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Quantum operators- commutation rules
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A review of the Schrodinger equation

The classical theory of radiation is unable to treat those physical situations in which the matter-radiation interaction takes place

by means of a single (or a few) photon. We now review the main principles of atomic structure.

Neglecting spin, relativistic effects and nuclear effects, The time-independent Hamilitonian for the Hydrogenic atoms (nucleus

and electron, Z = 1 for Hydrogen) is (p = —ihV):
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Since this Hamiltonian does not depend on time, the time dependence of the wave functions is in a phase factor:

Erwin Schrodinger
(1887-1961)
Nobel Prize 1933

Y(r,, 1, t)=¥(r,,1,) eft/" | The time-independent Schrodinger equation (nucleus and electron) ih%—lf = H¥Y becomes:
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Define new coordinates: r =r, —r, (electron-nucleus distance vector) and R = ———==% (center of mass - c.0.m.- position):
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We can separate the variables, W (R, r)=y, (r)¥z (R) obtaining two independent equations:

h2 _, 2, ze?
— 5V hp(R) = Egpp(R)  and (=52 —T2) 9 (1) = B, Y (r)
The solutions of the first equation are simple plane waves of the center-of-mass motion (with a constant momentum P=#K) : 5 (R) = e 1K' R |

The solutions of the second equation are the Hydrogen orbitals (centered at r=0) for the relative motion: . (r)=Yy;, (1,6, @)

We will, from now on, omit the subscript «r» . Note that y = m,. We will only refer to the wavefunction of the electron(s) as a function of the position

with respect to the nucleus, and to the electron energies.

* When the atom has more than one electron, in a nucleus of charge +Ze, we add the Coulomb repulsive energy between the electrons. Neglecting spin

and relativistic effects, the Hamiltonian of the system of electrons and the corresponding time independent wavefunction are:
h? _ Ze? h? 5 5 1 e?

H=-— Ve —— - — ZV]-—Ze Z—+ —

2m, r| 2m, - T; Tij

T

hz 2 2 1 62
—Z—meZ,- Vi—"Ze er_+2i>jr_ij Y=Ey

J

Even in such multi-electron systems, it is useful to consider single electron states, assuming that each electron moves in the potential of the nucleus plus
the averaged potential due to the other N-7 electrons (self-consistent field approximation). When this averaged potential is assumed to be spherically
symmetric, each electron feels a Coulomb-like, central potential representing the nuclear charge shielded by the other electrons. This is the central field

approximation, useful as a starting point for treating electron interactions as perturbations.



Wave functions of one electron in a central field.

As in classical mechanics, a central potential implies conservation of angular momentum, [H, L,] = [H,L?] = 0. If H depends only on the magnitude of

I, we can separate the spatial dependence into radial and an angular factors. In spherical coordinates,

21a(,0
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with (7,6, 9) = R(r) Y (6, @).
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The functions Y (0, ) are the spherical harmonics,  Y},,,(0, @) = [(l+|m|)' py ] (=1) 2 P/ ""'(cosB)e'™?

where P/" is the associated Legendre function, and [, m are the azimuthal quantum number and the magnetic quantum

number, both are integers. Orthonormality condition:

Adrien-Marie Legendre

J Y (6, 0)Yin (6, 9) dQ = 8,118 o 1752-1833

The spherical harmonics are eigenfunctions of the orbital angular momentum operator L=r X p :

L2 Y1 (0, @) = A21(L + 1) Y3 (6, 9)
L, Ylm(g' (p)=fl mYm (6, ¢)

The values of l are [ = 0,1,2 ... called s states, p states, dstates, and so on. The value of m ranges from - [ to +[ in integer steps.
We see that the eigenvalues of the Hamitonian do not depend on m.

The angular eigenfunctions are independent of the form of the potential, as long as it is a central one (spherically symmetric).



