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Quick brush-up on chemical potential 
Most of us learned at school, that every physical system tends to minimize its energy.
In reality, a many body system tries to decrease its energy and additionally tries to
reach a state with maximum disorder. So, it was introduced the so called “Gibbs free
energy”, a thermodynamic potential used to calculate the maximum amount of work,
other than pressure-volume work, that may be performed by a thermodynamically
closed (no particles from outside) system at constant temperature and pressure:

G(P,T) = U+PV-TS (S=entropy, U=internal energy, V=volume, P= pressure).

Statistical mechanics, quantum and classical, says that such a system always tries to
minimize its free energy, so there is a competition between minimizing energy and
maximizing disorder.

When the system reaches a minimum of G, it is in thermodynamic equilibrium, a
stationary state where all his macroscopic variables don't change in time as long as it
stay isolated.

For a system in thermodynamic equilibrium, the chemical potential 𝜇 states by how
much the free energy will change when we add one additional particle into the system:

                                                    𝜇 ≡
𝜕𝐺

𝜕𝑁𝑖 𝑇,𝑃,𝑁𝑗≠𝑖

 

In a system where the particle number stays constant over time, as in a gas of atoms,
the chemical potential μ will take an arbitrary value depending on the parameters
(temperature, pressure) of the gas.



Quick brush-up on chemical potential 
But for a photon gas, the number of particles is easily changed by absorption and
emission: the system will choose the particle (photon) number in such a way to minimize
free energy: being 𝜇 the derivative of G w.r.t. N , it will be zero at the minimum of G, 
that is, at the  thermal equilibrium of the photon gas ! 

Now, ask yourself:  
why Fermions do have positive chemical potential, while for  
Bosons it is negative?  Is the above figure describing a 
classical or quantum system?

Credits https://www.uni-muenster.de/Physik.AP/Demokritov/en/Forschen/Forschungsschwerpunkte/mBECwatfratcp.html



Thermodynamic equilibrium
Two physical systems are in thermodynamic equilibrium if there is no net macroscopic
flows of matter nor of energy between them when they are connected by a path
permeable to heat. In a system in its own state of thermodynamical equilibrium, no
change occurs in its macroscopic properties (U,S,T,etc). Systems in mutual
thermodynamic equilibrium are simultaneously in mutual thermal, mechanical,
chemical, and radiative equilibria.

Thermal equilibrium: no net flow of thermal energy. (the energy contained in a system
that is responsible for its temperature). A part of a system is in thermal equilibrium
with itself if the temperature within it is spatially uniform and temporally constant:
we say it is in LTE.

Radiative equilibrium: the total thermal radiation leaving an object is equal to that
entering it (a thermal eq. may also be non radiative, e.g. conduction or convection can
bring to thermal eq. without involving radiation).

Mechanical equilibrium: no net force on a body.

Chemical equilibrium: concentration of products and reactants do not change in time.



Thermodynamic equilibrium
At thermodynamic equilibrium:

• Entropy S is maximum for an isolated system (U and V are constant);

• U is minimum for a system with constant S,V. 

• Helmotz free energy F=U-TS  is minimum for a closed system with constant T,V ; 

• Gibbs free energy G=F+PV is minimum for a closed system with constant T,P; 

Closed system: can exchange energy, but not matter with the environment. 

Isolated system: cannot exchange energy nor matter.  



From the thermodynamical point of view, matter and radiation, even when they share the same space region, form two distinct systems in mutual interaction. Each of 

them can be, separately, in equilibrium or out of equilibrium. 

Generally, the characteristic timescales to reach the equilibrium are shorter for the matter component.  Even in presence of strong density and temperature gradients, 

particles mantain a local distribution very close to the Maxwell-Boltzmann, and their atoms are excited to equilibrium levels. In these cases, the system is said to be in 

Local Thermodynamic Equilibrium (LTE).  LTE is thus indicating matter in thermodynamic equilibrium (NOT necessarily with radiation). 

We will now discuss equilibrium (and non equilibrium) of radiation and matter separately.  Then we will study their mutual interactions. 

We already saw that, in mutual thermodynamic equilibrium of matter and radiation in an isolated system (as the Blackbody cavity of the Kirchhoff’s experiment), the

matter source function is
𝑗𝜈

𝛼𝜈
= 𝐵𝜈 𝑇 and that the radiation brightness is 𝐼𝜈 =  𝐵𝜈(𝑇).

