
Radiation Scattering processes 

Radiative processes in Astrophysics

B

• Thomson scattering
• Compton scattering
• Klein-Nishina cross section
• Inverse Compton: spectrum, multiple scattering, energy 

losses, cooling time
• Synchrotron-Self Compton
• Compton catastrophe
• Comptonization. 
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Electric charge is measured in statC (or «esu»):

1 statC = 1 g 1/2 cm 3/2 s -1

B(magnetic field) in Gauss, with 1 G = 1 g ½ cm -1/2 s -1      ; 1 Tesla= 104 G

1 erg = 1 g cm 2 s -2

1 eV= 1,60218 × 10-12 erg = 1,60218 10-19  J ;       1 eV= 2.418×1014 Hz (from E=hν)

r 0 =e2 /me c2 (≈ 2.8 × 10-13  cm); 

σT = 8π 𝑟0
2 /3= 6.6524 ×10 -25 cm2 ;

e = electron charge = 4.8032 ×10-10 statC 

 me= 9.1093937 ×10 -28 g;  

 h=4.13 ×10 -15 eV s  = 6.26 ×10 -27 erg s

c ≈ 2.998 × 1010 cm s-1

h ≈ 6.626 ×10-27 erg s

Boltzmann constant k ≈ 1.381 × 10-16 erg K-1  = 8.61 × 10−5 eV K-1

me c2 ≈ 34.3 erg

Useful units and formulas in CGS (Gaussian units)



The simplest interaction between photons and free electrons is scattering. When the energy of the incoming photon (as seen in the 

frame of the electron) is small w.r.t. the electron rest-mass energy, ℎ𝜈𝑖 ≪  𝑚𝑒𝑐2 (0.511 Mev) the process is called Thomson scattering, 

which can be described in  classical electrodynamics, i.e. radiation can be seen as a wave. Thomson scattering is elastic, since the 

electron acts as a passive diffusor, without taking any energy from the incident photon. 

When the electron is at rest (or non relativistic) and photon energy is ℎ𝜈𝑖 ≥ 𝑚𝑒𝑐2 (electron rest energy ), quantum effects have to be 

taken into account. Quantum effects appears through the kinematics of the scattering process, which occur because a photon possesses

a momentum as well as an energy . The momentum exchange between photon and electron manifest as a recoil of the electron , which 

subtracts energy to the incident photon (Klein-Nishina regime), making the scattering no longer elastic. This is the direct Compton (or 

just Compton)  scattering, and it is a heating process for the electrons.  The recoil is responsible of the electrons heating, and it 

represents the energy lost by the photons. 

When the electron is relativistic, the momentum exchange in the Compton scattering has to be treated relativistically. In this case, IF  the 

electron energy is greater than the photon energy, the typical photon gains energy, cooling the electron gas, even if there are some 

arrangements of angles for which it looses part of its energy.  This is the inverse Compton scattering. 

Photon-electron scattering: overview



Thomson scattering is elastic diffusion of electromagnetic radiation by a free, nonrelativistic charge.

Charge acceleration due to the 𝐸 of the incident wave (assumed to be linearly polarized). The

acceleration is in the direction of the oscillating electric field, resulting in electromagnetic dipole

radiation. Most radiation in a direction perpendicular to charge motion. This radiation is polarized

on the plane containing the charge acceleration (i.e., the incident polarization) and the observing

(scattering) direction. Be 𝜃 =  𝐝 𝐤𝐟 (not the scattering angle Θ !  𝚯 =
𝜋

2
− 𝜃. )

The force on the charge by an electromagnetic wave is :

F = q ො𝜺 E sin ω t , the dipole moment 𝐝 = q𝐫 → ሷ𝐝 = q ሷ𝐫 =
𝑞2

𝑚
ො𝜺 E sin ω t

Using the Larmor’s formula, the time averaged power scattered into dΩ=senΘdΘdφ is:

𝑑𝑃

𝑑Ω
= 𝑠

𝑑𝜎

𝑑Ω
     (S being the Poyinting vector) . For electrons, 

𝑑𝜎

𝑑Ω
=

𝑒4

𝑚𝑒
2𝑐4 sin2𝜃 = 𝑟0

2 sin2𝜃   (max in the front and back directions) 

Upon integration over the solid angle,   𝜎𝑇 =
8𝜋

3
𝑟0

2 = 6.65 × 10−25cm2

𝑟0 = 2.82 × 10−13cm (classical electron radius).       
𝑑𝐸

 𝑑𝑡 
= 𝑐𝜎𝑇  U𝑟

 

Thomson scattering

Joseph J. Thomson
1856-1940

𝜃
ො𝜺 E sin ω t 

Electron oscillates sinusoidally. 
Azimuthal symmetry  around 𝐝 

𝑒−

Nobel prize in Physics, 1906: Discovery of sub-
atomic nature of  electrons.

𝐤𝑖

𝐤𝒇𝐝

Θ



Going beyond the Thomson limits: Compton scattering

It was originally experimentally demonstrated by Arthur H. Compton that the wavelength of X-rays increases when they are scattered

against electrons. Classical wave description of light scattering (Thomson scattering) cannot explain any shift in frequency. Light must

behave as particles in order to explain the Compton scattering. This effect is due to the quantum-mechanics radiation properties, since

photons carry momentum as well as energy : Compton Scattering is a scattering phenomenon between the photon and a charged

particle that causes momentum exchange between the photon and the electron. The momentum exchange causes a recoil of the target

charge (electron), which subtracts energy from the incident photon, redshifting its frequency.

A.H. Compton 
1892-1962

The Compton effect is the decrease in energy (increase in λ) of a high energy

(X – or γ – ray) photon, as it interacts with a free electron. The quantum

properties of radiation become non negligible when ℎ𝜈𝑖 ≳ 𝑚𝑐ℎ𝑎𝑟𝑔𝑒𝑐2 . 

It is one of the main interaction channels between radiation and hot, rarefied

plasmas. Arthur H. Compton was awarded the Nobel Prize in Physics in 1927.

Although nuclear Compton scattering also exists, what is meant by Compton

scattering usually is the interaction involving free electrons only.



Compton scattering

• Particle Quadrimomentum :  pμ =(p0, 𝐩)=(𝛾𝑚𝑐, 𝛾𝑚𝐯)       with Lorentz factor 𝛾 = 
1

1−
v2

𝑐2

  = 1 − 𝛽2 −1/2 , being  𝑚 the 

particle’s rest mass   and  𝛽 ≡
v

𝑐
  .

The quantity  𝑝𝜇𝑝𝜇 = 𝑝0 2 − 𝐩 ∙ 𝐩 = (𝛾𝑚𝑐)2 − (𝛾𝑚v)2= 𝛾2𝑚2𝑐2 1 − 𝛽2  = 𝛾2𝑚2𝑐2 ∙ 𝛾−2= 𝑚2𝑐2 = relativistic invariant

• Particle energy :   ℇ= c p0=𝛾𝑚𝑐2   = 
𝑚𝑐2

1−
v2

𝑐2

                  [Notice,  𝑚𝑐2 is the rest energy, due to the particle having a non-zero mass].