Legendre polynomials, defined for -1 <x <1:

n

P.(x) = (2Dt 2 [(x? — D)7
dxm

Orthogonality property: f B,(x) B, (x) =

2n+1 Onm

Associated Legendre polynomials:
Foro<ms<l Pr@ = (1-ud)2—P(w) =

1
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This definition is extended to negative values of m:
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The radial part of the wavefunction satisfies the equation
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Notice that

We see that X(r) depends on [ but not on m. Boundary condition: X(r) = 0 asr — 0 (because V(0) —» )
The solutions of the radial equation are analytical and can be written with the associate Laguerre polynomials L.
They are labeled with the values of the principal quantum number n and the orbital quantum number [:

_ [ Zm=1-DN 11 -2 L2141
Xn(r) = {nz[(nﬂ)!]s} pre 2 Lyd (p) / Rydberg constant=12.6 eV

2Zru

and with| E, = —uc?Z?a?/2n?> = —= R = a=—, ay=

where p =
p nagme m n2 hc meca

The radial functions normalization is: fooo XXy (r) =61, -

In addition to these discrete eigenfunctions, there is also a continuous set of eigenfunctions correponding to unbound states.

(*) Note. In the Rybicki Lightman book, R(r) is what we call X (7).
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Niels H.D. Bohr, 1885-1962

represents an effective nuclear potential shielded by the centrifugal force of the electron if [ # 0.

= Bohr radius (innermost H orbit)~5 x 10713cm




Laguerre polynomials, defined for -1 <x <1:

e* dmn

L,(x) ==——]e *x"] n=0123..

X
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Associated Laguerre polynomials:
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The quantity X% = R2, r2 is the probability that the electron is between

randr + dr.

Including the electron spin, the time-independent electron wavefunction is

defined by four quantum numbers related by:

n=1273.. — energy
[=0,..,n—1 — shape
m;=-l,—-l+1,..,l—1,l - orbital orientation
mg = i% — Spin orientation

v(q) = Xsmgs Prim (r) = Xs,mSRn,l(r)Yl,ml 6, 9)

The electron spatial wavefunctions are then defined by four quantum

numbers, n, [, m, mg.

All these states are degenerate in the central field approximation, since the

eigenvalues of the Hamiltonian depend on n only.

4] 4 8 12 16 20 24 28 32 36 40
Figure 9.1 Radial probability distribution for an electron in several of the
lowest levels of hydrogen, The abscissa is the radius in atomic units. {Taken from
Condon, E. and Shortley, G. 1963, The Theory of Atomic Spectra, Cambridge,
Cambridge University Press.)



The general solution for the Hydrogen-like atom is (for u = m,):
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At the origin, r — 0 the radial wavefunction R,,;(r) vanishes for [ > 0 , and goes
to a finite constant for [ = 0 (s orbitals) .

However, the corresponding probability of finding the electron in the origin
betweenr = 0 and r = 0 + dr, is proportional to |R,;(1)|? r?dr = X2, dr and

it is null also for sorbitals.



Atomic Hydrogen spectrum

E A
Lyman series (ultraviolet) [ 13.6 eV
n=6
= VW_
B YYY
W= Brackett 12.73 eV
yyy Paschen
n=3 12.07 eV
Ground State: n =1 Balmer series (visible)
1st Excited State: n=2 ——
n=2 YYYYYy balinel 1019 eV
2nd Excited State: n=3
Paschen series (infared) T
3rd Excited State: n=4
1 vyyyyy Lyman series 0eV




Atomic Hydrogen spectrum
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Relationship between three of the four quantum numbers to the orbital shape of simple electronic configuration atoms up through Radium
(Ra, atomic number 88). The fourth quantum number, the spin, is a property of individual electrons within a particular orbital. Each orbital

may hold up to two electrons with opposite spin directions.



Fine structure of Hydrogenic atoms

The fine structure describes the splitting of the atomic energy levels due to electron spin and relativistic corrections to the Hamiltonian. For

hydrogenic atoms, the gross structure energy levels only depend on n. Introducing relativistic and spin effects, we break the degeneracy of the E,,.

L ' . : h? Ze? 2 . 2 oy s L :
Relativistic corrections. In the Hamiltonian H = — v V2 — % = ;:n + V(r), wereplace the kinetic term ;:n with its relativistic expression:
e e e
p* p*
Exinetic = MeC%Y —moc?=myc?(y —1) = — + ... and we consider the term in p* as a perturbation to the Hamiltonian:

2m,  8mdc?