However, in real situations, we are far from a perfect thermalization between the two systems, as no real body is a perfect absorber/emitter. Furthermore, we usually

have to deal with open systems, where energy (mostly in the form of radiation) or even matter, can be exchanged with the environment, preventing the thermodynamic

equilibrium between matter and radiation. We can, in such cases, reach a bolometric radiative equilibrium: when the radiation is illuminating a given body in LTE, we

will see how the emitted thermal has a spectrum which can be much different from the Blackbody one.

Introduction



Wien equilibrium

We have seen that, when radiation is thermodynamic equilibrium with matter (also in equilibrium at temperature T), the photon’s distribution is 

isotropic, with average occupation number given by:

𝑛𝜈
𝑃 = exp

ℎν

𝑘𝑇
− 1

−1
      (Bose-Einstein statistics with a limiteless number of particles, chemical potential = 0).    (*)

The corresponding spectral law, accounting for the number of states of frequency 𝜈, is the Planck distribution:
𝑑𝑛𝑃

𝑑𝜈
 =

8𝜋

𝑐3

𝜈2

exp
ℎν

𝑘𝑇
−1

   

This differs from that of Fermions in equilibrium nν = exp
𝐸−μ

𝑘𝑇
+ 1

−1
  for the + sign and for the absence of the chemical potential;  μ=0 is a 

consequence of the non conservation of the photon number. As the photons approach the equilibrium, those in excess are rapidly absorbed. Viceversa, if 

there’s a lack of photons w.r.t. the distribution predicted by the quantum laws, more photons are created. The equilibrium is reached when μ=0 and the 

photons are distributed among the frequency spectrum according to the Planck distribution.   

The rapidity with which radiation comes to equilibrium is only partially dependent on the efficiency of energy exchange between photons and matter. 

Indeed, thanks to the fact that photons can easily be created or destroyed, an important role is that of absorption and emission: whithout them, it would 

be impossible to satisfy, e.g., equation (*), which relates the photon number to the  temperature. Indeed,  scattering processes  (elastic, like Thomson by 

electrons, Rayleygh or Mie, or anelastic, like Compton and Raman scattering) do NOT change the photon number.

In particolar conditions of temperature and density, very common in rarefied, hot astrophysical plasmas, it may happen that the the photon’s formation 

and destruction mechanisms are  unimportant, or that they happen on timescales much longer than the diffusion timescale.

Statistical vs. thermodynamic equilibrium of photons



In those cases, it is still possible that, thanks to the Compton interactions, the energy exchange are sufficiently effective to keep the radiation component 

in a statistical equilibrium  (𝜇 ≠ 0) with matter; but they are not able to bring photons to a complete thermodynamical equilibrium (μ = 0 ). This 

peculiar situation occurs because diffusion alone keeps the photon number unchanged.   Unable to adjust themselves to the Planckian distribution, 

photons will tend to an isotropic distribution with average occupation number given by the usual Bose-Einstein distribution for Bosons:

nν (𝜇)= exp
ℎν−μ

𝑘𝑇
− 1

−1
     ,      with spectral law

 𝑑𝑛

𝑑𝜈
 =

8𝜋

𝑐3

𝜈2

exp
ℎν−𝜇

𝑘𝑇
−1

 and   energy density 𝑢 𝜇 =
8𝜋ℎ 

𝑐3 0 

∞ 𝜈3𝑑𝜈

 exp
ℎν−𝜇

𝑘𝑇
−1

   .

 For a given temperature, the chemical potential is then solely determined by the occupation number (or, equivalently, by the energy density of the 

photons).  It is always negative, and it increases for increasing photon number.  

From the figure, we see that as 𝜇 ⟶ 0, nν approaches the true value of equilibrium with matter.  

The difference w.r.t. the Planck distribution is enhanced in the energy range corresponding to 

low-energy photons, which, as bosons,  tend to condensate on their quantum states.   When the 

photon density is much lower than that predicted by the  Planck  law for that temperature, the 

chemical potential is   𝜇 ≪ 0 and the  radiation  is  said to be in Wien equilibrium.   In this case,  

the energy distribution becomes  similar to the Maxwellian  distribution of  relativistic particles:      

𝑛 = 16𝜋
𝑘𝑇

ℎ𝑐

3
𝑒

𝜇

𝑘𝑇
 ;  

𝑑𝑛

𝑑𝑥
=

𝑛

2
𝑥2𝑒−𝑥 (𝑥 ≡

ℎ𝜈

𝑘𝑇
 )  



Unavoidability of emission/absorption: a Gedankenexperiment.

