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Summary

In these lectures we review some of the most recent computational techniques for computing the

ground state of strongly correlated systems. All methods are based on projection techniques and

are generally approximate. There are two different types of approximations, the first one is the

truncation of the huge Hilbert space in a smaller basis that can be systematically increased un-

til convergence is reached. Within this class of methods we will describe the Lanczos technique,

modern Configuration Interaction schemes, aimed at improving the simplest Hartee-Fock calcula-

tion, until the most recent Density Matrix Renormalization Group. Another branch of numerical

methods, uses instead a Monte Carlo sampling of the full Hilbert space. In this case there is no

truncation error, but the approximation involved are due to the difficulty in sampling exactly the

signs of a non trivial (e.g., fermionic) ground state wavefunction with a statistical method: the

so called ”sign problem”. We will review the various techniques, starting from the variational

approach to the so called ”fixed node scheme”, and the the most recent improvements on a lattice.
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Chapter 1

Introduction

The study of strongly correlated systems is becoming a subject of increasing interest due to the

realistic possibility that in many physical materials, such as High-Tc superconductors, strong cor-

relations between electrons may lead to an unexpected physical behavior, that cannot be explained

within the conventional schemes, such as, for instance, mean-field or Fermi liquid theories.

Within standard textbook free-electron or quasi-free-electron theory it is difficult to explain

insulating behavior when the number of electron per unit cell is odd. There are several examples

of such ”Mott insulators”, expecially within the transition metal oxides, like MnO. Ferromagnetism

and antiferromagnetism, also, cannot be fully understood within a single particle formulation.

One of the most important models in strongly correlated systems, and today also relevant

for High-Tc superconductors (the undoped compounds are antiferromagnetic), is the so-called Heisenberg

modelHeisenberg model

H = J
∑

〈i,j〉

~Si · ~Sj = J
∑

〈i,j〉
[Szi S

z
j +

1

2
(S+
i S

−
j + H.c.)] (1.1)

where J is the so-called superexchange interaction (J ≈ 1500K > 0 for the High-Tc), 〈i, j〉 denotes
nearest-neighbor summation with periodic boundary conditions on a 2d square-lattice, say, and

~Sj = (Sxj , S
y
j , S

z
j ) are spin 1/2 operators on each site. Indeed on each site there are two possible

states: the spin is up (σ = 1/2) or down (σ = −1/2) along the z-direction, thus implying Szj |σ〉j =
σ|σ〉j . In this single-site basis (described by vectors |σ >j with σ = ±1/2), the non-diagonal

operators S+
j = Sjx + iSjy and S−

j = Sxj − iSyj (i here is the imaginary unit) flip the spin on

the site j, namely S±
j | ∓ 1/2〉j = | ± 1/2〉j. More formally, the above simple relations can be

derived by using the canonical commutation rules of spin operators, i.e.,
[

Sxj , S
y
k

]

= iδj,kS
z
j and

antisymmetric permutations of x, y, z components. These commutation rules hold also for larger

spin S (2S + 1 states on each site, with Szj = −S,−S + 1, · · · , S), and the Heisenberg model

can be simply extended to larger spin values. (Such an extension is also important because, for

many materials, the electron spin on each atomic site is not restricted to be 1/2, essentially due

to many-electron multiplets with high spin, according to Hund’s first rule.)
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1.1 Matrix formulation

Having defined the single site Hilbert space, the hamiltonian H is defined for an arbitrary number

of sites, in the precise sense that the problem is mapped onto a diagonalization of a finite square

matrix. All the states |x〉 can be labeled by an integer x denoting the rows and columns of the

matrix. A single element |x〉 denotes a particular configuration where the spins are defined on each

site:

|x〉 =
∏

j

|σj(x)〉j

For a two-site system, for instance, we can define:

|1〉 = | ↑, ↓〉
|2〉 = | ↓, ↑〉
|3〉 = | ↑, ↑〉
|4〉 = | ↓, ↓〉

and the matrix elements Hx,x′ = 〈x|H |x′〉 can be easily computed:

Hx,x′ =













−J/4 J/2 0 0

J/2 −J/4 0 0

0 0 J/4 0

0 0 0 J/4













(1.2)

The diagonalization is therefore simple and does not require any computer.

What happens, however, when we increase the number of sites? The problem becomes complex

as the dimension of the Hilbert space, and consequently the size of the matrix, increases expo-

nentially with the number of sites N , precisely as 2N in the Heisenberg case.. In this case even

for writing the matrix elements of a 2N × 2N square matrix, the computational time and memory

required is prohibitive large already for N = 16 (the memory required is ≈ 10 Gygabytes).

At present, there is no method that allows the general solution of a generic many-body hamilto-

nian with a computational effort scaling polynomially with the system size N . The complexity of

the many-body problem is generally exponential, and this is the main reason why strong correlation

is such a difficult task.

1.2 Projection techniques

In order to reduce the difficulty of the numerical task, one can notice that the matrix (1.2) has

many zeros. We will assume, henceforth, for simplicity that the ground state is unique. Although

the number of possible configurations |x〉 is exponential large, whenever the Hamiltonian acts on

a single configuration |x〉 → H |x〉, it generates only a relatively small number, of order ≃ N , of

new configurations. In the Heisenberg model case (1.1), the number of possible new configurations
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is equal to the number of possible spin flips on |x〉 which is limited to DN , where D is the

dimensionality and N the number of electrons. The 2N × 2N matrix Hx′,x is therefore very sparse,

as there are at most DN2N non-zero elements over 22N entries. In such a case methods that Sparse matrix

are based on iterations, rather than explicit diagonalization of the hamiltonian, are by far more

efficient.

Let us take an initial wavefunction ψ0(x) = ψG(x) with non-zero overlap with the exact ground

state φ0(x), e.g., a randomly generated vector in the 2N Hilbert space. The exact ground state

can be filtered out iteratively by applying, for instance, the so-called power method: Power

method
ψn+1(x) =

∑

x′

(Λδx,x′ −Hx,x′)ψn(x
′) (1.3)

Due to the sparsness of the matrix, each iteration (1.3) is relatively cheap, computationally, as

only the knowledge of the non vanishing matrix elements are required.

It is simple to show that for large number of iterations n the iterated wavefunction ψn converges

to the ground state φ0(x) for a large enough constant Λ. Indeed , we can expand the initial

wavefunction in the basis of eigenstates φi of H , with corresponding energies Ei, E0 being the

ground state energy:

|ψG〉 =
∑

i

ai|φi〉 (1.4)

with ai = 〈φi|ψG〉, and the normalization condition:

∑

i

a2i = 1 . (1.5)

Thus at the iteration n:

ψn =
∑

i

ai(Λ− Ei)
n|φi〉 . (1.6)

It is clear that, by increasing n, the ground state component in expansion (1.6) is growing much

faster than all the other ones, provided

Maxi|Λ− Ei| = |Λ− E0| , (1.7)

which is generally verified for large enough Λ, namely, as it is easy to verify, for Λ > ΛMin =
EMax+E0

2 , where EMax is the maximum eigenvalue of H , and Λmin is the minimum possible Λ

to achieve convergence to the ground state. Finally, apart for an irrelevant normalization factor

(Λ − E0)
n, the convergence of ψn to φ0 is obtained with an exponentially increasing accuracy in

n, namely with an error proportional to pn, where p = Maxi6=0
|Λ−Ei|
|Λ−E0| . It is not important to

know exactly the value of ΛMin, as the method works for any larger Λ, and indeed the choice of

Λ = ΛMin is not the most efficient one. In fact in this case, both the ground state and the eigenstate

corresponding to EMax are filtered out by the power method.

A remarkable improvement in the convergence of the power method is obtained with the so

called Lanczos technique, which will be described in the forthcoming lectures.

Exercise 1.1 The power method when the Ground State is not unique. Suppose that

the ground state is not unique, i.e., there are many states with the lowest possible energy E0 (e.g.,
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in the ferromagnetic case). Is the convergence of the power method exponential also in this case?

Does the final state ψn(x) for large n depends on the initial wavefunction? How can one remedy

to this drawback of the power-method and determine all the degenerate ground states?

1.3 Variational principle

In general, even with exact projection methods the problem of exponential complexity 2N is not

solved, and for generic model hamiltonian H it is impossible to work with system sizes of order

N >∼ 30, which is far from being satisfactory for delicate questions like existence or non existence

of antiferromagnetic long-range-order in the 2D antiferromagnetic Heisenberg model: this issue

was indeed highly debated in the early stage of High-Tc.

All reliable approximate techniques are based on the variational principle and will be described

in details in the forthcoming sections. Here we want to recall the basis of the variational principle.

Given any approximate state ψG for the ground state φ0, the variational energy EV is defined

by:

EV = 〈ψG|H |ψG〉 . (1.8)

Using the expansion (1.4) it is readily obtained that

ǫ
def
= EV − E0 =

∑

i6=0

|ai|2(Ei − E0) ≥ 0 . (1.9)

Thus, any trial state ψG provides an upper bound of the exact energy.

The relation (1.9) is the basis of approximate techniques. Essentially, given any approximation

ψG of φ0, all computational effort is devoted to minimizing the variational energy EV consistently

with the chosen approximation (truncation of Hilbert space or whatever).

In this section we analize in what sense an approximate wavefunction with given “distance”

in energy ǫ from the exact ground state one, can be considered as a good approximation of the

many-body ground state φ0. A crucial role is played by the gap ∆ = E1 − E0 > 0 (always finite

and non-vanishing in a finite system with N electrons) to the first excited state. From the relation

(1.9) and the fact that Ei ≥ E0 +∆, by definition of ∆, it simply follows that

ǫ =
∑

i6=0

|ai|2(Ei − E0) ≥ ∆
∑

i6=0

|ai|2 . (1.10)

From the normalization condition (1.5), we finally find

η = 1− |a0|2 ≤ ǫ

∆
. (1.11)

This relation tells us that in order to have an accurate approximation of the ground state, namely

η = 1 − |a0|2 << 1, a sufficient condition is that the error ǫ in the variational energy has to be

much smaller than the gap ∆ to the first excited state. If we consider that the gap ∆ for a system
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of N electron is typically decreasing with N , we can easily understand how difficult it is to fulfill

(1.11) with a numerical approach.

This difficulty is further amplified when estimating the maximum error that we can expect in

calculating correlation functions, i.e., generally speaking, expectation values of Hermitian operators

Ô (say, the value of the spin Ô = Szi at site i) on the state φ0. Given that (1.11) is satisfied with

rather good accuracy, say η ≈ 10−4, what we can expect for 〈ψG|Ô|ψG〉? Defining λ to be the

maximum eigenvalue (in modulus) of the operator Ô (for instance, λ = 1/2 for Ô = Szi ), we can

denote by Oi,j = 〈φi|Ô|φj〉 the matrix elements of the operator Ô in the basis of eigenstates of H ,

O0,0 being the exact ground state expectation value. Using again the expansion (1.6), and a bit

more complicated bounds (left for exercise), we find:

|〈ψG|Ô|ψG〉 −O0,0| ≤ ηO0,0 + λ
√
η
√

|a0|2 + 1 . (1.12)

This relation shows that the accuracy in correlation functions is more problematic than that on

the ground state energy, with a term proportional to
√
η. Summarizing, we have shown that with

a given accuracy in energy ǫ/∆, we can expect only the square root of this accuracy for correlation

functions. This is the most important drawback of all approximate techniques. However, in some

cases it has been possible to obtain such an accuracy and have a good control of correlation

functions (not more than half of the significant digits obtained for the energy).
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Form Hartree-Fock to exact
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Chapter 2

Hartree-Fock theory

Dealing with a system of N interacting quantum particles, either fermions or bosons, is a com-

plicated business. In this chapter we will present the simplest approach to such a problem, the

Hartree-Fock (HF) theory. We will see Hartree-Fock at work in closed shell atoms, specifically

He, where, as we will show, it performs very well. We will understand the reason for this good

performance, analyzing briefly a scheme that goes beyond HF, the so-called Configuration Inter-

action technique, popular among quantum chemists. Finally, we will appreciate the pitfalls of HF,

induced by quasi-degeneracy of single-particle eigenvalues, in an extremely simple molecule like

H2. Before we embark with HF, however, it is essential to learn the basic properties of the many-

particle states which are physically allowed. We will review these basic properties and introduce

the formalism of second quantization in the next two sections.

2.1 Many-particle basis states for fermions and bosons.

Suppose we have a system of N identical particles. Consider an appropriate basis set of single-

particle states |α〉. Generally speaking, each one particle state can be expressed in terms of real-

space spin dependent wavefunctions, henceforth named spin orbitals, by taking the scalar product

with the position-spin eigenstates |r〉 = |r〉o|σ〉s, 1

ψα(r)
def
= 〈r|α〉 (2.1)

Often the spin and the orbital dependence in the spin orbital is factored in an orbital part φα(r)

and a spin part χα:

ψα(r) = φα(r) × χα(σ) . (2.2)

1We will often use the symbol r to mean the combination of r, the position of a particle, and σ, its spin projection

along the z-axis.
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where the spin dependent function χα is usually a Kronecker δ, selecting a given value of the spin

component σα = ± 1
2 , namely χα(σ) = δσα,σ

2

Examples of such single particle spin-orbitals might be the plane waves, α = (k, σα) and φk(r) =

eik·r, the hydrogenoid atomic orbitals, α = (nlm, σα) and φnlm(r) = Rn(r)Ylm(Ω̂), the Bloch or

the Wannier states of a crystalline solid, etc. whichever is more appropriate to describe the system

under consideration.

A state for N identical particles may be written down as product of N single particle states

|α1, α2, · · · , αN ) = |α1〉 · |α2〉 · · · |αN 〉 , (2.3)

or, in terms of wavefunctions,Product

states

(r1σ1, r2, σ2 · · · , rNσN |α1, α2, · · · , αN ) = ψα1(r1, σ1) ψα2(r2, σ2) · · · ψαN (rN , σN ) . (2.4)

However, such product wavefunctions are not allowed for systems of identical particles. The

allowed states depend on the statistics of the particles under consideration, and must be totally an-

tisymmetric under permutations of the particle labels, for fermions, or totally symmetric for bosons

(see below). This permutation symmetry, however, is easy to enforce by applying, essentially, a

projection operator to the product states. Consider a permutation P : (1, · · · , N) → (P1, · · · , PN ),

and define a permutation operator P to act on product states in the following way:

P |α1, α2, · · · , αN )
def
= |αP1 , αP2 , · · · , αPN ) . (2.5)

Define now (−1)P to be the parity of the permutation P . This will appear shortly in constructing

the antisymmetric states for fermions. In order to have a notation common to both fermion and

boson cases, we introduce the symbol ξ = −1 for fermions and ξ = +1 for bosons, and form the

correctly symmetrized states 3Symmetrized

states

|α1, α2, · · · , αN 〉 def= 1√
N !

∑

P

ξPP |α1, α2, · · · , αN ) =
1√
N !

∑

P

ξP |αP1 , αP2 , · · · , αPN ) , (2.6)

where the sum is performed over the N ! possible permutations of the labels. Indeed, it is very

simple to verity that

Exercise 2.1 The symmetrized states |α1, α2, · · · , αN 〉 satisfy the relationship

P|α1, α2, · · · , αN 〉 = |αP1 , αP2 , · · · , αPN 〉 = ξP |α1, α2, · · · , αN 〉 . (2.7)

This is the precise formulation of what one means in saying that a state is totally antisymmetric

(for fermions, ξ = −1) or totally symmetric (for bosons, ξ = 1).

2The requirement of orthonormality might be relaxed, if necessary, at the price of introducing the so-colled

overlap matrix.
3We will consistently use the symbol | · · · ), with round parenthesis, for the product states, and the ket notation

| · · · 〉 for symmetrized states.
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Perhaps a more familiar expression is obtained by writing down the corresponding real-space

wavefunctions: 4

ψα1,α2,··· ,αN (r1, r2, · · · , rN )
def
= (r1, r2, · · · , rN |α1, α2, · · · , αN 〉

=
1√
N !

∑

P

ξPψαP1
(r1)ψαP2

(r2) · · ·ψαPN
(rN ) . (2.8)

For the case of fermions, this is the so-called Slater determinant Slater

determinant

ψα1,α2,··· ,αN (r1, r2, · · · , rN ) =
1√
N !

∑

P

(−1)PψαP1
(r1)ψαP2

(r2) · · ·ψαPN
(rN )

=
1√
N !

det















ψα1(r1) ψα2(r1) · · · ψαN (r1)

ψα1(r2) ψα2(r2) · · · ψαN (r2)
... · · ·

...

ψα1(rN ) ψα2(rN ) · · · ψαN (rN )















. (2.9)

The corresponding expression for Bosons is called a permanent, but it is much less nicer then the

determinant, computationally.

For Fermions, it is very simple to show that the same label cannot appear twice in the state,

an expression of the Pauli principle. Indeed, suppose α1 = α2, for instance. Then, by applying Pauli

principlethe permutation P : (1, 2, 3, · · · , N) → (2, 1, 3, · · · , N) which transposes 1 and 2, we have, on one

hand, no effect whatsoever on the labels

P|α1, α1, α3, · · · , αN 〉 = |αP1 , αP2 , αP3 , · · · , αPN 〉 = |α1, α1, α3, · · · , αN 〉 ,

but, on the other hand, the action of P must result in a minus sign because the state is totally

antisymmetric

P|α1, α1, α3, · · · , αN 〉 = (−)P |α1, α1, α3, · · · , αN 〉 = −|α1, α1, α3, · · · , αN 〉 ,

and a state equal to minus itself is evidently zero. Perhaps more directly, we can see the result from

the expression of the corresponding Slater determinant, which has the first two columns which are

identical, and therefore vanishes, by a known properties of determinants. So, if we define

nα = number of times the label α appears in (α1, · · · , αN ) , (2.10)

then Pauli principle requires nα ≤ 1. For Bosons, on the contrary, there is no limit to nα.

A few examples should clarify the notation. Consider two particles occupying, in the plane-wave Examples

basis, α1 = k1, ↑, and α2 = k2, ↓ or α2 = k2, ↑ (we will do both spin calculations in one shot). The

correctly symmetrized states are:

(r1, r2|k1 ↑,k2 ↓ (↑)〉 = 1√
2

[

φk1(r1)φk2(r2)χ↑(σ1)χ↓(↑)(σ2)∓ φk2(r1)φk1(r2)χ↓(↑)(σ1)χ↑(σ2)
]

,

(2.11)

4Observe that we take the scalar product with the product state |r1, · · · , rN ).
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where the upper sign refers to fermions, and φk(r) = eik·r. Notice that, in general, such a state is

not an eigenvector of the total spin. Exceptions are: i) when both spins are ↑, in which case you

obtain a maximally polarized triplet state:

(r1, r2|k1 ↑,k2 ↑〉 = 1√
2
[φk1(r1)φk2(r2)∓ φk2(r1)φk1(r2)]χ↑(σ1)χ↑(σ2) , (2.12)

or when the two orbital labels coincide. In general, good eigenstates of the total spin are obtained

only by linear combination of more than one symmetrized state. For the example above, for

instance, it is simple to show that

1√
2
[(r1, r2|k1 ↑,k2 ↓〉 ± (r1, r2|k1 ↓,k2 ↑〉] (2.13)

is a triplet (upper sign) or a singlet (lower sign).

