜔𝑓𝑖

𝑡

2

where sinc 𝑥 ≡
sin 𝑥

𝑥

The function sinc(𝑥) takes large values only for 𝑥 ≲  𝜋 and is negligible when 𝑥 ≫ 𝜋 . 

The two sinc(𝑥) terms in 𝑐𝑓(𝑡) are, respectively, non negligible only when:

𝜔 + 𝜔𝑓𝑖 ≲
2𝜋

𝑡
      and      𝜔 − 𝜔𝑓𝑖 ≲

2𝜋

𝑡
 

Eventually, when t increases, the range in 𝜔 in which the two terms are non negligible gradually shrinks in size. When 𝑡 ≫
2𝜋

|𝜔𝑓𝑖|
 the two ranges 

becomes strongly peaked and non-overlapping.  

Hermitian adjoint of V



The resonance at  𝜔 = 𝜔𝑓𝑖  corresponds to 𝐸𝑓 − 𝐸𝑖 = ℏ𝜔 : the system gains energy ℏ𝜔 from the perturbing field while making a transition to a final  state 

with 𝐸𝑓 >  𝐸𝑖   .  This process is know as absorption. 

Stimulated emission and absorption are mutually exclusive processes, because the first requires 𝜔𝑓𝑖 < 0 whereas the second requires 𝜔𝑓𝑖 > 0 .

 Hence, we can write the transition probabilities for both processes separately:

𝑃𝑖→𝑓
𝑠𝑡𝑖𝑚 𝑡 =

𝑡2

ℏ2 𝑉𝑓𝑖
†

2

sinc2 𝜔 +𝜔𝑓𝑖
𝑡

2
   

𝑃𝑖→𝑓
𝑎𝑏𝑠 𝑡 =

𝑡2

ℏ2 𝑉𝑓𝑖
2

sinc2 𝜔 − 𝜔𝑓𝑖
𝑡

2
          Since 𝜔𝑓𝑖 = −𝜔𝑖𝑓 , the two probabilities have the same values .

If the perturbation has pulsation 𝜔 = 𝜔𝑓𝑖   ,  non-null probability that the system absorbs a photon (if 𝜔𝑓𝑖>0) or emits a photon (if 𝜔𝑓𝑖 =
𝐸𝑓−𝐸𝑖

ℏ
<0)

When 𝑡 ≫
2𝜋

|𝜔𝑓𝑖|
 the two ranges becomes strongly peaked and non-overlapping.  In this limit and with 𝑓 ≠ 𝑖, 

𝑃𝑖→𝑓 𝑡 = 𝑐𝑓(𝑡)
2

=
𝑡2

ℏ2 𝑉𝑓𝑖
2

sinc2 𝜔 + 𝜔𝑓𝑖
𝑡

2
+ 𝑉𝑓𝑖

† 2
sinc2 𝜔 −𝜔𝑓𝑖

𝑡

2

This expression exhibits a resonant behavior at 𝜔 = ±𝜔𝑓𝑖  . At each of the resonant frequencies (±𝜔𝑓𝑖),  the transition probability goes at 𝑡2   

(because sinc(0)=1). The resonance at  𝜔 = −𝜔𝑓𝑖 corresponds to 𝐸𝑓 − 𝐸𝑖 = −ℏ𝜔 : the system loses energy ℏ𝜔 to the perturbing field while decaying 

to a final  state with 𝐸𝑓 <  𝐸𝑖   .  This process is know as stimulated emission. 

For 𝑡 → ∞,  non negligible only if 𝜔 = −𝜔𝑓𝑖  or if 𝜔 = 𝜔𝑓𝑖

Stim. emission absorption



Electromagnetic Hamiltonian: matter-radiation interaction. 

In the semiclassical theory of radiative transitions , the atom is treated quantum mechanically, but the radiation field is treated classically, no feedback of 

atom on the electromagnetic field. 

The Hamiltonian of an atomic electron in an external electromagnetic field is:        𝐻 =
𝐩−

𝑒𝐀

𝐜

2

2𝑚𝑒
+ 𝑒φ + 𝑉0 𝑟  where 𝐀 and 𝜑 are the vector and scalar 

potentials,  functions of the position operator related to E and B:

𝐄 = −∇𝜑 −
𝜕𝐀

𝑐 𝜕𝑡
  ;   𝑩 = ∇ × 𝐀   .  

Choosing the  the Coulomb gauge, ∇ ∙ 𝐀 = 0, and 𝐩 ∙ 𝐀 = 𝐀 ∙ 𝐩. Hence,

𝐻 =
𝑝2

2𝑚𝑒
 −

𝑒𝐀∙𝐩

𝑚𝑒𝑐
+ 

𝑒2𝐴2

2𝑚𝑒𝑐2 + 𝑒𝜑 + 𝑉0(𝑟)

In the case of a perturbation given by a linearly polarized, monochromatic, plane-wave, 

𝜑 = 0  and 𝐀 = 𝐴0𝝐 cos 𝐤 ∙ 𝐫 −  𝜔𝑡  𝝐 = unit vector of polarization direction, 𝐤 =
2𝜋

𝜆
 n .  

