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Because the absorption and emission processes have not been specified, αν and jν seem to be independent. However, they are not independent in full

thermodynamic equilibrium (TE). In TE, matter and radiation are in equilibrium at the same temperature T.

Consider a container bounded by opaque walls (no transmission out of the container, but not totally reflective). Keep the enclosure at temperature T

until equilibrium is achieved. Since photons are massless, they can be created and destroyed in arbitrary number by the walls of the container. The

non conservation photon number will adjust their number to an equilibrium value, dependent on the temperature T. The radiation inside the cavity

gets to equilibrium. Piercing the cavity with a small hole, we can measure the radiation inside without disturbing the equilibrium. The intensity and

spectrum of the radiation emerging from the hole is independent of the wall shape, material (e.g., painted wood, shiny copper, gray concrete, etc.) and

any absorbing material (e.g., gas, dust, fog, etc.) that may be inside the cavity, as proven by the Kirchhoff’s thought experiment.

It invokes two cavities in thermodynamic equilibrium connected through a filter that passes radiation in the narrow frequency range ν to ν+dν. The

cavities may be made of different materials and shapes and contain different emitting/absorbing particles. In equilibrium at any temperature,

radiation can transfer no net power from one cavity to the other, to not violate the 2𝑡ℎ law of thermodynamics. Therefore I’ν = Iν universal function of 

T and ν ≡ 𝐵𝜈(T).   A corollary is that it is also isotropic.  𝐵ν(T) is called the Planck function. 

Blackbody radiation

Furthermore, from the radiative transfer equation, 
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Kirchhoff’s law for a system in TE



Thermal radiation

Remarkable because it connects the properties jν and αν of any kind of matter to the single universal spectrum Bν(T) of equilibrium radiation. It was

derived for a system in TE. However:

• B ν(T) is independent of the properties of the radiating/absorbing material. Describes the spectrum of photon’s equilibrium at temperature T.

• jν and αν  depends only on the materials in the cavity and on T: they do not depend on the ambient radiation field or its spectrum.

→ Kirchhoff’s law also applies whenever the radiating/absorbing material is in thermal equilibrium, in any radiation field. If the emitting/absorbing

material is in thermal equilibrium at a well-defined temperature T, it is said to be in local thermodynamic equilibrium (LTE) even if it is not in

equilibrium with the radiation field.

Blackbody radiation is itself in thermal equilibrium: its spectrum is given by Iν (T) = Bν(T) (Planck function).

Thermal radiation is radiation emitted by matter in thermal equilibrium with itself : in this case, then, the source function equals the Planck function,

Sν(T)=Bν(T)

Thermal radiation (=by a medium of matter particles in thermal equilibrium) becomes blackbody radiation (=has a Planck spectrum) only for optically

thick media, for which the radiation specific intensity Iν , according to the transfer equation,  propagates in that medium approaching the source 

function of the medium. 



Why thermal radiation becomes blackbody radiation only for large optical depths? 

From the transfer equation, 

𝑑 𝐼 ν
𝑑𝑠

=  𝑗𝜈 −αν
𝑎𝑏𝑠  𝐼ν =  αν

𝑎𝑏𝑠 𝑆ν  −αν
𝑎𝑏𝑠 𝐼ν = dE/ dA ds dΩ dt dν       ,     whose formal solution for constant source function is:

Iν(τν)= Iν(0) 𝑒−τν + Sν(1-𝑒−τν ) = S ν+  𝑒−τν (Iν(0)  - Sν )     ;      and,  for matter in LTE  at temperature T,   S ν  =𝐵𝜈(T). 

Iν(τν)= Iν(0) 𝑒−τν + 𝐵𝜈(T)(1-𝑒−τν )      ,   which approaches 𝐵𝜈(T) for large optical depth. 

Iν(0) is the unabsorbed spectrum, dominating in optically thin medium, or for small optical depths. 

It  may  be any incident, external radiation field; or, it may be light emitted by the LTE matter itself, before being absorbed and re-emitted by other 

particles (self-absorption), like in the figure below: this  radiation is not coming from outside, but inner to the LTE particle cloud. 