The normalization, or more generally the scalar product, of symmetrized states involves a bitNormaliza-

tion of permutation algebra.

Exercise 2.2 Show that the scalar product between two correctly-symmetrized states |α1, α2, · · · , αN 〉
and |α′

1, α
′
2, · · · , α′

N 〉 is non-zero only if the set of labels (α′
1, α

′
2, · · · , α′

N ) is a permutation of

(α1, α2, · · · , αN ). Verify then that:

〈α′
1, α

′
2, · · · , α′

N |α1, α2, · · · , αN 〉 = ξP
∏

α

nα!

where P is a permutation that makes the labels to coincide, and nα is the number of times a certain

label α appears.

As a consequence, fermionic symmetrized states (Slater determinants) are normalized to 1, since

nα ≤ 1, while bosonic ones not necessarily. One can easily normalize bosonic states by defining

|{nα}〉 =
1

√
∏

α nα!
|α1, · · · , αN 〉 (2.14)

where we simply label the normalized states by the occupation number nα of each label, since the

order in which the labels appear does not matter for Bosons.

We conclude by stressing the fact that the symmetrized states constructed are simply a basis set

for the many-particle Hilbert space, in terms of which one can expand any N -particle state |Ψ〉Expansion of

general |Ψ〉 |Ψ〉 =
∑

α1,α2,··· ,αN

Cα1,α2,··· ,αN |α1, α2, · · · , αN 〉 , (2.15)

with appropriate coefficients Cα1,α2,··· ,αN . The whole difficulty of interacting many-body systems

is that the relevant low-lying excited states of the systems often involve a large (in principle infinite)

number of symmetrized states in the expansion.

2.2 Second quantization: brief outline.

It is quite evident that the only important information contained in the symmetrized states

|α1, α2, · · · , αN 〉 is how many times every label α is present, which we will indicate by nα; the
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rest is automatic permutation algebra. The introduction of creation operators a†α is a device by

which we take care of the labels present in a state and of the permuation algebra in a direct way.

Given any single-particle orthonormal basis set {|α〉} we define operators a†α which satisfy the Creation

operatorsfollowing rule: 5

a†α|0〉
def
= |α〉

a†α|α1, α2, · · · , αN 〉 def= |α, α1, α2, · · · , αN 〉
. (2.16)

The first is also the definition of a new state |0〉, called vacuum or state with no particles, which The vacuum

should not be confused with the zero of a Hilbert space: infact, we postulate 〈0|0〉 = 1. It is formally

required in order to be able to obtain the original single-particle states |α〉 by applying an operator

that creates a particle with the label α to something: that “something” has no particles, and

obviously no labels whatsoever. The second equation defines the action of the creation operator a†α
on a generic correctly-symmetrized state. Notice immediately that, as defined, a†α does two things

in one shot: 1) it creates a new label α in the state, 2) it performs the appropriate permutation

algebra in such a way that the resulting state is a correctly-symmetrized state. Iterating the

creation rule starting from the vacuum |0〉, it is immediate to show that

a†α1
a†α2

· · · a†αN
|0〉 = |α1, α2, · · · , αN 〉 . (2.17)

We can now ask ourselves what commutation properties must the operators a†α satisfy in order to

enforce the correct permutation properties of the resulting states. This is very simple. Since

|α2, α1, · · · , αN 〉 = ξ|α1, α2, · · · , αN 〉

for every possible state and for every possible choice of α1 and α2, it must follow that

a†α2
a†α1

= ξa†α1
a†α2

, (2.18)

i.e., creation operators anticommute for Fermions, commute for Bosons. Explicitly:

{a†α1
, a†α2

} = 0 for Fermions (2.19)
[

a†α1
, a†α2

]

= 0 for Bosons , (2.20)

with {A,B} = AB +BA (the anticommutator) and [A,B] = AB −BA (the commutator).

The rules for a†α clearly fix completely the rules of action of its adjoint aα = (a†α)
†, since it Destruction

operatorsmust satisfy the obvious relationship

〈Ψ2|aαΨ1〉 = 〈a†αΨ2|Ψ1〉 ∀Ψ1,Ψ2 , (2.21)

where Ψ1,Ψ2 are correctly-simmetrized many-particle basis states. First of all, by taking the

adjoint of the Eqs. (2.19), it follows that

{aα1 , aα2} = 0 for Fermions (2.22)

[aα1 , aα2 ] = 0 for Bosons . (2.23)

5It might seem strange that one defines directly the adjoint of an operator, instead of defining the operator aα

itself. The reason is that the action of a†α is simpler to write.
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There are a few simple properties of aα that one can show by using the rules given so far. For

instance,

aα|0〉 ∀α , (2.24)

since 〈Ψ2|aα|0〉 = 〈a†αΨ2|0〉 = 0, ∀Ψ2, because of the mismatch in the number of particles. 6 More

generally, it is simple to prove that that an attempt at destroying label α, by application of aα,

gives zero if α is not present in the state labels,

aα|α1, α2, · · · , αN 〉 = 0 if α /∈ (α1, α2, · · · , αN ) . (2.25)

Consider now the case α ∈ (α1, · · · , αN ). Let us start with Fermions. Suppose α is just in first

position, α = α1. Then, it is simple to show that

aα1 |α1, α2, · · · , αN 〉 = |α̂1, α2, · · · , αN 〉 = |α2, · · · , αN 〉 , (2.26)

where by α̂1 we simply mean a state with the label α1 missing (clearly, it is a N −1 particle state).

To convince yourself that this is the correct result, simply take the scalar product of both sides

of Eq. (2.26) with a generic N − 1 particle state |α′
2, · · · , α′

N 〉, and use the adjoint rule. The left

hand side gives:

〈α′
2, · · · , α′

N |aα1 |α1, α2, · · · , αN 〉 = 〈α1, α
′
2, · · · , α′

N |α1, α2, · · · , αN 〉 ,

which is equal to (−1)P when P is a permutation bringing (α2, · · · , αN ) into (α′
2, · · · , α′

N ), and 0

otherwise. The right hand side gives

〈α′
2, · · · , α′

N |α2, · · · , αN 〉 ,

and coincides evidently with the result just stated for the left hand side. If α is not in first position,

say α = αi, then you need to first apply a permutation to the state that brings αi in first position,

and proceede with the result just derived. The permutation brings and extra factor (−1)i−1, since

you need i− 1 transpositions. As a result:

aαi |α1, α2, · · · , αN 〉 = (−1)i−1|α1, α2, · · · , α̂i, · · · , αN 〉 . (2.27)

The bosonic case needs a bit of extra care for the fact that the label α might be present more than

once.

Exercise 2.3 Show that for the bosonic case the action of the destruction operator is

aαi |α1, α2, · · · , αN 〉 = nαi |α1, α2, · · · , α̂i, · · · , αN 〉 . (2.28)

Armed with these results we can finally prove the most difficult commutation relations, those

involving a aα with a a†α′ . Consider first the case α 6= α′ and do the following.

Exercise 2.4 Evaluating the action of aαa
†
α′ and of a†α′aα on a generic state |α1, · · · , αN 〉, show

that

{aα, a†α′} = 0 for Fermions (2.29)
[

aα, a
†
α′

]

= 0 for Bosons . (2.30)

6A state which has vanishing scalar product with any state of a Hilbert space, must be the zero.
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Next, let us consider the case α = α′. For fermions, if α /∈ (α1, · · · , αN ) then

aαa
†
α|α1, · · · , αN 〉 = aα|α, α1, · · · , αN 〉 = |α1, · · · , αN 〉 ,

while

a†αaα|α1, · · · , αN 〉 = 0 .

If, on the other hand, α ∈ (α1, · · · , αN ), say α = αi, then

aαia
†
αi
|α1, · · · , αN 〉 = 0 ,

because Pauli principle forbids occupying twice the same label, while

a†αi
aαi |α1, · · · , αN 〉 = a†αi

(−1)i−1|α1, · · · , α̂i, · · · , αN 〉 = |α1, · · · , αN 〉 ,

because the (−1)i−1 is reabsorbed in bringing the created particle to the original position. Sum-

marizing, we see that for Fermions, in all possible cases

aαa
†
α + a†αaα = 1 (2.31)

Exercise 2.5 Repeat the algebra for the Bosonic case to show that

aαa
†
α − a†αaα = 1 (2.32)

We can finally summarize all the commutation relations derived, often referred to as the canonical

commutation relations. Canonical

commutation

relations
Fermions =⇒

{a†α1
, a†α2

} = 0

{aα1 , aα2} = 0

{aα1 , a
†
α2
} = δα1,α2

Bosons =⇒

[

a†α1
, a†α2

]

= 0

[aα1 , aα2 ] = 0
[

aα1 , a
†
α2

]

= δα1,α2

. (2.33)

Before leaving the section, it is worth pointing out the special role played by the operator Number

operator
n̂α

def
= a†αaα (2.34)

often called the number operator, because it simply counts how many times a label α is present in

a state.

Exercise 2.6 Verify that

n̂α|α1, · · · , αN 〉 = nα|α1, · · · , αN 〉; , (2.35)

where nα is the number of times the label α is present in (α1, · · · , αN ).

Clearly, one can write an operator N̂ that counts the total number of particles in a state by

N̂
def
=
∑

α

n̂α =
∑

α

a†αaα . (2.36)
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2.2.1 Changing the basis set.

Suppose we want to switch from |α〉 to some other basis set |i〉, still orthonormal. Clearly there is

a unitary transformation between the two single-particle basis sets:

|i〉 =
∑

α

|α〉〈α|i〉 =
∑

α

|α〉Uα,i , (2.37)

where Uα,i = 〈α|i〉 is the unitary matrix of the transformation. The question is: How is a†i
determined in terms of the original a†α? The answer is easy. Since, by definition, |i〉 = a†i |0〉 and
|α〉 = a†α|0〉, it immediately follows that

a†i |0〉 =
∑

α

a†α|0〉 Uα,i . (2.38)

By linearity, one can easily show that this equation has to hold not only when applied to the

vacuum, but also as an operator identity, i.e.,

a†i =
∑

α a
†
α Uα,i

ai =
∑

α aα U
∗
α,i

, (2.39)

the second equation being simply the adjoint of the first. The previous argument is a convenient

mnemonic rule for rederiving, when needed, the correct relations.

2.2.2 The field operators.

The construction of the field operators can be seen as a special case of Eqs. (2.39), when we take as

new basis the coordinate and spin eigenstates |i〉 = |r, σ〉. By definition, the field operator Ψ†
(r, σ)

is the creation operator of the state |r, σ〉, i.e.,

Ψ†(r, σ)|0〉 = |r, σ〉 . (2.40)

Then, the analog of Eq. (2.37) reads:

|r, σ〉 =
∑

α

|α〉〈α|r, σ〉 =
∑

α

|α〉φ∗α(r, σ) , (2.41)

where we have identified the real-space wavefunction of orbital α as φα(r) = 〈r|α〉o, and used the

fact that 〈σα|σ〉 = δσ,σα . The analog of Eqs. (2.39) reads, then,

Ψ†(r, σ) =
∑

α

φ∗α(r, σ) a
†
α (2.42)

Ψ(r, σ) =
∑

α

φα(r, σ) aα .

These relationships can be easily inverted to give:

a†α =
∑

σ

∫

dr φα(r, σ) Ψ
†(r, σ) (2.43)

aα =
∑

σ

∫

dr φ∗α(r, σ) Ψ(r, σ) .
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2.2.3 Operators in second quantization.

We would like to be able to calculate matrix elements of a Hamiltonian like, for instance, that of

N interacting electrons in some external potential v(r),

H =

N
∑

i=1

(

p2
i

2m
+ v(ri)

)

+
1

2

∑

i6=j

e2

|ri − rj |
. (2.44)

In order to do so, we need to express the operators appearing in H in terms of the creation and

destruction operators a†α and aα of the selected basis, i.e., as operators in the so-called Fock space.

Observe that there are two possible types of operators of interest to us:

1) one-body operators, like the total kinetic energy
∑

i p
2
i /2m or the external potential

∑

i v(ri), One-body

operatorswhich act on one-particle at a time, and their effect is then summed over all particles in a totally

symmetric way, generally

U1−body
N =

N
∑

i=1

U(i) ; (2.45)

2) two-body operators, like the Coulomb interaction between electrons (1/2)
∑

i6=j e
2/|ri−rj|, which

involve two-particle at a time, and are summed over all pairs of particles in a totally symmetric Two-body

operatorsway,

V 2−body
N =

1

2

N
∑

i6=j
V (i, j) . (2.46)

The Fock (second quantized) versions of these operators are very simple to state. For a one-body

operator:

U1−body
N =⇒ UFock =

∑

α,α′

〈α′|U |α〉a†α′aα , (2.47)

where 〈α′|U |α〉 is simply the single-particle matrix element of the individual operator U(i), for

instance, in the examples above,

〈α′|p2/2m|α〉 = δσα,σα′

∫

dr φ∗α′(r)

(

− h̄
2∇2

2m

)

φα(r) (2.48)

〈α′|v(r)|α〉 = δσα,σα′

∫

dr φ∗α′(r)v(r)φα(r) .

For a two-body operator:

V 2−body
N =⇒ VFock =

1

2

∑

α1,α2,α′
1,α

′
2

(α′
2α

′
1|V |α1α2) a

†
α′

2
a†α′

1
aα1aα2 , (2.49)

where the matrix element needed is, for a general spin-independent interaction potential V (r1, r2),

(α′
2α

′
1|V |α1α2) = δσα1 ,σα′

1
δσα2 ,σα′

2

∫

dr1dr2 φ
∗
α′

2
(r2)φ

∗
α′

1
(r1)V (r1, r2)φα1 (r1)φα2 (r2) . (2.50)

We observe that the order of the operators is extremely important (for fermions).

The proofs are not very difficult but a bit long and tedious. We will briefly sketch that for the

one-body case. Michele Fabrizio will give full details in the Many-Body course.
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2.3 Why a quadratic hamiltonian is easy.

Before we consider the Hartree-Fock problem, let us pause for a moment and consider the reason

why one-body problems are considered simple in a many-body framework. If the Hamiltonian is

simply a sum of one-body terms H =
∑N

i=1 h(i), for instance h(i) = p2
i /2m+ v(ri), we know that

in second quantization it reads

H =
∑

α,α′

hα′,αa
†
α′aα , (2.51)

where the matrix elements are

hα′,α = 〈α′|h|α〉 = δσα,σα′

∫

dr φ∗α′ (r)

(

− h̄
2∇2

2m
+ v(r)

)

φα(r) . (2.52)

So, H is purely quadratic in the operators. The crucial point is now that any quadratic problem

can be diagonalized completely, by switching to a new basis |i〉 made of solutions of the one-particle

Schrödinger equation 7

h|i〉 = ǫi|i〉 =⇒
(

− h̄
2∇2

2m
+ v(r)

)

φi(r) = ǫiφi(r) . (2.53)

Working with this diagonalizing basis, and the corresponding a†i , the Hamiltonian simply reads:

H =
∑

i

ǫia
†
iai =

∑

i

ǫi n̂i , (2.54)

where we assume having ordered the energies as ǫ1 ≤ ǫ2 ≤ · · · . With H written in this way, we

can immediately write down all possible many-body exact eigenstates as single Slater determinants

(for Fermions) and the corresponding eigenvalues as sums of ǫi’s,

|Ψi1,··· ,iN 〉 = a†i1 · · · a
†
iN
|0〉

Ei1,··· ,iN = ǫi1 + · · ·+ ǫiN . (2.55)

So, the full solution of the many-body problem comes automatically from the solution of the

corresponding one-body problem, and the exact many-particle states are simply single Slater de-

terminants.

2.4 The Hartree-Fock equations.

We state now the Hartree-Fock problem for the ground state (T=0).

Ground State Hartree-Fock problem. Find the best possible single particle statesHartree-Fock

problem |α〉 in such a way that the total energy of a single Slater determinant made out of the

selected orbitals, 〈α1, · · · , αN |H |α1, · · · , αN 〉, is minimal.

7Being simple does not mean that solving such a one-body problem is trivial. Indeed it can be technically quite

involved. Band theory is devoted exactly to this problem.
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Quite clearly, it is a problem based on the variational principle, where the restriction made on

the states |Ψ〉 which one considers is that they are single Slater determinants. We stress the fact

that, although any state can be expanded in terms of Slater determinants, the ground state of a

genuinely interacting problem is not, in general, a single Slater determinant.

As a simple exercise in second quantization, let us evaluate the average energy of a single Slater

determinant |α1, · · · , αN 〉 = a†α1
· · · a†αN

|0〉. The {α} here specify a generic orthonormal basis set,

which we are asked to optimize, in the end. So, we plan to calculate

〈α1, · · · , αN |H |α1, · · · , αN 〉 = 〈α1, · · · , αN |ĥ|α1, · · · , αN 〉+ 〈α1, · · · , αN |V̂ |α1, · · · , αN 〉 . (2.56)

Let us start from the one-body part of H , 〈ĥ〉. Its contribution is simply:

〈ĥ〉 =
∑

α′,α

hα′,α〈α1, · · · , αN |a†α′aα|α1, · · · , αN 〉 .

Clearly, in the sum we must have α ∈ (α1, · · · , αN ), otherwise the destructrion operator makes the

result to vanish. Moreover, if the particle created has a label α′ 6= α (the particle just destroyed)

the resulting state is different from the starting state and the diagonal matrix element we are

looking for is again zero. So, we must have α′ = α = αi, and eventually

〈ĥ〉 =
∑

α′,α

hα′,αδα′,α

∑

i

δα,αi =
N
∑

i=1

hαi,αi . (2.57)

Let us consider now the interaction potential part,

〈α1, · · · , αN |V̂ |α1, · · · , αN 〉 = 1

2

∑

α,β,α′,β′

(β′α′|V |αβ) 〈α, · · · , αN |a†β′a
†
α′aαaβ|α1, · · · , αN 〉 (2.58)

One again, both α and β must be in the set (α1 · · ·αN ). Let α = αi and β = αk, with i 6= k.

There are now two possibilities for the creation operator labels α′ and β′, in order to go back to

the starting state: a) the direct term, for α′ = α = αi and β
′ = β = αk, or b) the exchange term,

for α′ = β = αk and β′ = α = αi. In the direct term the order of the operators is such that no

minus sign is involved:

〈α, · · · , αN |a†αk
a†αi

aαiaαk
|α1, · · · , αN 〉 = 〈α, · · · , αN |n̂αk

n̂αi |α1, · · · , αN 〉 = 1 ,

because n̂αiaαk
= aαk

n̂αi . In the exchange term, on the contrary, we must pay an extra minus

sign in anticommuting the operators,

〈α, · · · , αN |a†αi
a†αk

aαiaαk
|α1, · · · , αN 〉 = −〈α, · · · , αN |n̂αk

n̂αi |α1, · · · , αN 〉 = −1 .

Summing up, we get:

〈α1, · · · , αN |V̂ |α1, · · · , αN 〉 = 1

2

N
∑

i6=k
[(αkαi|V |αiαk)− (αiαk|V |αiαk)] . (2.59)

Finally, summing one-body and two-body terms we get:

〈α1, · · · , αN |H |α1, · · · , αN 〉 =
N
∑

i=1

hαi,αi +
1

2

N
∑

i6=k
[(αkαi|V |αiαk)− (αiαk|V |αiαk)] . (2.60)
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One can appreciate the relative simplicity of this calculation, as opposed to the traditional

one where one decomposes the Slater determinant into product states, and goes through all the

permutation algebra. In a sense, we have done that algebra once and for all in deriving the second

quantized expression of states and operators!