It is important to specify the role of the chemical potential in a photon gas.  A general property of the thermodynamical systems is that the particle 

density determines the value of μ . There is no upper limit to the number of  photons that can simultaneously occupy the same quantic state.  And, mostly 

important are the creation/destruction processes, unavoidable in all the radiative processes. They  help radiation to reach complete thermodynamical 

equilibrium, thanks to the energy exchange, but also opportunely modifying the total number of photons.  The gradual evolution of the distribution 

function ceases when the codition 𝜇 = 0 is reached. 

To better clarify this important property, suppose to realize an empty cavity, with walls kept a temperature T. Suppose it is possible to cover the walls of 

the cavity with an (ideal) completely reflective material, which cannot emit or absorb photons, but only exchange energy.  Put inside the cavity a number 

𝑛 of photons , with 𝑛 ≪ 𝑛𝑃(𝑇), and initially distributed on the energy levels in arbitrary way. 

Thanks to the interactions with the walls, the radiation evolves to the statistical equilibrium (constant temperature), while the number of photons is 

unchanged.  Now, suppose to gradually increase 𝑛 by entering new photons through a small pierce in the wall. The chemical potential, initially very 

negative, increase up to 0 when 𝑛 =  𝑛𝑃 𝑇  and the distribuition becomes that of the thermodynamical equilibrium. What happens if we try to increase 

𝑛 now? The chemical potential cannot become positive (nν (𝜇) and u(μ)) would be infinite for hν=μ >0. ). Thus, every attempt to introduce new photons 

into the cavity must fail.  We have to conclude that, in the matter-radiation interaction, adequate processes forbid 𝑛 to overcome the equilibrium value 

𝑛𝑃. In other words, the hypothesis of the existence of pure diffusion is inconsistent with the statistical laws of bosons. 

Of course, the time needed for  μ reaching the value 0, may become very long, for example decreasing the number of absorbers/emitters. But the 

conclusion is that absorption/emission by matter are necessary for the radiation to reach thermodynamical equilibrium (i.e. a Planck distribution). 



Radiation temperature definitions

Blackbody radiation is in thermodynamic equilibrium, with a definite value of T. In a general radiation field with arbirary spectrum, the non-equilibrium 

prevents us to define a unique temperature value. 

• One way to characterize brightness (specific intensity) at a certain frequency is to give the temperature of the blackbody  having the  same temperature 

at that frequency. That is, for any 𝐼𝜈, we define the brightness temperature 𝑇𝑏(𝜈) by the  relation 𝐼𝜈 = 𝐵𝜈(𝑇𝑏).  In general, every frequency will 

correspond to a different brightness temperature (fig, 1). 𝑇𝑏 is mostly used in radioastronomy, because at radio frequencies it is directly related to the 

flux thanks to the Rayleigh-Jeans approximation for low frequencies:    𝐼𝜈=
2𝜈2

𝑐2   𝑘𝑇𝑏 . So, it is generally calculated by fitting to  a  Planckian only the low 

frequency part of the spectrum (fig. 2).

• The effective temperature is based on the comparison between the total observed flux and that equivalent to a blackbody (fig.3). 

• The colour temperature is defined by doing a best fit between the oserved spectrum and a blackbody distribution (fig.4). 

log 𝐼𝜈

log 𝜈

fit

fig.2 Brightness temperature 

log 𝐼𝜈

log 𝜈

fig.3   Effective temperature 
fig.1 

lo
g

𝐼 𝜈

log 𝜈

Area= 𝜎𝑇𝑒𝑓𝑓
4

log 𝐼𝜈

log 𝜈

fig.4 Colour temperature 

B
es

t 
fi

t



For matter in thermal equilibrium at a certain temperature, the Maxwell-Boltzmann equation defines the statistical  distribution of particle speeds, 

derived by equating particle energies with kinetic energy. This  is a result of the kinetic theory of gases. For an ideal gas of point particles, (no 

internal structure and no interactions between particles) the energy of each molecule consists only of translational kinetic energy, E=
1