4

p : : . (D EZ 4n
H, =— . The first order energy corrections due to relativistic effect are then E = H = — -3
1 gm3c2 gy u \% n (l/’o| 1 |1/’o> 2mac? \ 1412

The order of magnitude of this correction is —9.056 x 10™* eV.

Spin-orbit coupling. Also called LS coupling or Russell-Saunders coupling. In the ERF, the nucleus orbits around the electron, generating an

effective current loop and thus a magnetic field B. This interacts with the electron magnetic moment ug(due to the spin, intrinsic angular

. . 1 L-S
momentum), producing an energy correction of the form: Hgy = Ze? (Zmzcz) pcy
e

Notingthat J2 =(L+S)-(L+S)=L?>+S%2+2L-S ,Hgy x (J> — L? — §?)

EZ i(j+1)-1(1+1)-3/4 z4
Ego = - n JUD-LA+1) =3/ The order of magnitude of this corrections is Egp~

-5
Mmec? (1+3)@+1) 107> eV

3¢i41
n=(j+3)



In a relativistic treatment of an electron, its Compton wavelength is relevant, being the shortest distance an electron can be physically localized. We

can imagine it as if the electron is not point-like, but it is like a “ball” with radius of the order of its Compton wavelength, hc = 0.0243A . The

e

potential energy by the nucleus is obtained as a weighted integral over the «extended» electron.
It affects only the s orbitals, because it is proportional to §(r), but the wavefunction of an electron with [ > 0 vanishes at the origin, thus the delta

h? . . 2n
V2V. The Darwin correction is Ej, pgrwin =

function has no effect. The correction Hamiltonian term is Hpgppin = —"— , =—
e e

E? .E.g. the energy

difference introduce by this effect between the 2s and the 2p orbitals (otherwise degenerate) is of the order of 9 X 10~> Ev.

The eigenvalues E,, of the zeroth order Hamiltonian are n? degenerate. E.g,
e the n = 3 level contains 9 orbitals (one 3s orbital, three 3p orbitals, five 3d
T orbitals ), all with the same energy.

The fact that energy eigenvalues of a hydrogenlike atom - in non relativistic

- description - depend only on n and not on [ is referred to as accidental

\l add B-ficld degeneracy
"\ ;’L’:ldd Darwin . 7 7 7‘7)7 7

; @
|+ spin-orbit ‘ 7

S 12

————————————

add relativity
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Many-electron systems

Statistics: the Pauli’s principle

A set of single-particles states, specified by (n, [, m, my) is called orbital. An atom or ion with a single electron can have its electron in any of the allowed
orbitals or wave functions. To construct the states of a whole system of multi-electron atoms, let us indicate with a, b, c ... k the sets of values (n, [, m, my)
and with 1,2,...V the space and spin coordinates for the 1°,2°,...,, Nth particle. Be u the product of a spatial wavefunction with the spin part. We want to
have a complete set (a basis) of functions to represent the whole system. It is clear, that a simple productas u,(1) u,(2) u.(3)...u,(N) fails to account

for the Principle of Identity (e.g. the state u,(1) u,(2) is undistinguishable from the state u,(2) u,(1)).

We can then build an antisymmetrized linear combination of those products of orbitals, conveniently written as the Slater determinant:

uUg(1) uga(2) u(3) ... us(V)
up(1) up(2) up(3) ... up(N)

. , , 1 = Basis states for the system
N! permutations of the particles among the orbitals W

we(D) w2 w3 .. (V)

In this form, when two electrons occupy the same orbital, the determinant vanishes =
Pauli's principle: no two electrons can occupy the same orbital.

Particles with this symmetry for their wavefunctions are called fermions. There is complete antisymmetry of the total

wavefunction under interchange of two particles (=interchange of two columns of the above determinant changes the

determinant sign). W. Pauli, 1900-1958




Configurations

Implementing the Pauli’s priciple corresponds to writing Schroedinger equation for

each orbital, which contain two types of potential:

1) a term representing the electrostatic potential of the nucleus and of the averaged

charge density of all other electrons;

2) a term with no classical analogue, called exchange potential, manifesting itself as an
effective repulsion term between electrons with the same spin. It does not correspond

to a real potential.