The Hartree-Fock equations for the orbitals |α〉 come out of the requirement that the average

〈α1, · · · , αN |H |α1, · · · , αN 〉 we just calculated is minimal. We do not go into a detailed derivation

of them. 8 We simply state the result, guided by intuition. If it were just for the one-body term

N
∑

i=1

hαi,αi =

N
∑

i=1

∫

dr φ∗αi
(r)

(

− h̄
2∇2

2m
+ v(r)

)

φαi(r) , (2.61)

we would immediately write that the correct orbitals must satisfy
(

− h̄
2∇2

2m
+ v(r)

)

φαi(r) = ǫiφαi (r) , (2.62)

and the Ground State (GS) is obtained by occupying the lowest ǫi respecting the Pauli principle.

Consider now the direct term:

〈V̂ 〉dir =
1

2

N
∑

i6=k
(αkαi|V |αiαk)

=
1

2

N
∑

i6=k

∫

dr1dr2 φ
∗
αk

(r2)φ
∗
αi
(r1)V (r1, r2)φαi(r1)φαk

(r2) . (2.63)

Quite clearly, you can rewrite it as:

〈V̂ 〉dir =
1

2

N
∑

i=1

∫

dr1φ
∗
αi
(r1)V

(i)
dir (r1)φαi (r1) ,

where

V
(i)
dir (r1) =

N
∑

k 6=i

∫

dr2 V (r1, r2)|φαk
(r2)|2 , (2.64)

is simply the average potential felt by the electron in state αi due to all the other electrons

occupying the orbitals αk 6= αi. Not surprisingly, if I were to carry the minimization procedure by

including this term only, the resulting equations for the orbitals would look very much like Eq.Hartree

equations (2.62)
(

− h̄
2∇2

2m
+ v(r) + V

(i)
dir (r)

)

φαi(r) = ǫiφαi(r) , (2.65)

with V
(i)
dir (r) adding up to the external potential. These equations are known as Hartree equations,

and the only tricky point to mention is that the factor 1/2 present in 〈V̂ 〉dir is cancelled out by a

factor 2 due to the quartic nature of the interaction term. Finally, consider the exchange term:

〈V̂ 〉exc = −1

2

N
∑

i6=k
(αiαk|V |αiαk)

= −1

2

N
∑

i6=k
δσαk

,σαi

∫

dr1dr2 φ
∗
αi
(r2)φ

∗
αk

(r1)V (r1, r2)φαi (r1)φαk
(r2) . (2.66)

8At least two different derivations will be given in the Many-Body course.
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Notice the δσαk
,σαi

coming from the exchange matrix element. This term cannot be rewritten as

a local potential term, but only as a non-local potential of the form

〈V̂ 〉exc =
1

2

N
∑

i=1

∫

dr1dr2 φ
∗
αi
(r2) V

(i)
exc(r2, r1) φαi(r1) ,

where

V (i)
exc(r2, r1) = −

N
∑

k 6=i
δσαk

,σαi
φ∗αk

(r1)V (r1, r2)φαk
(r2) . (2.67)

Notice the minus sign in front of the exchange potential V
(i)
exc, and the fact that exchange acts only

between electrons with the same spin, as enforced by the δσαk
,σαi

. Upon minimization one would

obtains, finally, Hartree-Fock

equations(

− h̄
2∇2

2m
+ v(r) + V

(i)
dir (r)

)

φαi(r) +

∫

dr′ V (i)
exc(r, r

′) φαi(r
′) = ǫiφαi(r) , (2.68)

where, once again, the factor 1/2 has cancelled out, and the non-local nature of the exchange

potential appears clearly. These are the Hartree-Fock equations. Their full solution is not trivial

at all, in general. They are coupled, non-local Schrödinger equations which must be solved self-

consistently, because the potentials themselves depend on the orbitals we are looking for. The self-

consistent nature of the HF equations is dealt with an iterative procedure: one starts assuming some

approximate form for the orbitals |α〉, calculated V
(i)
dir and V

(i)
exc, solve the Schrödinger equations

for the new orbitals, recalculated the potentials, and so on until self-consistency is reached. Notice

that the restriction k 6= i is actually redundant in the HF equations (but not in the Hartree

equations): the so-called self-interaction term, with k = i, cancels out between the direct and Self

interaction

cancellation

exchange potentials. As a consequence, we can also write the direct and exchange potentials in a

form where the k 6= i restriction no longer appears:

Vdir(r1) =
∑occ

k

∫

dr2 V (r1, r2)|φαk
(r2)|2

V
(σαi

)
exc (r1, r2) = −∑occ

k δσαk
,σαi

φ∗αk
(r1)V (r1, r2)φαk

(r2) .
(2.69)

The HF equations could easily have more than one solution, and the ultimate minimal solution

is often not known. Even in simple cases, like homogeneous systems, where the external potential

v(r) = 0 and a solution in terms of plane-waves is simple to find, the ultimate solutions might

break some of the symmetries of the problem, like translation invariance (Overhauser’s Charge

Density Wave solutions do so).

Notice that, as discussed until now, the HF equations are equations for the occupied orbitals

α1 · · ·αN . However, once a self-consistent solution for the occupied orbitals has been found, one

can fix the direct and exchange potential to their self-consistent values, and solve the HF equations

for all the orbitals and eigenvalues, including the unoccupied ones.

A totally equivalent form of the HF equations is obtained by multiplying both sides of Eq. (2.68)

by φ∗αj
(r) and integrating over r, which leads to the matrix form of the HF equations:

hαj ,αi +

occ
∑

k

[(αkαj |V |αiαk)− (αjαk|V |αiαk)] = ǫiδi,j . (2.70)
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A few words about the eigenvalues ǫi of the HF equations. One would naively expect that the

final HF energy, i.e., the average value of H on the optimal Slater determinant, is simply given by

the sum of the lowest N values of ǫi, but this is not true. Recall that the correct definition of EHF

is simply:

EHF = 〈α1, · · · , αN |H |α1, · · · , αN 〉

=

occ
∑

i

hαi,αi +
1

2

occ
∑

i,k

[(αkαi|V |αiαk)− (αiαk|V |αiαk)] , (2.71)

where the {αi} are now assumed to label the final optimal orbitals we found by solving the HF

equations. Notice the important factor 1/2 in front of the interaction contributions, which is

missing from the HF equations (compare, for instance, with the matrix form Eq. (2.70)). Indeed,

upon taking the diagonal elements j = i in Eq. (2.70) and summing over the occupied αi we easily

get:
occ
∑

i

hαi,αi +
occ
∑

i,k

[(αkαi|V |αiαk)− (αiαk|V |αiαk)] =
occ
∑

i

ǫi . (2.72)

So, the sum of the occupied HF eigenvalues overcounts the interaction countributions by a factor

two. There is nothing wrong with that. Just remember to subtract back this overcounting, by

writing

EHF =

occ
∑

i

ǫi −
1

2

occ
∑

i,k

[(αkαi|V |αiαk)− (αiαk|V |αiαk)] . (2.73)

2.5 Hartree-Fock in closed shell atoms: the example of He-

lium.

Suppose we would like to solve the He atom problem within HF. More generally, we can address a

two-electron ion like Li+, Be2+, etc. with a generic nuclear charge Z ≥ 2. The Hamiltonian for an

atom with N electrons is evidently:

H =

N
∑

i=1

(

p2
i

2m
− Ze2

ri

)

+
1

2

∑

i6=j

e2

|ri − rj |
, (2.74)

where we have assumed the N interacting electrons to be in the Coulomb field of a nucleus of

charge Ze, which we imagine fixed at R = 0. We have neglected spin-orbit effects and other

relativistic corrections. We plan to do the case N = 2 here. Evidently, a good starting basis

set of single-particle functions is that of hydrogenoid orbitals which are solutions of the one-body

Hamiltonian ĥ = p2/2m− Ze2/r. We know that such functions are labelled by orbital quantum

numbers (nlm), and that
(

p2

2m
− Ze2

r

)

φnlm(r) = ǫnφnlm(r) . (2.75)

The eigenvalues ǫn are those of the Coulomb potential, and therefore independent of the angular

momentum quantum numbers lm:

ǫn = −Z
2

2

e2

aB

1

n2
, (2.76)
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where aB = h̄2/(me2) ≈ 0.529 rAis the Bohr radius and e2/aB = 1 Hartree ≈ 27.2 eV. The

wavefunctions φnlm(r) are well known: for instance, for the 1s orbital (n = 1, l = 0,m = 0) one

has

φ1s(r) =
1√
π

(

Z

aB

)3/2

e−Zr/aB .

It is very convenient here two adopt atomic units, where lengths are measured in units of the Bohr

length aB, and energies in units of the Hartree, e2/aB.

We write H in second quantization in the basis chosen. It reads

H =
∑

nlmσ

ǫna
†
nlmσanlmσ +

1

2

∑

α1,α2,α′
1,α

′
2

(α′
2α

′
1|V |α1α2) a

†
α′

2
a†α′

1
aα1aα2 , (2.77)

where we have adopted the shorthand notation α1 = n1l1m1σ1, etc. in the interaction term. If we

start ignoring the Coulomb potential, we would put our N = 2 electrons in the lowest two orbitals

available, i.e., 1s ↑ and 1s ↓, forming the Slater determinant

|1s ↑, 1s ↓〉 = a†1s↑a
†
1s↓|0〉 . (2.78)

The real-space wavefunction of this Slater determinant is simply:

Ψ1s↑,1s↓(r1, r2) = φ1s(r1)φ1s(r2)
1√
2
[χ↑(σ1)χ↓(σ2)− χ↓(σ1)χ↑(σ2)] ,

i.e., the product of a symmetric orbital times a spin singlet state. The one-body part of the

Hamiltonian contributes an energy

E(one−body) = 〈1s ↑, 1s ↓ |ĥ|1s ↑, 1s ↓〉 = 2ǫ1s = −Z2 a.u. . (2.79)

For He, where Z = 2, this is −4 a.u. a severe underestimate of the total energy, which is known

to be E(exact,He) ≈ −2.904 a.u.. This can be immediately cured by including the average of the

Coulomb potential part, which is simply the direct Coulomb integral K1s,1s of the 1s orbital, often direct

Coulomb

integral

indicated by U1s in the strongly correlated community,

〈1s ↑, 1s ↓ |V̂ |1s ↑, 1s ↓〉 =
∫

dr1dr2 |φ1s(r2)|2
e2

|r1 − r2|
|φ1s(r1)|2 def= K1s,1s = U1s . (2.80)

The calculation of Coulomb integrals can be performed analitically by exploiting rotational invari-

ance. We simply state here the result:

U1s =
5

8
Z a.u. . (2.81)

Summing up, we obtain the average energy of our Slater determinant as

E1s↑,1s↓ =

(

−Z2 +
5

8
Z

)

a.u. = −2.75 a.u. , (2.82)

where the last number applies to He (Z = 2). What we should do to perform a HF calculation, is

the optimization of the orbitals used. Let us look more closely to our problem. Having a closed

shell atom it is reasonable to aim at a restricted Hartree-Fock calculation, which imposes the same Restricted

HForbital wave-function for the two opposite spin states

ψαo↑(r) = φαo(r)χ↑(σ) =⇒ ψαo↓(r) = φαo(r)χ↓(σ) . (2.83)



30 Hartree-Fock theory

We stress the fact that a more general HF approach, so-called unrestricted HF exploits the extra

variational freedom of choosing different orbital wavefunctions for the two opposite spin states,

which clearly breaks spin rotational symmetry. 9 Going back to our He excercise, we will put two

electrons, one with ↑ spin, the other with ↓ spin, in the lowest orbital solution of the HF equations

(

− h̄
2∇2

2m
− Ze2

r
+ Vdir(r)

)

φ1s(r) = ǫ1sφ1s(r) , (2.84)

where now the 1s label denotes the orbital quantum numbers of the lowest energy solution of a

rotationally invariant potential, and we have dropped the exchange term which does not enter in

the calculation of the occupied orbitals, since the two orbitals are associated to different spins. The

form of the direct (Hartree) potential Vdir(r) is

Vdir(r) =

∫

dr′
e2

|r− r′| |φ1s(r
′)|2 , (2.85)

because the electron in φ1s feels the repulsion of the other electron in the same orbital. We

immediately understand that the Hartree potential partially screens at large distances the nuclear

charge +Ze. Indeed, for r → ∞ we can easily see that

Vdir(r) ∼
e2

r

∫

dr′ |φ1s(r′)|2 =
e2

r
, (2.86)

so that the total effective charge seen by the electron at large distances is just (Z − 1)e, and not

Ze. This is intuitively obvious. The fact that we chose our original φ1s orbital as solution of the

hydrogenoid problem with nuclear charge Ze gives to that orbital a wrong tail at large distances.

This is, primarily, what a self-consistent HF calculation needs to adjust to get a better form of

φ1s. Indeed, there is a simple variational scheme that we can follow instead of solving Eq. (2.84).

Simply consider the hydrogenoid orbital φ
(Zeff )
1s which is solution of the Coulomb potential with

an effective nuclear charge Zeffe (with Zeff a real number),

(

p2

2m
− Zeffe

2

r

)

φ
(Zeff )
1s (r) = ǫ1sφ

(Zeff )
1s (r) , (2.87)

and form the Slater determinant |1s ↑, 1s ↓;Zeff〉 occupying twice φ
(Zeff )
1s , with Zeff used as a

single variational parameter. The calculation of the average energy E1s↑,1s↓(Zeff ) is quite straigh-

forward, 10 and gives:

E1s↑,1s↓(Zeff ) = 〈1s ↑, 1s ↓;Zeff |Ĥ |1s ↑, 1s ↓;Zeff 〉 = Z2
eff − 2ZZeff +

5

8
Zeff . (2.88)

Minimizing with respect to Zeff this quadratic expression we find Zopteff = Z − 5/16 = 1.6875 and

E1s↑,1s↓(Z
opt
eff ) = −(Z − 5/16)2 a.u. ≈ −2.848 a.u. ,

9This fact of gaining variational energy by appropriately breaking symmetries is a pretty common feature of an

unrestricted HF calculation. As a matter of fact, it can be shown that, under quite general circumstances, it brings

to the fact that “there are no unfilled shells in unrestriced HF”, i.e., there is always a gap between the last occupied

orbital and the lowest unoccupied one. See Bach, Lieb, Loss, and Solovej, Phys. Rev. Lett. 72, 2981 (1994).

10You simply need to calculate the average of p2/2m and of 1/r over φ
(Zeff )

1s .
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where the numbers are appropriate to Helium. This value of the energy in not too far form the

exact HF solution, which would give

EHF ≈ −2.862 a.u. (for Helium).

In turn, the full HF solution differs very little from the exact non-relativistic energy of Helium,

calculated by Configuration Interaction (see below). A quantity that measures how far HF differs

from the exact ansewer is the so-called correlation energy, defined simply as:

Ecorr
def
= Eexact − EHF , (2.89)

which, for Helium amounts to Ecorr ≈ −0.042 a.u., a bit more than 1% of the total energy.

2.5.1 Beyond Hartree-Fock: Configuration Interaction.

The next step will be rationalizing the finding that HF works very well for He. Suppose we have

fully solved the HF equations, finding out both occupied and unoccupied orbitals, with corresponding

eigenvalues ǫi. From such a complete HF solution, we can set up a new single-particle basis set

made of the HF orbitals. Call once again {α} such a basis. Obviously, full Hamiltonian H is

expressed in such a basis in the usual way. Imagine now applying the Hamiltonian to the HF

Slater determinant for the Ground State, which we denote by |HF 〉 = |α1, · · · , αN 〉:

H |HF 〉 =
∑

α′,α

hα′,αa
†
α′aα|HF 〉+

1

2

∑

α,β,α′,β′

(β′α′|V |αβ) a†β′a
†
α′aαaβ |HF 〉 . (2.90)

Among all the terms which enter in H |HF 〉, we notice three classes of terms: 1) the fully diagonal

ones, which give back the state |HF 〉 (those are the terms we computed in Sec. 2.4) 2) terms

in which a single particle-hole excitation is created on |HF 〉, i.e., a particle is removed from an

occupied orbital and put in one of the unoccupied orbitals; 3) terms in which two particle-hole

excitations are created. By carefully considering these three classes, one can show that:

Exercise 2.7 The application of the full Hamiltonian H to the HF Ground State Slater determi-

nant |HF 〉 produces the following

H |HF 〉 = EHF |HF 〉+
1

2

occ
∑

α,β

unocc
∑

α′,β′

(β′α′|V |αβ) a†β′a
†
α′aαaβ|HF 〉 , (2.91)

where the first piece is due to terms of type 1) above, the second piece is due to terms of type 3)

above, while terms of type 2) make no contribution due to the fact that the orbitals are chosen to

obey the HF equations.

So, in essence, having solved the HF equations automatically optimizes the state with respect to

states which differ by a single particle promoted onto an excited state. In the example of Helium

we were considering, the application of H to our HF ground state |1s ↑, 1s ↓〉 generates Slater

determinants in which both particles are put into higher unoccupied HF orbitals like, for instance,
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the 2s ↑, 2s ↓. Indeed, any two-electron Slater determinant which has the same quantum numbers

as |HF 〉, i.e., total angular momentum L = 0 and total spin S = 0, is coupled directly to |HF 〉
by the Hamiltonian. Then, we could imagine of improving variationally the wavefunction for the

Ground State, by using more than just one Slater determinant, writing

|Ψ〉 = λ0|HF 〉+ λ1|2s ↑, 2s ↓〉+ λ2|(2p− 2p)L=0,S=0〉+ λ3|3s ↑, 3s ↓〉+ · · · , (2.92)

with the λi used as variational parameters. Here |(2p − 2p)L=0,S=0〉 denotes the state made by

two p-electrons having total L = 0 and total S = 0, which is, in itself, a sum of several Slater

determinants. In general, the sum might go on and on, and is truncated when further terms

make a negligeable contribution or when your computer power is exhausted. 11 This scheme is

called Configuration Interaction by the quantum chemists. Let us try to understand why theConfiguration

Interaction corrections should be small for He. Suppose we truncate our corrections to the first one, i.e.,

including |2s ↑, 2s ↓〉. The expected contribution to the ground state energy due to this state, in

second order perturbation theory, is simply given by

∆E(2)(2s, 2s) =
|(2s, 2s|V |1s, 1s)|2

∆2s−1s
, (2.93)

where ∆2s−1s is the difference between the diagonal energy of the state |2s ↑, 2s ↓〉 and the corre-

sponding diagonal energy of |1s ↑, 1s ↓〉 (the latter being simply EHF ). ∆E(2)(2s, 2s) turns out

to be small, compared to EHF for two reasons: i) the Coulomb matrix element involved in the

numerator,

(2s, 2s|V |1s, 1s) =
∫

dr1dr2 φ
∗
2s(r2)φ

∗
2s(r1)

e2

|r1 − r2|
φ1s(r1)φ1s(r2) , (2.94)

is much smaller than the ones entering EHF , i.e, U1s = (1s, 1s|V |1s, 1s); 12 the denominator

involves large gaps due to the excitations of two particles to the next shell. (As an exercise, get

the expression for ∆2s−1s in terms of HF eigenvalues and Coulomb matrix elements.) Both effects

conspire to make the result for the energy correction rather small. The argument can be repeated,

a fortiori, for all the higher two particle-hole excitations.

