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Electromagnetic field from moving particles 

𝐄 𝒓, 𝑡 = 𝑞
(𝐧 − )(1 − 2)

3R2
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𝑞

𝑐

𝐧
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𝐁 𝒓, 𝑡 = 𝒏 × 𝑬(𝒓, 𝑡)

Consider a particle of charge q that moves along a trajectory r(t). The problem of solving the Maxwell equations reduces to the differentiation of the 

retarded potentials (Liénard-Wiechart potentials):   𝐀 =
𝑞𝐮

𝑐𝜅𝑅 tret

, 𝜙 =
𝑞

𝜅𝑅 tret

                   with  1 − 𝐧 ∙  and      
𝐯

𝑐
   ;

n is the unit vector of the (arbitrary) observation direction (the line of sight).

The electromagnetic field it generates at given position at time t is given by the E,B fields  evaluated at the retarded time   tret = t −
R

𝑐
   .

R(r,t)



ሶ

Path of the particle

Particle position at 

retarded time tret

Particle position at time t

n

Velocity field , falling off as 1/R2.

For v<<c, it is  the Coulomb law. 

Acceleration field, falls off as 1/R. 

Perpendicular to n.  

At large distance from the 
charge, the acceleration field 
becomes the dominant one. 



At large distances, we can then consider only the acceleration field, called «radiation field». 

All evaluated at retarded time. 

These terms, which add to the velocity fields,  arise from differentiating the retarded potentials w.r.t. the retarded time, which implicitely depends 

on the position. This has very important consequences.

The Poynting vector S =
𝑐

8
𝐄 × 𝐁   has the direction of n  (⊥to E and B) and magnitude:        S =

𝑐

8
 E𝑟𝑎𝑑

2 =
𝑐

8
 B𝑟𝑎𝑑

2      

 Since S R−2,  its flux doesn’t vanishes even at large distances. This allows the radiation to flow to infinite distances! The existence of the 

radiation field is thus a consequence of the retardation, which, in turn, is a consequence of the finite value of the light speed. 

Radiation field

𝐄 𝒓, 𝑡 𝑟𝑎𝑑 =
𝑞

𝑐

𝐧

3R
 × 𝐧 −  × ሶ𝐁𝑟𝑎𝑑 𝒓, 𝑡 = 𝒏 × 𝑬(𝒓, 𝑡)

Poynting vector S



Radiation from accelerated particles 

• A charged particle undergoing acceleration radiates photons. E.g. electrons moving back and forth 

in antennae (oscillating dipole) produce electromagnetic radiation. 

• The power emitted by a charge q with an acceleration 𝒂 is given by the Larmor’s formula:

    dP/d = (q2𝑎2/4c3) sin2                which, integrated over solid angles,    gives:  

    

                        P =
2 𝑞

2
 𝑎

2

3𝑐3   

Properties:

-The emitted power is proportional to the square of q and  a;

-The photons are emitted in a characteristic dipolar form  sin 2  ;  no emission along the direction 

of a, maximum emission ⊥ to 𝐚.

- If the particle accelerates along a line, in the non-relativistic case, the radiation is 100% linearly 

polarised on the plane of a and n.  



a

n

E rad

B rad

Dipolar emission by an accelerated

non relativistic charge. See also RL 

Chapter 3



Bremsstrahlung radiation

• The Bremsstrahlung is radiation emitted from charges accelerated (deflected)  in the Coulomb field of another charge. It is also called 

free-free radiation. Energy is emitted at the expenses of kinetic energy («braking radiation»), thus free-free radiation can cool the 

plasma. In fact, Bremsstrahlung is the main cooling process for high T (> 107 K) plasma.

• Detailed treatment requires quantum electrodynamics However, a classical treatment is justified in some (most of ) regimes, and the

formulas so obtained have the correct functional dependence for most of the physical parameters. Therefore, we first give a classical

treatment and then state the quantum results as corrections (Gaunt factors) to the classical formulas.

• In a system of charges, be τ the typical time scale for changes within the system. If the charge distribution has a size L  smaller than 

the distance traveled by the light in the time  τ, we can we can neglect the difference between the retarded times of  the 𝐄𝑖   emitted by 

each particle, and just sum them all to have the total electric field. 