Neglecting A2 (second order in A0) , the Hamiltonian becomes:

  𝐻 = 𝐻0 + 𝐻1 𝑡  where    

𝐻0= 
𝑝2

2𝑚𝑒
+𝑉0(𝑟)     

and      𝐻1 𝑡  ≅ −
e 𝐀∙𝐩

𝑚𝑒𝑐
  = −

𝑒𝐴0𝝐∙𝐩

2𝑚𝑒𝑐
exp 𝑖𝐤 ∙ 𝐫 − 𝑖𝜔𝑡 + exp −𝑖𝐤 ∙ 𝐫 + 𝑖𝜔𝑡  = perturbation         (k=

2π

λ
𝐧 =

2π𝜈

c
𝐧 =

𝜔

𝑐
 𝐧 )

This has the same form as our previous harmonic perturbation, provided that

V = −
𝑒𝐴0𝝐∙𝐩

2𝑚𝑒𝑐
 exp(−𝑖𝐤 ∙ 𝐫 )    and   𝑉†= −

𝑒𝐴0𝝐∙𝐩

2𝑚𝑒
 exp(𝑖𝐤 ∙ 𝐫 )

𝑉† V



It follows that:

𝑃𝑖→𝑓
𝑎𝑏𝑠 𝑡 =

𝑡2

ℏ2

𝑒2 𝐴0
2

4𝑚𝑒
2𝑐2 𝑓 𝝐 ∙ 𝐩 exp(𝑖𝐤 ∙ 𝐫 ) 𝑖 2 sinc2 𝜔 − 𝜔𝑓𝑖

𝑡

2
 

In terms of the energy density of the electromagnetic wave, since 𝐸0 =
𝜔

𝑐
𝐴0 and   U=

1

8𝜋
𝐸0

2  ⇒ 𝐴0
2 = 

𝑐28𝜋U

𝜔2          (CGS)

𝑃𝑖→𝑓
𝑎𝑏𝑠 𝑡 =

𝑡2

ℏ2

𝑒2

𝑚𝑒
2

 2𝜋 U

𝜔2  𝑓 𝝐 ∙ 𝐩 exp(𝑖𝐤 ∙ 𝐫 ) 𝑖 2 sinc2 𝜔 − 𝜔𝑓𝑖
𝑡

2
      (proportional to the incident radiation density)

If the incident radiation is not monochromatic, but extends over a range of frequencies, 

U = ∞−

+∞
 𝜌 𝜔 𝑑𝜔          and, for inchoerent radiation, we add the intensities of the uncorrelated frequency waves: 

𝑃𝑖→𝑓
𝑎𝑏𝑠 𝑡 = ∞−

+∞ 𝑡2

ℏ2

𝑒2

𝑚𝑒
2

 2𝜋 

𝜔2  𝑓 𝝐 ∙ 𝐩 exp(𝑖𝐤 ∙ 𝐫 ) 𝑖 2 sinc2 𝜔 − 𝜔𝑓𝑖
𝑡

2
 𝜌 𝜔 𝑑𝜔

For 𝑡 ≫
2𝜋

|𝜔𝑓𝑖|
 , the sinc function is strongly peaked about 𝜔 = 𝜔𝑓𝑖   and −∞

+∞
sinc2 𝑥 𝑑𝑥 =  𝜋  .

𝑃𝑖→𝑓
𝑎𝑏𝑠 𝑡 =

𝑡

ℏ2

𝑒2

𝑚𝑒
2

 4𝜋2 

𝜔𝑓𝑖
2 𝜌(𝜔𝑓𝑖) 𝑓 𝝐 ∙ 𝐩 exp(𝑖𝐤 ∙ 𝐫 ) 𝑖 2      

We see that the spectral integration transformed the probability into a function of 𝑡 instead than 𝑡2. While this expression holds as long as 𝑃𝑖→𝑓
𝑎𝑏𝑠 𝑡 ≪ 1 , 

a universal result is that:   

                                             𝑤𝑖→𝑓
𝑎𝑏𝑠 ≡

𝑑𝑃𝑖→𝑓
𝑎𝑏𝑠 𝑡

𝑑𝑡
 =

𝑒24𝜋2

ℏ2𝜔𝑓𝑖
2 𝑚𝑒

2  𝜌(𝜔𝑓𝑖) 𝑓 𝝐 ∙ 𝐩 exp(𝑖𝐤 ∙ 𝐫 ) 𝑖 2      is constant in time. 

The transition probability per unit time, 𝑤𝑖→𝑓
𝑎𝑏𝑠 , is called transition rate : probability for transition betweeen 𝑡 and 𝑡 + 𝑑𝑡.   In the same way, 

𝑤𝑖→𝑓
𝑠𝑡𝑖𝑚 ≡

𝑑𝑃𝑖→𝑓
𝑠𝑡𝑖𝑚 𝑡

𝑑𝑡
 =

𝑒24𝜋2

ℏ2𝜔𝑓𝑖
2 𝑚𝑒

2  𝜌(𝜔𝑓𝑖) 𝑓 𝝐 ∙ 𝐩 exp(𝑖𝐤 ∙ 𝐫 ) 𝑖 2



Electric dipole approximation

In general, the wavelength of the electromagnetic radiation that induces, or is emitted during, transitions between different atomic energy levels is much larger 

than the typical size of an atom. Thus, 

 exp(𝑖𝐤 ∙ 𝐫) = 1 + 𝑖𝐤 ∙ 𝐫 + ⋯ ~ 1    electric dipole approximation

𝑓 𝝐 ∙ 𝐩 exp(𝑖𝐤 ∙ 𝐫 ) 𝑖 ~ 𝝐 ∙ 𝑓 𝐩 𝑖      (neglects the spatial variations of the wave, on the small distances of atoms).