2
mv2 . It 

obeys the equipartition theorem, which assigns an average energy of  
1

2
k 𝑇 to each degree of freedom . It doesn’t  count any additional internal 

degree of freedom where energy can be (vibrational or rotational motions of molecules, etc). (*)

Kinetic equilibrium of matter

For a system containing a large number N of non-interacting, non-relativistic classical point particles of mass m

in thermodynamic equilibrium at temperature T, the number of the particles with velocity (in module) between

v and v+dv is

n v dv =
4𝜋𝑁

𝑉

𝑚

2𝜋𝑘𝑇

3/2
v2exp −

𝑚v2

2𝑘𝑇
dv with N/V = number of particles per unit volume.

Its validity is limited by quantum mechanics, as the concept of trajectory lose its meaning because of

uncertainty principle. Maxwell–Boltzmann distribution is valid when the average distance between particles, d,

is large w.r.t. the quantum uncertainty in particle position, Δx ≪d . For lower distances, the particles become

indistinguishable in quantum mechanics. Since Δ𝑝𝑥Δv𝑥 ≥ ℏ/2 …., with some algebra one can show the

Maxwell–Boltzmann distribution holds for low particle concentration and for high particle mass and T:

Otherwise, then the appropriate statistic must be used (Fermi-Dirac or Bose-Einstein).

𝑁

𝑉

ℏ3

 8(𝑚𝑘𝑇)3/2
≪ 1

(*) Also internal degrees of freedom  obey the equipartition theorem. We will see them in Part 2 of these lectures. 



The process of conversion of thermal (kinetic) energy into electromagnetic energy is the thermal radiation. Thermal energy is the kinetic energy of

random movements of atoms and molecules in matter. All matter with a nonzero temperature is composed of particles with kinetic energy. These atoms

and molecules are composed of charged particles, i.e., protons and electrons. The kinetic interactions among matter particles result in charge

acceleration and dipole oscillation. This results in the electrodynamic generation of coupled electric and magnetic fields, resulting in the emission of

photons, radiating energy away from the body.

Matter out of equilibrium. 

Although Kirchoff’s law has several applications, often matter is found out of internal equilibrium. In some cases, a high rarefaction state of the gas, and 

the presence of high temperatures caused by intense dissipative processes, may increase the timescale for the interaction (e.g. collisions) between the 

particles. The kinetic  equilibrium cannot be reached in short times. 

These situations are complicated by the fact that the emission and absorption coefficients are no more related by Krchhoff’s law. 

E.g. Astrophysical plasmas, often composed by several distinct phases, not necessarily in equilbrium. The timescale for Coulombian interaction between 

charges becomes too large to have an equilibrium between these particles. 



The monodirectional  transfer equation can be rewritten, rearranging the terms: 

𝑑 𝐼 ν
𝑑𝑠

=  αν
𝑎𝑏𝑠 𝑆ν + 𝛼𝜈

𝑠𝑐 𝐽𝜈   −αν
𝑎𝑏𝑠 𝐼ν −𝛼𝜈

𝑠𝑐 𝐼𝜈  = dE/ dA ds dΩ dt dν = dE/ dV dΩ dt dν  

𝑑 𝐸

𝑑𝑡𝑑ν𝑑𝑉
 = 

𝑑 𝐼 
ν

𝑑𝑠
 dΩ = (αν

𝑎𝑏𝑠 𝑆ν + 𝛼𝜈
𝑠𝑐 𝐽𝜈   −αν

𝑎𝑏𝑠 𝐼ν −𝛼𝜈
𝑠𝑐 𝐼𝜈  ) dΩ     (**)

We assumed, for simplicity, that the scattering efficiency is isotropic and coherent (it doesn’t change the frequency of photons when they are 

scattered). Integrating over all the solid angle, we already found (Lecture 1) that, in time dt,  the specific power conveyed from  all directions on the 

volume element  equals the energy scattered by the same  element  over the solid angle:

 𝛼𝜈
𝑠𝑐  𝐽𝜈  dΩ = 4π 𝛼𝜈

𝑠𝑐  𝐽𝜈  = 4π 𝛼𝜈
𝑠𝑐  ∙

1

4𝜋
   𝐼𝜈  dΩ = 𝛼𝜈

𝑠𝑐  ∙   𝐼𝜈  dΩ                              

Therefore, integrating eq. (**) w.r.t. the solid angle, we see that the energy balance of a body immersed in a radiation field is only due to absorption and 

emission, not to scattering: 