• For such a system of charges,   P =  
2 𝑞2 ሷ𝑑2

3𝑐3   where      𝐝 =  σ𝑖 𝑞𝑖𝒓𝑖    = dipole of the system. 

• Bremsstrahlung due to collisions of like particles is zero in the dipole approximation, because the dipole moment d= σ 𝑞𝑖 𝒓𝑖 is, in 

that case,  proportional to the center of mass,   σ 𝑚𝑖 𝒓𝑖 , which is a constant of motion: ሷ𝐝 =0, no radiation according to Larmor law. 

We then consider electron-ion collisions, where the main radiatiors are the electrons (lower mass, larger acceleration). 



• HII regions:   ne ∼ 102 − 10 3 cm − 3 ; T ∼ 10 4 K 

• 2. Galactic bulges & hot-coronae (107 K)

• 3. Intergalactic gas in clusters/groups : ne ∼ 10−3 cm − 3 ; T ∼ 10 7 − 10 8 K 

Bremsstrahlung radiation- astrophysical examples:

Virgo clusters is filled with hot gas
strongly radiating via bremsstrahlung at
2keV (several billion degrees). Optically
thin. Here, seen by ROSAT in the X rays.
↔ 8 Mpc

HII regions: ionized by young hot stars
and filled with hot gas, denser but
cooler than a galaxy cluster.

Perseus Galaxy  Cluster
Hot IGM gas (T∼107 K)

X-ray image of the hot gas in the Perseus
Cluster , made from 16 days of Chandra
observations. An oval highlights the
location of an enormous wave found to be
rolling through the gas.
Image credit: NASA’s Goddard Space Flight

Center / Stephen Walker et al.



Consider an electron, e-, with velocity v, passing , with impact parameter b, a  charge of  Z 

protons, total charge Ze+     .   

                         

The electron is accelerated during the interaction. We use classical analogue of Born 

approximation: path of electrons not influenced by the nucleus, thus compute the motion along a 

straight line with given impact parameter.  The acceleration of the electron in the Coulomb field is:

                        

                    𝑎 =
𝑍 𝑒2

𝑚𝑒 𝑏2+v2𝑡2   = 𝑎(t,b)

Using Larmor’s formula,      P =
2 𝑞2 𝑎2

3𝑐3   =
2 𝑧2𝑒6

3𝑐3 𝑚𝑒
2 𝑏2+ v 2𝑡2 2

- The emitted power is maximum for the lightest particles (electrons) and at the  closest 
distance (R∼ b)

- The interaction is very quick;  we define «collision time» for close interaction  the time  interval 
       t ∼ 2b/v  
- The emitted energy in a single collision, considering R ∼b , is:

       dW = P  t ∼
4 𝑧2𝑒6

3𝑐3 𝑚𝑒
2 𝑏3v 

Bremsstrahlung radiation from single electron

b=impact parameter

R=distance electron -ion

R

Born approximation

b
R

Ze+

v
e-

hν

hν



Radiation comes in pulses Δt long, slightly asymmetric because of the decrease of velocity.   The acceleration is not uniform, so photons are 

produced with a range of frequencies, i.e. a spectrum, given by the Fourier analysis of the pulse.

 

The result is a flat spectrum in frequency, with an upper  cutoff (cut = v/2b) related to the interaction time,  t∼2b/v

(cut =2 νcut) In the sigle event,  the intensity (radiated energy dW  per unit frequency)  in the flat part of the spectrum (  < cut ) is given 

by:

                                                                         
    Energy emitted per unit  frequency.  At > cut ,  the power drops as  as exp(-2  b/v ). 

Bremsstrahlung radiation from single electron

𝑃𝑡

ν
 ∼

𝑃𝑡

ν𝑚𝑎𝑥
  = 

16 𝑧2𝑒6

3𝑐3 𝑚𝑒
2 v2𝑏2 

=
𝑑𝑊(𝑏)

𝑑ν
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 𝑑𝑊(𝑏)

𝑑ω
=

8 𝑧2𝑒6

3  𝑐3 𝑚𝑒
2 v2𝑏2 

for 𝑏 ≪
v

𝜔
 ,  0 otherwise. 