Now,   𝐫, 𝐻0 = 𝐫,
𝑝2

2𝑚𝑒
+ 𝑉0(𝑟) =

1

2𝑚𝑒
𝐫, 𝑝2 =  

2ℏ𝑖 𝐩

2𝑚𝑒
=

ℏ 𝑖𝒑 

𝑚𝑒
𝑁𝑜𝑡𝑒: 𝑤𝑒 𝑢𝑠𝑒𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝐱, 𝐩 = 𝑖 ℏ 𝑎𝑛𝑑 𝐱, 𝐩𝟐 = 2𝑖 ℏ 𝐩 

Thus:

𝑓 𝐩 𝑖 = −
𝑖𝑚𝑒

ℏ
𝑓 𝐫, 𝐻0 𝑖 = 𝑖𝑚𝑒𝜔𝑓𝑖 𝑓 𝐫 𝑖

𝑤𝑖→𝑓
𝑎𝑏𝑠 ≡

𝑑𝑃𝑖→𝑓
𝑎𝑏𝑠 𝑡

𝑑𝑡
 =

4𝜋2

ℏ2  𝜌(𝜔𝑓𝑖) 𝝐 ∙ 𝐝𝑖𝑓
2

    where 𝐝𝑖𝑓 ≡ 𝑓 𝑒𝐫 𝑖  =effective atomic electric dipole during a transition 𝑖 ⟷ 𝑓.

For  unpolarized isotropic radiation, we average the above formula over all angles, which gives:

    𝝐 ∙ 𝐝𝑖𝑓
2

= 
𝑑𝑖𝑓

2

3
      ,    since cos2𝜃 =

1

3
    and having defined 𝑑𝑖𝑓

2  = 𝑓 𝑒𝑥 𝑖 2 + 𝑓 𝑒𝑦 𝑖 2 + 𝑓 𝑒𝑧 𝑖 2 . 

Hence, the transition rates for absorption and stimulated emission induced by unpolarized isotropic radiation are (in CGS):

                              𝑤𝑖→𝑓
𝑎𝑏𝑠   =

4𝜋2

3ℏ2  𝜌(𝜔𝑓𝑖)𝑑𝑖𝑓
2        𝑤𝑖→𝑓

𝑠𝑡𝑖𝑚   =
4𝜋2

3ℏ2  𝜌(𝜔𝑓𝑖)𝑑𝑖𝑓
2

 



Short recap on Fourier transforms  (from Ribicki Lightman chapter 2 and chapter 10)

𝑆 =
𝑐

4𝜋
𝐸 × 𝐵 The time averaged Poynting vector is 𝑆 =

𝑐

8𝜋
𝐸 2 , and 𝑈 =

1

8𝜋
𝐵 2 = time averaged energy density.

If the radiation is in the form of a finite pulse, that vanishes at 𝑡 → ±∞, we can express 𝐸(𝑡) in terms of a Fourier integral:

𝐸 𝜔 =
1

2𝜋
∞−

∞
𝐸(𝑡) 𝑒𝑖𝜔𝑡𝑑𝑡 

The inverse of this is: 𝐸(𝑡)  = ∞−

∞ 𝐸 𝜔 𝑒−𝑖𝜔𝑡𝑑𝜔

𝐸 𝜔  is complex while 𝐸(𝑡) is real. Thus, 𝐸 −𝜔 =  𝐸
∗

𝜔  , so that the negative frequencies can be eliminated. 

We want to have information about the energy. The energy per unit area per unit time, in terms of Poynting vector, is     
𝑑ℰ

𝑑𝑡𝑑𝐴
=

𝑐

4𝜋
𝐸2(𝑡)

The total energy per unit area in the pulse is       
𝑑ℰ

𝑑𝐴
=

𝑐

4𝜋
∞−

∞
𝐸2 𝑡  𝑑𝑡

From Parseval’s theorem for Fourier transforms, we know that −∞

∞
𝐸2 𝑡  𝑑𝑡= 2𝜋 ∞−

∞ 𝐸 𝜔
2

𝑑𝜔= 4𝜋 0

∞ 𝐸 𝜔
2

𝑑𝜔 ⇒
𝑑ℰ

𝑑𝐴
= 𝑐 0

∞ 𝐸 𝜔
2

𝑑𝜔 

and we identify the energy per unit area per unit frequency: 
𝑑ℰ

𝑑𝐴𝑑𝜔
= 𝑐 𝐸 𝜔

2
 = energy/area/frequency in the entire pulse, NOT per unit time!