Since p0 = 𝑚2𝑐2 + 𝐩 ∙ 𝐩 ,  the relativistic energy of a particle moving with velocity v  is : 

ℇ = c p0 =  𝑐 𝑚2𝑐2 + 𝛾2𝑚2v2 =  𝑚2𝑐4 + 𝑝2𝑐2 = 𝑚𝑐2 1 + 𝛾2𝛽2                   (𝑝2 ≡ 𝐩 ∙  𝐩 , 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚)

• Photon Quadrimomentum:

𝑝𝑝ℎ𝑜𝑡𝑜𝑛
𝜇

=
ℎ𝜈

𝑐
,

ℎ𝜈

𝑐
 𝒏 , where  𝒏 is the unit vector corresponding to the propagation direction (i.e., the direction of the  spatial 

wavevector k =
2𝜋𝜈

𝑐
𝒏 .      The four vector 𝑘𝜇 ≡

2𝜋𝜈

𝑐
, 𝐤  =

2𝜋

ℎ
 𝑝𝑝ℎ𝑜𝑡𝑜𝑛

𝜇
 , is a null  vector , 𝑘𝜇𝑘𝜇 = 0 = 𝑝𝑝ℎ𝑜𝑡𝑜𝑛

𝜇
𝑝𝜇,𝑝ℎ𝑜𝑡𝑜𝑛

• Photon energy: ℰ𝑝ℎ𝑜𝑡𝑜𝑛 = 𝑐𝑝𝑝ℎ𝑜𝑡𝑜𝑛
0  =ℎ𝜈  

Kinetic term



Compton scattering

We can then consider the direct interaction between an electron and a single photon, assuming that they will exchange energy in such a 

way to conserve the total four-momentum  (𝑖 and 𝑓 labelling initial and final values):

𝑝𝑝ℎ𝑜𝑡𝑜𝑛,𝑖
𝜇

+ 𝑝𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛,𝑖
𝜇

=  𝑝𝑝ℎ𝑜𝑡𝑜𝑛,𝑓
𝜇

+ 𝑝𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛,𝑓
𝜇

When the target electron is initially at rest, the 4-momentum conservation gives: 

 ℎ𝜈𝑖 + 𝑚𝑒𝑐2 = ℎ𝜈𝑓 + 𝑚𝑒
2𝑐4 + 𝑝𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛,𝑓 

2 𝑐2

ℎ𝜈𝑖

𝑐
 𝒏 𝑖  =

ℎ𝜈𝑓

𝑐
 𝒏 𝑓 +𝐩𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛,𝑓 

Being 𝒏 𝑖 ∙ 𝒏 𝑓 = cos𝚯, one writes an equation for 𝑝𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛,𝑓
2  . Than take  the square of the energy conservation equation. With a little 

algebra, we obtain:      

 𝜆𝑓 − 𝜆𝑖 =
ℎ

𝑚𝑒𝑐
1 − cos𝚯 Incident photon, 𝜆𝑖

scattered photon, 𝜆𝑓

scattered electron, 𝐯

Target
electron

𝚯 = scattering angle
𝒏𝑖

𝒏𝑓

(energy conservation) 

(spatial momentum conservation)

𝜆𝐶 =
ℎ

𝑚𝑒𝑐
= 0.02426 Å

𝜆𝑓 − 𝜆𝑖 = 𝜆𝐶 1 − cos𝚯

Compton wavelength for electrons



Compton scattering

The energy of the scattered photon is    ℎ𝜈𝑓 =
ℎ𝜈𝑖

1+ℎ𝜈𝑖(1−cos𝚯)/𝑚𝑒𝑐2    ,  function of  initial energy photon and  scattering angle. 

Defining the unitless photon  energies as  𝜖 ≡
ℎ𝜈

𝑚𝑒𝑐2  , 𝜖𝑓 =
𝜖𝑖

1+𝜖𝑖(1−cos𝚯)
                Energy loss ↔ scattering angle 

Note that:

• The photon always looses energy, unless 𝚯 = 0   (in which case 𝜖𝑓 = 𝜖𝑖  ). 

The photon energy shift arises from the recoil of the electron initially at 

rest, and becomes  significant only when 𝝐𝒊 ≳1 : quantum mechanical 

effect. 𝐸𝑟𝑒𝑐𝑜𝑖𝑙 =  (𝜖𝑓− 𝜖𝑖) 𝑚𝑒𝑐2 . It is a heating mechanism. 

• For 𝝐𝒊 ≫ 𝟏  (𝜆𝑖 ≪ 𝜆𝐶) and cos𝚯 ≠ 1 , 𝜖𝑓 → (1 − cos𝚯)−1 . In this case, the 

scattered photons carries information about the scattering angle, rather 

than about the initial energy. E.g., for 𝚯 = 𝜋 and 𝜖𝑖  ≫ 1 , the final energy 

is 𝜖𝑓 = ½  , which is ℎ𝜈𝑓=1/2 𝑚𝑒𝑐2 = 255 keV. 

• The scattering is close to elastic when  𝝐𝒊 ≪ 𝟏  (𝜖𝑓~𝜖𝑖), i.e. ℎ𝜈 ≪  𝑚𝑒𝑐2 

(𝜆𝑖 ≫  𝜆𝐶 , ) (Thomson limit).   Tiny electron recoil, ~ elastic scattering. 

𝜖𝑓/𝜖𝑖 𝜉 = 𝜖𝑖

𝜖𝑖 = 1

𝜖𝑖 ≫ 1

𝚯 = 0 , forward elastic scattering

𝝐𝒊 ≪ 𝟏 

1

(2 𝜖𝑖)



Compton scattering- Energy transfer

Example. Energy of the scattered 
photon vs scattering angle, for 
different initial photon energies.  

3.0

ℎ𝜈𝑖 = 0,5 MeV = 𝑚𝑒𝑐2

(Hard X – Gamma)



The maximum recoil energy is obtained setting  𝜃 = 𝜋  (full backscatter), when 𝜖𝑓 is minimum, thus maximizing the energy transferred 
to the electron  : 

𝐸𝑚𝑎𝑥 =
2ℎ𝜈𝑖

2+
𝑚𝑒𝑐2

ℎ𝜈𝑖

       This maximum energy is called «Compton edge». 

Compton scattering- Energy transfer

The Compton edge is a feature of the spectrograph

that results in a scintillator (or in a detector), from

the Compton scattering of photons with a scattering

angle of 180° , which escape the detector. When a

gamma ray scatters off the detector and escapes, only

a fraction of its initial energy can be deposited in the

sensitive layer of the detector. The scattering angle

determines how much energy will be deposited in the

detector. This leads to a spectrum of energies. The

Compton edge energy corresponds to full

backscattered photon.



Compton scattering- The Klein-Nishina cross section
When diffusion involves a large number of electrons and/or photons, the problem has to be treated statistically, studying the effects of multiple 

scatterings weighted by their cross section. Polarization of the incoming radiation makes the scattered radiation no longer isotropic with

respect to the azimuthal angle 𝜑. The differential cross section is in the ERF and it is given by the Klein-Nishina formula, averaged over 𝜑:

𝑑2𝜎𝐾𝑁

𝑑𝜖𝑓
′ 𝑑Ω𝑓

′ =
3

16 𝜋
𝜎𝑇

𝜖𝑓
′

𝜖𝑖
′

2
𝜖𝑖

′

𝜖𝑓
′ +

𝜖𝑓
′

𝜖𝑖
′ −  sin2𝚯′ 𝛿(𝜖𝑓

′ − 𝜖∗)         ,                    cos 𝚯′ = 𝐤𝑖
′ ∙ 𝐤𝑓

′ ,     with 𝜎𝑇=
8

3
𝜋𝑟0

2= 6.65× 10−25cm2 (Thomson)                                   

Here 𝜖𝑓
′  is not arbitrary , constrained by the energy conservation to 𝜖𝑖

′ and 𝐤𝑖
′: 𝜖∗=

𝜖𝑖
′

1+𝜖𝑖
′(1−cos𝚯′)

     .   

𝑑𝜎𝐾𝑁(𝜖𝑖
′,𝚯′)

𝑑Ω𝑓
′ =

3

16 𝜋

𝜎𝑇

1+𝜖𝑖
′ 1−cos𝚯′ 2 𝜖𝑖

′ 1 − cos𝚯′ +
1

1+𝜖𝑖
′ 1−cos𝚯′ + cos2𝚯′ . 

Now only independent quantities appear.

• The cross section becomes smaller for increasing 𝜖𝑖
′. 

• For 𝚯′= 0, it coincides with   
𝑑𝜎𝑇

𝑑Ω𝑓
    (𝜖𝑓

′  = 𝜖𝑖
′ for any 𝜖𝑖

′ ). However 

this corresponds to a vanishingly small number of interactions, as 

𝑑Ω𝑓
′ → 0 for 𝚯′  → 0.

• Full backscatter is more probable for low energy photons. 