For many electrons atoms, for Pauli exclusion principle, there can be at most 2(21 + 1)

electrons in a given subshell nl:

* s subshell can contain at most 2 electrons

* p subshell can contain at most 6 electrons

* d subshell can contain at most 10 electrons.

The orbitals in order of increasing energy are 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s and so on.

Energy

Filling the evbitals
S — [ 7d .
—— ;
el 75
n = A -
T __af ¢
LB A 4d 5p
) '\-\.:"' o r_”“j 5s
Nn=3 "‘;:i‘ _ll-l 4s
H-"-\. 31
3¢
n=2 _--~ 2p
TS e— O
iH|_="L___-_ 15
Shell Subshell

More binding energy close to the nucleus

9s



Closed shells not much influenced by
changes in the outer, partially filled shells.
We usually specify the configuration of
the outer shell only, mostly affected by
radiative transitions (at least at optical

frequencies)

Example. The atomic Carbon, with 6
electrons, has a ground state
configuration with 2 electrons in the 1s
subshell, 2 electrons in the 2s, and the
remaining electrons in the 2p subshell.
This is designated as 1s2522p?. or

(He) 2s%2p?

ATOMIC NUMBER

~numbes of electrons
~ wmec of pratom s

SNYMBIOL /NAME
ATorcnC MASS

-1 N AMY
(atomic mass units)

Ground lonization
Electron configuration state energy
Element (3d® = five 3d electrons, etc.) 2541, (eV)
H Hydrogen ls 231/2 13.5984
2 He  Helium 152 s, 24.5874
3 Li  Lithium (He)2s 351/2 5.3917
4  Be Beryllium (He) 252 LSy 9.3227
5 B Boron (He)2s? 2P1/2 8.2980
i C Carbon (He) 252 3Py 11.2603
7 N Nitrogen (He) 252 433/-2 14.5341
8 O  Oxygen (He)2s2 3py 13.6181
I Fluorine (He)2s2 21’3/2 17.4228
Ne Neon (He) 252 1Sy 21.5645
Na Sodium (Ne)3s 281 /2 5.1391
Mg Magnesium (Ne) 352 1S, 7.6462
Al Aluminum (Ne) 352 21’1/2 5.9858
Si  Silicon (Ne) 352 3Py 8.1517
P Phosphorus (Ne) 3s2 433/-2 10.4867
S Sulfur (Ne) 352 3Py 10.3600
Cl  Chlorine (Ne) 352 P39 12.9676
Ar  Argon (Ne) 352 1S, 15.7596
K Potassium (Ar) 25‘, /2 4.3407
Ca Calcium (Ar) 1S, 6.1132
Sc  Scandium (Ar) 3d 2Dy /2 6.5615
Ti Titanium (Ar) 3d? 3Fy 6.8281



Electrostatic interaction; LS coupling and terms.

In the multi-electron atom with nucleus +Ze, we add the Coulomb repulsive energy between the electrons and the spin effects. The Hamiltonian of

the system of electrons and the corresponding time independent wavefunction are (neglecting relativistic corrections):

H=ly v2_ze2y Lyy & g My g2_ 7,2 Y4 Y V() - Vi) + X & o H — H 4+ H
2mp =) Y Jr; > 7y SO Tomy,<J Y Jr; JRGANS JRANS >J 7y so 0 1
\ Y J Y ) Spin-orbit \ Y :
kinetic , , :
Coulomb field Mutual electron +Central field potentials
electron-nucleus  yepulsion due to the smeared-out

electrons

where we have added and subtracted a term representing the effect of the averaged charge density of all other electrons. We regard this as a
perturbative problem, with:

h? 1 : . .
Hy, = Z—meZ]- V]2 — Ze? er—j +2;V;(r;) [ electrons in effective central potentials

2
Hy =%s; :T; -2 V](r]) +H,,= H,; +H,, —» perturbation describing the interactions between electrons and the spin-orbit.

The central field approximation assumes that the averaged potential V](r]) is spherically symmetric, so that each electron feels a Coulomb-like,

2

» » . . . . e
central potential, representing the nuclear charge shielded by the other electrons: Shielded potential feit by single electron at rj = — - + Vi (77)

Thus, H, is the zeroth-order Hamiltonian, whose states and configurations we have been discussing. Its eigenvalues are n? degenerate.