Writing both 𝑑𝑡 and 𝑑𝜔 would violate the uncertainty relation between 𝜔 and t.   However, if the pulse has a timescale T, we may formally write   

ℑ 𝜔 ≡
𝑑ℰ

𝑑𝐴𝑑𝜔𝑑𝑡
=

1

𝑇

𝑑ℰ

𝑑𝐴𝑑𝜔
 = 

𝑐

𝑇
𝐸 𝜔

2
 ;  𝑈 𝜔 =

𝑑ℰ

𝑐 𝑑𝐴𝑑𝜔𝑑𝑡
 =

1

𝑇
𝐸 𝜔

2
. In the Coulomb gauge, 𝐸 𝜔 = −

1

𝑐

𝜕𝐴

𝜕𝑡
=

𝜔

𝑐
𝐴(𝜔) ⇒ 𝑈(𝜔) =

𝜔2

𝑇𝑐2
መ𝐴 𝜔

2
≡ 𝜌(𝜔) 

which is what  we define 𝑈(𝜔) ≡ 𝜌(𝜔) = spectral energy density    (the total, bolometric energy density is, of course, 𝑈 = ∞−

∞
𝜌 𝜔 𝑑𝜔. )

ℑ(𝜔)

𝑐
= 𝜌(𝜔)   is the correspondence with the notation of the book Rybicki-Lightman chapter 10



Spontaneous emission

In the absence of any external radiation, we would not expect an atom in a given state to spontaneously jump into a state with a higher energy.

However, it is possible for such an atom to spontaneously jump into a state with a lower energy via the emission of a photon whose energy is equal to

the difference between the energies of the initial and final states. This process is known as spontaneous emission.

The rate of spontaneous emission between two atomic states can be derived using a famous thermodynamic argument due to Einstein . Consider a

very large ensemble of similar atoms placed inside a closed cavity whose walls are perfect absorbers/emitters held at temperature T. At

thermodynamic equilibrium, this cavity is filled with Blackbody radiation. Consider two atomic states labeled 𝑢 and ℓ with 𝐸𝑢 > 𝐸ℓ  . From statistical 

mechanics, in thermal equilibrium the rate at which  atoms from the ensemble leave state 𝑢 due to transitions to state ℓ must be balanced by the rate

at which atoms enter state ℓ due to transitions from state 𝑢, irrespective of any other atomic states. This is the detailed balance principle.

The former rate is:       𝑊𝑢→ℓ = 𝑁𝑢(𝑤𝑢→ℓ
𝑠𝑝𝑜𝑛𝑡

+ 𝑤𝑢→ℓ
𝑠𝑡𝑖𝑚),      where we introduced a spontaneous emission rate 𝒘𝒖→ℓ

𝒔𝒑𝒐𝒏𝒕
 . 

The latter rate will be:      𝑊ℓ→𝑢 = 𝑁ℓ 𝑤ℓ→𝑢
𝑎𝑏𝑠  

 In thermal equilibrium , 𝑁ℓ 𝑤ℓ→𝑢
𝑎𝑏𝑠  = 𝑁𝑢 𝑤𝑢→ℓ

𝑠𝑝𝑜𝑛𝑡
+ 𝑤𝑢→ℓ

𝑠𝑡𝑖𝑚  (*)

If the levels are degenerate, the transition rates are found counting all the initial states and summing over the final states. In practice,  the relation we 

obtained for non degenerate states has to be corrected : 

𝑔ℓ𝑤ℓ→𝑢
𝑎𝑏𝑠 = 𝑔𝑢𝑤𝑢→ℓ

𝑠𝑡𝑖𝑚            Replacing 𝑤𝑢→ℓ
𝑠𝑡𝑖𝑚 in equation (*), 

 𝑤𝑢→ℓ
𝑠𝑝𝑜𝑛𝑡

 = 
𝑔ℓ

𝑔𝑢

𝑁ℓ𝑔𝑢

𝑁𝑢𝑔ℓ
− 1  𝑤ℓ→𝑢

𝑎𝑏𝑠  = 
𝑔ℓ

𝑔𝑢

𝑁ℓ𝑔𝑢

𝑁𝑢𝑔ℓ
− 1 ∙

4𝜋2

3ℏ2  𝜌(𝜔𝑢ℓ)𝑑𝑢ℓ
2 Known from statistical termodynamics!



From statistical thermodynamics, we know that, in thermal equilibrium, the number of atoms in an ensemble occupying a state of energy E is proportional 

to exp(−𝐸/𝑘𝐵𝑇).     This implies that 
𝑁ℓ

𝑁𝑢
 = 

𝑔ℓ

𝑔𝑢
exp(ℏ𝜔𝑢ℓ/𝑘𝐵𝑇)   .  

We use the Planck law to derive this exponential, since the BB spectrum is 𝜌 𝜔 =
ℏ

𝜋2𝑐3

𝜔3

exp(ℏ𝜔/𝑘𝐵𝑇)−1 
, and obtain:

𝑤𝑢→ℓ
𝑠𝑝𝑜𝑛𝑡

 =   
𝑔ℓ

𝑔𝑢

 4 𝜔𝑢ℓ 
3 𝑑𝑢𝑙

2

3ℏ𝑐3

Although this result has been derived for an atom in a radiation-filled cavity, it remains correct even in the absence of radiation.

Finally, the corresponding absorption and stimulated emission rates for an atom in a radiation-filled cavity are

𝑤ℓ→𝑢
𝑎𝑏𝑠 =   

𝑔𝑢

𝑔ℓ
 ∙

𝜋2𝑐3

ℏ 𝜔𝑢ℓ 
3 𝜌(𝜔𝑢ℓ) ∙ 𝑤𝑢→ℓ

𝑠𝑝𝑜𝑛𝑡
   = 𝜌(𝜔𝑢ℓ)

4𝜋2

3ℏ2  𝑑𝑢ℓ
2  ;

𝑤𝑢→ℓ
𝑠𝑡𝑖𝑚 =

𝜋2𝑐3

ℏ 𝜔𝑢ℓ 
3  𝜌(𝜔𝑢ℓ) ∙ 𝑤𝑢→ℓ

𝑠𝑝𝑜𝑛𝑡
 =

𝑔ℓ

𝑔𝑢
 𝜌(𝜔𝑢ℓ)

4𝜋2

3ℏ2  𝑑𝑢ℓ
2   .