(d
𝜎

𝐾
𝑁

/𝑑
Ω

)/
𝜎

𝑇

3/(8π)

𝜖𝑖
′~0

𝜖𝑖
′~0.1

𝜖𝑖
′ = 1

𝜖𝑖
′ = 5

𝚯′



Integrating over the solid angle, we obtain the total Klein-Nishina cross-section:

𝜎𝐾𝑁 =
3

4
𝜎𝑇

1+𝜖𝑖

𝜖𝑖
3

2𝜖𝑖(1+𝜖𝑖)

1+2𝜖𝑖
 − ln(1 + 2𝜖𝑖)  +

1

2𝜖𝑖
ln 1 + 2𝜖𝑖 −

1+3𝜖𝑖

(1+2𝜖𝑖)2

Asymptotic limits:

𝜎𝐾𝑁 ≅  𝜎𝑇 1 − 2𝜖𝑖 +
26𝜖𝑖

2

5
+ ⋯  ; 𝜖𝑖 ≪ 1 

𝜎𝐾𝑁 ≅
3

8𝜖𝑖
𝜎𝑇 ln 2𝜖𝑖 +

1

2
; 𝜖𝑖 ≫ 1 

Compton scattering- The Klein-Nishina cross section

0.01 0.10 1.00 10.00
𝜖𝑖

Thomson limit: ∝ −2𝜖𝑖

We recognize a Thomson limit and a Klein- Nishina regime.   

Notice that, for scattering by non relativistic electrons, 

 𝜖𝑖 = 1 ↔ ℎ𝜈𝑖 =  𝑚𝑒𝑐2 = 0.511 MeV

i.e.  𝜈𝑖=
0,511×106 eV

4.1×10−15 eV 𝑠
  ~ 1020Hz =  108 THz  (Hard X/Gamma).

Klein Nishina cross section is smaller than 𝜎𝑇 , especially at 

high frequencies: scattering looses efficiency when photons 

are too energetic. 

∝ 𝜖𝑖
−1 ln 2𝜖𝑖



At which temperature is an electron relativistic? 

Non relativistic electrons  if   
v2

𝑐2 ≪ 1 .  

 In the non-relativistic Maxwellian distribution, the average kinetic  energy is   

1

2
𝑚𝑒v2 =

3

2
𝑘𝑇𝑒 ,      thus v2= 3𝑘𝑇𝑒/𝑚𝑒 . 

We have 𝛽2 =
v2

𝑐2 ≪ 1 for electron temperatures   𝑇𝑒 ≪
𝑚𝑒𝑐2

3𝑘
~6 × 109 K,   or 

𝑘𝑇𝑒 ≪ 𝑚𝑒𝑐2 = 0.511 MeV                      𝑇𝑒≪ 109 K

Then 𝛾~1 and 𝛾2𝛽2 ~ 1 ∙
v2

𝑐2 =
3𝑘𝑇𝑒

𝑚𝑒𝑐2 ≪ 1. 

Relativistic electrons: 
in a relativistic thermal Maxwell–Jüttner distribution, 

𝛾2𝛽2 =  12
𝑘𝑇𝑒

𝑚𝑒𝑐2

2
 ,  𝑇𝑒≫ 109 K

 



cos 𝜃′ =
cos 𝜃−𝛽

1−𝛽cos𝜃
  ;   

  sin 𝜃′ =
sin 𝜃

𝛾(1−𝛽cos𝜃)

v

Lab frame Σ
ERF Σ′

• Even if the incident radiation is isotropic in the LAB,  
the relativistic electron sees most photons arriving 
from ahead (ERF),  beamed in a cone of aperture ~2/𝛾 
. 

• The reverse is also true: even if the scattering (or  the 
emission)  by a relativistic electron is isotropic in the 
ERF, an observer in the LAB will see the scattered (or 
emitted) radiation as  beamed in a cone of aperture 
~2/𝛾 . 

cos 𝜃 =
cos 𝜃′+𝛽

1+𝛽cos𝜃′  ;   

  sin 𝜃 =
sin 𝜃′

𝛾(1+𝛽cos𝜃′)

Lab frame Σ   

ERF Σ′ vx′ axis

v

𝜃   LAB
x′

𝜃′     ERF



Relativistic Compton scattering

When the electron is not at rest in the LAB, but has an energy greater than the typical photon energy, there can be a transfer of energy 

from the electron to the photon . This process is called inverse Compton scattering.  

We introduce the Electron Rest Frame Σ′ , where the electron is initially at rest, and the Laboratory Frame Σ. 

Lorentz transformation are needed to describe how physical quantities change moving from one reference to the other.

𝜖𝑖

𝜖𝑓

𝜑𝑖

𝜑𝑓

𝜃𝑓

𝜃𝑖

Θ

v

𝜖𝑖
′

𝜖𝑓
′

𝜑𝑖

𝜑𝑓

𝜃𝑓
′

𝜃𝑖
′

Θ’

Laboratory frame Σ

Electron rest frame Σ′



Relativistic Compton scattering

𝜖𝑖

𝜖𝑓

𝜑𝑖

𝜑𝑓

𝜃𝑓

𝜃𝑖

𝚯

v

𝜖𝑖
′

𝜖𝑓
′

𝜑𝑖
′

𝜑𝑓
′

𝜃𝑓
′

𝜃𝑖
′

𝚯’

Laboratory frame Σ
Electron rest frame Σ′

The photon energy transforms according to Doppler shift : 

𝜖′ =  𝛾𝜖(1 − 𝛽 cos𝜃)                          𝜃= angle between electron velocity  and photon direction.

𝜖 = 𝛾𝜖′(1 + 𝛽cos𝜃′) 

The Lorentz transformations dictate the angle beaming: 

cos 𝜃′ =
cos 𝜃−𝛽

1−𝛽cos𝜃
  ;     sin 𝜃′ =

sin 𝜃

𝛾(1−𝛽cos𝜃)
.      The inverse formulae can be obtained inverting 𝛽 with −𝛽 and the angle 𝜃 with 𝜃′. 

Notice that for 𝛾 ≫ 1 , 𝜃′≈ 0 unless 𝜃 = 0 (photons that, in the LAB, travel  along the electron direction): in the ERF, a relativistic 

electron sees most photons arriving from ahead,  beamed in a cone of aperture ~2/𝛾 . 

The scattering angle is 𝚯 (or 𝚯′)



Relativistic Compton scattering

Photons that in the LAB frame come from every direction, in the ERF are beamed in a tiny cone of aperture ~ 2/𝛾 . 

v

Lab frame
ERF

The 4-momentum conservation equations in the ERF , Σ′ are: 

ቊ
 𝜖𝑖

′ + 1 =  𝜖𝑓
′ + 𝛾

 𝜖𝑖
′𝒏𝑖

′ =𝜖𝑓
′ 𝒏𝑓

′ + 𝛾𝐯/𝑐 

Energy conservation

Momentum conservation

Taking the square of the second equation and  using 𝛾2𝛽2 =  𝛾2 − 1, we obtain the relation between the photon energy in the ERF before

 and after the scattering with the electron:

𝜖𝑓
′ = 

𝜖𝑖
′

1+𝜖𝑖
′ (1−cos 𝜣′)

≈ 𝜖𝑖
′ 1 − 𝜖𝑖

′ (1 − cos 𝚯′) ≈ 𝜖𝑖
′    for 𝜖𝑖

′ ≪ 1 (Thomson limit, leading to 𝜖𝑓
′  ≈ 𝜖𝑖

′ ) 

Where cos 𝚯′ = cos𝜃𝑖
′ cos𝜃𝑓

′  + sin 𝜃𝑖
′ sin 𝜃𝑓

′  sin (𝜑𝑖
′ − 𝜑𝑓

′ )



Relativistic Compton scattering

The Thomson limit in the ERF corresponds to the condition 𝜖𝑓
′  =  𝜖𝑖

′ . However, this does not imply that the electron is not exchanging energy 

with the photon in the LAB frame. Indeed, if we transform back to the LAB frame, 

𝜖𝑓 = 𝛾𝜖𝑓
′ (1 + 𝛽 cos 𝜃𝑓

′ ) = 𝛾𝜖𝑖
′(1 + 𝛽 cos 𝜃𝑓

′ ) 1 − 𝜖𝑖
′(1 − cos 𝚯′)  

And using again the Lorentz transformation for the energies, 

𝜖𝑓= 𝛾2𝜖𝑖(1 − 𝛽 cos 𝜃𝑖)(1 + 𝛽 cos 𝜃𝑓
′ ) 1 − 𝜖𝑖

′(1 − cos 𝚯′)

≈ 𝛾2 𝜖𝑖(1 − 𝛽 cos 𝜃𝑖)(1 + 𝛽 cos 𝜃𝑓
′ )      in the Thomson limit 𝜖𝑖

′ ≪ 1 (i.e., when in the ERF the photon energy is  ℎ𝜈𝑖
′ ≪  𝑚𝑒𝑐2 )

These equations show that , when in the LAB frame there is a  collision between the photon and an ultrarelativistic electron (𝛾 ≫ 1), 

the energy of the diffuse photon is much different that its initial energy, even in the ERF Thomson limit. 