2.6 Hartree-Fock fails: the H2 molecule.

Consider now what appears, at first sight, only a sligtly modification of two-electron problem we

have done for Helium: the H2 molecule. The electronic Hamiltonian can be written as

Helec =

2
∑

i=1

(

p2
i

2m
+ v(ri)

)

+
e2

|r1 − r2|
, (2.95)

11In principle, for more than N = 2 electrons, the sum should include also terms with more than two particle-hole

excitations, since each excited states appearing in H|HF 〉, when acted upon by H generated generated further

particle-hole excitations, in an infinite cascade.
12The integral would vanish, for orthogonality, if it were not for the Coulomb potential e2/|r1 − r2|. The result

is in any case much smaller than any direct Coulomb term.



2.6 Hartree-Fock fails: the H2 molecule. 33

i.e., differs from that of the Helium atom only in the fact that the external potential v(r) is no

longer −2e2/r but

v(r) = − e2

|r−Ra|
− e2

|r−Rb|
, (2.96)

being due to the two protons which are located at Ra and at Rb, with Rb − Ra = R. In the

limit R → 0 we recover the Helium atom, obviously. The fact that we talk here about electronic

Hamiltonian is due to the fact that, in studying a molecule, we should include the Coulomb

repulsion of the two nuclei, e2/R, as well as the kinetic energy of the two nuclei. In the spirit

of the Born-Oppenheimer approximation, however, we first solve for the electronic ground state

energy for fixed nuclear position, EGS(R), and then obtain the effective potential governing the

motion of the nuclei as

Vion−ion(R) =
e2

R
+ EGS(R) . (2.97)

Important quantities characterizing Vion−ion(R) are the equilibrium distance between the two

Figure 2.1: Lowest two wavefunctions of the H+
2 problem as a function of the internuclear distance

R. Taken from Slater.

nuclei, given by the position of the minimum Rmin of the potential, and the dissociation energy,

given by the difference between the potential at infinity, Vion−ion(R = ∞), and the potential at

the minimum Vion−ion(Rmin). The gross qualitative features of Vion−ion(R) are easy to guess from

the qualitative behaviour of EGS(R). EGS(R) must smoothly interpolate between the ground

state of Helium, obtained for R = 0, and the ground state of two non-interacting Hydrogen atoms

(−1 a.u.), obtained for R = ∞. The corresponding curve for Vion−ion(R) is easy to sketch, with a

large distance van der Walls tail approaching −1 a.u., a minimum at some finite Rmin, and a e2/R
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divergence at small R. One could ask how this picture is reproduced by HF. In principle, what we

should perform is a calculation of
(

− h̄
2∇2

2m
− e2

|r−Ra|
− e2

|r−Rb|
+ Vdir(r)

)

φe(o)(r) = ǫe(o)φe(o)(r) , (2.98)

where e(o) label solutions which are even (odd) with respect to the origin, which we imagine located

midway between the two nuclei, and Vdir(r) denotes the usual Hartree self-consistent potential.

Rotational invariance is no longer applicable, and the calculation, which can use only parity as a

good quantum number in a restricted HF scheme, is technically much more involved than the He

atom counterpart. It turns out that the even wavefunction φe(r) is always the lowest solution,13

so that the self-consistent HF ground state is obtained by occupying twice, with an ↑ and a ↓
electron, the state φe(r). In order to get a feeling for the form of such a HF ground state, imagine

calculating φe(o) by simply dropping the Hartree term Vdir(r), solving therefore the one-electron

problem relevant to H+
2 , the ionized Hydrogen molecule:

(

− h̄
2∇2

2m
− e2

|r−Ra|
− e2

|r−Rb|

)

φe(o)(r) = ǫe(o)φe(o)(r) . (2.99)

Fig. 2.1 here shows the two lowest wavefunctions φe and φo of the H
+
2 problem, as a function of the

internuclear distance R. Notice how such wavefunctions start from the 1s and 2p states of He+,

for R = 0, and smoothly evolve, as R increases, towards the bonding and antibonding combinations

of 1s orbitals centered at the two nuclei.

Fig. 2.2 here shows the lowest eigenvalues of

Figure 2.2: Lowest eigenvalues of the H+
2

problem as a function of the internuclear dis-

tance R. Taken from Slater.

the H+
2 problem as a function of the internuclear

distance R. Once again, notice how ǫe and ǫo, the

two lowest eigenvalues, evolve from, respectively,

the 1s and 2p eigenvalues of He+, and smoolthly

evolve, asR increases towards two very close eigen-

values split by 2t, where t is the overlap matrix

element between to far apart 1s orbitals, as usual

in the tight-binding theory.

So, for large R, it is fair to think of φe(o)(r)

as bonding and antibonding combinations of 1s

orbitals centered at the two nuclei:

φe(o)(r) =
1√
2
[φ1s(r−Ra)± φ1s)(r −Rb)] ,

(2.100)

where we have neglected the small non-orthogonality

between the two φ1s.
14 As a consequence, the

wavefunction for the Slater determinant with φe doubly occupied is simply:

Ψe↑,e↓(r1, r2) = φe(r1)φe(r2)
1√
2
[χ↑(σ1)χ↓(σ2)− χ↓(σ1)χ↑(σ2)] , (2.101)

13Indeed, it has no nodes.
14For a full treatment of the problem see J.Slater, Quantum THeory of Matter, McGraw-Hill. It is shown there

that the approximation in Eq. (2.100) is actually quite good down to distances of the order of R = 2 a.u..
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where the orbital part of the wavefunction can be expanded as follows:

φe(r1)φe(r2) =
1

2
[φ1s(r1 −Ra)φ1s(r2 −Rb) + φ1s(r1 −Rb)φ1s(r2 −Ra) +

φ1s(r1 −Ra)φ1s(r2 −Ra) + φ1s(r1 −Rb)φ1s(r2 −Rb)] . (2.102)

Notice that half of the wavefunction, precisely the two final terms, consists of configurations which

are totally unphysical for large R, i.e., those in which both electrons occupy the φ1s located on the

same atom, which correspond to inonized configurations of the type H−H+. Quite clearly, such

configurations suffer from the large direct Coulomb integral U1s.

It is therefore not surpris-

Figure 2.3: Effective Born-Oppenheimer ion-ion potential for the

H2 molecule. The curve labelled “Correct energy” represents the

exact result, while the curve labelled “Molecular Orbital” repre-

sents the result of the calculation sketched in the text.

ing that the total energy of this

wavefunction is so much higher

than that of two Hydrogen atoms

at R = ∞. Fig. 2.3 here shows

two curves for Vion−ion(R) as

a function of the internuclear

distanceR. The curve labelled

“Correct energy” represents the

exact result, whereas the one

labelled “Molecular Orbital” rep-

resents the result of the calcu-

lation we have just sketched,

known as Molecular Orbital theory: essentially a one-electron tight-binding calculation for the Molecular

orbital theorymolecule. Quite clearly, although the region close to the minimum is fairly well reproduced by the

Molecular Orbital theory, the dissociation energy is completely off, wrong by a quantity which one

can readily estimate to be roughly given by

U1s/2 = 5/16 a.u. ≈ 8.5eV.

We would like to stress that this is not due to our having neglected the Hartree-term in performing

our molecular orbital calculation, i.e., having used (2.99) instead of (2.98): it is a pitfall of HF with

its requiring the wavefunction to be represented by a single Slater determinant! 15 Quite clearly,

allowing already two Slater determinants,

1√
2
[Ψe↑,e↓(r1, r2)−Ψo↑,o↓(r1, r2)] , (2.103)

including the one in which we occupy with two electrons the close in energy φo orbital, would

cancel the unwanted part describing ionized configurations. The scheme that does so goes under

the name of Heitler-London theory. 16

The important message we learn from these simple examples is that correlation effects tend to

be very important whenever there are small single-particle energy scales in the problem, like in

solids with narrow electronic bands. Indeed, there are situations where the massive degeneracy of

the single-particle levels makes the correlation terms completely dominating the physics, like in

15Combined with the requirements of a restricted HF approach, where parity and spin are taken as good quantum

numbers.
16For a good discussion of this story, and the implications on magnetism, see the book by P. Fazekas, Lecture

Notes on Corelation and Magnetism, World Scientific.
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the Fractional Quantum Hall Effect: when there is a huge number of possible Slater determinants

to choose from, all with the same average energy, it would be meaningless to pick up just one,

forgetting all the others.



Chapter 3

Exact diagonalization and Lanczos

algorithm

In this Chapter, we describe and discuss the Lanczos algorithm, which is an exact method for

describing the low-energy spectrum of a finite-size system. The main idea is to express the ground

state and the low-lying energy states in terms of a small set of orthonormal wave functions, that

are built up iteratively. In this way, one is able to diagonalize the Hamiltonian in the low-energy

sector, extracting properties like the energy of the ground-state and of a few low-lying excited

states, and correlation functions.

Before describing the Lanczos algorithm, it is useful to introduce the Hubbard model, which is

the simplest microscopic model for strongly correlated systems, and to consider a very simple case

with only two sites, where we can perform analytically all the calculations.

3.1 Hubbard model

We consider a D-dimensional hypercubic lattice where at each site there is only one orbital (for

simplicity we can consider an s orbital). Therefore, on each site i, at position Ri, we have only

four possible states, that is the Hilbert space of the single site problem has dimension four:

0 electrons ⇒ |0〉i,
1 up electron ⇒ | ↑〉i = c†i,↑|0〉i,

1 down electron ⇒ | ↓〉i = c†i,↓|0〉i,
2 electrons ⇒ | ↑↓〉i = c†i,↑c

†
i,↓|0〉i.

Here c†i,σ creates an electron in the Wannier orbital centered around the site Ri, corresponding to

the wavefunction φσ(r −Ri). The total Hilbert space of the entire lattice is the direct product of

the Hilbert spaces of each site.
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The main approximation of the Hubbard model resides in considering that only the on-site

Coulomb repulsion is different from zero. This is a very crude approximation for the Coulomb

repulsion (a true long-range potential) and we can think that this is the result of a screening effect,

which is very effective in metallic systems. We indicate by U the on-site Coulomb repulsion:

U =

∫

dr1dr2|φ↑(r2)|2
e2

|r1 − r2|
|φ↓(r1)|2, (3.1)

in complete analogy with the direct Coulomb integral encountered in the previous Chapter. Then,

the electrons can hop from a site i to a site j with an amplitude tij :

−tij =
∫

drφ∗σ(r −Ri)hone−bodyφσ(r −Rj) . (3.2)

For simplicity, we can consider the case where tij 6= 0 for nearest-neighbor sites only. In the

following we will indicate by t the nearest-neighbor hopping. This term corresponds to the usual

kinetic energy of the electrons on the lattice. Finally, the ions are considered to be fixed at their

equilibrium positions and, therefore, there is no lattice dynamics nor electron-phonon interaction.

Having done all these assumptions, we arrive at the Hubbard model:Hubbard

model

H = −t
∑

〈i,j〉,σ
(c†iσcjσ +H.c.) + U

∑

i

ni↑ni↓, (3.3)

where the symbol 〈i, j〉 stands for nearest-neighbor sites, c†iσ (ciσ) creates (destroys) an electron of

spin σ on site i, and niσ = c†iσciσ is the electron density at the site i. In general, because the total

number of electron is conserved (i.e., the total number of electron commutes with the Hubbard

Hamiltonian), we will study the case of n electrons on a N -site hypercubic lattice.

Although the Hubbard Hamiltonian looks very simple, an exact solution for U 6= 0 is known

only in one-dimensional systems (by using the so-called Bethe ansatz), and even the ground-state

properties are unknown in all the most interesting cases (one exception is the case with U = ∞
and n = N − 1, where the ground state is totally polarized, i.e., it is ferromagnetic).

Notice that for U = 0 the Hubbard model is trivial because it describes free tight-binding

electrons moving in an hypercubic lattice, and the Hamiltonian can be easily diagonalized by a

Fourier transformation to Bloch waves ckσ:

cjσ =
1√
N

BZ
∑

k

eik·Rjckσ . (3.4)

where the sum over k is restricted to a Brillouin Zone (BZ). After this transformation, the Hamil-

tonian reads:

H =
BZ
∑

k,σ

ǫkc
†
kσckσ, (3.5)

where the energy band ǫk is

ǫk = −2t

D
∑

µ=1

cos kµ, (3.6)
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with the lattice spacing taken to be one, a = 1. More explicitly, we have that

1D : ǫk = −2t cosk

2D : ǫk = −2t(coskx + cos ky)

3D : ǫk = −2t(coskx + cos ky + cos kz).

In this case the complete spectrum is known, and the eigenstates are

|Ψ〉 =
occ
∏

k

c†k↑

occ
∏

q

c†q↓|0〉, (3.7)

with energy

E =

occ
∑

k,σ

nkσǫk , (3.8)

where nkσ = 1 (or 0) if the state k is occupied (unoccupied) by an electron iσ. Thus, having fixed

the number of up and down electrons, the ground state consists in occupying the lowest k states

in accordance with the Pauli principle.

When U is finite, in two spatial dimensions, the phase diagram (number of electrons n versus

U) is unknown and represents one of the most debated issues of the modern theory of strongly

correlated systems. The main problem is that when U is large, compared to the bare bandwidth

4Dt, it is no longer possible to use an independent electron picture, or a mean-field approach,

where, for instance, the ground state is found by filling the lowest-energy levels of given bands.

Indeed, in strongly correlated systems, the energy levels crucially depend on the Coulomb repulsion

and the electron density. When the electron correlation is strong enough, the assumption that the

free electronic state is adiabatically connected with the interacting state (the criterion on which the

Landau theory of Fermi liquids is based) is no longer true and the elementary excitations are not

simply connected to the ones of the non-interacting system. As an example, we consider the case

of n = N , which is called half-filling, and an equal amount of up and down spins, n↑ = n↓ = n/2.

For U = 0 the ground state is a metal, all the states with ǫk < ǫF = 0 are occupied by two

electrons with opposite spins. The states with ǫk > 0 are unoccupied, therefore, low-energy charge

excitations are possible, simply by moving one electron from ǫF to a state with energy ǫF + δǫ. In

the opposite limit, U ≫ t, the ground state is an insulator: all the sites are singly occupied and

the charge excitations, that correspond to promote one electron on top to an other one (respecting

the Pauli principle), have very high energy gap, ∆E ∼ U , two electrons being on the same site.

In the extreme limit of t = 0, all the states with one electron per site are degenerate (with energy

E = 0), independently on the actual spin configuration, this huge degeneracy is removed when

a very small hopping term is allowed. Therefore, from this simple argument, it turn out that at

half-filling there must be a metal-insulator transition by increasing the Coulomb interaction U .

Actually, it is possible to show that, in the presence of nearest-neighbor hopping only, the ground

state is an insulator, with long-range antiferromagnetic order, for any finite U .
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3.2 Two-site Hubbard problem: a toy model.

It is very instructive to consider the case of two sites only:

H = −t
∑

σ

(c†1σc2σ + c†2σc1σ) + U(n1↑n1↓ + n2↑n2↓), (3.9)

which we consider at half-filling, n = N , that is with n = 2 electrons. This exercise is also

instructive as a simple toy model of the H2 molecule at large enough R, discussed in the previous

Chapter.

It is easy to verify that the Hamiltonian commutes with the total spin component in the z

direction, Sz, [H,Sz] = 0, and, therefore, it is possible to diagonalize H separately on each

subspace of given Sz. In the subspace of Sz = 1, we have only one state

c†1↑c
†
2↑|0〉, (3.10)

and this state has E = 0. In a similar way, there is only one state in the subspace Sz = −1

c†1↓c
†
2↓|0〉, (3.11)

again with E = 0. On the contrary, in the Sz = 0 subspace we have four states:

|1〉 = c†1↑c
†
2↓|0〉, (3.12)

|2〉 = c†1↓c
†
2↑|0〉, (3.13)

|3〉 = c†1↑c
†
1↓|0〉, (3.14)

|4〉 = c†2↑c
†
2↓|0〉, (3.15)

and the action of H is simply calculated to be:

H |1〉 = −t|3〉 − t|4〉, (3.16)

H |2〉 = +t|3〉+ t|4〉, (3.17)

H |3〉 = −t|1〉+ t|2〉+ U |3〉, (3.18)

H |4〉 = −t|1〉+ t|2〉+ U |4〉. (3.19)

Therefore, in principle, in order to diagonalize the Hamiltonian in the Sz = 0 subspace, we have

to diagonalize a 4× 4 matrix. However, we can also notice that:

H(|1〉+ |2〉) = .0 (3.20)

Indeed, the (normalized) state 1/
√
2(|1〉 + |2〉) corresponds to the Sz = 0 state of the triplet. It

is quite easy to show that the Hubbard Hamiltonian commutes not only with the z component of

the total spin, but also with the total spin S2: in other words, the Hubbard Hamiltonian is SU(2)

invariant, and, therefore, the total spin is a good quantum number. It follows that all the tripleet

states with different Sz must be degenerate.
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Moreover, we can also define the following states:

|1− 2〉 =
1√
2
(|1〉 − |2〉), (3.21)

|3 + 4〉 =
1√
2
(|3〉+ |4〉), (3.22)

|3− 4〉 =
1√
2
(|3〉 − |4〉), (3.23)

obtaining

H |1− 2〉 = −2t|3 + 4〉, (3.24)

H |3 + 4〉 = −2t|1− 2〉+ U |3 + 4〉, (3.25)

H |3− 4〉 = U |3− 4〉. (3.26)

Therefore, the (normalized) single state 1/
√
2|3 − 4〉 is an eigenstate with eigenvalue U , and in

order to find the remaining two singlet eigenstates we have to diagonalize a 2× 2 matrix:

H =

(

0 −2t

−2t U

)

.

The two eigenvalues are given by:

λ± =
U ±

√
U2 + 16t2

2
, (3.27)

and the two eigenstates are:

|Ψ−〉 = a−|1− 2〉+ b−|3 + 4〉, (3.28)

|Ψ+〉 = a+|1− 2〉+ b+|3 + 4〉, (3.29)

where a± and b± satisfy:

−U ∓
√
U2 + 16t2

2
a± − 2tb± = 0 (3.30)

(a±)
2 + (b±)

2 = 1. (3.31)

After some simple algebra, we find:

a+ =

√

1

2

[

1− U√
U2 + 16t2

]

, (3.32)

a− =

√

1

2

[

1 +
U√

U2 + 16t2

]

, (3.33)

b+ = −
√

1

2

[

1 +
U√

U2 + 16t2

]

, (3.34)

b− =

√

1

2

[

1− U√
U2 + 16t2

]

. (3.35)

Notice that, because λ− is always negative, the actual ground state is the singlet |Ψ−〉.
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It is very instructive to consider the limit of U ≫ t, in this case the two eigenvalues are

λ− ∼ −4t2

U
, (3.36)

λ+ ∼ U +
4t2

U
, (3.37)

and the two eigenstates are

|Ψ−〉 ∼ |1− 2〉, (3.38)

|Ψ+〉 ∼ |3 + 4〉. (3.39)

(3.40)

This result should be contrasted with the Molecular Orbital theory of the H2 molecule discussed

in the previous Chapter, where the candidate ground state is taken to be, when expressed in terms

of the previous states,

|Ψe↑,e↓〉 =
1√
2
[|3 + 4〉+ |1− 2〉] .