Spontaneous emission is a quantum effect, which in a semiclassical picture can be described as an emission which is stimulated by vacuum noise. It results

from an interaction with the quantum-mechanical electromagnetic field, which is influenced by the atomic or ionic environment. Spontaneous transitions

are not explainable within the framework of the Schrödinger equation, in which the electronic energy levels are quantized, but the electromagnetic field is

not. Given that the eigenstates of an atom are properly diagonalized, the overlap of the wavefunctions between the excited state and the ground state of the

atom is zero. Thus, in the absence of a quantized electromagnetic field, the excited state atom cannot decay to the ground state. In order to explain

spontaneous transitions, quantum mechanics must be extended to a quantum field theory, where the electromagnetic field is quantized at every point in

space. The quantum field theory of electrons and electromagnetic fields is known as quantum electrodynamics.



Einstein coefficients

Be  J𝜈𝑢𝑙
 the averaged (over solid angle) radiation intensity at frequency 𝜈𝑢ℓ , and using     J𝜈𝑢𝑙

=
1

4𝜋
𝐼(𝜈𝑢ℓ) =

2𝜋

4𝜋
 𝐼(𝜔𝑢ℓ) =

1

2
 𝐼(𝜔𝑢ℓ)=

𝑐

2
 𝜌(𝜔𝑢ℓ) , 

we can relate the average values of the transition probabilities to the Einstein coefficients, so defined:

𝐴𝑢ℓ ≡
1

𝑔𝑢
𝑤𝑢→ℓ

𝑠𝑝𝑜𝑛𝑡
=

 4 𝜔𝑢ℓ 
3

3𝑔𝑢ℏ𝑐3 𝑑𝑢ℓ
2

𝐵ℓ𝑢 ≡
1

𝑔ℓJ𝜈𝑢ℓ

 𝑤𝑢→ℓ
𝑎𝑏𝑠      = 

8𝜋2

3𝑔ℓ 𝑐ℏ2  𝑑𝑢ℓ
2 

𝐵𝑢ℓ ≡
1

𝑔𝑢J𝜈𝑢ℓ

 𝑤𝑢→ℓ
𝑠𝑡𝑖𝑚 = 

8𝜋2

3𝑔𝑢𝑐ℏ2  𝑑𝑢ℓ
2 

Notice that 𝐴𝑢ℓ ∝ 𝜈𝑢ℓ
3  . Spontaneous emission is expected to dominate at  high frequencies. 

Example. For Hydrogen atom                                                                         For example, the 5.0089 GHz H109α transition rate is A110, 109   is ~ 0.3 𝑠−1

𝑔ℓ𝐵ℓ𝑢 =  𝑔𝑢𝐵𝑢ℓ

 𝐴𝑢ℓ =
2ℎ𝜈𝑢ℓ

3

𝑐2   𝐵ℓ𝑢

Einstein relations
Albert Einstein, 1879-1955 



Selection rules: which transitions are possible? 

Recall the definition of dipole matrix element between a final and an initial state:    𝐝𝑓𝑖 ≡ −𝑒  𝜙𝑓
∗ σ𝑗 𝐫𝑗 𝜙𝑖𝑑3𝐫.   In a multielectron system, the 

following rules apply to the jumping electron, and completely determine the spectrum for one-electon atoms such as HI and HeII, and the alkali 

metals. 

1) For the «jump» of a single electron , we can consider the single electron position vector: since the dipole operator 𝐝 =  −𝑒𝐫 changes sign 

under parity (r → −r), matrix element 𝑓 𝐝 𝑖  will vanish if  ⟩|𝑖  and ⟩|𝑓  have same parity. For states with a given configuration, the parity is 

(−1)σ ℓ𝑖   ,   where the sum is over the angular momenta quantum numbers of the individual orbitals: the configuration must change by at least 

one orbital. 

2) Separating wavefunction into spatial and spin components,  ⟩|𝑓 = ൿ|𝜙𝑓 ⊗ ൿ|𝜒𝑓  . Since the dipole operator only acts on the spatial part, 

𝑓 𝐝 𝑖 =− 𝜒𝑓 𝜒𝑖  𝜙𝑓
∗  𝑒𝐫 𝜙𝑖𝑑3𝐫    and the spin term vanishes unless ൿ|𝜒𝑓  and ൿ|𝜒𝑓  are identical ,  Δs = 0 , Δ𝑚𝑠 = 0. 

The parity of the wavefunction must change in an electric dipole transition

The spin state is not altered in electric dipole transitions. 



3)  From the operator identity 𝐋𝐢, 𝐫𝐣 = 𝑖ℏ𝜖𝑖𝑗𝑘𝐫𝐤   it follows that 𝐋𝐳, 𝐳 = 0. 

Then 𝑛, ℓ, 𝑚 𝐋𝐳, 𝐳 𝑛′, ℓ′, 𝑚′ =ℏ(𝑚 − 𝑚′) 𝑛, ℓ, 𝑚 𝐳 𝑛′, ℓ′, 𝑚′ =0    unless 𝑚 = 𝑚′. 