P(t)

t

P(ν)

ν

νcut= cut /2π = v/(2b)  



Bremsstrahlung radiation from single electron

P(t)

t

P(ν)

ν

Closest  distance from the target          ν max 

Intermediate distances  
Large distances, emitted photons of negligible energy (frequency)



Let us define bmax and bmin  the extrema of the impact parameter values which can contribute to the emitted power at a given frequency. 

• bmax:  the single-electron emission drops exponentially as exp(-2  b/v), significant signal only for  b ≪ v/𝜔   bmax   .

• bmin:   we may take the classical value at which the straight-line approximation ceases to be valid, i.e. when v∼ v  (the change in velocity is to the path)

Δ v ≃ 𝑎 Δ t = (Ze2/ me b2) ∙2b/v                     bmin,1  = 
2𝑍𝑒2

𝑚v2      (classical) ;

Or, we can consider the limit dictated by the quantum uncertainty principle: x p  ℏ

Taking x ∼b and  p∼ mv , we have bmin,2 = 
ℏ

 𝑚v
  (quantistic)

When bmin,1 ≫ bmin,2  a classical decription of the scattering is valid and we can use bmin = bmin,1.  Otherwise, if  bmin,1 ≪ bmin,2 the 

uncertainty  principle  plays an important role and we use  bmin = bmin,2.  

We then consider the largest between bmin,1 and bmin,2.           Their ratio  is      
bmin,2

bmin,1
  = 

ℏ/𝑚v

2𝑍𝑒2/𝑚v2  ∼ 
137 v

𝑍𝑐
  = 

137 

𝑍𝑐

3𝑘𝑇

𝑚𝑒
  > 1 when v ≥ 0.01c

In any case, the total energy radiated  by one electron cannot exceed its kinetc energy!!!    Total radiated energy   = P t  ≤
1

2
  𝑚𝑒v2  

Maximum and minimum impact parameter



Problem 11.  For a single electron-ion interaction, and for a fixed electron velocity, the maximum total 

radiated energy  corresponds to the minimum allowed impact parameter. 

Show that this cannot exceed the kinetic energy of the electron, either for bmin = bmin,1   and for  bmin= bmin,2       

(useful to  remember that 2 𝑒2 / 2𝑚𝑒𝑐 =  α = 1/137)

Problem 12 .  Consider an electron moving at a speed of v =1000 km s-1.  

a) Calculate the frequency of the emitted radiation in case it would radiate all its kinetic energy in a single interaction (a single photon). 

b) In case this electron belongs to a population of particles at thermal equilibrium for which the typical speed  is v = 1000 km s −1, determine which is 

the temperature of the plasma.

Problem. 13.  Evaluate bmin for the warm  plasma in the Lagoon nebula observed at 1 GHz, selecting if 

we have to use the classical or quantum value.

M8 Lagoon nebula, HII region-  
(T∼ 10 4 K)

100 light years



Gaunt factor

When dealing with a gas cloud hosting multiple electron-ion interactions, we have to, integrate the single-electron spectum over  the  emitters velocity  

distribution and the possible values of the impact parameter in order to obtain the total emitted power per  unit  volume and unit frequency.  The power 

emitted in each collision event is, indeed, dependent on b.   For a plamsa of  electrons all at the same speed v,  we end up with the calculation of the 

integral:

𝑏𝑚𝑖𝑛׬          

𝑏𝑚𝑎𝑥 𝑑𝑏 

𝑏
= ln

𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛
 

It is convenient to enclose all the quantum correction to 

our classical treatment in the so-called  Gaunt factor gff, 

function of electron  energy and emission frequency.  

It is defined as      gff(v, ) = 
3


 ln

𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛
.  

        
(Values are tabulated, e.g. in Bressaard and Van del Hulst 1962).



Thermal Bremsstrahlung emissivity

Generalise to a population of electrons in a (partially) ionized gas cloud . An astrophysically useful case is that of a population of electrons with uniform 

temperature (kinetic) T.    Their total emission in this case is named thermal bremsstrahlung. 