Very useful formula: it can be shown that, properly averaging over the angles for an ISOTROPIC distribution of photons in the LAB 

frame, in the Thomson limit , 

Energy absorbed by the electron recoil in the ERF
= Δ𝜖′(Quantum mechanical effect) 

Relativistic boost effect 

on average, an isotropic radiation is boosted to 
frequencies higher by a factor 𝛾2. 

𝜖𝑓 − 𝜖𝑖 ≈
4

3
𝛾2𝜖𝑖 Δ𝜈 ≈

4

3
𝛾2𝜈𝑖  or



• The maximum energy that can be gained is    𝜖𝑓
𝑚𝑎𝑥 =  𝛾2 𝜖𝑖 1 + 𝛽 2 = 

1+𝛽

1−𝛽
 𝜖𝑖     ,       

for 𝜃𝑖 = 𝜋 , 𝜃𝑓
′ = 0 :  the photon is blue-shifted (face-on collision).

 For 𝛾 ≫ 1 𝛽~1 ,  𝜖𝑓
𝑚𝑎𝑥 ≅  4𝛾2 𝜖𝑖  

 (e.g., if 𝛾 = 100, a radio photon is blueshifted in the optical, 4𝛾2 =4 × 104 ) 

• The minimum energy of the scattered photon is for 𝜃𝑖 = 0 , 𝜃𝑓
′ = 𝜋  : the photon 

is redshifted (tail-on collision).  In this case, 

       𝜖𝑓
𝑚𝑖𝑛 =  𝛾2 𝜖𝑖 1 − 𝛽 2  = 

1

1−𝛽2 𝜖𝑖 1 − 𝛽 2 = 
𝜖𝑖 1−𝛽 2

(1+𝛽)(1−𝛽)
 = 𝜖𝑖

1−𝛽

1+𝛽
   = 

𝜖𝑖

𝛾2 1+𝛽 2 →
𝜖𝑖

4𝛾2  

       (for ultrarel. electrons, 𝛽~1 )

• The extrema of the energy variation in a single collision Δ𝜖 = (𝜖𝑓 − 𝜖𝑖) are: 

−2|𝛽|

1+|𝛽|
≤

Δ𝜖

𝜖𝑖
 ≤

2|𝛽|

1−|𝛽|
         

 

𝜖𝑖

𝜖𝑓

𝑒−

𝜖𝑓= 4𝛾2𝜖𝑖 

Head on, 𝜃𝑖= 𝜋

𝜖𝑖

𝜖𝑓

𝑒−

𝜖𝑓 = 𝜖𝑖 /4𝛾2

Tail on, 𝜃𝑖= 0

LAB frame

However, the values inside this interval do not have the same probability. The general  distribution of the scattered  photon energies is the  Compton 

spectrum.  The final shape depends both on the properties of the incident radiation and on  the velocity distribution of the electrons in the gas.

Extrema of the energy exchange in Thomson limit

Notice: Δ𝜖 can be either 
Positive or negative.  

(*) We used 1 − 𝛽 1 + 𝛽 = 𝛾−2

(*)



Relativistic Compton scattering – how to find the spectrum

Finding the relativistic Compton spectrum corresponds to determine how many photons there are, in the diffuse radiation, with energy 𝜖𝑓 , for each 𝜖𝑓. 

• To obtain the spectrum of the diffuse radiation,  we should first know the spectrum of the incident radiation. 

• Then, for the single photon 𝜖𝑖  scattered by a single electron with Lorentz factor 𝛾 ,  we know the LAB energy of the scattered photon as a function of its 

initial energy and of incident and scattering angle:

 𝜖𝑓= 𝛾2 𝜖𝑖(1 − 𝛽 cos 𝜃𝑖)(1 + 𝛽 cos 𝜃𝑓
′ ) 1 − 𝜖𝑖

′(1 − cos 𝚯′)         =

• The production of an 𝜖𝑓 (from an 𝜖𝑖  photon) from electron scattering  has probability proportional to the (ERF) Klein Nishina differential cross 

section: it depends on the energy of the incident photon in the ERF (𝜖𝑖
′) and on its initial/final directions in the ERF (𝚯′). 

• We integrate over the distribution of initial photon energies 𝜖𝑖  and the  directions 𝜃𝑖  of the incident radiation in the LAB, and over all the directions 𝜃𝑓
′  

of the diffuse radiation in the ERF, weighted with the Klein Nishina cross section (*).

• Finally, we should integrate over the distribution of electron velocities. Usually the electrons are considered isotropically distributed. 

energy of a scattered photon wich collides with  the 

electron with ϵi, θi and is   scattered as ϵf, θf , 𝚯. 

(*) Applying the Klein-Nishina cross section, we are actually assuming that each photon undergoes a single scattering. 



𝑑𝑁(𝐤𝑖→𝐤𝑓)

𝑑𝑡
 = 

1

𝛾

𝑑𝑁(𝐤𝑖
′→𝐤𝑓

′ )

𝑑𝑡′  = 
1

𝛾

𝑑𝑁(𝐤𝑖
′)∙𝑃𝑏(𝐤𝑖

′→𝐤𝑓
′ )

𝑑𝑡′

𝑃𝑏(𝐤𝑖
′ → 𝐤𝑓

′ ) = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 × 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑟𝑒𝑎(𝚯′)

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 A
=

1×𝑑𝜎𝐾𝑁

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 A
 = 

𝑑𝜎𝐾𝑁

𝑑𝑉′ /𝑐𝑑𝑡′ 

𝑑𝑁(𝐤𝑖→𝐤𝑓)

𝑑𝑡
 = 

1

𝛾

𝑑𝑁 𝐤𝑖
′ 𝑐𝑑𝜎𝐾𝑁

𝑑𝑉′  = 
1

𝛾
𝑑𝑛′ 𝐤𝑖

′ 𝑐 𝑑𝜎𝐾𝑁= 
1

𝛾
𝑑𝑛′ 𝐤𝑖

′ 𝑐
𝑑𝜎𝐾𝑁(𝜖𝑖

′,𝚯′)

𝑑Ω𝑓
′  𝑑Ω𝑓

′

cos𝚯′ = 𝐤𝑖
′ ∙ 𝐤𝑓

′     ERF

𝐤𝑖
′

𝐤𝑓
′

𝑑Ω𝑓
′

ϴ′

A 𝑑𝜎𝐾𝑁

𝑑Ω𝑖
′

Consider a photon distribution in the LAB frame with number density d𝑛 𝐤𝑖 =
dN(𝐤𝑖)

dV
.  Since dN  and the 4-volume element dVdt are both Lorentz 

invariant, the number density d𝑛 𝐤𝑖  must transform as a time (i.e., as an energy) when going from the LAB to the ERF.  Using the Doppler formula 

for energy transformation, we have then: 

d𝑛′  𝐤𝑖′  = d𝑛 𝐤𝑖  𝛾(1 − 𝛽𝑐𝑜𝑠𝜃𝑖)     (𝜃𝑖= angle between electron velocity  and incident photon direction, in LAB frame) 

d𝑛′ 𝜖𝑖
′, Ω𝑖

′ = 𝑓′ 𝜖𝑖
′, Ω𝑖

′  d𝜖𝑖
′ 𝑑Ω𝑖

′  = d𝑛 𝜖𝑖 , Ω𝑖  𝛾 (1 − 𝛽𝑐𝑜𝑠𝜃) = 𝑓 𝜖𝑖 , Ω𝑖  𝛾 (1 − 𝛽𝑐𝑜𝑠𝜃𝑖)d𝜖𝑖dΩ𝑖

𝑑𝑁(𝐤𝑖→𝐤𝑓)

𝑑𝑡
 = 

1

𝛾
 𝑓 𝜖𝑖 , Ω𝑖  𝛾(1 − 𝛽𝑐𝑜𝑠𝜃𝑖) 𝑐d𝜖𝑖dΩ𝑖

𝑑𝜎𝐾𝑁(𝜖𝑖
′,𝚯′)

𝑑Ω𝑓
′  𝑑Ω𝑓

′     ;     
𝑑𝑁(𝜖𝑖→𝜖𝑓)

d𝜖𝑖𝑑𝑡
 = 

𝑑𝑁(𝐤𝑖→𝐤𝑓)

dΩ𝑖𝑑Ω𝑓
′ 𝑑𝑡

 dΩ𝑖𝑑Ω𝑓
′  

 

The total scattering rate is
𝑑𝑁𝑠

𝑑𝑡
 = 

𝑑𝑁(𝜖𝑖→𝜖𝑓)

d𝜖𝑖𝑑𝑡
 d𝜖𝑖      (integral over the incident radiation field energies).