Now consider the linear combination  𝐱± = 𝐱 ± 𝑖 𝐲 .      It is easily demonstrated that 𝐋𝒛, 𝐱± = ±ℏ 𝐱± 

Hence               𝑛, ℓ, 𝑚 𝐋𝐳, 𝐱+ − ℏ𝐱+ 𝑛′, ℓ′, 𝑚′ =ℏ(𝑚 − 𝑚′ − 1) 𝑛, ℓ, 𝑚 𝐱+ 𝑛′, ℓ′, 𝑚′ = 0  unless 𝑚′ = 𝑚 − 1

Similarly,          𝑛, ℓ, 𝑚 𝐋𝐳, 𝐱− + ℏ𝐱− 𝑛′, ℓ′, 𝑚′ =ℏ(𝑚 − 𝑚′ + 1) 𝑛, ℓ, 𝑚 𝐱− 𝑛′, ℓ′, 𝑚′ = 0  unless 𝑚′ = 𝑚 + 1

Now, the electric dipole elements 𝑛, ℓ, 𝑚 𝐱 𝑛′, ℓ′, 𝑚′  and 𝑛, ℓ, 𝑚 𝐲 𝑛′, ℓ′, 𝑚′  are both zero if   𝑛, ℓ, 𝑚 𝐱+ 𝑛′, ℓ′, 𝑚′  and 𝑛, ℓ, 𝑚 𝐱− 𝑛′, ℓ′, 𝑚′  are both zero. 

It follows that the dipole matrix element is not vanishing for  𝑚′ = 𝑚, 𝑚 ± 1. 

 

4) Using operator identity 𝐋2, 𝐋2, 𝐫 =2ℏ2(𝐫𝐋𝟐 + 𝐋𝟐𝐫)   we have:

𝑛, ℓ, 𝑚 𝐋2, 𝐋2, 𝐫 𝑛′, ℓ′, 𝑚′ =ℏ2 ℓ′ ℓ′ + 1 − ℓ(ℓ + 1) 2 𝑛, ℓ, 𝑚 𝐫 𝑛′, ℓ′, 𝑚′ = 2ℏ2 ℓ′ ℓ′ + 1 + ℓ(ℓ + 1) 𝑛, ℓ, 𝑚 𝐫 𝑛′, ℓ′, 𝑚′  

i.e. ℓ + ℓ′ ℓ + ℓ′ + 2 ℓ − ℓ′ 2 − 1 𝑛, ℓ, 𝑚 𝐫 𝑛′, ℓ′, 𝑚′ =0.     Since ℓ, ℓ′ ≥ 0, dipole matrix elements are not vanishing only if ℓ′ = ℓ ± 1  (note:ℓ =

0 to ℓ′ = 0  is forbidden because of the parity condition. 

The dipole elements between two states are non vanishing for ∆𝑚 = 0, ±1. 

To produce an electric dipole transition, we must have Δℓ = ±1 .



There are also selection rules for many electrons atoms, that involve the total quantities L, S and J. One general result is that the transition from 

J=0 to J=0 is forbidden: the photon carries off one unit of angular momentum. In LS coupling, we find:

1.  ΔJ = 0, ±1 with  J=0→ J=0 forbidden. 

2. ΔMJ = 0, ±1 

3. Parity must change.

Additional set of rules,  not rigorously satisfied by complex atoms (“propensity rules”):

4.   Δ𝑆 = 0 (but relativistic effects can mix spin states, especially for high Z ions. 

5. ∆n arbitrary, ∆l= ±1 Only one electron jumps: the configuration of the two states must differ

by only the movement of a single electron.

6. ∆L=0, ±1, with L= 0 → 0 forbidden (Note: no direct relation between L and the parity!) 

In many-electrons systems, there can be transitions that violate rule 4 and change the total spin (semi-forbidden transitions): they are called

intercombination lines (e.g. CIII]). Semi-forbidden transitions, resulting in intercombination lines, are electric dipole transitions for which the

selection rule of spin conservation is violated as a result of the failure of LS coupling . 

Transitions which violate the propensity rule 5 and/or 6 are strictly forbidden and are labelled by two square brackets (e.g. [CIII]).



• Examples

• The quadrupole term can be ≠ 0 when the dipole is 0 (semi –forbidden transition, second term of expansion of potential vector A). Similar 

expression to the case of the dipole can be derived. But now we have to consider terms such as  𝜙𝑓
∗ 𝑒𝐫2𝜙𝑖  𝑑3𝐫 . These transitions are termed 

(semi–) forbidden, but their probabilities (𝐴𝑢ℓ), although much smaller than in the dipole case, may be relevant.  

Selection rules: Δn arbitrary, Δl = 0, ±2 ;  ΔJ = 0, ±1, ±2;   ΔL = 0, ±1, ±2 ;  ΔS = 0;   ΔMJ = 0, ±1, ±2 . 

• The magnetic dipole refers to hyperfine structure transitions, where energy levels differ by very small quantities. 

Selection rules: Δ n=Δl = Δ L = 0;   Δ J = 0, ±1;  Δ MJ = 0, ± 1 ; Δ S=0 , ±1. 

      Typically, a rough estimate gives     
𝐴𝑢ℓ 𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑜𝑙𝑒

𝐴𝑢ℓ,𝑑𝑖𝑝𝑜𝑙𝑒
~10−5      and   

𝐴𝑢ℓ 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝐴𝑢ℓ,𝑑𝑖𝑝𝑜𝑙𝑒
~10−8   



Grotrian diagram for Hydrogen atom



NGC 6445, also known as the Little Gem
Nebula or Box Nebula, is a planetary nebula
in the constellation Sagittarius.