For a ionized gas cloud at T, the velocity distribution is the Maxwell distribution:

f v =  4𝜋
𝑚

2𝜋𝑘𝑇

3/2
v2exp −

𝑚v2

2𝑘𝑇

The typical impact parameter is set by the number densities of electrons and ions, ne and ni and by f(v). Integrating the single-electron spectum over the 

velocity distribution and the possible values of the impact parameter, we obtain the total emitted power per unit volume and unit frequency:

 ν
𝑓𝑓

 
𝑑𝑊

𝑑𝑉 𝑑𝑡 𝑑ν
 =

25 𝑒 6

3𝑚𝑒𝑐3  
2

3𝑘𝑚𝑒

1/2
 𝑇−

 1

2  𝑍2 𝑛𝑒𝑛𝑖𝑒
−

ℎν

𝑘𝑇  ҧ𝑔 𝑓𝑓       (erg s-1 cm-3 Hz-1)

Here, ത𝑔 𝑓𝑓(T,) is a velocity averaged Gaunt factor; it is of order  unity  over a wide range of temperature and densities (values around 10-15 in the radio 

domain, slightly higher than 1 at higher energies).  

In CGS units, the power emitted per unit frequency is  (erg s-1 cm -3 Hz -1) :

 ν
𝑓𝑓

  
𝑑𝑊

𝑑𝑉 𝑑𝑡 𝑑ν
 = 6.8 × 10−38𝑇−

1

2 𝑍2 𝑛𝑒𝑛𝑖𝑒
−

ℎν

𝑘𝑇  ҧ𝑔 𝑓𝑓 

Note that   ν
𝑓𝑓

 = 4 jν    (emission coefficient integrated over the solid angle, for an isotropically emitting plasma, from lecture 1: ν ׬ = j ν dΩ )

Flat spectrum 
with cutoff

Number of electron-ions
collision per unit time
with impact parameter b,b+db:
in a unit time: 2𝜋bv𝑛i db



This spectrum  is flat in frequencies, up to a cut off   at approximately ν max = kT/h , 

so the cutoff  can be used to dermine  the cloud temperature. The cutoff is indeed 

due to the Maxwellian distribution of velocities.  Integrating over the whole 

spectrum up to νcut,  one has

𝑓𝑓  =
𝑑𝑊

𝑑𝑉 𝑑𝑡 
=

25 𝑒 6

3ℎ𝑚𝑒𝑐3  
2𝑘𝑇

3𝑚𝑒

1/2
 𝑍2 𝑛𝑒𝑛𝑖

 ത𝑔 𝑓𝑓

or, in CGS,  (erg s-1 cm-3 , radiated power per cubic cm)

𝑓𝑓(𝑇) = 1.4 × 10−27 𝑇
1

2 𝑍2 𝑛𝑒𝑛𝑖  ത𝑔 𝐵    total (bolometric) emissivity

Here, ത𝑔 𝐵 is a frequency average of the velocity averaged Gaunt factor, which is in 

the range 1.1 to 1.5. 

Thermal Bremsstrahlung emissivity

In an optically thin medium, any internally generated radiation is essentially free to escape from the emitting region  without further interaction 

with the medium. 

For optically thick medium, radiation is only moving a short distance within the medium (w.r.t. its size)  before being absorbed again. The final 

spectrum is shaped by the balance between emission and absorption.  In a thick region, the spectrum is constrained to be not more efficient than a 

black body. 

Note. While the individual interaction produces polarized radiation (fixed direction of E and B fields of the e-m wave wrt the acceleration) all the 

interactions produced in a hot plasma originate unpolarized emission (random orientation of the plane of interaction).

cut= 2 kT / h

Spectrum of thermal free-free

𝑒
−

ℎν
𝑘𝑇



The cut-off frequency in the thermal bremsstrahlung spectrum depends on the temperature only, and is conventionally set when the

exponential equals 1/e : ν max = kT/h

ν𝑐𝑢𝑡=
𝑘𝑇

ℎ
   = 2.08× 1010 T

K
 Hz      Observationally used to determine T plasma!