Iν(0) emitted  by the LTE  matter elementary volume, can have different shapes,  depending on the mechanism  creating LTE (e.g.  dipole oscillations of 

charges inside atoms and molecules, as for any body at non-zero temperature,  or by Coulombian interactions between free charges, as in free-free 

emisssion).  Remember that the brighness due to spontaneous emission is Iν = 𝑗𝜈 ds, in absence of absorption (or before being absorbed).

Thermal radiation

ds

Iν (0)
𝑑𝐸

𝑑𝐴 𝑑𝑡 𝑑𝜈 𝑑Ω
 = Iν   it’s a flux

 
𝑑𝐸

𝑑𝐴 𝑑𝑠 𝑑𝑡 𝑑𝜈 𝑑Ω
 = 𝑗𝜈    it’s an energy density

dA dΩNo radiation here



To derive the spectrum, assume that:

• Photons are bosons, i.e. more than one photon per phase cell is allowed;

• Photons are in thermodynamical equilibrium  at all frequencies (as in a blackbody enclosure): μ=0;

And then:

Step 1: Compute the average  energy per photon state;

Step 2: Compute the number density of space-cells (photon states) as a function of frequency.

Step1:  What is the average energy of the state having frequency ν ?  Each state may contain n photons of energy hν, where  n=0,1,2….. Thus, the 

energy may be En= n hν.   According to statistical mechanics, the probability of  a state of energy En is proportional to e−β𝐸𝑛   , with β=1/kT.  The 

average energy is 

ത𝐸 =
σ𝑛=0

∞ 𝐸𝑛𝑒−β𝐸𝑛

σ𝑛=0
∞ 𝑒−β𝐸𝑛

 =  
ℎν

exp
ℎν

𝑘𝑇
−1

     

Since ℎ𝜈 is the energy of one photon of frequency 𝜈, the «occupation number» (average number of photons of frequency hν) is 

nν = exp
ℎν

𝑘𝑇
− 1

−1
      (Bose-Einstein statistics with a limiteless number of particles, chemical potential = 0).

Blackbody spectrum



Step 2: Compute the number density  of photon states  for a given frequency. Consider a photon of frequency ν propagating in direction ෡𝒅 inside a box. 

The photon is represented as a standing wave in the box. The wave vector of the photon is k= 
2π

λ
 ෡𝒅 =  

2πν

𝑐
 ෡𝒅 . 

The number of «states» (distinguishable photons at the same frequency ) = number of  photons with same |k|.

For stationary waves, the number of nodes is the integral numer of wavelenghts in  a given direction, e.g.     nx= 
Lx

λ
  = 

𝑘𝑥Lx

2
    .                           

 In a wavenumber interval, nx=
Lx 𝑘𝑥 

2
 

For large number of states, we can go to the continuum limit, 

N=nxnynz =
𝑉𝑑3𝑘

(2π)3          𝑑3𝑘 =  𝑘2𝑑𝑘 𝑑Ω = 
(2)3

𝑐3 ν2dν dΩ

Then, the density of states (number of states per solid angle, volume and frequency) is :

𝑠= 
𝑁

𝑑ν𝑑Ω
= 2

ν2

𝑐3      where the factor 2 is from spin (2 polarization states). 

The average energy density per solid angle, volume, frequency is therefore

ത𝐸 𝑠=uν (Ω) dV d ν dΩ = 
2ℎ ν3

𝑐3
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Blackbody spectrum



For an isotropic radiator, uν (Ω) = I ν / c  = B ν / c .    In CGS units,  B ν is in erg cm-2 s-1 sr -1 Hz-1   

The intensity spectrum is then the Planck function:

Blackbody spectrum

B ν(T) = 
2ℎ ν3

𝑐2

1

 exp
ℎν

𝑘𝑇
−1

M. Planck and A. Einstein

B λ(T) = 
2ℎ 𝑐2

λ5

1

 exp
ℎ𝑐

λ𝑘𝑇
−1

I ν(
T

) 
[e

rg
 s

-1
 c

m
-2

 H
z-1

 s
r 

-1
]

ν [Hz] 
In CGS,  B λ has units erg s-1 cm-3 sr -1



• Rayleigh-Jeans Law: 

In the case   hν<< kT,   expanding the exponential, 

𝐵ν
𝑅𝐽

(𝑇)=
2ν2

𝑐2  kT         

Notice that: it doesn’t contain the Planck constant, it was originally derived assuming ത𝐸=kT (classical equipartition value for an electromagnetic 

wave). It corresponds to the straight line in the log-log plot. Applied to all frequencies, it would lead to the ultraviolet catastrophe.  