Width of spectral lines

The set of emitted photons during radiative transitions IS NOT

monochromatic. The energy difference between the two levels is not

infinitely sharp, and it is described by the line profile function 𝜑(𝜈):

0

∞
𝜑 𝜈 𝑑𝜈 = 1 .

The line profile, peaked around 𝜈𝑢ℓ , represents how effectively photons

with frequencies around 𝜈𝑢ℓ can cause transitions: ҧJ= 0

∞
J𝜈𝜑 𝜈 𝑑𝜈

Real spectral lines are broadened because:

– Energy levels are not infinitely sharp.

– Atoms are moving relative to observer.

• Three mechanisms determine the line profile 𝜑(𝜈):

– Quantum mechanical uncertainty in the energy of levels with finite
lifetimes. This determines the natural width of a line (generally very
small).

– Collisional broadening. Collisions reduce the effective lifetime of a
state, leading to broader lines. High pressure gives more collisions (eg
stars).

– Doppler or thermal broadening, due to the thermal (or large-scale
turbulent) motion of individual atoms in the gas relative to the observer.



Natural broadening

Absorption of radiation always produces an excited state with a finite lifetime: Δ𝑡 ≅ 1/𝐴𝑢ℓ

The uncertainty principle relates the lifetime of a state to the energy width: the spread in energy, Δ휀, and the duration Δ𝑡  in the state must satisfy 

Δ휀Δ𝑡~ℏ.  

Define the rate of disappearence (depopulation) of an excited state 𝑛 (with energy ℰ𝑛 )    as
𝜕[ℰ𝑛]

𝜕𝑡
= −

[ℰ𝑛]

𝜏𝑛
   →  ℰ𝑛(𝑡)= ℰ0 𝑒−𝑡/𝜏𝑛    where 𝜏𝑛 is the lifetime 

of the state 𝑛.  The lifetime 𝜏𝑛 determines the width of the line, or the spectrum (intensity of emitted/absorbed  radiation vs. frequency), i.e. the  range of 

possible frequencies at which the photon will be emitted. 

Assume that  the decay from a state 𝑛 to other states proceed at a rate 𝛾𝑛 = σ𝑚<𝑛 𝐴𝑛𝑚  , so that 𝜏𝑛 = 1/𝛾𝑛.   (If radiation is present, we add also the 

induced processes).  The conjugate energy width can be obtained from the Fourier transform of the life time function : መ𝑓 𝜔 ≡ 0

∞
𝑒−𝑡/𝜏𝑛 𝑒−𝑖𝜔𝑡𝑑𝑡 

This Fourier transform is easily solved: መ𝑓 𝜔 =
1

1

𝜏𝑛
−𝑖𝜔

=
1/𝜏𝑛

1/𝜏𝑛
2+𝜔2 +

𝑖𝜔

1/𝜏𝑛
2+𝜔2      which is a complex function , whose  real part is a Lorentzian. 

It can be shown that the line shape that will be observed for transitions that have no inhomogeneous broadening is 𝜑 𝜈 =
𝛾/4𝜋2

𝜈−𝜈𝑢ℓ
2+(𝛾/4𝜋)2  .

If both the upper and lower states are broadened, sum the 𝛾 values for the two states.



Natural linewidth isn’t often directly observed, except in the line wings in low-pressure (nebular) environments.

Other broadening mechanisms usually dominate.

Collisional broadening

Collisions randomize the phase of the emitted radiation. If frequent enough, they (effectively) shorten the lifetime further. If the frequency of

collisions is 𝜈𝑐𝑜𝑙, then the profile is still a Lorentzian, Γ = 𝛾 + 2𝜈𝑐𝑜𝑙 ,

 𝜑 𝜈 =
Γ/4𝜋2

𝜈−𝜈𝑢ℓ
2+(Γ/4𝜋)2  .

Collisions dominate in high density environments, hence get broader lines in dwarfs than giants of the same spectral type.



Doppler (thermal) broadening

Atoms are in (thermal) motion wrt the observer, and the rest (atom) frame frequencies  can be either red- or blue- shifted. If v𝑟 is the radial velocity, 

Δ𝜈 = 𝜈𝑜𝑏𝑠 − 𝜈𝑒𝑚 = 𝜈𝑒𝑚
v𝑟

𝑐
 → v𝑟 = 𝑐

𝜈𝑜𝑏𝑠−𝜈𝑒𝑚

𝜈𝑒𝑚

Maxwell's Law of velocity distribution gives number of atoms with a given velocity. For one component of velocity (we only care about the motions

along the line of sight), 

𝑑𝑁 v𝑟 ∝ 𝑒𝑥𝑝 −
𝑚v𝑟

2

2𝑘𝑇
𝑑v𝑥 

Combine Doppler shift with the v𝑟 distribution:

𝜑 𝜈 =  
𝑒− 𝜈𝑜𝑏𝑠−𝜈𝑒𝑚

2
/∆𝜈𝐷

2

Δ𝜈𝐷 𝜋
    , where the Doppler width is Δ𝜈𝐷=

𝜈𝑒𝑚

𝑐

2𝑘𝑇

𝑚

This is a Gaussian, which falls off very rapidly away from the line center.