 For a warm plasma (HII region, 𝑛𝑒~102 − 103𝑐𝑚−3 T ~ 10 4 K), ν𝑐𝑢𝑡= 1014 Hz        (optical) 

For a hot plasma (IGM in clusters of galaxies, 𝑛𝑒~10−3𝑐𝑚−3 ,   T ~ 10 8 K), ν𝑐𝑢𝑡= 1018 Hz       (X-rays) 

Thermal Bremsstrahlung emissivity



Thermal Bremsstrahlung self absorption

Now we want to determine the absorption coefficient. For thermal emission, we can use Kirchhoff’s law:

 ν
𝑓𝑓

4
= 𝑗ν

𝑓𝑓
= αν

𝑓𝑓
 𝐵ν(𝑇)   

and, using the Planck function,
 

αν
𝑓𝑓

 =  
4𝑒 6

3ℎ𝑚𝑒𝑐
 

2
3𝑘𝑚𝑒

1/2
 𝑇−1/2𝑍2 𝑛𝑒𝑛𝑖  ν−3 1 − 𝑒−ℎν/𝑘𝑇 ҧ𝑔 𝑓𝑓

For ℎν ≫ 𝑘𝑇    ,  αν
𝑓𝑓

 ν−3 and   absorption is negligible. 

For ℎν ≪ 𝑘𝑇 (low frequencies) , Rayleigh-Jeans regime:

αν
𝑓𝑓

 =  
4𝑒 6

3𝑚𝑒𝑘𝑐
 

2
3𝑘𝑚𝑒

1/2
 𝑇−3/2𝑍2 𝑛𝑒𝑛𝑖  ν−2 ҧ𝑔 𝑓𝑓

Since ത𝑔 𝑓𝑓 𝑇 ≈ 10,    in CGS    αν
𝑓𝑓

 ≈ 0.2 𝑇−3/2𝑍2 𝑛𝑒𝑛𝑖  ν−2   cm-1 

                                          
                                 Self absorption becomes increasingly important at low frequencies. 

νcutoff=kT/h

Tb∼Te 

Tb∼Te τ 



Thermal Bremsstrahlung self absorption
Transfer equation gives the specific intensity, or  Brightness, of a thermal free-free emitting cloud :

𝐼ν(τ) = 
𝑗ν

αν
1 − 𝑒−τν   

The opacity determines the shape of the spectrum. 

In the low frequencies range,  we can consider different values of the optical depth.
 
For ℎν ≪ 𝑘𝑇 , when absorption is important, 

𝑗ν

αν
∼

𝑇
−

1
2 𝑍2 𝑛𝑒𝑛𝑖 ത𝑔 𝑓𝑓

𝑇−3/2𝑍2 𝑛𝑒𝑛𝑖 ν−2 ത𝑔 𝑓𝑓
 𝐼ν(τ) ≈ 𝑇 ν2 1 − 𝑒−τν   

Possible values of optical depth in this regime:

•     τ >> 1 ,     then 1 − 𝑒−τν ≈ 1 →  𝐼ν(τ) ≈ 𝑇 ν2   (Rayleigh-Jeans tail of Planck function)    

          and Tb∼ T (≡Te ) : the brightness temperature approaches the electron temperature.

          here the spectrum is blackbody-like because photons thermalize with electrons due to 

          frequent absorption-emission (Opacity region of the spectrum). 

•     τ << 1 ,     then 1 − 𝑒−τν  = 1 − 1 + τ − 𝑂(𝜏2 )  ≈ τ      𝐼ν(τ) ≈ 𝑇 ν2 τ   and Tb∼Te τ : 

          the brightness   temperature is much lower than  the electron temperature.  Many photons

          escape from the cloud before thermalizing with electrons. Large mean free path. 

νcutoff=kT/h

Tb∼Te 

Tb∼Te τ 



Thermal Bremsstrahlung spectrum
(Figures from Ghisellini)- Plasma sphere of fixed size, with ne=ni . 

Fixed density: self-absorption is more effective at low 

temperatures.  

  ν
𝑓𝑓

   T -1/2     ;     αν
𝑓𝑓  T -1/2  ;    𝜈𝑚𝑎𝑥

   T

Fixed temperature: increasing density, the plasma becomes transparent 

at increasing frequencies, approaching a black-body (completely 

opaque at all frequencies).