Focus on the perturbation term H; .



Residual electrostatic energy

2
The term H,s= Zi>j%—z ]V](r]) is the residual electrostatic interaction between the electrons, after the averaged central field has been
ij

subtracted. We call it electrostatic interaction. To apply perturbation theory to degenerate eigenstates, we must choose a basis for our degenerate
subspace that diagonalizes the perturbing Hamiltonian. Under the H,, interaction, the individual orbital angular momenta will not remain

constant, although the total L = };1; and S= }}; s; will be constant. The perturbing Hamiltonian necessarily commutes with L and L, , as the
total orbital angular momentum of electrons is not coupled to any other torque. Similarly, the perturbation commutes with Sand S, .

So we choose the basis to be states with well defined quantum numbers L, S, M, and M, . The net effect of the perturbation is to split the
configurations into terms of well defined L and S. These terms are still degenerate with respect to M, and M, as there is no preferred direction for

the atom.

In this framework, named LS coupling, or Russell-Saunders coupling, the electrostatic interaction is the dominant splitting source, and the

remaining spin-orbit splitting is much smaller.
Hund’s rules (based on Pauli’s):
* terms with larger S have lower energy (large S implies alignment of individual spins: for Pauli’s, electrons are further apart on average).

» for the same S, larger L have lower energy (large L implies alignment of individual [: for Pauli’s, electrons are further apart, on average, when

they orbit in the same direction). This effect is smaller than the preceding.



Spin-Orbit

In the all-electron system, the total quantum numbers for orbital L, spin S, and total ] angular momenta are all good quantum numbers , which are

conserved. The result of the Russell-Saunders approach is presented as an atomic term symbol, or spectroscopic term, which has the form:

25+1L ] - At given L,S, energy can be splitted further due to Spin-Orbit coupling, Hgp < S - L . It can be interpreted as in the ERF, the electron

moving in a central electrostatic force field (by the shielded nuclear charge) perceives it as having a magnetic field B = — - VX E , interacting

with its intrinsic magnetic moment.

P Example, 4p4d configuration ‘ 1p . Ip
The individual shift is proportional to J(J+1). Therefore, . 'D . ‘T)-
Eppi—E < C[J+ DU +2)—JU+ D] =C0 +1) T Singlen . ]F'
where C > 0 if shell less than half-full (normal term)
and C < 0 if shell more than half-full (inverted term). 3p
These levels can be splitted further in an external tpdd . - _Pf._-_1
magnetic field, depending on the value of M;, producing - Sl . D,
the hyperfine structure of the levels . (Triplety ., °F 1 3E
Hyperfine splitting also due to the electron magnetic i | N
moment interaction with the magnetic moment of the Unperturbed Spin-spin Residual Spin-Orbit

state (Exchange electron-electron

nucleus, which has its own spin. _
potential)



Spectroscopic terms

An orbital n, [ can contain 2(2[ + 1) electrons. If an orbital has more than one electron and less than 4/ + 1 electrons, there is more than

one way in which the spin and orbital angular momentum of the electrons can add. LS coupling vectorially adds the spin and orbital

angular momenta, to give a total angular momentum J. Each allowed combination (L, S) is referred to as a term: #+1L .

Different terms have significantly different energies (up to few eV).

When L > 0andS > 0, there is more than ne way to add L and S to give J= L+S.

For given L, S, the allowed ] valuesare |L —S| <] <|L+ S].

For example, the 3P term (§ =1,L = 1) can have | =0,1,2,
leading to fine structure spin-orbit splitting between the three
different fine structure levels of the term: 3P, 3P, 3P,

Because of the possibility of multiple values of | for a given
(L,S), terms are also called multiplets (singlets, doublets,

triplets etc, depending on the number of possible ] values).