Example, for Hydrogen atom, Δ𝜈𝐷
𝑐

𝜈𝑒𝑚
=

2𝑘𝑇

𝑚
= 13

𝑇

104𝐾

1/2
 𝑘𝑚/𝑠

The centroid (“natural frequency ”) remains unchanged; only in the case that 

the whole cloud is moving, then also the centroid is (Doppler) shifted.

Valid also in case of turbulence, once modified the Doppler width by introducing ξ , 

the rms of turbulent velocities (with Gaussian distribution): Δ𝜈𝐷=
𝜈𝑒𝑚

𝑐

2𝑘𝑇

𝑚
+ ξ. 

This situation occurs, e.g., in observations of star forming regions or in

convective stellar photospheres.

Lorentzian and Gaussian lines with the same integrated
area. The gaussian shape has a higher maximum intensity,
but the Lorentzian line shape has much more absorption
(or emission) in the far line wings.



Voigt profile

All broadening mechanisms coexist, with Doppler and Lorentz broadenings being dominant. The combination of thermal broadening with the 

natural or collisionally broadened line profile is called the Voigt profile. This is the convolution of the Lorentz profile with a Doppler (Gaussian) 

profile. No simple analytic form. Lorentz profile falls off slower than Doppler profile, so core remains roughly Gaussian, while the wings look like 

a Lorentz profile.

If thermal/microturbulent Doppler
broadening is small with respect to
natural broadening, the profile is similar
to a Lorentzian.

If thermal/microturbulent Doppler
broadening is large with respect to
natural broadening, the Gaussian profile
dominates near the line center, but wings
of the Lorentzian profile can reappear far
from the line center.



Bound-free transitions  (photoionization)

Bound-bound transitions occur only for photons with exactly the right amount of energy, but bound-free transitions can absorb ANY photon with 

more than a critical amount of energy . Therefore, the opacity of a material will increase at wavelengths shorter than one of these critical edges. 

Bound-free transitions occur between atomic state and an unbound state, due to absorption in a continuous range of photon frequencies. 

Free electron can have a range of kinetic energies => bound-free transitions produce continuous opacity (not just at lines).

A minimum photon energy is needed to ionize an atom from a given level, e.g 𝜆 ≤ 91.2 nm to ionize hydrogen from the 𝑛 = 1 level.

For a hydrogen-like atom in a level with principal quantum number n, with ionization potential  𝜒𝑛, the bound-free absorption cross-section  is:

𝜎𝑏𝑓 = 0 for 𝜈 <
𝜒𝑛

ℎ
    and     𝜎𝑏𝑓 ∝

𝑔(𝜈,𝑛,𝑍)

𝑛5𝜈3     otherwise. 

Here g is the bound-free Gaunt factor, a slowly varying correction factor to the simple scaling, and Z is the atomic number. 

Absorption cross-section has sharp rises, absorption edges, at the frequency where the atom in a given level can be ionized.

Schematic illustration of the frequency dependence of the absorption 
coefficient. The sharp rises, absorption edges, occur at the frequency of 
ionization of each level. 



Radiative transfer revisited

Integrating  𝐼𝜈 𝜏 = 𝐼𝜈
0 𝑒−𝜏𝜈+𝑆𝜈 1 − 𝑒−𝜏𝜈  we have the well known cases:

1) 𝐼𝜈 𝜏 = 𝐼𝜈
0 +𝜏𝜈(𝑆𝜈 − 𝐼𝜈

0)          if    𝜏ν ≪ 1

2) 𝐼𝜈 𝜏 = 𝑆𝜈                                      if    𝜏ν ≫ 1

We know that in LTE   α ν   = 
hν0

4π
𝜙(ν) n1 B12 1 − exp −

ℎ𝜈

𝑘𝑇𝑒𝑥
   , 𝑆𝜈=  𝐵𝜈(𝑇𝑒𝑥)

For a given frequency (transition), we can then express the intensity of the incoming radiation field in terms of its brightness temperature 𝑇𝑏 and the 

population distribution of levels in atoms in terms of 𝑇𝑒𝑥  . Intensities are reopresented with temeprature scales:

Δ𝑇 =
ℎ𝜈

𝑘

1

exp
ℎ𝜈

𝑘𝑇𝑒𝑥
−1

−
1

exp
ℎ𝜈

𝑘𝑇𝑏
−1

(1 − exp(−𝜏𝜈)     and, if ℎ𝜈/𝑘𝑇 ≪ 1  the equation can be simplified further:

Δ𝑇=(𝑇𝑒𝑥 − 𝑇𝑏)(1 − exp(−𝜏𝜈))

For line transitions (Lyα, Lyβ,Hα,Hβ, CO, HI,…) the cloud is fully transparent (𝜏 = 0) for 𝜈 ≠ 𝜈0 , giving 𝐼𝜈 𝜏 = 𝐼𝜈
0 , while at the frequency of  the line 

(𝜈 = 𝜈0 )  we have 𝐼 𝜈0 . 

The line is in emission if 𝐼 𝜈0 > 𝐼0(𝜈0)                 or  𝑇𝑒𝑥  > 𝑇𝑏

The line is in absorption if 𝐼 𝜈0 <  𝐼0 𝜈0  or         𝑇𝑒𝑥 < 𝑇𝑏

always ≥ 0 and < 1
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