  ν
𝑓𝑓

   ne
2     ;     αν

𝑓𝑓   ne
2 ;    𝜈𝑚𝑎𝑥 = kT/h=  constant



It is a non thermal bremmstrahlung.  In a distribution of relativistic electrons, one has to use  relativistic kinetic energy.  Not a  Mawellian velocity 

distribution  (*) . 

The main energy radiated in a collision (in the electron rest frame) is     𝑑𝑊′ ∼ γ
𝑍2𝑒6

𝑚2𝑐4𝑏3     and the energy in the observer frame is dW= γ dW’ , 

𝑑𝑊 ∼ γ 2
 𝑍𝑒

𝑏2

2 𝑒2

𝑚𝑐2

2

b ⇒ 𝑑𝑊 ∼  γ 2
 
𝑏 σ 𝑇 𝑈 𝑓𝑖𝑒𝑙𝑑                          𝜎𝑇 =

8𝜋

3

𝑒2

𝑚𝑐2

2

 = 
8𝜋

3
𝑟0

2  , 𝑟0 =classical electron radius  

U field is the energy density of the external field (in the rest frame of the ion) , thus we can estimate the bremsstrahlung process as though the electron 

passing close to the ion knocks out the energy density in a volume   𝑏 σ 𝑇 , and in the process boosts this by a factor γ 2 . 

The typical velocities are now relativistic and the energy                                                                   

distribution is described by a power law.                                                                                    

Number density of particles between E and E+dE :

𝑁 𝐸 𝑑𝐸 = 𝐶 𝐸−𝑝 dE , or 𝑁 γ 𝑑𝐸 = 𝐶 γ−𝑝 dγ

Integrating over the energies (Lorentz factors),  

 ν, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐
𝑓𝑓

      ׬ℎν

∞
𝐸−𝑝  dE ≈ 𝜈 –𝑝+1             

The resulting spectrum is itself a power law. 

Relativistic bremsstrahlung

L
o

g 
N

(E
)

Log E

E -p

Relativistic Doppler shift 



𝜖′ =  𝛾𝜖(1 − 𝛽 cos𝜃).

𝜖 = 𝛾𝜖′(1 + 𝛽cos𝜃′) 

𝜖𝑖

𝜖𝑓

𝜑𝑖

𝜑𝑓

𝜃𝑓

𝜃𝑖

𝚯

v

𝜖𝑖
′

𝜖𝑓
′

𝜑𝑖
′

𝜑𝑓
′

𝜃𝑓
′

𝜃𝑖
′

𝚯’

Laboratory frame Σ
Electron rest frame Σ′

𝜃= angle between electron velocity  and photon direction

Relativistic Doppler shift



(*)  Relativistic velocity distribution. 

The Maxwelll  Boltzmann  distribution gives the probability for a single particle to have a speed in the interval [v,v+dv]. This probability 

is not zero for speeds v>c , in conflict with special relativity. 

The distribution of speeds of particles in a hypothetical gas of relativistic particles is the Maxwell–Jüttner distribution

Similar to the Maxwell–Boltzmann distribution, the Maxwell–Jüttner distribution considers a classical ideal gas where the particles are

dilute and do not significantly interact with each other. The distinction from Maxwell–Boltzmann's case is that effects of special relativity

are taken into account. In the limit of low temperatures T ≪ 𝑚 𝑐2/𝐾𝐵(where m is the mass of gas particles), this distribution becomes

identical to the Maxwell–Boltzmann distribution.

The relativistic correction requires to replace  the Newtonian kinetic energy ½ mv2 with the  relativistic kinetic energy (γ−1)mc2 

everywhere it appears in the distribution..

The relativistic energy of a particle is 𝐸𝑟 = 𝑚0𝑐2 2 + (𝑝𝑐)2 and the relativistic kinetic energy is 𝐸𝑘 =
𝑚𝑐2

1− v/𝑐 2
− 𝑚𝑐2 = 𝑚𝑐2(γ−1). 