Thus, in the strong-coupling regime, the low-energy state almost consists of a state with no doubly

occupied sites (i.e., b− ≪ a−), and, most importantly, the two electrons have opposite spins. The

gain in having antiparallel spins, with respect to the case of two parallel spins (with energy E = 0,

independent on U), is λ− ∼ − 4t2

U .

The fact that in the strong coupling limit there is a tendency to have antiparallel spins comes

out from a very general result, which is valid for the Hubbard model on any lattice: in the strong

coupling limit U ≫ t, it is indeed possible to show, by using perturbation theory, that the Hubbard

model maps onto the antiferromagnetic Heisenberg model:

Hheis = J
∑

〈i,j〉

~Si · ~Sj + const, (3.41)

where J = 4t2/U is an antiferromagnetic coupling, favoring antiparallel spins, and ~Si = (Sxi , S
y
i , S

z
i )

is the spin operator at the site i reading, in the fermionic representation, as

Sαi =
1

2

∑

µν

c†iµ(σ
α)µνciν , (3.42)

with σα the Pauli matrices.

3.3 Lanczos algorithm

In the previous Section we have considered the case of the Hubbard model on two sites and we

have found analytically all the spectrum and the eigenstates. By increasing the number of lattice

sites, it becomes almost impossible to tackle the problem by using simple analytical tools. An

alternative approach is to calculate the matrix that describe the Hamiltonian in a given basis |ψk〉
(k = 1, ...,NH) (in the previous example we have chosen the basis of localized electron with a given

spin in the z direction)

Hk,k′ = 〈ψk|H |ψk′〉, (3.43)
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which is a NH × NH matrix, and diagonalize it by using standard diagonalization routines (e.g.,

the LAPACK routines). Unfortunately, this approach works only if the Hilbert space NH is not

too large (a few thousands). Indeed, the disk space to keep in memory the matrix increases like

N 2
H and the CPU-time like N 3

H .

In general the Hilbert space grows exponentially by increasing the number of sites, indeed by

fixing the number of sites N , and the number of up and down electrons, n↑ and n↓, respectively,

the Hilbert space (for the Hubbard model) is

NH =
N !

n↑!(N − n↑)!
× N !

n↓!(N − n↓)!
, (3.44)

for instance, for N = 16 and n↑ = n↓ = 8, NH = (12870)2 = 165636900, which means that we

should diagonalize a 165636900× 165636900 matrix, which is impossible to tackle with a standard

diagonalization routine.

The main ideas of the Lanczos method rely on the following points:

• The matrix Hk,k′ is a sparse matrix, i.e., most of its NH ×NH elements are zero.

• In general we are interested in the properties of the ground state and of few excited states,

and not in the full spectrum.

The Lanczos method uses a convenient basis set

Figure 3.1: Convergence of the lowest eigen-

values of the Lanczos tridiagonal matrix as a

function of the Lanczos iteration number nL.

to diagonalize the Hamiltonian: starting from a

trial state |Ψtrial〉, which is assumed not to be or-

thogonal to the actual ground state, we construct

iteratively an orthonormal basis, generated from

Hm|Ψtrial〉. The core part of the Lanczos algo-

rithm is the calculation of H |Ψ〉, which, of course,
must use the sparseness of H . The convergence of

the method is very fast for the low-energy eigen-

states. Fig. (3.1 shows the convergence of the low-

est eigenvalues found by the Lanczos method (see

below) as a function of the Lanczos iteration num-

ber nL, for a N = 16 sites spin-1/2 Heisenberg

chain with periodic boundary conditions. Notice

the quick convergence of the ground state energy

and of the first few excited states.

In the following, we will describe in some de-

tail the Lanczos algorithm. We will proceed con-

structing a basis |Ψk〉 for the many-body system,

in terms of which every state can be written as:

|Ψ〉 =
NH
∑

k=1

ak|Ψk〉. (3.45)
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The starting point is a normalized trial wave function |Ψtrial〉, that, in the following, will be

denoted by |Ψ1〉. From |Ψ1〉, we can construct a second normalized state |Ψ2〉, which is orthogonal

to the previous one:

β2|Ψ2〉 = H |Ψ1〉 − α1|Ψ1〉. (3.46)

To make |Ψ2〉 orthogonal to |Ψ1〉 we impose that

〈Ψ1|Ψ2〉 = 〈Ψ1|H |Ψ1〉 − α1〈Ψ1|Ψ1〉 = 0, (3.47)

and because |Ψ1〉 is normalized, we obtain

α1 = 〈Ψ1|H |Ψ1〉, (3.48)

that is α1 is the average energy of |Ψ1〉. In addition, β2 can be found by taking the scalar product

of Eq. (3.46) with 〈Ψ2|
β2 = 〈Ψ2|H |Ψ1〉. (3.49)

Notice that, by using Eq. (3.46), we also have that

β2
2 = 〈Ψ1|(H − α1)(H − α1)|Ψ1〉 = 〈Ψ1|H2|Ψ1〉 − α2

1, (3.50)

that is β2 is the mean square energy deviation of |Ψ1〉.

Let us go on with the application of H and define the third normalized vector, in such a way

that it is orthogonal both to |Ψ1〉 and to |Ψ2〉

β3|Ψ3〉 = H |Ψ2〉 − α2|Ψ2〉 −A|Ψ1〉. (3.51)

The conditions of orthogonality are

〈Ψ2|Ψ3〉 ⇔ α2 = 〈Ψ2|H |Ψ2〉, (3.52)

〈Ψ1|Ψ3〉 ⇔ 〈Ψ1|H |Ψ2〉 −A = 0 ⇔ A = β2, (3.53)

and finally, the fact that |Ψ3〉 is normalized leads to

β3 = 〈Ψ3|H |Ψ2〉. (3.54)

A further step is needed in order to show a very important point of the Lanczos procedure.

Therefore, let us go on and define the fourth normalized vector

β4|Ψ4〉 = H |Ψ3〉 − α3|Ψ3〉 −A2|Ψ2〉 −A1|Ψ1〉. (3.55)

The conditions of orthogonality are

〈Ψ3|Ψ4〉 ⇔ α3 = 〈Ψ3|H |Ψ3〉, (3.56)

〈Ψ2|Ψ4〉 ⇔ 〈Ψ2|H |Ψ3〉 −A2 = 0 ⇔ A2 = β3, (3.57)

〈Ψ1|Ψ4〉 ⇔ A1 = 〈Ψ1|H |Ψ3〉 = 0, (3.58)

the last result can be verified by using the fact that H |Ψ1〉 = β2|Ψ2〉+ α1|Ψ1〉, and thus

A1 = 〈Ψ1|H |Ψ3〉 = β2〈Ψ2|Ψ3〉+ α1〈Ψ1|Ψ3〉 = 0. (3.59)
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Therefore, it comes out that |Ψ4〉, once orthogonalized to |Ψ2〉 and |Ψ3〉, is automatically orthogonal

to |Ψ1〉. The fact that, in this procedure, at a given step, it is sufficient to orthogonalize only to the

previous two vectors is a general feature, that makes the Lanczos algorithm very efficient. Indeed,

suppose we have constructed the Lanczos vector up to |Ψm−1〉

βm−1|Ψm−1〉 = H |Ψm−2〉 − αm−2|Ψm−2〉 − βm−2|Ψm−3〉, (3.60)

with

αm−2 = 〈Ψm−2|H |Ψm−2〉, (3.61)

βm−2 = 〈Ψm−2|H |Ψm−3〉, (3.62)

βm−1 = 〈Ψm−1|H |Ψm−2〉, (3.63)

orthogonal to all |Ψk〉 with k ≤ m− 2. Then we define

βm|Ψm〉 = H |Ψm−1〉 − αm−1|Ψm−1〉 − β̃|Ψm−2〉 −
m−3
∑

j=1

Aj |Ψj〉. (3.64)

The conditions of orthogonality reads as

〈Ψm−1|Ψm〉 ⇔ αm−1 = 〈Ψm−1|H |Ψm−1〉, (3.65)

〈Ψm−2|Ψm〉 ⇔ β̃ = 〈Ψm−2|H |Ψm−1〉 = βm−1, (3.66)

Aj = 〈Ψj |H |Ψm−1〉, (3.67)

but, because we have (here we suppose, of course that for j > 1)

H |Ψj〉 = βj+1|Ψj+1〉+ αj |Ψj〉+ βj |Ψj−1〉, (3.68)

and j + 1 ≤ m− 2, we obtain that

Aj = 0. (3.69)

Then, |Ψm〉, once orthogonalized to |Ψm−1〉 and |Ψm−2〉, it is automatically orthogonal to all the

previous vectors.

Thus, the very important outcome is that, at each Lanczos step, we have to orthogonalize the

vector only to the previous two vectors, and the orthogonality with the previous ones is automatic.

Of course, when this procedure is done numerically, there is some rounding error due to the machine

precision, and the vectors can have a very small component parallel to the previous ones.

In the Lanczos algorithm, the only constants that are needed are the αm’s and the βm’s, in term

of which, if we truncate the calculation to nL ≤ NH , we have

H =



















α1 β2 0 0 . . .

β2 α2 β3 0 . . .

0 β3 α3 β4 . . .

0 0 β4 α4 . . .

. . . . . . . . . . . . . . .



















.
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that is, in the Lanczos basis, the Hamiltonian is a tridiagonal symmetric matrix, with αm on the

diagonal and βm below the diagonal. The key point is that, in order to obtain the low-energy

spectrum, we need

nL ≪ NH . (3.70)

In practice, it is sufficient to perform nL ∼ 102 Lanczos steps to get a very accurately the ground-

state vector.

The memory requirements are quite limited compared to N 2
H . Indeed, we need only two or

three vectors of dimension NH (two vectors are enough for making the Lanczos procedure), then,

generally, the Hamiltonian is kept as a compact matrix of dimension ≈ N × NH . When we

are interested in having the ground-state vector, and not only the eigenvalues, three vectors are

useful to avoid a lot of writing and reading from the hard disk. Finally, as far as the CPU-time

is concerned, the Lanczos algorithm scales like const × NH , instead of N 3
H as in the standard

diagonalization.



Part II

Monte Carlo methods





Chapter 4

Probability theory

4.1 Introduction

We have seen that one of the important advantages of the Hartree-Fock theory (apart from pro-

viding a simple choice for the unknown many-body wavefunction, in the form of a single Slater

determinant) is to reduce a 3N-dimensional integral, corresponding to the calculation of the total

energy of N electrons, to a much simpler one, containing only one- and two-body matrix elements,

and involving at most 6-dimensional integrals. This is an enormous simplification, as for a conven-

tional 3N-dimensional integration, the effort in evaluating the integrand grows exponentially with

N, limiting N to very small values.

In general, when the wavefunction is not simply a single Slater determinant, this simplification is

not possible, and even a slight modification of the Slater determinant, including some simple form

of correlations between electrons, through a prefactor of the determinant (Jastrow factor), restores

immediately the problem of the integration over 3N variables. In the configuration interaction

approach, this problem is solved by expanding a correlated wavefunction in terms of a certain

number of Slater determinants. However, within this approach, the number of terms has to increase

very quickly with N (e.g., for a lattice model, the Hilbert space grows exponentially, and similarly

also the number of Slater determinants required for convergence has to increase).

In the following, we will introduce a statistical method to solve the problem of large multidi-

mensional integrals, by means of the so-called Monte Carlo approach. The name Monte Carlo

originates, according to some, from a game played in Monte Carlo by the young children. They

used to throw paper balls in a circular region limited by a square perimeter. Then, after many

trials, they used to sum all the balls inside the circular region in order to determine the winner.

Probably, they did not know that the ratio of the number of balls inside the region divided by the

ones inside the whole square perimeter should give the area of the circle divided by the surround-

ing square, namely the number π/4. This story about the origin of the name “Monte Carlo” is

probably not historically true, but it is amusing to imagine that the most powerful technique for
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multidimensional integrals was originated by a game.

Before describing this powerful technique, we need to introduce the concept of probability, and

some basic standard definitions such as random variables, mean value, variance, etc. A clear and

comprehensive treatment of the theory of probability, including its axiomatic foundations, is given

in the book by B. Gnedenko, The theory of probability, MIR.

4.2 A bit of probability theory

In principle, by using classical physics laws, we can make exact predictions of events by knowing

exactly the initial conditions. In practice, there are several events that are unpredictable, essentially

because it is impossible to have the exact knowledge of the initial conditions, and a very small

error in those conditions will grow exponentially in time, invalidating any attempt to follow the

exact equations of motion: The weather forecast and the rolling of a die are examples of such

unpredictable phenomena. We will see that, though it is essentially impossible to predict exactly

what number will show up after rolling a die, it is perfectly defined to ask ourselves what is the

probability that a given number will come out.

In the definition of probability, it is important to assume that there exist reproducible experi-

ments, that, under very similar initial conditions (e.g., rolling of a die using always the same die

and similar speed and direction), produce different events (denoted here by Ei): For a die the event

number i, Ei, maybe defined “successful” when the die shows up the number i, for i = 1, · · · , 6. For
weather forecast, the event “it is raining” or “it is cloudy” maybe analogously defined “successful”

or “unsuccessful”. It is therefore natural to introduce the probability of the event Ei as:Probability

P (Ei) = pi =
Number of successful events

Total number of experiments
. (4.1)

In the following, we will see that the number pi, i.e., the probability of the event Ei, is consistently

defined in the limit of a large number of experiments. For instance, we can easily imagine that,

after rolling the die several times, the number of times any given number has appeared will be

approximately 1/6 of the total number of trials.

4.2.1 Events and probability

We describe in the following some simple properties of events.

Two events Ei and Ej are said to be mutually exclusive events if and only if the occurrence of

Ei implies that Ej does not occur and vice versa. If Ei and Ej are mutually exclusive,

P (Ei and Ej) = 0

P (Ei or Ej) = pi + pj (4.2)

A whole class of events can be mutually exclusive for all i and j. When the class is exhaus-
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tive, that is all possible events have been enumerated, being M the number of exclusive events

characterizing the experiment, then, by using (4.2) clearly:

P ( some Ei) =
M
∑

i=1

pi = 1 . (4.3)

In order to characterize all possible exclusive events one can define composite events. 1 For instance,

rolling two dice is an experiment that can be characterized by E1
i and E2

j , where E
1
j (E2

j ) refers

to the possible outcomes of the first (second) die. For composite events, the probability is labeled

by more than one index, in particular the joint probability pi,j is defined as:

pi,j = P (E1
i and E2

j ). (4.4)

Suppose E1
i and E2

j define a composite event of an exhaustive class of events, as for instance

the event ”it is cloudy” and the one ”it is raining” , then the joint probability can be written: Marginal and

conditional

probabilitypi,j =
∑

k

pi,k

[

pi,j
∑

k pi,k

]

= p(i)

[

pi,j
∑

k pi,k

]

= p(i) p(j|i) , (4.5)

where

p(i) =
∑

k

pi,k (4.6)

defines the so-called marginal probability that the event E1
i (e.g. it is cloudy) occurs, whatever the

second event may be (does not matter whether it is raining or not). The second factor in Eq. (4.5)

is the so-called conditional probability:

p(j|i) = pi,j
∑

k pi,k
, (4.7)

that is the probability for the occurrence of the event E2
j (e.g. it is raining), given that the event

E1
i (it is cloudy) has occurred. The conditional probability is normalized to 1,

∑

j p(j|i) = 1, as it

should be for representing a probability. Finally, Eq. (4.5) shows that any joint probability can be

factorized into a marginal probability times a conditional probability. Analogously one can define

the marginal probability of the second event p(j) =
∑

k pk,j and the conditional probability of the

first event given that the second E2
j has a given value j; p(i|j) = pi,j∑

k pk,j
so that the basic relation

(4.5) can be easily extended to:

pi,j = p(j) p(i|j) (4.8)

pi,j = p(i) p(j|i) (4.9)

Whenever the conditional probability p(j|i) (p(i|j)) of the second (first) event does not depend

on the first (second) event , namely the conditional probability depends only on the left index,

then the event E1
i (E2

j ) is said to be independent of the event E2
j (E1

j ), because the occurrence of

1In a more formal approach, originally due to Kolmogorov, one defines, starting from a set of elementary events

Ei, the set of all possible combinations of events under the operations of ‘union’, ‘intersection’, and ‘negation’,

forming what is sometimes called a σ-algebra of events, or a Borel field of events. We will not pursue this formal

approach. The interested reader can consult the book by Gnedenko.
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the first (second) event does not depend on the second (first) one. In this case it is simple to show,

using (4.8), that (i) reciprocity: if the first event is independent of the second one also the second

is independent of the first. Indeed given that by assumption p(i|j) does not depend on j, using

(4.5) we can evaluate p(j|i) in (4.7) and show that also this one does not depend on i, namely

p(j|i) = p(j)p(i|j)∑
k p(k)p(i|k)

= p(j) as
∑

k p(k) = 1. (ii) if two composite events are independent than the

joint probability p(i, j) factorizes into a product of the two corresponding marginal probabilities:

pi,j = p(i)p(j) = P (E1
i )P (E

2
j ) (4.10)

We finally remark that we can define as composite events the ones obtained by two or more

realizations of the same experiment. By definition, we assume that different realizations of the

same experiment are always independent, otherwise there should exist some particular external

condition (e.g., the speed of rolling the die) that has a clear influence on the experiment and has

not been correctly taken into account to classify exhaustively the events of the experiment. In

principle, the joint probability of N realizations of the same experiment can always be written as:

pi1,i2,··· ,iN = P (E1
i1 and E2

i2 · · · and ENiN ) = P (E1
i1)P (E

2
i2 ) · · ·P (ENiN ), (4.11)

where E1
i1
, E2

i2
· · ·ENiN indicate the N events of the same experiment repeated N times.

4.2.2 Random variables, mean value and variance

Once for a given experiment E all the possible exclusive events Ej are classified, for each realization

of the experiment there is only one integer i such that Ei is verified. Therefore we can define aRandom

variable random variable i→ xi, as a real-valued function associated to any possible successful event Ei.
2

The simplest random variable is the characteristic random variable x[j]:

x
[j]
i =

{

1 if Ej is satisfied

0 otherwise
,

i.e., in words, x
[j]
i = δi,j and is non zero only if the event Ej is successful. As another example,

when rolling a die, a random variable could be the actual outcome of the experiment, i.e., the

number that shows up:

xi = i if Ei is satisfied for i = 1, . . . , 6 ,

For any random variable x, we can define its mean value 〈x〉, i.e., the expected average valueMean value

after repeating several times the same experiment. According to the basic definition of probability,

Eq. (4.1), this quantity is simply related to the probability pi of the experiment that satisfies the

event Ei with random variable xi:

〈x〉 =
∑

i

xi pi . (4.12)

2Notice that, as a function defined on the space of the events, xi is a perfectly deterministic function. It is

unpredictable only the value the random variable xi attains due to the unpredictability to determine what particular

event Ei is satisfied in the given experiment E.
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Notice that for the characteristic random variable x[j] of the event Ej , we simply have 〈x[j]〉 = pj .