𝑑 𝐸

𝑑𝑡𝑑ν𝑑𝑉
 =   αν

𝑎𝑏𝑠 𝑆ν d Ω−   αν
𝑎𝑏𝑠  𝐼ν d Ω        and the bolometric equation is

𝑑 𝐸

𝑑𝑡 𝑑𝑉
 =   αν

𝑎𝑏𝑠  𝑆ν d Ω dν −   αν
𝑎𝑏𝑠 𝐼ν d Ω dν      ⇒  𝑁𝑒𝑡 𝑝𝑜𝑤𝑒𝑟 𝑃 𝑖𝑛 𝑎 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑉 = )  αν

𝑎𝑏𝑠 𝑆ν d Ω dν −   αν
𝑎𝑏𝑠  𝐼ν d Ω dν )

• If the matter is in thermal equilibrium at a temperature Tmatter,  its source function is 𝑆ν = 𝐵𝜈 T𝑚𝑎𝑡𝑡𝑒𝑟 .  Furthermore, for the matter be in  thermal, 

the radiative equilibrium, the net total power must balance to zero. If we talk about total power, this is a bolometric radiative equilibrium. 

Radiative equilibrium matter/radiation

+Eemitted +E conveyed      

into the beam

- Escattered      

out of the beam

-Eabsorbed

Power emitted Power absorbed from the incident field 



𝑁𝑒𝑡 𝑝𝑜𝑤𝑒𝑟 𝑃 𝑖𝑛 𝑎 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑉 = )  αν
𝑎𝑏𝑠 𝐵𝜈 T𝑚𝑎𝑡𝑡𝑒𝑟 d Ω dν −   αν

𝑎𝑏𝑠 𝐼ν d Ω dν ) = 0   for matter in thermal, radiative equilibrium. 

For each volume element of matter in thermal equilibrium embedded in a radiation field 𝐼ν , 

⇒    αν
𝑎𝑏𝑠  𝐵𝜈 T𝑚𝑎𝑡𝑡𝑒𝑟  d Ω dν =   αν

𝑎𝑏𝑠 𝐼ν d Ω dν 

    

Notice that:

1) The radiation field doesn’t need to be isotropic. 𝐼ν = 𝐼ν (Ω) 

2) The radiation field doesn’t need to be in equilibrium itself, i.e., 𝐼ν  is not necessarily a Planck function. 

3) We assumed the matter in thermal equilibrium, and for thermal emission we know that 𝑆ν = 𝐵𝜈 T𝑚𝑎𝑡𝑡𝑒𝑟 ;

4)    Once  the matter reaches local thermal, radiative equilibrium, the net power balance on the volume element must be zero. 

5)    We assumed isotropic coherent scattering, which does not affect the thermal balance, as we have shown. 

6) Matter can reach thermal equilibrium even if the incident radiation field is not in equilibrium (𝐼ν ≠  𝐵𝜈 T𝑟𝑎𝑑 ) . The matter equilibrium   

temperature will be, however, dependent on the value of 𝐼ν . 

Power spontaneously 
emitted by matter in 
thermal equilibrium 
(Thermal radiation) 

Power absorbed by matter  out 
of the incident radiation field

Radiative equilibrium matter/radiation



Define the dimensionless absorption efficiency as      Qabs (ν) ≡
𝛼𝜈

𝑎𝑏𝑠

𝑛𝜋𝑎2 = 
𝛼𝜈

𝑎𝑏𝑠

𝑛𝜎𝑔𝑒𝑜𝑚
 (σgeom geom. cross section of absorbers, n number density) , 

 

nπ𝑎2  Qabs 
(ν)𝐵𝜈 T𝑚𝑎𝑡𝑡𝑒𝑟  d Ω dν = nπ𝑎2  Qabs ν  𝐼ν  d Ω dν 

Notice that:

7) The frequency spectrum of the emitted radiation is Qabs (ν)𝐵𝜈 T𝑚𝑎𝑡𝑡𝑒𝑟 ,  generally different from the spectrum of the   incident radiation, 𝐼ν (Ω)  . 

This fact is at the basis of the one of the main properties of cosmic dust, where αν
𝑎𝑏𝑠  ∝  𝜈𝛽 with β ~1-2 . 