 In the Thomson limit,   
𝑑𝑁𝑠

𝑑𝑡
 =𝑐𝜎𝑇𝑛    where 𝑛 is the number density of photons, integrated over all 𝜖𝑖  (LAB frame). 

incident angles  in the LAB
Diffusion angles in the ERF 

Number density

Incident radiation field

Scattering rate (single relativistic electron on  radiation field)



We found the scattering rate:     
𝑑𝑁𝑠

𝑑𝑡
 = 

𝑑𝑁(𝜖𝑖→𝜖𝑓)

d𝜖𝑖𝑑𝑡
 d𝜖𝑖 =  𝑓 𝜖𝑖 , Ω𝑖  (1 − 𝛽𝑐𝑜𝑠𝜃𝑖) 𝑐d𝜖𝑖dΩ𝑖

𝑑𝜎𝐾𝑁(𝜖𝑖
′,𝚯′)

𝑑Ω𝑓
′  𝑑Ω𝑓

′                    (*)

The power contained in the scattered radiation is , in its general form: 

𝑑𝐸

𝑑𝑡 
=  

𝑑𝑁(𝜖𝑖→𝜖𝑓)

d𝜖𝑖𝑑𝑡
 ∙ 𝜖𝑓 (𝜖𝑖)d𝜖𝑖    Energy of the scattered photons, weighted with the number of scatters per unit time tℎ𝑎𝑡 𝑙𝑒𝑎𝑑𝑠 𝜖𝑖 → 𝜖𝑓

Thomson limit (neglect recoil in the ERF,   ℎ𝜈𝑖
′ ≪ 𝑚𝑒𝑐2 ), 𝜖𝑓 𝜖𝑖 =  𝛾2 𝜖𝑖(1 − 𝛽 cos 𝜃𝑖)(1 + 𝛽 cos 𝜃𝑓

′ ) .  

• Lorentz angle transformation:  cos 𝜃′ =
cos 𝜃−𝛽

1−𝛽cos𝜃
        ⇒ 1 + 𝛽cos𝜃𝑓

′ = 1 + 𝛽 ∙
cos𝜃𝑓−𝛽

1−𝛽cos𝜃𝑓
= 

 =  
 1−𝛽cos𝜃𝑓+𝛽cos𝜃𝑓−𝛽2

1−𝛽cos𝜃𝑓
=

𝛾−2

1−𝛽cos𝜃𝑓
      .      In (*)  we use 𝜎𝑇 ,  independent on 𝜖𝑖

    :  ′
𝑑𝜎𝑇

𝑑Ω𝑓
′  𝑑Ω𝑓

′ =  𝜎𝑇 ;   

⇒
𝑑𝐸

𝑑𝑡 
 =  𝛾2 𝜖𝑖 𝑓 𝜖𝑖 , Ω𝑖  ∙

(1−𝛽𝑐𝑜𝑠𝜃𝑖)2

 𝛾2 1−𝛽cos𝜃𝑓
 𝑐𝜎𝑇 d𝜖𝑖dΩ𝑖  .   

In the ERF, Thomson scattering has a backward-forward symmetry, thus  𝜃𝑓
′ =

𝜋

2
  . 

Then, cos𝜃𝑓 =
cos𝜃𝑓

′ +𝛽

1+𝛽 cos𝜃𝑓
′  

= 𝛽 , leading to 1 − 𝛽cos𝜃𝑓 = 1 − 𝛽2 = 𝛾−2. 

If the incoming photons are isotropically distributed,  1) − 𝛽𝑐𝑜𝑠𝜃𝑖)2 dΩ𝑖  = 1 +
𝛽2

3
  . 

⇒  
𝑑𝐸

𝑑𝑡 
= 1 +

𝛽2

3
 𝛾2𝑐𝜎𝑇  U𝑟       ← power in the scattered radiation in Thomson limit.

                                                                                     
 with U𝑟 =   𝜖𝑖  𝑓 𝜖𝑖  d𝜖𝑖   = radiation  energy density before scattering, in the LAB. 

Relativistic Compton spectrum   

IC spectrum by electrons of different 𝛾 on
isotropic, monochromatic radiation of
initial energy 𝜖𝑖    (from Ghisellini Fig. 5.8). 
Note: All spectra are normalized, just for
comparison of shift in energy!

𝜖𝑓/𝜖𝑖
downscattering



In the LAB, the rate of energy transferred by the electron to the scattered photons is: 

𝑑𝐸𝑠

𝑑𝑡
=  (𝜖𝑓 − 𝜖𝑖) ∙

𝑑𝑁(𝐤𝑖→𝐤𝑓)

𝑑𝑡dΩ𝑖𝑑Ω𝑓
′  𝑑𝜖𝑖

 𝑑Ω𝑖𝑑Ω𝑓
′ 𝑑𝜖𝑖  =   (𝜖𝑓 − 𝜖𝑖) ∙

𝑑𝑁(𝜖𝑖→𝜖𝑓)

𝑑𝑡d𝜖𝑖
 𝑑𝜖𝑖   

The mathematical derivation is quite complex, and, for an isotropic photon distribution,  brings to the result:

𝑑𝐸𝑠

𝑑𝑡
= 𝑐 𝜎𝑇

4

3
𝛾2𝛽2 − 𝛾3 𝜖𝑖

2

𝜖𝑖
 U𝑟 

where 𝜖𝑖
2  is the average value of 𝜖𝑖  weighted over the isotropic initial photon distribution (LAB) (*) : 𝜖𝑖

2 =
 𝜖𝑖

2𝑓𝑖𝑠𝑜𝑑𝜖𝑖 

 𝑓𝑖𝑠𝑜𝑑𝜖𝑖 

Thomson limit and isotropic incident radiation:  energy lost by the electron is the power of the scattered radiation minus the initial power of the 

radiation eventually scattered, everything averaged over all the angles: 

𝑑𝐸𝑠

𝑑𝑡
 = 

𝑑𝐸

𝑑𝑡 
− c𝜎𝑇U𝑟 = 1 +

𝛽2

3
 𝛾2𝑐𝜎𝑇  U𝑟 − c𝜎𝑇U𝑟= c𝜎𝑇U𝑟 𝛾2 1 +

𝛽2

3
− 1 = c𝜎𝑇U𝑟 𝛾2 − 1 +

𝛾2𝛽2

3
 =

4

3
 c𝜎𝑇 𝛾2𝛽2 U𝑟 > 0       (we used   𝛾2 − 1 = 𝛾2𝛽2 ) 

(*)A photon distribution which is isotropic in the LAB, is not isotropic in the ERF of a relativistic electron.

Energy variation in 
a single scattering

Energy exchange rate
This was obtained using the Klein-Nishina cross 
section, valid for the single scattering. It can be 
used only for low density  plasma!

Energy exchange rate   (single relativistic electron on  radiation field)

number of scatters per unit time that leads ϵi → ϵf

Power always provided by the relativistic  electrons to the seed 
photons [energy/time] in the Thomson limit: INVERSE 
COMPTON

Power in the 
scattered radiation

Initial power 



Dividing the exact value of
𝑑𝐸𝑠

𝑑𝑡
 by the number of scatterings

𝑑𝑁𝑠

𝑑𝑡
 , we obtain the average fraction of energy exchanged in the collisions to the second 

order in 𝝐𝒊  (neglecting terms of higher orders in 𝜖𝑖)

𝜖𝑓−𝜖𝑖

𝜖𝑖
 =

4

3
𝛾2𝛽2 −𝛾3 𝜖𝑖

2

𝜖𝑖
       ⇒

The sign depends on 𝛾, but also on the photon spectrum through the ratio
𝜖𝑖

2

𝜖𝑖
 . For any reasonable, isotropic distribution of photons,

𝜖𝑖
2

𝜖𝑖
  = 𝜖𝑖 .   