T

Singlet

et

Triplet
(Exchange
potential)

Spin

coupling

P

Orbital

coupling
(Residual
electrostatic)

..
- -
.....

1 D,
3P2
3P,
3
P()
Spin-orbit Splitting in
coupling a magnetic

field

= ==z Tzz==z =====

=
"
o

nmuunmn
| | © =N | 1 ©=N
N - N -

| © -
-

"
o



Spectroscopic terms

An orbital n, [ can contain 2(2[ + 1) electrons. If an orbital has more than one electron and less than 41 + 1 electrons, there is more than

one way in which the spin and orbital angular momentum of the electrons can add. LS coupling vectorially adds the spin and orbital

angular momenta, to give a total angular momentum J. Each allowed combination (L, S) is referred to as a term: #+1L .

Different terms have significantly different energies (up to few eV).

When L > 0andS > 0, there is more than ne way to add L and S to give J= L+S.

For given L, S, the allowed ] valuesare |L — S| <] <|L + S].

For example, the 3P term (§ =1,L = 1) can have ] =0,1,2,
leading to fine structure spin-orbit splitting between the three
different fine structure levels of the term: 3P, 3P, 3P,

Because of the possibility of multiple values of | for a given
(L,S), terms are also called multiplets (singlets, doublets,

triplets etc, depending on the number of possible ] values).

Terms for ns and np Subshells

Ground Terms
configuration  (in order of increasing energy) Examples
.ns’ *S1 /9 HI, Hell, CIV, NV, O VI
.ng? 1S4 Hel. CIIL NIV.OV
np' 2P n.a/0 CII, NIII, O 1V

... Tp° *Po.12,Da, 1S CI NIL OIIL, Ne V., SIII
..mp° 4S50 "Dia s Priaams  NLOILNelV, SIL ArlV
..mp’ 3P5 10, 1Ds, 18 - O1, Ne III, Mg V., ArlIl
...np° EP{;}-E_“Z Ne Il, Nalll, Mg IV, ArlIV
..np"° 1Se Ne I, Nall, Mg III. ArIII
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Energy-level diagram for the ground configuration of the 2p® ions NII
and OIIL (Fine-structure splitting is exaggerated for clarity.) Forbidden transitions
connecting these levels are shown, with wavelengths in vacuo.



Table 2

Species f @ <+« i AA)  Au(s') AJ Parity! AS Al
NII  2p%3P; + 2p3s3D] 10840 218x10° —1 o—e 0 —1
CIII] 2s21S; < 2s2p 3P 1908.7 114 +1 o—e -1 -1
[CII] 282 1S, < 2s2p 3P, 1906.7 0.0052 +2 o—e -1 -1
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Allowed transitions for the 2s3p P and 2p D
levels of the CIII ion. Upward lines indicate
the excitation from the ground level and the
downward lines the radiative transitions.
Dotted lines represent emissions in the
visible spectra and solid lines emissions in
the VUV spectra.
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electron distribution. Using the vector u to define position relative to the center P of the
electron, and letting p(u) denote the position dependent charge density, we have

V(r) = f d*u p(u)®@(r + u), (2.4.26)
clectron

where, as shown in the Figure, r + u is the position of the integration point, measured

relative to the proton at the origin. It is convenient to write the charge density in terms of

a normalized function py:

p(u) = —epp(u) — dPupo(u) =1, (2.4.27)
electron
which guarantees that the integral of p over the electron is indeed (—e). Recalling that
—e®(r +u) = V(r + u) we now rewrite (2.4.26) as

Vi) = / d*u po(u)V(r + u). (2.4.28)
J electron

This equation has a clear interpretation: the potential energy is obtained as a weighted

integral of potential due to the proton over the extended electron. If the electron charge

would be perfectly localized, pp(u) = d(u) and V(r) would just be equal to V(r). We will

assume that the distribution of charge is spherically symmetric, so that

po (u) = po(u). (2.4.29)
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