8) If the radiation is itself in equilibrium at temperature Trad its intensity is given by the (isotropic) Planck function 𝐵𝜈 T𝑟𝑎𝑑 .  Matter and incident 

are, in this case, in thermal equilibrium, because the radiative equilibrium condition becomes:

         Qabs (ν, Tmatter)𝐵𝜈 T𝑚𝑎𝑡𝑡𝑒𝑟  d Ω dν =  Qabs (ν, Tmatter)𝐵𝜈 T𝑟𝑎𝑑 d Ω dν    ⇒ 𝑻𝒎𝒂𝒕𝒕𝒆𝒓=  𝐓𝒓𝒂𝒅 . 

   If Qabs (𝛼𝜈
𝑎𝑏𝑠)  is a constant (<1),  independent on frequency,  the radiated spectrum is  a rescaled version of the Planck function (grey body). 

If Qabs 
= 1 (=Qem), the radiated spectrum is the same as the incident one, Bν T . Such matter radiator is a blackbody. 

Radiated  spectrum Incident spectrum

Radiative equilibrium matter/radiation

Do not confuse a  «blackbody» (matter which absorbs and re-emits as 𝐵𝜈 T𝑚𝑎𝑡  all the incident radiation, anyhow the latter  is spectrally  
distributed, possibly distorting the incident spectrum), with «blackbody radiation» (radiation field spectrally distributed as 𝐵𝜈 𝑇𝑟𝑎𝑑  thanks 
to a previoulsy acquired thermodynamical equilibrium).



If Qabs 
= constant < 1, the matter radiated spectrum will be Qabs 

Bν T , a «scaled» version of Bν T . This is called a «grey body»: matter has the same 

temperature of the blackbody radiation incident on it, although it emits radiation, at each wavelength, in a constant ratio less than unity to that emitted 

by a black body at the same temperature

Matter and radiation are, in this case, in mutual thermal and radiative equilibrium with each other, having the same temperature and being the incident 

power absorbed by the matter equal to the power radiated . The grey body can acquire the same temperature of the incident BB radiation just because, 

even if  it absorbs only some of the incident radiation,  it also emits only some of the absorbed radiation. 

But the thermal  radiation emitted by the grey body is not a real Planckian:

Radiative equilibrium matter/radiation

Here ε is the emissivity 𝑗𝜈/𝑗𝜈
𝐵𝐵 (that we called Qem)



Problem 6. In open, inhomogeneous systems, in rarefied matter partially permeable to radiation

 (i.e., optically thin medium), the absence of  a mutual equilibrium matter/radiation 

 allows the formation of spectra different from the Planck distribution. Assuming the matter in thermal equilibrium,  consider the transfer equation 

in presence of scattering. Write it in the two cases:

1) Absorption dominates over scattering;

2) Scattering dominater over absorption. 

In case 2), what happens if the radiation field is isotropic? 

Problem 7.  Compare the emission spectrum of a grey body at temperature T with the spectrum of a blackbody at the same temperature. 

1) Is the brightness  peak of the two spectra occurring at the same frequency? Why? 

2) How do you expect the photon occupation number to be for the grey body radiation with respect to that of the blackbody radiation with the same 

temperature? And the chemical potential?

3) Is it correct to define the grey body radiation at temperature T as a gas of photons in thermodynamic equilibrium with itself?

Problem 8.  Consider a body in LTE, emitting thermal radiation.  Suppose its absorption efficiency Qabs is a function of the frequency, 𝑓 𝜈 . Is it 

correct to define the thermal radiation as radiation in thermodynamic equilibrium with itself? If not, what would be necessary to make it become a 

Planckian distribution? 

Problem 9. Consider the setting of the Kirchhoff’s ideal experiment.  Suppose the walls of the enclosure are opaque (no transmission through the 

walls), but the material of the walls is partially reflecting light (coherent diffusion), so that the absorption efficiency of the walls is Qabs <1 while 

𝛼𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔  ≠0.   Piercing the walls without perturbing the equilibrium, we know that we’ll detect Blackbody radiation, which is radiation emitted by 

a perfect absorber/emitter (i.e.,  the effective Qabs of the system is = 1).  Why doesn’t the scattering inside the box  prevent the effective Qabs to be 

equal to unity? 
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