In general, the nth moment of a random variable xi is defined as the expectation values of the

nth power of xi:

〈xn〉 =
∑

i

xni pi , (4.13)

where obviously xni stands for (x(Ei))
n. The second moment allows us to define a particularly

important quantity, which is the variance of the variable x, defined as: Variance

var(x)
def
= 〈x2〉 − 〈x〉2 =

∑

i

(xi − 〈x〉)2 pi . (4.14)

The variance is a positive quantity, as shown explicitly by the last equality, which is very simple to

prove. The variance can be zero only when all the events having a non-vanishing probability give

the same value for the variable x, i.e., xi = 〈x〉 for all i’s for which pi 6= 0. In other words, whenever

the variance is zero, the random character of the variable is completely lost and the experiment

“what value will the variable x assume” becomes predictable. In general, the square root of the

variance is a measure of the dispersion of the random variable, and is called the standard deviation

σ =
√

var(x).

4.2.3 The Chebyshev’s inequality

Whenever the variance is very small, the random variable x becomes close to being predictable,

in the sense that its value xi for each event Ei with a non-negligeable probability is close to the

mean value 〈x〉, the uncertainty in the value being determined by a small standard deviation

σ =
√

var(x). In order to be more precise in the above statement, we will prove in the following a

very simple and powerful inequality, known as the Chebyshev’s inequality. Chebyshev’s

inequality
Let us consider the probability P̄ that the value attained by a random variable x will depart

from its mean 〈x〉 by a given amount
√

var(x)
δ larger than the standard deviation (δ < 1):

P̄ = P

[

(x− 〈x〉)2 ≥ var(x)

δ

]

=
∑

(xi−〈x〉)2≥ var(x)
δ

pi. (4.15)

Then, one can show that the probability for the occurrence of such an event is bounded by δ itself,

namely:

P̄ ≤ δ . (4.16)

Indeed, by the definition of the variance given in Eq. (4.14), we have:

var(x) =
∑

i

(xi − 〈x〉)2pi

≥
∑

(xi−〈x〉)2≥ var(x)
δ

(xi − 〈x〉)2pi ≥ var(x)

δ
P̄ , (4.17)

where the last inequality is simply obtained by replacing (xi − 〈x〉)2 with its lower bound var(x)
δ ,

and then using the definition of P̄ in Eq. (4.15). Inverting the last inequality, we finally obtain the

desired upper-bound P̄ ≤ δ.
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4.2.4 The law of large numbers: consistency of the definition of proba-

bility

A simple way to reduce the uncertainty of a given measurement is to repeat the experiment several

times, taking the average of the individual outcomes of the desired observable. Let us consider

the random variable x̄ obtained by averaging a large number N of independent realizations of the

same experiment, each providing a value xi for some given observable:

x̄ =
1

N

∑

i

xi . (4.18)

Since all experiments are identical and independent from each other, the joint-probability of all the

N events is known and given by the expression in Eq. (4.11), the probability of each single event

being P (Ei). Therefore, it is easy to compute the mean value of the average value x̄ in Eq. (4.18).

All the N terms in the sum give an identical contribution, equal to 〈x〉, thus resulting in:

〈x̄〉 = 〈x〉 , (4.19)

namely, the mean value of the average x̄ coincides exactly with the mean value of the single

experiment, as it is rather obvious to expect.

In order to compute the variance of x̄, we simply notice that, by averaging x̄2 over the distribution

(4.11), we get:

〈x̄2〉 = 1

N2

∑

i,j

〈xixj〉 =
1

N2

[

N〈x2〉+N(N − 1)〈x〉2
]

. (4.20)

There are two contributions in the latter equation, the first one coming from the terms i = j

in the expansion of the square, and giving simply N times 〈x2i 〉 (that do not depend on i), the

second being originated by the N(N − 1) terms obtained for i 6= j, and giving simply products of

indipendent simple means, 〈xi〉〈xj〉 = 〈x〉2. Using the relationship in Eq. (4.20), and the definition

of variance, we finally obtain:

var(x̄)
def
= 〈x̄2〉 − 〈x̄〉2 =

1

N
var(x) . (4.21)

Therefore, for large N, the random variable x̄, corresponding to averaging a large number of realiza-

tions of the same experiment, is determined with much less uncertainty than the single-experiment

mean, as from the Chebyshev’s inequality (4.16) used for δ = 1√
N
. almost all possible average

measurements (each of them characterized by N different realizations of the same experiment)

gives a value for x̄ close to the theoretical mean value 〈x〉+O( 1√
N
).

Suppose now that the random variable xi is just the characteristic random variable of a given

event Ej , x
[j]. For this random variable we have already noticed that the mean value is the

probability of the event Ej . namely 〈x[j]〉 = pj . Then, in view of the discussion of the present

section, the mean of the random variable x̄ obtained by averagingN independent realizations of the

same experiment gives an estimate of pj , with a standard deviation σ =
√

var(x̄) which decreases

like 1/
√
N , by Eq. (4.21). This uncertainty can be made arbitrarily small, by increasing N , so that

the probability pj of the event Ej is a well defined quantity in the limit of N → ∞. In conclusion,
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we have consistently justified the definition (4.1), which is the basis of the classical approach to

probability. In this scheme the concept of probability is strongly related to the reproducibility of

the experiments, which is the basis of the physical method.

4.2.5 Extension to continuous random variables and central limit theo-

rem

The generalization of the above analysis holds obviously also for random variables defined on

the continuum. In order to go from discrete to continuous variables, we will have to replace

summations with integrals, with rather obvious generalizations. For instance, whenever the set

of events is not countable but is a continuum in the Chebyshev’s inequality (4.16), we have to

appropriately generalize what we mean by Ei and pi.

Let us consider the event that a continuous random variable x is smaller than y, where y is a

given fixed real number. The probability P{x ≤ y} of such an event is a well defined function

F (y),

F (y) = P {x ≤ y} , (4.22)

which is called the cumulative probability of the random variable x. Clearly F (∞) = 1, and F (y) is

a monotonically increasing function. The latter property derives from the definition of probability,

Eq. (4.1), as the events which are successful for a given y1, x ≤ y1, are a fortiori also successful

for a larger y2 ≥ y1, since x ≤ y1 ≤ y2, implying that F (y1) ≤ F (y2).

Given the above properties we can define a positive definite function called the probability Probability

densitydensity ρ(y), which represents the analog of the pi used for discrete random variables:

ρ(y) =
dF (y)

dy
. (4.23)

Obviously ρ(y) ≥ 0, being F monotonically increasing. The above derivative can be defined also in

the sense of distributions, so that it represents a very general definition; in particular, whenever the

number of possible events Ei is discrete, ρ(y) is just a sum of δ-functions, ρ(y) =
∑

i piδ(y−x(Ei)).
The mean value and the variance of continuous random variables are then obtained by replacing

pi with the corresponding probability density ρ, and substituting sums with integrals, as follows:

〈x〉 =

∫ ∞

−∞
dx ρ(x)x , (4.24)

var(x) =

∫ ∞

−∞
dx ρ(x) (x − 〈x〉)2 , (4.25)

where obviously the normalization condition
∫∞
−∞ ρ(x) = F (∞) = 1 holds for the probability

density. Notice that the existence of the variance, and of higher moments as well, is not a priori

guaranteed in the continuous case: The probability density ρ(x) has to decrease sufficiently fast

at x→ ±∞ in order for the corresponding integrals to exist. For instance, if ρ(x) has a Lorenzian

form, ρ(x) = γ/(π(x2 + γ2)), then the variance and all the higher moments are not defined.
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An important quantity related to the probability density ρ(x) is the characteristic function ρ̂x(t),

which is basically the Fourier transform of the probability density, defined as:

ρ̂x(t) =

∫ ∞

−∞
dx ρ(x) ei(x−〈x〉)t . (4.26)

For small t, if the variance σ2 = var(x) is finite, one can expand the exponential up to second order

in t, yielding,

ρ̂x(t) = 1− σ2t2/2 + · · · . (4.27)

Analogously to the discrete case, the probability density of independent random variables x and y

is the product of the corresponding probability densities. It is then very simple to show that the

characteristic function of a sum of two independent random variables z = x+ y is just the product

of the two, namely:

ρ̂z(t) = ρ̂x(t) ρ̂y(t) . (4.28)

Using the above properties, and the expansion in Eq. (4.27), it is readily obtained the so-called

central limit theorem, which provides the asymptotic probability distribution of average quantities

over several realizations of a given experiment. We will see that this allows a much better estimate

of the uncertainity of these average quantities compared with the Chebyshev’s inequality estimate

(4.16). Going back to the discussion of Sec. 4.2.4, let us consider the probability distribution of the

average x̄ = (1/N)
∑

i xi of N independent measurements of the same quantity. We already know

that the mean of the average x̄ coincides with 〈x〉, the single-experiment mean, but we would like

to understand better the fluctuations of x̄ around this mean value. To this end, let us consider the

following continuous random variable Y directly related to x̄− 〈x〉:

Y =

N
∑

i=1

(xi − 〈x〉)
√
N

=
√
N(x̄− 〈x〉) , (4.29)

whose mean value is 〈Y 〉 = 0. By using iteratively Eq. (4.28), we can simply derive that

ρ̂Y (t) =

[

ρ̂x(
t√
N

)

]N

. (4.30)

For large enough N , at fixed t, it is legitimate to substitute the expansion (4.27) for ρx in the

above equation, obtaining a well defined limit for ρ̂Y (t), independent of most of the details of the

probability density ρ(x):

ρY (t) → exp(−t2σ2/2) for N → ∞ . (4.31)

This means that the distribution function ρY of the random variable Y in the limit N → ∞Central limit

theorem becomes a Gaussian, centered at 〈Y 〉 = 0, with variance σ2. This statement goes under the name

of central limit theorem.

Going back to our average x̄, we arrive at the conclusion that x̄ is Gaussian distributed, for

large N, according to the probability density:

ρ(x̄) =
1

√

2πσ2/N
exp

[

− (x̄− 〈x〉)2
2σ2/N

]

. (4.32)
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k Chebyshev Gaussian

1 1 0.31731

2 1/4 0.0455

3 1/9 0.0027

4 1/16 6.33-e5

5 1/25 5.77e-7

6 1/36 1.97e-9

7 1/49 2.55e-12

8 1/64 1.22e-15

Table 4.1: Probability P̄ that a random variable has a fluctuation away from its mean value larger

than k standard deviations. The Chebyshev’s bound holds for generic distributions, whereas the

rightmost column holds for the Gaussian distribution.

The standard deviation σ̄ = σ√
N

of the random variable x̄ is decreasing with N, and its distribution

is approaching, for large N, the Gaussian one. Therefore, as shown in Table (4.1), the central limit

allows us to reduce substantially the uncertainty on the mean value, as it is clear that, for large N,

this statistical uncertainty can be pushed down to arbitrarily small values. This is essentially the

rational behind the scheme for computing integrals with Monte Carlo, in principle with arbitrarily

small accuracy. Remember, however, that the possibility of having fluctuations from the mean

value of more than one error bar is the norm in Monte Carlo (see Table 4.1). Only results within

at least 3 error bars have a sufficient degree of reliability: the probability that a fluctuation of more

than 3 error bars will occur is less the 3/1000. It happens, in several papers, that strong statements

are made that can be invalidated in presence of fluctuations of two error bars. In general, before

starting to use the Monte Carlo technique, it is a good idea to familiarize with Table 4.1.

Exercise 4.1 What is the variance σ2
z of the difference z = x − y of two independent random

variables x and y, with corresponding variance σx and σy ?

Exercise 4.2 Consider a continuous random variable 0 ≤ x < 1 distributed according to the

uniform distribution ρ(x) = 1 of a ”random number generators”,

• Compute the mean average 〈x〉 and its variance var〈x〉.

• What should be the autocorrelation time

C(τ) = 〈xn+τxn〉 − 〈xn+τ 〉〈xn〉 (4.33)

as a function of the integer τ , for a perfect random number generator that generates for any

trial n an independent random number (namely the variables xn and xn+τ are independent)

?

• Is it a sufficient condition for a perfect random number generator? hint: Consider the prob-

ability density ρ(x, y) = N((xy)2 + b(x + y) + c), for the two variables x, y defined in the



58 Probability theory

interval 0 ≤ x, y < 1 where N = 1/(b + c + 1/9) is the normalization constant, and b and

c are such that ρ(x, y) ≥ 0. Show that the function ρ(x, y) represents a probability density

when:
I b > 0 c > 0

II −2 ≤ b < 0 c > b2

4 − b

III b ≤ −2 c > −(1 + 2b)

Show that the correlation C =< xy > − < x >< y >= b
432 + (c−b2)

144 may vanish even when

c 6= 0 or b 6= 0, namely when the two random variables x and y are not independent.

Exercise 4.3 Consider a continuous random variable x distributed according to the Lorenzian

probability density ρ(x) = 1/π(1 + x2), determine the distribution of the mean average of the

variable x̄ over several independent samples of the same lorentian random variable:

x̄ =
1

N

∑

i

xi (4.34)

• Compute the probability density of the random variable x̄. Hint: the Fourier trasform of the

Lorenzian is exp(−|t|).

• Does the central limit theorem hold for the random variable x̄? If not explain why.

Exercise 4.4 Consider the N independent realization xi, i = 1, · · ·N of the same random variable

x, distributed according to a given probability density ρ(x) with finite mean xM and variance σ. In

order to estimate the variance σ from the given set {xi}, one can consider the random variable:

y =
(
∑

i x
2
i )

N
− (

∑

i xi
N

)2 (4.35)

• Show that < y >= (N−1)/Nσ, thus a better estimate of the variance is given by yN/(N−1),

as well known.

• What is the estimate of the variance of the mean average:

x̄ =
1

N

∑

i

xi (4.36)

in terms of y,

• and the variance of this estimate ? hint: assume for simplicity xM = 0, and N large.



Chapter 5

Quantum Monte Carlo: The

variational approach

5.1 Introduction: importance of correlated wavefunctions

The simplest Hamiltonian in which electron-electron correlations play an important role is the

one-dimensional Hubbard model:

H = −t
∑

〈i,j〉

∑

σ

(c†iσcjσ +H.c.) + U
∑

i

ni↑ni↓, (5.1)

where c†iσ (ciσ) creates (destroys) an electron with spin σ on the site i, ni,σ = c†iσciσ is the electron

number operator (for spin σ) at site i, and the symbol 〈i, j〉 indicates nearest-neighbor sites.

Finally, the system is assumed to be finite, with L sites, and with periodic boundary conditions

(alternatively, you can think of having a ring of L sites).

A particularly important case is when the number N of electrons is equal to the number of sites

L, a condition that is usually called half filling. In this case, the non-interacting system has a

metallic ground state: For U = 0, the electronic band is half filled and, therefore, it is possible

to have low-energy charge excitations near the Fermi surface. In the opposite limit, for t = 0,

the ground state consists in having one electron (with spin up or down) on each site, the total

energy being zero. Of course, because the total energy does not depend on the spin direction

of each spin, the ground state is highly degenerate (its degeneracy is exactly equal to 2N ). The

charge excitations are gapped – the lowest one corresponding to creating an empty and a doubly

occupied site, with an energy cost of U – and, therefore, the ground state is insulating. This

insulator state, obtained in the limit of large values of U/t, is called Mott insulator. In this case,

the insulating behavior is due to the strong electron correlations, since, according to band theory,

one should obtain a metal (we have an odd number of electrons per unit cell). Because of the

different behavior of the ground state in the two limiting cases, U = 0 and t = 0, a metal-insulator

transition is expected to appear for intermediate values of U/t. Actually, in one dimension, the
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Hubbard model is exactly solvable by using the so-called Bethe Ansatz, and the ground state is

found to be an insulator for all U/t > 0, but, in general, one expects that the insulating state

appears only for (U/t) above some positive critical value (U/t)c.

Hereafter, we define an electron configuration |x〉 as a state where all the electron positions and

spins along the z-axis are defined. In the one-dimensional Hubbard model, an electron configuration

can be written as:

|x〉 = | ↑, ↑↓, 0, 0, ↓, · · · 〉 = c†1,↑c
†
2,↑c

†
2,↓c

†
5,↓ · · · |0〉 , (5.2)

namely, on each site we can have no particle (0), a singly occupied site (↑ or ↓) or a doubly occupied

site (↑↓). Notice that on each configuration the number of doubly occupied sites D =
∑

i ni,↑ni,↓

is a well defined number. The state |x〉 we have written is nothing but a Slater determinant in

position-spin space.

The U = 0 exact ground state solution of the Hubbard model, |Ψ0〉, can be expanded in terms

of the complete set of configurations |x〉:

|Ψ0〉 =
∏

k≤kF ,σ
c†k,σ|0〉 =

∑

x

|x〉〈x|Ψ0〉 . (5.3)

In the case of U/t ≫ 1, this very simple wavefunction is not a good variational state, and the

reason is that the configurations with doubly occupied states have too much weight (verify that

the average density of doubly occupied sites is 1/4 for the state |Ψ0〉). Indeed, by increasing U/t,

all the configurations with one or more doubly occupied sites will be “projected out” from the exact

ground state, simply because they have a very large (of order of U/t) average energy. A simple

correlated wavefunction that is able to describe, at least qualitatively, the physics of the Mott

insulator is the so-called Gutzwiller wavefunction. In this wavefunction the uncorrelated weights

〈x|Ψ0〉 are modified according to the number of doubly occupied sites in the configuration |x〉:

|Ψg〉 = e−gD|Ψ0〉 =
∑

x

|x〉e−g〈x|D|x〉〈x|Ψ0〉 (5.4)

For g = ∞, only those configurations |x〉 without doubly occupied sites remain in the wavefunction,

and the state is correctly an insulator with zero energy expectation value.

The importance of electronic correlation in the Gutzwiller wavefunction is clear: In order to

satisfy the strong local constraint of having no doubly occupied sites, one has to expand the

wavefunction in terms of a huge number of Slater determinants (in position-spin space), each

satisfying the constraint. This is the opposite of what happens in a weakly correlated system,

where one, or at most a few, Slater determinants (with appropriate orbitals selected) can describe

qualitatively well, and also quantitatively, the ground state.