These quantities are in the LAB. The fractional change is:

𝜖𝑓−𝜖𝑖

𝜖𝑖
 ~𝛾2𝛽2 −𝛾3 𝜖𝑖  = 𝛾2 (𝛽2 − γ 𝜖𝑖  )      opposition of relativistic boosting (photon heating) and quantum-mechanical electron recoil 

(photon cooling).

• Non relativistic electrons: for 𝛽2~0, 𝛾~1 ,  (0−γ 𝜖𝑖 ) < 0 for any 𝝐𝒊  (direct Compton: electrons recoil, photons cool down, also for ℎ𝜈𝑖 < 𝑚𝑒𝑐2 )

• Ultrarelativistic electrons: for 𝛽2~1 , 1 − 𝛾
ℎ𝜈𝑖

𝑚𝑒𝑐2 < 0 for    γ ℎ𝜈𝑖 > 𝑚𝑒𝑐2 : electrons recoil only if the incoming photons have energy larger than 

their rest energy. 

Fractional photon energy change: Inverse Compton

The energy released by the electron can be positive (Inverse Compton) or negative (direct Compton).

Quantum-mechanical recoil term, 
always subtracting energy to the photons:
Radiation cooling 

Relativistic boost,
Radiation heating

Incident photon energy ℎ𝜈𝑖
′  and electron energy as seen 

in the ERF!



Excursus on Thermal equilibrium in a diffusion-dominated cloud. 

Our results outline an interesting thermodynamical property of the radiation contained in a diffusion-dominated cloud. Suppose the electrons in the 

cloud are in thermal equilibrium at Te , but not in equilibrium with the radiation.  Assume for simplicity that 𝑘𝑇𝑒 ≪ 𝑚𝑒𝑐2 (non relativistic electrons). 

From the non-relativistic Maxwellian distribution, the average kinetic  energy is 3𝑘𝑇𝑒/2 (thus v2= 3𝑘𝑇𝑒/𝑚𝑒) : then 𝛾~1 and 𝛾2𝛽2 =
𝑣2

𝑐2  =
3𝑘𝑇𝑒

𝑚𝑒𝑐2 ≪ 1        

    ⇒  
𝜖𝑓−𝜖𝑖

𝜖𝑖
 =

4

3
𝛾2𝛽2 −𝛾3 𝜖𝑖

2

𝜖𝑖
  =

4𝑘𝑇𝑒

𝑚𝑒𝑐2  −
𝜖𝑖

2

𝜖𝑖
         ⇒ transfer of energy from electrons to photons when 1≫

4𝑘𝑇𝑒

𝑚𝑒𝑐2 >
𝜖𝑖

2

𝜖𝑖
     ,  and viceversa.

Photons blueshifted (IC) when their energy is 𝜖𝑖 = ℎ𝜈𝑖/𝑚𝑒𝑐2 ≪
4𝑘𝑇𝑒

𝑚𝑒𝑐2  , i.e. ℎ𝜈𝑖 ≪ 𝑘𝑇𝑒  ≪ 𝑚𝑒𝑐2.  Recoil negligible. The transfer ceases when 

𝜖𝑖
2

𝜖𝑖
 =

4𝑘𝑇𝑒

𝑚𝑒𝑐2 which corresponds to the value of
𝜖𝑖

2

𝜖𝑖
 = 𝜖𝑖 = u (energy density)  for a Wien distribution with very negative chemical potential ! 

So the thermal equilibrium between electrons and photons is possible only if photons are forced to a Wien with 𝜇 ≪ 0. A similar results also hold for 

ultra relativistic electrons.



For isotropic radiation and in the Thomson limit, note the similarity  between the Compton and Synchrotron energy loss rates:

𝑃𝐶𝑜𝑚𝑝𝑡𝑜𝑛 =
4

3
 c𝜎𝑇  𝛾2𝛽2 U𝑟  𝑃𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑡𝑟𝑜𝑛 =

4

3
 c𝜎𝑇  𝛾2𝛽2 U𝐵       (radiation and magnetic energy densities)

If the relativistic electrons are in a region with radiation and magnetic fields, they will emit both syncrotron and Inverse Compton. The ratio of the 

two luminosities are given by the ratio :              
𝐿𝑠𝑦𝑛

𝐿𝐼𝐶
=

𝑃𝑠𝑦𝑛

𝑃𝐼𝐶
=

𝑈𝐵

𝑈𝑟

This is true unless one of the two processes is inhibited, for example:

• At low frequencies (photon energies),  synchrotron self-absorption compensates synchrotron emission;

• At high frequencies, electrons scatter in the Klein- Nishina regime, where the scattering is quite ineffective: the scattering decreases as the IC 

Compton emission does.   

Their contribution sum up:   energy loss =
𝑑𝐸

𝑑𝑡
= 

4

3
 c𝜎𝑇  𝛾2𝛽2 (𝑈𝑟 + 𝑈𝐵) . 

The increased cooling rate implies that the electron radiative lifetime is reduced:

𝑡𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =
𝐸

𝑑𝐸/𝑑𝑡
=

3𝛾𝑚𝑒𝑐2

4𝑐 𝜎𝑇 𝛾2𝛽2 (𝑈𝑟+𝑈𝐵)
≈

5.1 ×105𝑒𝑉 
2.99×1010cm s−1 × 6.65 ×10−25cm2 𝛾(𝑈𝑟+𝑈𝐵)

  = 
2.56×1019 𝑒𝑉 ×3×10−8 𝑦𝑟

𝛾 𝑈𝑟+𝑈𝐵 𝑒𝑉𝑐𝑚−3 𝑐𝑚3 =
7.6×1011 𝑒𝑉 𝑦𝑟

𝛾 𝑈𝑟+𝑈𝐵 𝑒𝑉𝑐𝑚−3 𝑐𝑚3                                         

(we used 𝛾2𝛽2 = 𝛾2 − 1 ~𝛾2 for relativistic electrons) [Typical values of 𝑈𝑟  in Milky Way are 10−3  − 10 eV cm−3]

Similarities with the Synchrotron energy loss. Total cooling time.  



Synchrotron self-Compton radiation results from inverse-Compton scattering of synchrotron radiation by the same relativistic electrons that

produced the synchrotron radiation. : the relativistic electrons that are the source of low energy photons (Synchrotron emission) are also

responsible for Compton scattering these photons to X- and γ-ray energies

In a synchrotron emitting source, the magnetic energy density (B2/8π) must be greater than the photon energy density for synchrotron losses to

dominate over inverse Compton losses.

The requirement for synchrotron losses to dominate (for a spherical, stationary source of luminosity L, radius R, and distance d) is

𝑈𝐵 =
𝐵2

8𝜋
>

𝐿

𝑐4𝜋𝑅2 =
4𝜋𝑑2 𝜈𝑚𝑖𝑛

𝜈𝑚𝑎𝑥 𝑆𝜈𝑑𝜈

𝑐 4𝜋𝑅2   = 𝑈𝑟𝑎𝑑                                (remember 𝑈𝑟𝑎𝑑=
Intensity

c
 ) 

Synchrotron-Self Compton (SSC)

Spherical cloud with radius
R filled with magnetized
relativistic plasma, located
at a distance d from the
observer. The low-energy
synchrotron photons may
be up-scattered by the
relativistic electrons via IC:

R

where the observed flux density for the optically thin part of the synchrotron spectrum 

is a power law, 𝑆𝜈∝ 𝜈−α . 

Assume 𝑠 < 1,  𝜈𝑚𝑎𝑥 ≫ 𝜈𝑚𝑖𝑛  and   𝜈𝑚𝑖𝑛~𝜈𝑎 , where 𝜈𝑎 is the synchrotron self-absorption 

frequency.   Under these assumptions, 

𝜈𝑚𝑖𝑛

𝜈𝑚𝑎𝑥 𝑆𝜈𝑑𝜈 ≈
𝜈𝑚𝑎𝑥𝑆 𝜈𝑚𝑎𝑥

1−𝛼
=

𝜈𝑎𝑆(𝜈𝑎)

1−𝛼

𝜈𝑚𝑎𝑥

𝜈𝑎

1−𝛼
  ;    

 we define 𝑥 =
1

1−𝛼

𝜈𝑚𝑎𝑥

𝜈𝑎

1−𝛼
where 𝑥 is typically of order 10 . 