The Maxwell–Jüttner distribution gives the distribution for the Lorentz factors:

 𝑓 𝛾 =
𝛾2𝛽(𝛾)

𝜃𝐊2
1

𝜃

𝑒−𝛾/𝜃

where 𝜃 =
𝐾𝐵𝑇

𝑚𝑐2   , 𝛽 = v/𝑐  and 𝐊2 is the modified Bessel function of the second kind. 



The Fermi Large Area Telescope detects

gamma rays with energies ranging from 20

million electron volts (MeV) to more than 300

billion (GeV).

Discrete gamma-ray sources include pulsars

and supernova remnants within our galaxy

and distant galaxies powered by supermassive

black holes.

NASA / DOE / Fermi LAT Collaboration

Gamma-ray emission is detected from our Galaxy which is thought to arise from relativistic Bremsstrahlung from high energy electrons. The 

radiative energy is carried by photons with energies in the range 30-100MeV, suggesting many relativistic electrons with γ~100

Relativistic bremsstrahlung



A cloud of ionized gas emitting bremsstrahlung radiation loses energy  ,  so the gas is cooling. 

Cooling time :  𝑡 =
𝐸𝑡𝑜𝑡

𝑓𝑓(𝑇)
 =

3/2 𝑛𝑒+𝑛𝑝 𝑘𝑇

𝑓𝑓(𝑇)
    . 

We can assume ne=np (fully ionized H), so  𝑡 =
3 𝑛𝑒𝑘𝑇

2.4 ∙10−27𝑇1/2𝑛𝑒
2 ത𝑔𝑓𝑓

 ∼
1.8 ∙1011

𝑛𝑒 ത𝑔𝑓𝑓
 𝑇1/2 sec  = 

6.3 ∙103

𝑛𝑒 ത𝑔𝑓𝑓
 𝑇1/2   yr

Thermal bremsstrahlung is the main cooling process at temperatures above 10 7 K. 

Bremsstrahlung cooling 

Problem 14.   An HII region is generated by an O-type star.  Suppose it has a spherical volume of radius 1pc  filled by pure Hydrogen plasma, 

at a temperature T= 1.6 × 104 K and numerical density ne=10 cm-3.  Calculate the specific emissivity and the bolometric one. If the star 

was removed, after how much time will the region stop to emit? If the region is at a distance 250 pc, calculate the flux observed by a  

radiotelescope at 10 GHz. .(Assume the emission is optically thin at this frequency).

Useful formulae:  flux   𝑆𝜈  = 
 𝜈

 T ∙V

4𝐷2      L =  T ∙ V



Typical values of IC hot gas have radiative cooling 

time exceeding 10 Gyr .

All galaxy clusters are  X–ray emitters.

Coma cluster (z=0.0232), size ~ 1 Mpc

ESA/XMM-Newton, the image covers the 0.3 to 2.0 

keV energy range 

Bremsstrahlung cooling 



Worked example.

Suppose we take the matter in our own Galaxy and heat it to T=106 K in a spherical region of order the Sun’s distance from the Galactic center, 

R≈ 10 Kpc. Assume the cloud to be fully ionized H, with uniform density and total mass M=10 11 Mʘ . 

Electron density: 

The total number of protons and electrons is    𝑁𝑝 = 𝑁𝑒 =
𝑀

𝑚𝑝
=

1011×2×1033 

1.7×10−24  = 1.2 × 1068    (neglect 𝑚𝑒)       .

The volume of the cloud is   V=
4𝜋

3
𝑅3 = 1.1 × 1068 cm3    ,  so the number density is 𝑛𝑒=

𝑁𝑒

𝑉
≅ 1 𝑒−cm−3

Optical depth:

In a ionized medium, the primary source of opacity is due to Thomson (elastic) scattering of photons by free electrons.  

In a uniform medium, the optical depth of the cloud is  τ =
1

𝑛𝑒σ𝑇
  , where σ𝑇 = 0.67 x 10 -24 cm 2 is the Thomson cross section.

In our example, then,  τ=
1 𝑐𝑚3

0.67×10−24 𝑐𝑚2 = 1.49 × 1024 cm ≈ 500 kpc (1 pc = 3 ×  1018 cm).    