• Wien Law: 

In the limit   hν>>kT,   we must account for the discrete nature of photons. 

𝐵ν
𝑊(𝑇)=

2ℎ𝜈3

𝑐2  exp −
ℎ𝜈

𝑘𝑇
 

• Monotonicity with temperature

Of two blackbody curves, the one with higher temperature lies entirely above the other. The partial derivative
𝜕𝐵𝜈(𝑇)

𝜕𝑇
 is indeed always positive. At any 

frequency, an increase of the temperature increases the brightness. 

Also, 𝐵𝜈 → 0 as T → 0 and 𝐵𝜈 → ∞ as T → ∞ 

Properties of the Planck’s law



• Wien Displacement Law

The peak frequency of Bν(T) occurs at  hνmax= 2.82 kT , linear in T!    (it is sufficient solve  
𝜕𝐵𝜈(𝑇)

𝜕𝑇
 | νmax  =0 ),   or    

νmax

𝑇
 = 5.88× 1010 Hz deg−1     .    

Similarly, the derivative w.r.t. λ gives  the peak of Bλ(T)  at  λmaxT = 0.290 cm deg. 

Note that λmax ≠ c/ ν max ! «spectral paradox»  

Problem 2.  Explain why the peak of frequency in the Planck spectrum does not correspond to the inverse of the peak wavelength multiplied by c. 

Hint: Bλ(T) is the amount of energy (erg) put out each second (s) in a wavelength range (Angstrom) which is radiated by a surface area (cm2) 

into a solid angle of space (steradian).

 Total brightness of a black body 

B(T)= 0׬

∞
𝐵ν 𝑇 𝑑ν =  σ

𝑇4

π
 where σ = 

2π5𝑘4

15𝑐2ℎ3     = 5.67× 10−5 erg cm-2deg-4 s-1

The emergent flux from an isotropically emitting surface (such a blackbody) is π × brightness, so 

F= ׬ 𝐹𝜈dν  = 𝜋 ׬ 𝐵𝜈  d 𝜈 = 𝜋 B (T)                       F= σ 𝑇4 Stefan-Boltzmann law

Properties of the Planck’s law

Remember that the flux at a surface
 of uniform brightness is πB!



Example. The CMB

The Cosmic Microwave Background (CMB) is a fossil radiation out of the Big Bang. At the beginning the Universe was optically thick. As the 

expansion advanced, there was a transition to optically thin. The CMB is the footprint of that transition time (recombination epoch). 

In the Big Bang cosmological model,

the primordial universe was filled with an opaque

fog of dense, hot plasma of sub-atomic particles. As

the universe expanded, this plasma cooled to the

point where protons and electrons combined to

form neutral atoms of mostly hydrogen. Unlike the

plasma, these atoms could not scatter thermal

radiation by Thomson scattering, and the universe

became transparent.

The energy density of the CMB is 0.260 eV/cm3

(4.17×10−14 J/m3) which yields about 411

photons/cm3.

The microwave sky: the CMB observed by the ESA Planck satellite



Example. The CMB

Its spectrum is a perfect blackbody with a temperature of 2.725 K, so the frequency peak is in the microwave, around 160 GHz,

corresponding to a wavelength of 1.9 mm  and to a  photon energy of about 6.626×10−4 eV.

Problem 3. If the background blackbody radiation scales with cosmological redshift as T(z)=T0(1+z), and if the recombination

occurred at a redshift z ~ 1100, determine the temperature of the CMB at the recombination epoch and its peak frequency at that

time. In which band of the electromagnetic spectrum was the CMB emission peak?



Example. The color of the stars

(Spectra of different stars. Absorption lines alter the overall 
aspect of the spectra)

With a surface temperature of T = 5778 K the Solar frequency  spectrum 

reaches a maximum at  νmax = 3.6 × 1014 Hz = 360 THz,  which translates to a 

wavelength of 831 nm. 

 In terms of wavelength, peak solar radiation occurs at about 500 nm, in the 

range of human vision. 

Problem 4. What is the temperature at the solar surface? Use both the  intensity of 

radiation on Earth  (from Problem 1) and that the spectrum peaks about 500 nm 

to get answers.