The requirement can be written     
𝐵2

8𝜋
>

𝜈𝑎

𝑐
 𝑆(𝜈𝑎) 𝑥

𝑑2

𝑅2

d

𝐿

𝑆𝜈



At the self-absorption frequency, the specific flux emerging from the source is approximately 𝜋𝐵𝜈𝑎
, where 𝐵𝜈 is the Planck function.

In an optically thick medium we can use the R-J approximation of the Planck's function, 𝐵𝜈=2𝑘𝑇𝐵
𝜈2

𝑐2

Therefore, the observed flux density is 𝑆(𝜈𝑎) ≈ 𝜋𝐵𝜈𝑎

𝑅2

𝑑2=2𝜋𝑘𝑇𝐵
𝜈𝑎

2

𝑐2

𝑅2

𝑑2 where 𝑘𝑇𝐵 = 2𝑚𝑒𝑐2 𝜋𝜈𝑚𝑒𝑐

3𝑒𝐵

1/2
(**)(see lecture on Synchrotron self absorption)

The requirement for synchrotron to dominate over Compton becomes:
𝐵2

8𝜋
>

2𝜋𝜈𝑎
3

𝑐3  𝑘𝑇𝐵𝑥 ;

combining this with (**) (calculated at 𝜈 = 𝜈𝑎), we eliminate the magnetic field strength. Synchrotron emission dominates over IC if

𝑘𝑇𝐵
5 <

𝑐13𝑚𝑒
6

9𝑒2𝜈𝑎𝑥
 

The ratio of inverse Compton to synchrotron cooling ,
𝐿𝐼𝐶

𝐿𝑠𝑦𝑛
, is proportional to the quantity (𝑥𝜈𝑎𝑇𝐵

5): it is very sensitive to the brightness temperature and

not much else. For typical values of 𝑥 and 𝜈𝑎, the brightness temperature limit to avoid the SSC Compton catastrophe is

⇒  𝑇𝐵 < 1.5 × 1012
𝜈𝑎

109Hz

−1/5 𝑥

10

−1/5

K

Then there is an upper limit of ≈ 1012 K on the brightness temperature of a radio source, typically the compact core of a quasar, for synchrotron losses to

dominate over IC. The “Compton catastrophe” refers to the rapid Compton cooling that would occur if the brightness temperature exceeds this limit.

Synchrotron-Self Compton (SSC)

References : The fact that quasar brightness temperatures do not exceed these sorts of values led Kellerman & Pauliny-Toth, Ap. J., 155, L71 (1969) to propose this
mechanism as the explanation. For a contrary point of view, arguing that the Compton catastrophe is not an important mechanism limiting the brightness temperature,
see Readhead, Ap. J., 426, 51 (1994)

The SSC Catastrophe happens in bright and compact radio sources where relativistic beaming plays a role and enhances the energy density of the radiation field.(e.g. in 
Blazar sources)



Scattering relevant for high density of electrons and photons. The relation
𝑈𝑟𝑎𝑑 𝑃𝑠𝑦𝑛

𝑃𝐼𝐶
= 𝑈𝐵 implies that multiplying the density of relativistic

electrons by some factor 𝑓 multiplies both the synchrotron power 𝑃𝑠𝑦𝑛 and its contribution to Urad by 𝑓, so the SSC power 𝑃𝐼𝐶  is ∝ 𝑓2.

The SSC radiation also contributes to Urad and leads to significant second-order scattering as the SSC contribution to Urad approaches the

synchrotron contribution in compact sources. This runaway positive feedback is a very sensitive function of the source brightness temperature:

IC losses very strongly cool the relativistic electrons if the source brightness temperature exceeds TB∼1012 K in the rest frame of the source.

Synchrotron-Self Compton (SSC)

synchrotron

Synchrotron
Self Compton

CMB

dust

Crab nebula emission from  radio up to TeV Gamma rays.

Synchrotron (peaking near 1019 Hz) and SSC (peaking near
1027 Hz) spectra of Mrk 501 Thin curve : the best-fit SSC
model. Thick points X-ray data and the γ-ray data are
plotted as points with error bars.
The relative heights of the two peaks indicate their relative
contributions to Urad.

Independent on electrons number



Synchrotron-Self Compton (SSC)

synchrotron
Synchrotron
Self Compton

Time variability 
in Blazars



A population of photons that encounters a region containing relativistic free electrons will find its spectrum modified as a result of inverse

Compton scattering, given sufficient optical depth.

If the electrons are on average more (less) energetic than photons, then the photons will on average be up-scattered (down-scattered) to higher

(lower) energies.

If the evolution of the spectrum of the source is dominated by Compton scattering, the process is referred to as Comptonization.

Examples of sources in which such conditions are found include the hot gas in the vicinity of binary X-ray sources, the hot plasmas in the nuclei of

active galaxies, the hot intergalactic gas in clusters of galaxies and the early evolution of the hot primordial plasma.

In a cloud of isotropic electrons, the scattering rate we obtained is still valid.

Key points: 

Effective in rarefied plasma (no significant competing cooling mechanism)

Hot electrons (must transfer energy to low energy photons)

Total number of photons is conserved, i.e. possible BB photon distribution is modified

Equilibrium is achieved in “saturated sources”  (i.e. when, after a number of scatterings,  the energy of the radiation is balanced with that of the 
electrons: hν = 4KT)

Comptonization



We have seen that for a non-relativistic  electron distribution , the energy exchange photon/electron in a single scattering is 

Δℰ

ℰ
 ≡

𝜖𝑓−𝜖𝑖

𝜖𝑖
 =

4

3
𝛾2𝛽2 −𝛾3 𝜖𝑖

2

𝜖𝑖
  =

4𝑘𝑇𝑒

𝑚𝑒𝑐2  −
𝜖𝑖

2

𝜖𝑖
     ~

4𝑘𝑇𝑒

𝑚𝑒𝑐2  − 𝜖𝑖      (**) .

 Suppose that 𝜖𝑖 ≪
4𝑘𝑇𝑒

𝑚𝑒𝑐2   , the fraction of energy gained per scattering is:

Δℰ

ℰ
=

4𝑘𝑇𝑒

𝑚𝑒𝑐2   ⇒ Δℰ =ℰ
4𝑘𝑇𝑒

𝑚𝑒𝑐2   .      The degree to which multiple Compton scattering change the initial photon spectrum is given by a parameter:

 y= (average fractional energy exchange per scattering) × (mean number of scatterings)=
Δℰ

ℰ
 × max (𝜏𝑠, 𝜏𝑠

2 )

The mean number of scattering N is 𝜏𝑠
2 for 𝜏𝑠 ≫ 1, and 𝜏𝑠 otherwise,  from the random walk (*).     

So    y =
4𝑘𝑇𝑒

𝑚𝑒𝑐2 max 𝜏𝑠, 𝜏𝑠
2       .    After N scatterings, the photon energy will be ℰ 𝑁 =  ℇ𝑖𝑒

𝑁
4𝑘𝑇𝑒
𝑚𝑒𝑐2 = ℇ𝑖𝑒𝑦  .

• Saturation: high optical depth. 

When ℰ 𝑁 =
4𝑘𝑇𝑒

𝑚𝑒𝑐2 ,  from (**), the photon stops gaining energy, and Comptonization is said to be saturated. 

This thermal equilibrium occours at a critical value of y corresponding to a critical value of 𝜏𝑠 ≫ 1. 

4𝑘𝑇𝑒

𝑚𝑒𝑐2  ∙
1

ℇ𝑖
 = 𝑒𝑦𝑐𝑟𝑖𝑡     or 𝜏𝑐𝑟𝑖𝑡=

𝑚𝑒𝑐2

4𝑘𝑇𝑒
ln

4𝑘𝑇

ℇ𝑖
      .  