5.2 Expectation value of the energy

Once a correlated wavefunction is defined, as in Eq. (5.4), the problem of computing the expectation

value of the Hamiltonian (the variational energy) is very involved, because each configuration |x〉
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in the expansion of the wavefunction will contribute in a different way, due to the Gutzwiller

weight exp(−g〈x|D|x〉). In order to solve this problem numerically, we can use a Monte Carlo

sampling of the huge Hilbert space containing 4L different configurations. To this purpose, using

the completeness of the basis, 1 =
∑

x |x〉〈x|, we can write the expectation value of the energy in

the following way:

E(g) =
〈Ψg|H |Ψg〉
〈Ψg|Ψg〉

=

∑

x eL(x)ψ
2
g(x)

∑

x ψ
2
g(x)

, (5.5)

where ψg(x) = 〈x|Ψg〉 and eL(x) is the so-called local energy : Local energy

eL(x) =
〈x|H |Ψg〉
〈x|Ψg〉

. (5.6)

Therefore, we can recast the calculation of E(g) as the average of a random variable eL(x) over a

probability distribution px given by:

px =
ψ2
g(x)

∑

x ψ
2
g(x)

. (5.7)

As we will show in the following, it is possible to define a stochastic algorithm (Markov chain),

which is able of generating a sequence of configurations {|xn〉} distributed according to the desired

probability px. Then, since the local energy can be easily computed for any given configuration,

with at most L3 operations, we can evaluate the expectation value of the energy as the mean of

the random variable eL(x) over the visited configurations:

E(g) =
1

N

N
∑

n=1

eL(xn) . (5.8)

Notice that the probability itself, pxn , of a given configuration xn does not appear in Eq. (5.8). This

might seem surprising at a first glance. The important point to notice, however, is that we have

assumed that the configurations xn are already distributed according to the desired probability px,

so that configurations x with larger probability px will automatically be generated more often than

those with a smaller probability. The factor px is therefore automatically accounted for, and would

be incorrect to include it in Eq. (5.8). 1 This approach is very general and can be extended (with

essentially the same definitions) to continuous systems (replace summations with multidimensional

integrals), and to general Hermitian operators Ô (for instance the doubly occupied site number

D), the corresponding local estimator, replacing eL(x) in Eq. (5.8), being analogously defined:

OL(x) =
〈x|Ô|Ψg〉
〈x|Ψg〉

. (5.9)

5.3 Zero variance property

An important feature of the variational approach is the so-called zero variance property. Suppose

that the variational state |Ψg〉 coincides with en exact eigenstate of H (not necessarily the ground

1It is worth noticing here that px is generally easy to calculate up to a normalization constant, which is instead

very complicated, virtually impossible, to calculate. In the present case, for instance, ψ2
g(x) is assumed to be simple,

but
∑

x ψ
2
g(x) involves a sum over the huge Hilbert space of the system, and is therefore numerically inaccessible in

most cases.
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state), namely H |Ψg〉 = E(g)|Ψg〉. Then, it follows that the local energy eL(x) is constant:

eL(x) =
〈x|H |Ψg〉
〈x|Ψg〉

= E(g)
〈x|Ψg〉
〈x|Ψg〉

= E(g) . (5.10)

Therefore, the random variable eL(x) is independent on |x〉, which immediately implies that its

variance is zero, and its mean value E(g) coincides with the exact eigenvalue. Clearly the closer

is the variational state |Ψg〉 to an exact eigenstate, the smaller the variance of eL(x) will be, and

this is very important to reduce the statistical fluctuations and improve the numerical efficiency.

Notice that the average square of the local energy 〈e2L(x)〉 corresponds to the exact quantum

average of the Hamiltonian squared. Indeed:

〈Ψg|H2|Ψg〉
〈Ψg|Ψg

=

∑

x〈Ψg|H |x〉〈x|HΨg〉
∑

x〈Ψg|x〉〈x|Ψg〉
=

∑

x e
2
L(x)ψ

2
g(x)

∑

x ψ
2
g(x)

= 〈e2L〉 . (5.11)

Thus, the variance of the random variable eL(x) is exactly equal to the quantum variance of the

Hamiltonian on the variational state |Ψg〉:

σ2 =
〈Ψg|(H − Eg)

2|Ψg〉
〈Ψg|Ψg〉

= var(eL) . (5.12)

It is therefore clear that the smaller the variance is, the closer the variational state to the exact

eigenstate will be.

Instead of minimizing the energy, it is sometime convenient to minimize the variance (e.g., as a

function of the parameter g). From the variational principle, the smaller the energy is the better

the variational state will be, but, without an exact solution, it is hard to judge how accurate the

variational approximation is. On the contrary, the variance is very useful, because the smallest

possible variance, equal to zero, is known a priori, and in this case the variational state represent

an exact eigenstate of the hamiltonian.

5.4 Markov chains: stochastic walks in configuration space

A Markov chain is a non deterministic dynamics, for which a random variable, denoted by xn,

evolves as a function of a discrete iteration time n, according to a stochastic dynamics given by:

xn+1 = F (xn, ξn) . (5.13)

Here F is a known given function, independent of n, and the stochastic nature of the dynamics is

due to the ξn, which are random variables (quite generally, ξn can be a vector whose coordinates

are independent random variables), distributed according to a given probability density χ(ξn),

independent on n. The random variables ξn at different iteration times are independent (they are

independent realizations of the same experiment), so that, e.g., χ(ξn, ξn+1) = χ(ξn)χ(ξn+1). In the

following, for simplicity of notation, we will indicate xn and ξn as simple random variables, even

though they can generally represent multidimendional random vectors. Furthermore, we will also

consider that the random variables xn assume a discrete set of values, 2 as opposed to continuous

2For instance {xn} defines the discrete Hilbert space of the variational wavefunction in a finite lattice Hamiltonian
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ones, so that multidimensional integrals may be replaced by simple summations. Generalizations

to multidimensional continuous cases are rather obvious.

It is simple to simulate a Markov chain on a computer, by using the so-called pseudo-random

number generator for obtaining the random variables ξn, and this is the reason why Markov chains

are particularly important for Monte Carlo calculations. Indeed, we will see that, using Markov

chains, we can easily define random variables xn that, after the so called ”equilibration time”,

namely for n large enough, will be distributed according to any given probability density ρ̄(xn) (in

particular, for instance, the one which is required for the variational calculation in Eq. (5.7)).

The most important property of a Markov chain is that the random variable xn+1 depends only

on the previous one, xn, and on ξn, but not on quantities at time n − 1 or before. Though ξn+1

and ξn are independent random variables, the random variables xn and xn+1 are not independent;

therefore we have to consider the generic joint probability distribution fn(xn+1, xn), and decompose

it, according to Eq. (4.5), into the product of the marginal probability ρn(xn) of the random variable

xn, times the conditional probability K(xn+1|xn):

fn(xn+1, xn) = K(xn+1|xn) ρn(xn) . (5.14)

Notice that the conditional probability K does not depend on n, as a consequence of the Markovian

nature of Eq. (5.13), namely that the function F and the probability density χ of the random

variable ξn do not depend on n.

We are now in the position of deriving the so-called Master equation associated to a Markov Master

equationchain. Indeed, from Eq. (4.6), the marginal probability of the variable xn+1 is given by ρn+1(xn+1) =
∑

xn
f(xn+1, xn), so that, using Eq. (5.14), we get:

ρn+1(xn+1) =
∑

xn

K(xn+1|xn) ρn(xn) . (5.15)

The Master equation allows us to calculate the evolution of the marginal probability ρn as a

function of n, since the conditional probability K(x′|x) is univocally determined by the stochastic

dynamics in Eq. (5.13). More precisely, though the actual value of the random variable xn at the

iteration n is not known deterministically, the probability distribution of the random variable xn

is instead known exactly, in principle, at each iteration n, once an initial condition is given, for

instance at iteration n = 0, through a ρ0(x0). The solution for ρn(xn) is then obtained iteratively

by solving the Master equation, starting from the given initial condition up to the desired value of

n.

5.5 Detailed balance

A quite natural question to pose concerns the existence of a limiting distribution reached by ρn(x),

for sufficiently large n, upon iterating the Master equation: Does ρn(x) converge to some limiting

distribution ρ̄(x) as n gets large enough? The question is actually twofold: i) Does it exist a

stationary distribution ρ̄(x), i.e., a distribution which satisfies the Master equation (5.15) when
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plugged in both the right-hand and the left-hand side? ii) Starting from a given arbitrary initial

condition ρ0(x), under what conditions it is guaranteed that ρn(x) will converge to ρ̄(x) as n

increases? The first question (i) requires:

ρ̄(xn+1) =
∑

xn

K(xn+1|xn) ρ̄(xn) . (5.16)

In order to satisfy this stationarity requirement, it is sufficient (but not necessary) to satisfy the

so-called detailed balance condition:

K(x′|x) ρ̄(x) = K(x|x′) ρ̄(x′) . (5.17)

This relationship indicates that the number of processes undergoing a transition x → x′ has

to be exactly compensated, to mantain a stable stationary condition, by the same amount of

reverse processes x′ → x; the similarity with the Einstein’s relation for the problem of radiation

absorption/emission in atoms is worth to be remembered.

It is very simple to show that the detailed balance condition allows a stationary solution of the

Master equation. Indeed, if for some n we have that ρn(xn) = ρ̄(xn), then:

ρn+1(xn+1) =
∑

xn

K(xn+1|xn) ρ̄(xn) = ρ̄(xn+1)
∑

xn

K(xn|xn+1) = ρ̄(xn+1) , (5.18)

where we used the detailed balance condition (5.17) for the variables x′ = xn+1 and x = xn, and

the normalization condition for the conditional probability
∑

xn
K(xn|xn+1) = 1.

The answer to question (ii) is quite more complicated in general. In this context it is an

important simplification to consider that the conditional probability function K(x′|x), satisfying
the detailed balance condition (5.17), can be written in terms of a symmetric function H̄x′,x = H̄x.x′

apart for a similarity transformation:

K(x′|x) = −H̄x′,xg(x
′)/g(x) (5.19)

where H̄x′,x < 0 and g(x) =
√

(ρ̄(x)) is a positive function which is non zero for all configurations

x, and is normalized
∑

x g
2(x) = 1. Though the restriction to satisfy the detailed balance condition

is not general, it basically holds in many applications of the Monte Carlo technique, as we will see

in the following.

The function H̄x′,x, being symmetric, can be thought as the matrix elements of an Hamiltonian

with non positive off diagonal matrix elements. The ground state of this fictitious hamiltonian will

be bosonic (i.e. non negative for each element x) for well known properties of quantum mechanics

that we will briefly remind here. This ”bosonic” property of the ground state will be very useful

to prove the convergence properties of a Markov chain described by (5.19). Indeed due to the

normalization condition
∑

x′ K(x′, x) = 1, the positive function g(x) is just the bosonic ground

state of H̄ with eigenvalue λ0 = −1.

It is then simple to show that no other eigenvalue λi of H̄ can be larger than 1 in modulus,

namely |λi| ≤ 1. Indeed suppose it exists an eigenvector ψi(x) of H with maximum modulus
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eigenvalue |λi| > 1, then:

|λi| = |
∑

x,x′

ψi(x)(−H̄(x, x′))ψi(x
′)| ≤

∑

x,x′

|ψi(x)|(−H̄(x, x′))|ψi(x′)| (5.20)

Thus |ψi(x)| may be considered a trial state with excpectation value of the energy larger or equal

than |λi| in modulus. Since the matrix H̄ is symmetric, by the well known properties of the

minimum/maximum expectation value, this is possible only if the state ψMax(x) = |ψi(x)| with all

non negative elements is also an eigenstate with maximum eigenvalue |λi|. By assumption we know

that g(x) is also an eigenstate with all positive elements and therefore the assumption of |λi| > 1

cannot be fulfilled as the overlap between eigenvectors corresponding to different eigenvalues has to

be zero and instead
∑

x g(x)ψMax(x) > 0. The only possibility is that |λi| ≤ 1 for all eigenvalues,

and g(x) is a bosonic ground state of H̄ as we have anticipated.

A further assumption needed to show that the equilibrium density distribution ρ̄(x) can be

reached for large n, is that the Markov chain is ergodic, i.e., any configuration x′ can be reached,

in a sufficiently large number of Markov iterations, starting from any initial configuration x. This

implies that g(x) is the unique ground state of H̄ with maximum modulus eigenvalue, a theorem

known as the Perron-Frobenius. To prove this theorem, suppose that there exists another ground

state ψ0(x) of H̄ different from g(x). Then, by linearity and for any constant λ , also g(x)+λψ0(x) is

a ground state of H̄ , so that by the previous discussion also the bosonic state ψ̄(x) = |g(x)+λψ0(x)|
is a ground state of H̄ , and the constant λ can be chosen to have ψ̄(x) = 0 for a particular

configuration x = x0. By using that ψ̄ is an eigenstate of H̄ , we have:

∑

x( 6=x0)

H̄x0,xψ̄(x) = λ0ψ̄(x0) = 0

so that, in order to fulfill the previous condition, ψ̄(x) = 0 for all configurations connected to x0 by

H̄ , since ψ̄(x) is non negative and −H̄x0,x is strictly positive. By applying iteratively the previous

condition to the new configurations connected with x0, we can continue, by using ergodicity, to

have that

ψ̄(x) = 0

for all configurations. This would imply that g(x) and ψ0(x) differ at most by an overall constant

−λ and therefore g(x) is the unique ground state of H̄ .

We have finally derived that if ergodicity and detailed balance hold, the ground state of the

fictitious hamiltonian H̄ (5.19) is unique and equal to g(x) with eigenvalue λ0 = −1. This implies,

as readily shown later on, that any initial ρ0(x) will converge in the end towards the limiting

stationary distribution ρ̄(x) = g(x)2. In fact:

ρn(x
′) =

∑

x

g(x′)
[

−H̄
]n

x′,x
/g(x)ρ0(x) (5.21)

where the nth power of the matrix H̄ can be expanded in terms of its eigenvectors:

[

−H̄
]n

x′,x
=
∑

i

(−λi)nψi(x′)ψi(x) (5.22)
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Since ψ0(x) = g(x) is the unique eigenvector with eignevalue λ0 = −1, by replacing the expansion

(5.22) in (5.21) we obtain:

ρn(x) = g(x)
∑

i

ψi(x)(−λi)n
[

∑

x′

ψi(x
′)ρ0(x

′)/g(x′)

]

(5.23)

Thus for large n only the i = 0 term remains in the above summation and all the other ones decay

exponentially as |λi| < 1 for i 6= 0. It is simple then to realize that for large n

ρn(x) = g2(x) (5.24)

as the initial distribution is normalized and:
[

∑

x′

ψ0(x
′)ρ0(x

′)/g(x′)

]

=
∑

x′

ρ0(x
′) = 1

Summarizing, if a Markov chain satisfies detailed balance and is ergodic, then the equilibrium

distribution ρ̄(x) will be always reached, for large enough n, independently of the initial condition

at n = 0. The convergence is always exponential and indeed the dynamic has a well defined finite

correlation time equal to the inverse gap to the first excited state of the hamiltonian matrix H̄x′,x

5.6 The Metropolis algorithm

Suppose we want to generate a Markov chain such that, for large n, the configurations xn are

distributed according to a given probability distribution ρ̄(x). We want to construct, accordingly,

a conditional probability K(x′|x) satisfying the detailed balance condition Eq. (5.17) with the

desired ρ̄(x). How do we do that, in practice? In order to do that, Metropolis and collaborators

introduced a very simple scheme. They started considering a transition probability T (x′|x), defin-
ing the probability of going to x′ given x, which can be chosen with great freedom, as long as

ergodicity is ensured, without any requirement of detailed balance. In order to define a Markov

chain satisfying the detailed balance condition, the new configuration x′ generated by the chosen

transition probability T (x′|x) is then accepted only with a probability:

A(x′|x) = Min

{

1,
ρ̄(x′)T (x|x′)
ρ̄(x)T (x′|x)

}

, (5.25)

so that the resulting conditional probability K(x′, x) is given by:

K(x′|x) = A(x′|x)T (x′|x) for x′ 6= x . (5.26)

The value of K(x′|x) for x′ = x is determined by the normalization condition
∑

x′ K(x′|x) = 1.

The proof that detailed balance is satisfied by the K(x′|x) so constructed is quite elementary, and is

left as an exercise for the reader. It is also simple to show that the conditional probability K(x′|x)
defined above can be casted in the form (5.19), for which, in the previous section, we have proved

that the equilibrium distribution can be always reached after many iterations. In particular:

g(x) =
√

ρ̄(x) (5.27)

H̄(x′, x) = −A(x′|x)T (x′|x)g(x)/g(x′) (5.28)
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In fact from the definition of the acceptance probability (5.25), it is simple to verify that H̄ in

(5.27) is symmetric and that the results of the previous section obviously hold also in this case.

Summarizing, if xn is the configuration at time n, the Markov chain iteration is defined in two

steps:

1. A move is proposed by generating a configuration x′ according to the transition probability

T (x′|xn);

2. The move is accepted, and the new configuration xn+1 is taken to be equal to x′, if a random

number ξn (uniformly distributed in the interval (0, 1]) is such that ξn ≤ A(x′|xn), otherwise
the move is rejected and one keeps xn+1 = xn.

The important simplifications introduced by the Metropolis algorithm are:

1. It is enough to know the desired probability distribution ρ̄(x) up to a normalization constant,

because only the ratio ρ̄(x′)
ρ̄(x) is needed in calculating the acceptance probability A(x′|x) in

Eq. (5.25). This allows us to avoid a useless, and often computationally prohibitive, normal-

ization (e.g., in the variational approach, the normalization factor
∑

x ψ
2
g(x) appearing in

Eq. (5.7) need not be calculated).

2. The transition probability T (x′|x) can be chosen to be very simple. For instance, in a one-

dimensional example on the continuum, a new coordinate x′ can be taken with the rule x′ =

x+aξ, where ξ is a random number uniformly distributed in (−1, 1), yielding T (x′|x) = 1/2a

for x− a ≤ x′ ≤ x+ a. In this case, we observe that T (x′|x) = T (x|x′), a condition which is

often realized in practice. Whenever the transition probability is symmetric, i.e., T (x′|x) =
T (x|x′), the factors in the definition of the acceptance probability A(x′|x), Eq. (5.25), further
simplify, so that

A(x′|x) = Min

{

1,
ρ̄(x′)
ρ̄(x)

}

.

3. As in the example shown in the previous point, the transition probability T (x′|x) allows us
to impose that the new configuration x′ is very close to x, at least for a small enough. In this

limit, all the moves are always accepted, since ρ̄(x′)/ρ̄(x) ≈ 1, and the rejection mechanism

is ineffective. A good rule of thumb to speed up the equilibration time, i.e., the number of

iterations needed to reach equilibrium distribution, is to tune the transition probability T ,

for instance by increasing a in the above example, in order to have an average acceptance

rate 〈A〉 = 0.5, which corresponds to accepting, on average, only half of the total proposed

moves. This criterium is usually the optimal one for computational purposes, but it is not a

general rule.
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5.7 The bin technique for the estimation of error bars

Let us now go back to our Variational Monte Carlo problem, formulated in Sec. 5.2. As we have

seen, we can easily set up a Markov chain in configuration space such that, after discarding a suit-

able number of initial configurations that are not representative of the equilibrium distribution (we

call this initial stage, the equilibration part), the Markov process will generate many configuration

xn, n = 1, · · ·N , distributed according to the desired probability, Eq. (5.7). We have also seen

that, in order to reduce the error bars, we can average the quantity we need to calculate over many

realizations N of the same experiment, which in the Markov chain are naturally labeled by the

index n of the Markov dynamics:

ēL =
1

N

N
∑

n=1

eL(xn) . (5.29)

The mean value of the random variable ēL is equal to the expectation value of the energy, since

all the xn, after equilibration, are distributed according to the marginal probability px, Eq. (5.7).

However, the random variables xn are not independent from each other, and the estimation of the

variance with the expression (4.20) will lead, generally, to underestimating the error bars.

In order to overcome the previous difficulty, we divide up a long Markov chain with N steps into

several (k) segments (bins), each of length M = N/k. On each bin j, j = 1, · · · , k, we define the

partial average:

ejL =
1

M

jM
∑

n=(j−1)M+1

eL(xn) , (5.30)

so that, clearly,

ēL =
1

k

k
∑

j=1

ejL .