τ =500 kpc  ≫ physical dimension of the cloud (10 kpc) : the cloud is optically thin. Low density, radiation  escapes easily.

Problem 15. What electron density is required to make the cloud optically thick? 

The cutoff frequency of this cloud will be at ℎν ≈ 𝑘𝑇 , so that ν≈ 2 × 1016 Hz  (UV region) → source of UV photons. 

Problem 16. The mean density of free electrons in the Universe is ∼ 10 -5 cm -3. Show the Universe is optically thin to electron scattering. UV 

photons from a distant cloud like the one above would be nevertheless very hard to see. Why? 

Hot thin
Plasma!



Worked example (continued)
Cooling rate

In CGS units, the power emitted per cubic cm is 

The frequency averaged gaunt factor for  thermal emission is usually adopted to be ത𝑔 𝐵 =1.2. 

We have Z= 1 for an Hydrogen plasma.  Then

From the volume of the cloud, V≈ 1068 cm3 , we compute the total radiation loss:

𝑑𝐸

𝑑𝑡
 = 1.7 ×  10−27 × 1068 = 2 × 1044 erg sec−1 

Total energy of the cloud

Each electron has kinetic energy  Ekin = 
3

2
 kT = 2.1 × 10−10 erg ;    there are ≈ 1.2 × 1068 electrons, so the total kinetic energy is 

Etot = 2.1 × 10−10 × 1.2 × 1068  erg = 2.5 × 1058 erg.

So the cooling time is  t =   
𝐸𝑡𝑜𝑡

𝑑𝐸/𝑑𝑡
 = 

2.5 ×1058 e r g

2 × 1044 e r g  sec−1 
= 1.5 × 1014 sec ∼ 10 6 years  :   hot thin plasma cools very rapidly!

Problem 17 Derive a general expression for the cooling time for a thin plasma, via thermal bremsstrahlung, in terms of the electron density 𝑛𝑒  , the ion 

density 𝑛𝑖  , ion charge Z, radius R and temperature T. 

𝑓𝑓(𝑇) = 1.4 × 10−27 𝑇
1

2 𝑍2 𝑛𝑒𝑛𝑖  ҧ𝑔 𝐵 

𝑓𝑓(𝑇) = 1.7 × 10−27 erg cm−3sec−1 



Bremsstrahlung case study- The Perseus cluster. 

Perseus is a large cluster of galaxies in the Northern emisphere. It is about  100 Mpc away and contains thousands of galaxies embedded in a hot halo of gas. 

The central galaxy appears to be in the process of collision with a spiral galaxy, and is a well studied source of X-rays. The Perseus is one of the brightest X-ray 

cluster sources. Optical images at various scales are shown below:

Perseus cluster from Palomar
 Sky Survey

Zoomed in view of the very  central
region, Hubble Space Telescope



Bremsstrahlung case study- The Perseus cluster. 

X ray and optical Perseus clusterer. Optical image shows stars and

galaxies, whereas X image shows a huge amount of plasma distrubuted 

across a wide region (Fabian et al. 2011, Gabany 2009).



The X-ray spectrum of Perseus cluster observed by the HEAO-A2 instrument.  The continuum emission can be accounted for  the thermal 

bremsstrahlung of Hot intracluster gas at a temperature of kT= 06.5 eV, that is T= 7.5 ×10 7 K. The thermal nature of the radiation is confirmed by the 

observation of the Lyα and Lyβ  emission lines of highly ionized iron, Fe+25, at energies 6.7 and 7.9 Kev, respectively.  The ionization potential of Fe+24 is 

8.825 keV, hence the gas must be very hot. 

Note: it is common practice in X-and γ- ray astronomy to

show spectra in terms of the number of photons per unit

energy interval rather than intensity and so a flat intensity

spectrum, I(ν) dν ∝ ν0 dν, corresponds to a photon number

intensity N(ε)dε ∝ ε−1 dε, where ε= hν .

Bremsstrahlung case study- The Perseus cluster. 

An estimate of the cooling time turn out to be relatively short compared to the age of the 

universe! 

Computations indicate that hundreds of solar masses per year  are being deposited into  the core 

of the system (Fabian et al. 1981).
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