The photons obey a Bose-Einstein distribution :   𝑢 𝜈 𝑑𝜈 =
8𝜋ℎ𝜈3

𝑐3

1

exp
ℎ𝜈

𝑘𝑇
−𝜇 −1

 𝑑𝜈  .   (𝜇 < 0)

For 
ℎ𝜈

𝑘𝑇
− 𝜇 ≫ 1 ,  𝑢 𝜈 𝑑𝜈 ~

8𝜋ℎ𝜈3

𝑐3  𝑒−
ℎ𝜈

𝑘𝑇 𝑒𝜇 , i.e. the Wien’s law modified by 𝑒𝜇  

Thermal Comptonization

(*) Rybicki Lightman page 36

-



The probability that a photon is scattered k times is 𝜏𝑠
𝑘  if 𝜏𝑠 is small. Therefore, the scattered spectrum will have a specific flux that can be approximated 

as 𝐹(𝜈) = 𝐹𝑖(𝜈𝑖) 𝜏𝑠
𝑘 

ln
𝐹(𝜈)

𝐹𝑖(𝜈𝑖)
=  𝑘 ln 𝜏𝑠  

ln
𝜈

𝜈𝑖
= 𝑘 ln

4

3
𝛾2  ⇒ 𝑤𝑟𝑖𝑡𝑒 𝑘 𝑎𝑠 𝑎 𝑓𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝜈

ln
𝐹(𝜈)

𝐹𝑖(𝜈𝑖)
=

ln
𝜈

𝜈𝑖

ln
4

3
𝛾2  

∙  ln 𝜏𝑠  

𝐹(𝜈) = 𝐹𝑖(𝜈𝑖)
𝜈

𝜈𝑖

−𝛼

    where 𝛼 ≡ −
ln 𝜏𝑠

ln
4

3
𝛾2  

If the seed spectrum is distributed over a wide range Δ𝜈𝑖  the scattered spectrum at frequency 𝜈 can be generalized by integrating over 𝐹𝑖(𝜈𝑖)  for 𝜈𝑖 < 𝜈.    
Only seed photons with 𝜈𝑖 < 𝜈 contribute to 𝐹 𝜈 . 

𝜈 𝐹 𝜈 0=

𝜈
𝐹𝑖(𝜈𝑖)

𝜈

𝜈𝑖

−𝛼

𝑑𝜈𝑖        or 𝐹 𝜈 =𝜈−(𝛼+1) 0

𝜈
𝐹𝑖(𝜈𝑖) 𝜈𝑖

𝛼𝑑𝜈𝑖

Repeated scatterings at low optical depth. 

Photon’s energy is multiplied by
4

3
𝛾2  on average upon each scattering from an electron of Lorentz factor 𝛾 (remember the useful formula of the average,

𝜈𝑓 ≈
4

3
𝛾2𝜈𝑖 ). 

After 𝑘 scatterings,    𝜈𝑓 = 𝜈𝑖
4

3
𝛾2

𝑘
    and, whatever the width Δ𝜈𝑖 of the seed spectrum is, the scattered spectrum will be increased in  width by the same 

factor:      Δ𝜈𝑓= 𝜈𝑖
4

3
𝛾2

𝑘
 . 



An example is the Comptonized Blackbody, 𝐹 𝜈 =π𝜈−(𝛼+1) 0

𝜈
𝐵𝜈𝑖 

(𝑇) 𝜈𝑖
𝛼𝑑𝜈𝑖 . 

It has a power law tail of index 𝛼 + 1. 

In this approximation it is required that 𝜏𝑠 ≪ 1 and ℎ𝜈 ≪ 𝛾𝑚𝑒𝑐2. From the definition of 𝛼, it follows that 
4

3
𝛾2

𝛼
𝜏𝑠 = 1  ⇒

4

3
𝛾2  𝜏𝑠 = 

4

3
𝛾2

1−𝛼
  . 

This expression is less than 1 as long as α > 1. The left side is exactly the Compton y parameter for the case 𝜏𝑠 < 1 . 

Thus, large 𝛼 correspond to small y. 

Blackbody and Compton scattered 
spectra for different 𝛼.

Sum of Blackbody and Compton 
scattered spectra.

𝑇𝑟𝑎𝑑~6 × 106𝐾 



The exact description of the photon scattering  (spectrum originated by different values of the y-parameter) is obtained in the phase-space through the 

Kompaneet’s equation. In the phase space, the «cloud» formed by the representative points of the real space  is similar to a diffusion process.  If the 

electrons are in non-reklativistic thermal equilibrium, the phase space temporal evolution of the occupation number    𝑛(𝜈) =
𝑢(𝜈)𝑐3

8𝜋ℎ𝜈3  ,                                       

and  defining 𝑥 =
ℎ𝜈

𝑘𝑇

𝜕𝑛

𝜕𝑦
=

1

𝑥2

𝜕

𝜕𝑥
𝑥4 𝑛 + 𝑛2 +

𝜕𝑛

𝜕𝑥

Recoil effect Doppler motion

stimulated emission (*)

(*) If photon occupation numbers are not small,  consider that photons are spin 1 bosons, and bosons like to clump: stimulated transitions ensure that 
a final state is more probable if it is already occupied!

In the limit of many scatterings, we obtain the equilibrium Bose-Einstein distribution with 

non-zero chemical potential ( see saturation).

Emission spectra come out as power-law with index 3 + 𝑚 where   𝑚 = −
3

2
±

9

4
+

1

𝑦
  

+ for 𝑦 ≫ 1, −for 𝑦 ≪ 1.

In the limit of many scatterings, 3 + 𝑚~3. 

Thermal bremsstrahlung with Comptonization (accretion disks)



CMB blackbody spectrum is distorted by the presence of galaxy clusters, the largest gravitationally-collapsed

(virialized) structures in the universe. Gas falling into the gravitational potential well of these clusters is heated

to roughly 108 𝐾, and becomes ionized. CMB photons pass through this plasma, and as many as 1-2% of them

can be IC scattered by the hot gas. On average the energy of the scattered photons is increased, spectrally

distorting the CMB in a characteristic way, known as the thermal SZ effect.

In the sparse astrophysical plasma, of ICM,  interactions between particles can be considered almost absent => 

no photon absorption or creation (photon conservation), but only a redistribution of their energies. 

Galaxy clusters contain hot atmospheres with Te~ 6 KeV~ 7 × 108 𝐾,   𝑛𝑒~10−3𝑐𝑚−3 , size L~ 1 Mpc. ⇒              

Non-relativistic electrons (Maxwell Boltzmann distribution) .    Decrement In Rayleigh-Jeans region, increment in 

Wien region.    Solve the Kompaneets equation with some simplification:

1) Scattering chance is small, only 1% per CMB photon:  optical depth τ low for hot ICM e- gas. Photons scatter 

once. The central intracluster optical depth is indeed 𝜏𝑒≈ 𝑛𝑒𝜎𝑇L~10−2. 

2) Electron gas much hotter than CMB photons: the term 𝑛 + 𝑛2 negligible (no recoil, energy only transferred 

from electrons to photons⇒ 𝐼𝐶 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔). Crossover frequency ~ 217 GHz (x=3.83).   ΔI/I~10−4

𝜈3+m 𝑒−ℎ𝜈/𝑘𝑇

Example. Thermal Sunyaev Zeldovich effect

Crossover
(null SZ)


	Slide 1: Radiation Scattering processes 
	Slide 2: Useful units and formulas in CGS (Gaussian units)
	Slide 3: Photon-electron scattering: overview 
	Slide 4: Thomson scattering
	Slide 5: Going beyond the Thomson limits: Compton scattering
	Slide 6: Compton scattering
	Slide 7: Compton scattering
	Slide 8: Compton scattering
	Slide 9: Compton scattering- Energy transfer
	Slide 10: Compton scattering- Energy transfer
	Slide 11: Compton scattering- The Klein-Nishina cross section
	Slide 12: Compton scattering- The Klein-Nishina cross section
	Slide 13
	Slide 14
	Slide 15: Relativistic Compton scattering
	Slide 16: Relativistic Compton scattering
	Slide 17: Relativistic Compton scattering
	Slide 18: Relativistic Compton scattering
	Slide 20: Extrema of the energy exchange in Thomson limit
	Slide 21: Relativistic Compton scattering – how to find the spectrum
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Comptonization
	Slide 33: Thermal Comptonization
	Slide 34
	Slide 35
	Slide 36
	Slide 37