In a real medium, the light of an incoming beam with intensity Iν at a given frequency can be absorbed, but also partially reflected or transmitted. 

.                                               

                                                                     

                                                                               

Thermal radiation from real bodies  

For energy conservation, Power in = Power out   → Incident  Pν = a Pν + r Pν + t Pν          →  

   a + r + t = 1 ,  having defined  r, a, t,  the fraction of  incident power that went into these different channels:

reflectivity r ,  transmissivity t ,  absorptivity  a   (quantities integrated over the solid angle).

Let us define the   normalized emissivity e =
1

4𝜋
׬

𝑗ν

𝑗ν
𝐵𝐵  dΩ : 

 e =  a = 1- r - t      (Kirchoff’s law for real bodies)

For a  blackbody,  r=t=0, so a=e=1.  The blackbody is the more efficient radiator system.



Example. Temperature differences across the GBT reflector caused by differential solar heating can deform the surface and degrade its performance. A 

special paint that is white at visible wavelengths, black in the mid-infrared, and transparent at radio wavelengths keeps the surface cool and does not 

harm performance at radio wavelengths by absorbing incoming radio waves or emitting radio noise. 

Thermal radiation from real bodies

The special paint exploits Kirchhoff’s law to perform three

separate functions simultaneously:

• It is opaque (no transmission) and white (no absorption, just

reflection) in the visible portion of the spectrum to reflect

sunlight (T≈5800 K).

• It is black in the mid-infrared so that the GBT (T≈300 K) can

cool itself efficiently by reradiation (absorption and emission).

• It is transparent at radio wavelengths so that it neither absorbs

incoming radio waves nor emits (and no absorption!) thermal

noise in the radio.

https://www.cv.nrao.edu/~sransom/web/Ch2.html#E47



What makes blackbody so different? 

Remember the dfinition of asorption coefficient, for spherical absorbers of radius 𝑎 ∶ 

𝛼𝜈
𝑎𝑏𝑠 = 𝑛 𝜎ν

𝑎𝑏𝑠  ≡ 𝑛 𝑄𝑎𝑏𝑠  𝜋𝑎2      where 𝜋𝑎2 is the geometrical cross section of the sphere. 

So 𝑄𝑎𝑏𝑠  is intepreted as the fraction of geometrical cross section which is actually absorbing photons. 

For the blackbody, this fraction is 𝑄𝑎𝑏𝑠  = 1 , independent on frequencies: the cross section for absorption, in a blackbody, is just its geometrical cross 

section.  In real bodies, 𝑄𝑎𝑏𝑠  is generally dependent on λ, on the shape and composition of the absorbing material. In any case,  𝑄𝑎𝑏𝑠 ≤ 1 . 

We can define a cross section for scattering  𝛼𝜈
𝑠𝑐𝑎𝑡 = 𝑛 𝜎𝑠𝑐𝑎𝑡= 𝑛 𝑄𝑠𝑐𝑎𝑡  𝜋𝑎2 , where 𝑄𝑠𝑐𝑎𝑡  is =0 for a blackbody: it measures the fraction of incident 

light which is scattered. For a single scatterer, 𝑄𝑠𝑐𝑎𝑡  can also be >1 ,  (scattering area larger than the geometrical cross section) because of 

diffraction!    (see figure). 

Modified blackbodies  

In any case,  in LTE,  (thermalized matter at temperature T), 

Kirchhoff’s law guarantees  the validity of the monodirectional

 relation:  

  jν = 𝛼𝜈
𝑎𝑏𝑠 Bν(T) .   

When, in LTE, 𝑄𝑎𝑏𝑠= 𝑄𝑎𝑏𝑠(λ), we end up with a modified blackbody. 

This is  noticeably useful to explain the thermal emission from dust!



Problem 5

Show that, defining the emission efficiency as Qem 
≡

 

𝑗𝜈

𝑗𝜈
𝐵𝐵    and the absorption efficiency as Qabs  ≡

𝛼𝜈

𝑛𝜋𝑎2     (with n = 

number density of absorbers,  and 𝜋𝑎2 = geometric section of the absorber)  in LTE   Qem= Qab . 

(I omitted the index ν  in Qem and Qabs, but they are generally function of ν) . 
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