We still need to understand how large we have to select M (the length of each bin) in order for

the different partial (bin) averages ejL to be, effectively, independent random variables. This calls

for the concept of correlation time. After the equilibrium part, that we assume already performed

at n = 1, the average energy-energy correlation function

C(n−m) = 〈eL(xn)eL(xm)〉 − 〈eL(xn)〉〈eL(xm)〉 , (5.31)

depends only on the discrete time difference n −m (stationarity implies time-homogeneity), and

it approaches zero exponentially as C(n−m) ∝ e−|n−m|/τ , where τ (in units of the discrete time-

step) is the correlation time for the local energy in the Markov chain. If we therefore take M

(the length of each bin) to be sufficiently larger than τ , M ≫ τ , the different bin averages ejL can

be reasonably considered to be independent random variables, and the variance ēL can be easily

estimated. Indeed, it can be easily shown that the mean value of the random variable δeL defined

by:

δeL =
1

k(k − 1)

k
∑

j=1

(ejL − ēL)
2 (5.32)

is equal to var(eL), thus δeL is an estimate of the variance of ēL. Strictly speaking, the above

equation is valid only when the ejL’s are all independent variables, a property that holds for large
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M, as one can realize for instance by calculating the bin-energy correlation for two consecutive

bins:

〈ejej+1〉 = 〈ej〉〈ej+1〉+
1

M2



MC(M) +

M−1
∑

j=1

(C(j) + C(2M − j))



 . (5.33)

Thus, for the evaluation of the variance, all the bin averages ejL can be considered to be independent

from each other, up to O((1/M)2). The estimate of the variance given by Eq. (5.32) is very

convenient, because it does not require a difficult estimate of the correlation time associated to the

correlation function (5.31).

Exercise 5.1 Consider the one dimensional Heisenberg model with an even number L of sites:

H = J

L
∑

i=1

~Si · ~Si+1 (5.34)

with periodic boundary conditions ~Si+L = ~Si. A good variational wavefunction for the ground state

of H can be defined in the basis of configurations {x} with definite value of Szi = ±1/2 on each site

i and vanishing total spin projection on the z−axis (
∑

i S
z
i = 0). In this basis the wavefunction

can be written as:

ψ(x) = SignM (x) × exp





α

2

∑

i6=j
vzi,j(2S

z
i )(2S

z
j )



 (5.35)

where SignM (x) = (−1)

L/2∑

i=1
(Sz

2i+1/2)
is the so called Marshall sign determined by the total number

of up spins in the even sites, α is a variational parameter, whereas the form of the spin Jastrow

factor vzi,j = ln(d2i,j) depends parametrically on the so called cord-distance di,j between two sites,

namely:

di,j = 2 sin(π|i − j|/L) (5.36)

• By using the Metropolis algorithm determine the variational energy for the optimal variational

parameter α on a finite size L ≤ 100.

• Using that the energy per site of the Heisenberg model converges to the thermodynamic limit

with corrections proportional to 1/L2, determine the best upper bound estimate of the energy

per site in this model for L→ ∞ and compare it with the exact result: e0 = −J(ln 2−1/4) =

−J0.44314718.



70 Quantum Monte Carlo: The variational approach



Chapter 6

Langevin molecular dynamics for

classical simulations at finite T .

There are several ways to simulate a classical partition function

Z =

∫

dxe−βv(x) (6.1)

at finite inverse temperature β = 1/kBT using a dynamical evolution of the classical particles.

In the above expression x may denote the generic positions of the N classical particles, and the

corresponding symbol dx stands for a suitable 3N -multidimensional integral. Probably the simplest

way to simulate such a classical system at finite temperature is given by the so-called first order

Langevin dynamics, described by the following equations of motion:

ẋ = f(x) + ηt , (6.2)

where f(x) = −∂xv(x) represents the classical force acting on the particles, ẋ is the usual time

derivative of x, and ηt represents a vector in the 3N dimensional space, such that each component

is a gaussian random variable with zero mean < ηt >= 0, and defined by the following correlator:

< ηtηt′ >= 2kBTδ(t− t′) . (6.3)

In other words, one assumes that there is no correlation of the noise at different times, namely that

the random variables η(t) and η(t′) are always independent for t 6= t′. The presence of the noise

makes the solution of the above differential equations — a special type of differential equations

known as stochastic differential equations — also “noisy”.

6.1 Discrete-time Langevin dynamics

In order to solve the above stochastic differential equations, and define an appropriate algorithm

for the simulation of classical particles at finite temperature, we integrate both sides of Eq.(6.26)
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over finite intervals (tn, tn+1), where tn = ∆n+ t0 are discretized times and t0 is the initial time

(obtained for n = 0). In this way we obtain:

xn+1 − xn = ∆fn +

tn+1
∫

tn

dtη(t) +O(∆|∆f |) (6.4)

where we have defined xn = x(tn), fn = f(x(tn)), and we have approximated the integral of the

force in this interval with the lowest order approximation ∆fn, where ∆f is the maximum variation

of the force in this interval. So far, this is the only approximation done in the above integrations.

The time-integral in the RHS of the equation (6.4) is a simple enough object: if we introduce, for

each time interval (tn+1, tn), a random variable zn which is normally distributed (i.e., a gaussian

with zero mean and unit variance), namely:

tn+1
∫

tn

dtη(t) =
√

2∆kBTzn (6.5)

This relation can be understood in the following simple way. First, observe that the “sum” (and

therefore also the integral) of gaussian variables with zero mean must be gaussian distributed and

with zero mean. If you want to verify that the coefficient appearing in Eq. (6.5) is indeed the

correct one, it is enough to verify that the variance of zn is 1:

< z2n > =
1

2∆kBT

tn+1
∫

tn

dtdt′
tn+1
∫

tn

< η(t)η(t′) >

=
1

∆

tn+1
∫

tn

dt = 1 ,

where we have used that the correlator < η(t)η(t′) >= 2kBTδ(t− t′) to perform the integral over

t′.

By collecting the above results, we can finally write down the final expression for the discretized-

time Langevin equation in the following simple form:

xn+1 = xn +∆fn +
√

2∆kBTzn . (6.6)

This is an iteration scheme that defines the new variables xn+1, at time tn+1, in terms of the xn

at time tn and of a set of normal gaussian distributed variables zn.

Thus, this iteration represents just a Markov process, that can be implemented by a simple

iterative algorithm, once the force can be evaluated for a given position xn of the N classical

particles. It is important to emphasize that, in this iteration scheme, the noise is proportional

to
√
∆ and dominates, for ∆ → 0, over the deterministic force contribution, which is linear in

∆. In this way it is simple to estimate that the maximum variation of the force |∆f | in each

time interval tn, tn + ∆ can be large but always bounded by ≃
√

(∆), so that Eq.(6.6), actually

represents a numerical solution of the continuous time Langevin-dynamics up to term vanishing

as ∆3/2 because ∆f ≃
√

(∆)|df/dx| in Eq.(6.4). For ∆ → 0 this error is neglegible to the actual
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change of the position ∆x = xn+1 − xn ≃
√
∆, so that the continuous time limit can be reached

with arbitrary accuracy and is therefore well defined.

Another important remark is that in the limit of zero temperature T → 0, the noise term

disappears from the above equations and the algorithm turns into the simple steepest descent

method, which allows to reach the minimum of the potential v(x) in a deterministic fashion,

describing correctly the zero-temperature limit of a classical system with potential v(x).

6.2 From the Langevin equation to the Fokker-Planck equa-

tion

In the following, we will write all the algebra assuming that x is just a one-dimensional variable.

The general case does not present any difficulty (apart for a more cumbersome algebra) and is left

to the reader.

Since Eq.(6.6) defines just a Markov process, the corresponding master equation for the proba-

bility Pn(x) of the classical variable x can be easily written once the conditional probabilityK(x′|x)
is evaluated. From the Markov process (6.6), we simply obtain that:

K(x′|x) =
∫

dz√
2π
e−z

2/2δ(x′ − x−∆f(x) −
√

2∆kBTz) . (6.7)

So, the probability distribution of the classical variable xn can be obtained at any time tn by

iteratively using the master equation:

Pn+1(x
′) =

∫

dxK(x′|x)Pn(x) . (6.8)

By replacing the simple form of the kernel (Eq.6.7) in the Master equation, and carrying out the

integral over x (recall that
∫

dxδ(f(x)) = 1/|∂xf(x)|f(x)=0) we obtain:

Pn+1(x
′) =

∫

dz√
2π
e−z

2/2 1

|1 + ∆∂x′f(x′)|Pn(x
′ −∆f(x′)−

√

2∆kBTz) (6.9)

valid up to order O(∆3/2) since in several places we have replaced x with x′. This discrete evolution

of the probability can be easily expanded in small ∆, so that the remaining integral over z can

be easily carried out. As usual, care should be taken for the term proportional to
√
∆. The final

results is the following:

Pn+1(x
′) = Pn(x

′)−∆
∂f(x′)Pn(x′)

∂x′
+∆kBT

∂2Pn(x
′)

∂x2
(6.10)

We finally observe that, for small ∆, Pn+1(x
′)− Pn(x

′) ≈ ∆∂tP (x
′), and therefore we obtain the

so-called Fokker-Planck’s equation for the probability density P (x), that reads:

∂P (x)

∂t
= −∂f(x)P (x)

∂x
+ kBT

∂2P (x)

∂x2
. (6.11)

The stationary solution P0(x) for this equation is verified, by simple substituion in the RHS of

Eq. (6.11), to be just the equilibrium Boltzmann distribution P0(x) = Z−1e−βv(x).
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6.3 Langevin dynamics and Quantum Mechanics

It was discovered by G. Parisi in the early 80’s, 1 that there is a deep relationship between a

stochastic differential equation, or more properly the associated Fokker-Planck’s equation, and the

Schrödinger equation. This is obtained by searching for a solution of Eq. (6.11) of the type:

P (x, t) = ψ0(x)Φ(x, t) (6.12)

where ψ0(x) =
√

P0(x), with
∫

dxψ2
0(x) = 1, is an acceptable normalized quantum state. Indeed,

it is simple to verify that Φ(x, t) satisfies the Schrödinger equation in imaginary time:

∂Φ(x, t)

∂t
= −HeffΦ(x, t) , (6.13)

where Heff , an effective Hamiltonian, is given by:

Heff = −kBT∂2x + V (x)

V (x) =
1

4kBT

(

∂v

∂x

)2

− 1

2

∂2v(x)

∂x2
= kBT

1

ψ0(x)

∂2ψ0(x)

∂x2
. (6.14)

Notice that the minima of the original potential v(x) are also minima of the effective potential V (x)

in the zero temperature limite T → 0, but the situation is more complicated at finite temperature

(as an exercise, try to calculate V (x) for a double-well potential v(x) = v0(x
2 − a2)2/a4). Notice

also that the mass of the particle is proportional to the inverse temperature and becames heavier

and heavier as the temperature is lowered.

It is remarkable that the ground state of this effective Hamiltonian can be found exactly, and

is just given by ψ0(x), the corresponding ground state energy being E0 = 0. In this way, the

solution of the Schröedinger equation, and the corresponding Fokker-Planck’s equation, can be

formally given in closed form by expanding in terms of the eigenstates ψn(x) of Heff the initial

condition P (x, t = 0)/ψ0(x) =
∑

n anψn(x), with an =
∫

dxψn(x)P (x, t = 0)/ψ0(x), implying that

a0 = 1 from the normalization condition on P (x, t = 0). We thus obtain the full evolution of the

probability P (x, t) as:

P (x, t) =
∑

n

anψn(x)ψ0(x)e
−Ent (6.15)

and therefore, for large times t, P (x, t) converges exponentially fast to the stationary equilibrium

distribution ψ0(x)
2. The characteristic time τ for equilibration is therefore given by the inverse

gap to the first excitation τ = 1/E1. The existence of a finite equilibration time is the basic

property of Markov chains. Using this property, it is possible to define uncorrelated samples

of configurations distributed according to the classical finite temperature partition function, by

iterating the discretized Langevin equation for simulation times much larger than this correlation

time τ .

Exercise 6.1 Consider a v(x) which is, in one-dimension, a double-well potential:

v(x) =
v0
a4

(x2 − a2)2 .

1G. Parisi and W. Youghsi, Sci. Sin. 24, 483 (1981)
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Calculate the associated Schrödinger potential V (x), according to Eq. (6.14). Find the lowest-lying

eigenvalues and eigenvectors of Heff for several values of the temperature T , by resorting to some

numerical technique (for instance, discretization in real space of the Schrödinger problem, and

subsequent exact diagonalization of the Hamiltonian).

6.4 Harmonic oscillator: solution of the Langevin dynamics

The discretized version of the Langevin dynamics can be solved, as well, in some special cases. Here

we consider the case of a single variable x in a quadratic one-dimensional potential v(x) = 1
2kx

2.

In this case, the discrete-time Langevin equation (6.6) reads:

xn+1 = xn(1−∆k) +
√

2∆kBTzn (6.16)

As we have seen, the Master equation depends on the conditional probability K(x′|x) that in this

case can be explicitly derived:

K(x′|x) = 1
√

4π∆
β

exp

[

− β

4∆
(x′ − (1−∆k)x)2

]

(6.17)

This conditional probability satisfies the detailed balance condition (5.17) for a particular distri-

bution ρ(x) ∝ e−β̂v(x). Indeed:

K(x′|x)
K(x|x′) =

ρ(x′)
ρ(x)

= exp

(

− β

4∆

[

∆2(f2
x − f2

x′)− 2∆(x′ − x)(fx + fx′)
]

)

(6.18)

which can be easily satisfied by taking the effective inverse temperature β̂ to be given exactly by

the following expression:

β̂ = β(1− ∆k

2
) . (6.19)

It is important now to make the following remarks:

• The error in the discretization of the Langevin equation scales correctly to zero for ∆ → 0

since the correct expected distribution is obtained as β̂ → β in this limit.

• At finite ∆. the error in the discretization determines only an increase of the effective

temperature of the classical partition function compared to the expected ∆ → 0 one. The

form of the potential remains unchanged.

• It is very interesting that the discretized Langevin equations remain stable only for ∆k < 2.

In the opposite case the effective temperature becomes negative and the probability cannot

be normalized. In this case the particle diffuse to infinite and the equilibrium distribution is

not defined.

Exercise 6.2 Consider a different time discretization of the Langevin dynamics:

xn+1 = xn +
∆

2
(fxn+1 + fxn) +

√

2∆kBTzn (6.20)
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where in the time-integral of the deterministic force in (6.6), we have used a trapezoidal rule.

Consider the one dimensional case and the harmonic potential v(x) = 1
2kx

2.

• Show that the corresponding Markov chain is exactly equivalent to the less accurate (6.6) by

replacing the inverse temperature β → β(1+ ∆k
2 ) and the effective spring constant k → k

1+∆k
2

.

• Using the above substitution and the result (6.19), show that this kind of discretized Langevin

equation is exact for the harmonic potential.

• Optional: is this still exact in the general multidimensional case, for a generic harmonic

potential of, say 3N coordinates?

6.5 Second order Langevin dynamic

The most common application of computer simulations is to predict the properties of materials.

Since the first works, by Metropolis et al. and Fermi et al. [37, 13], Molecular Dynamics(MD)

techniques turned out to be a powerful tool to explore the properties of material in different

conditions or to predict them.

The combination of these techniques with the density functional theory (DFT) has become a

widely accepted and powerful ab-initio method Car-Parinello Molecular Dynamics (CPMD) [5]

that allows to study a broad range of chemical, physical and biological systems. The CPMD

approach offers a balance of accuracy and computational efficiency that is well suited for both static

and dynamic calculations of numerous properties of systems with hundreds and even thousands of

atoms. Although if in principle DFT is an exact theory for the electron correlation, it relies on an

unknown exchange and correlation functional that must be approximated. The widely used Local

Density Approximation (LDA) is difficult to improve systematically. Therefore, in some cases

(see for instance [22]) one requires a more accurate computational approach, such as the quantum

Monte Carlo (QMC) approach to solve the Schrödinger equation very accurately.

In this chapter, we describe a method[4] that treats the electrons within the many-body QMC and

perform Molecular Dynamic ”on the fly” on the ions. This method provides an improved dynamical

trajectory and significantly more accurate total energy. In the past two different approaches were

proposed to couple Quantum Monte Carlo with ionic Molecular Dynamic. The first, called Coupled

Electronic-Ionic Monte Carlo (CEIMC) [10], is based on a generalized Metropolis algorithm that

takes into account the statistical noise present in the QMC evaluation of the Bohr-Oppenheimer

surface energy. In the second approach, called Continuous Diffusion Monte Carlo (CDMC) [18],

the Molecular Dynamics trajectories are generated with some empirical models or by DFT, and

then the CDMC technique is used to efficiently evaluate energy along the trajectory. Both methods

present some drawbacks. In the second method even if all the properties are evaluated using the

Diffusion Monte Carlo, the trajectories are generated using empirical models without the accuracy

given by the QMC for the structural properties, as radial distribution, bonding lengths and so on.

Instead, in the first one the QMC energies are used to perform the Monte Carlo sampling leading

to accurate static properties. But this other method has two deficiencies: the first one is that in
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order to have a reasonable acceptance rate one has to carry out simulation with an statistical error

on the energy of the order of KbT ; second, that the correlated sampling, used to evaluate energy

differences, is known to have problem with parameters that affect the nodes, as ionic positions.

Furthermore, in the correlated sampling, to have a fixed ratio between the current and the initial

trial-function the bin length has to be increased exponentially with the size of the system .

The method we present here allows to solve two major drawbacks of the previous two techniques.

Following the idea of Car and Parrinello [6] we will show that it is possible to perform a feasible

ab-initio Molecular Dynamics and structural optimization in the framework of the Quantum Monte

Carlo by using noisy ionic forces.

6.6 The Born-Oppenheimer approximation

The idea of treating ionic dynamics classically, while electrons are in the ground-state of the

Hamiltonian, is based on two very reasonable approximations: the Born-Oppenheimer Approxi-

mation(BO) and the Adiabatic one.

In a system of interacting electrons and nuclei there will be usually small momentum transfer

between the two types of particles due to their very different masses. The forces between the

particles are of similar magnitude because of their similar charge. If one then assumes that the

momenta of the particles are also similar, then the nuclei must have much smaller velocities than

the electrons due to their heavier mass. On the time-scale of nuclear motion, one can therefore

consider the electrons to relax to a ground-state given by the Hamiltonian equation with the nuclei

at fixed locations. This separation of the electronic and nuclear degrees of freedom is known as the

Born-Oppenheimer approximation. Moreover because the energy scale associated with the elec-

tronic excitations is usually very high with respect to the one related to the ionic motion, one can

safely consider the electron in their own ground-state. Even in the worst case, the simulation of

the hydrogen, Galli et al. [29], using Car-Parinello dynamics with DFT, showed that the electronic

band-gap is about 2eV and that the first order correction due to the quantistic effects on ions is

about 2meV for pressure up to 200GPa.

Although there are techniques, as Path Integral Monte Carlo, to treat finite temperature quantum

systems, they become extremely inefficient for low temperature, exactly in the range which we are

interested.

6.7 Dealing with Quantum Monte Carlo noise

Recently different method were proposed to evaluate forces by Quantum Monte Carlo with a finite

and hopefully small variance [3],[17],[11] (see also section 5.3 for a discussion about zero-variance

principle).

It is well known that when forces ~f~Ri
= −∂~Ri

E(~R1, ~R2, · · · ~RN ) are given (e.g. by VMC)
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with a given noise, there are different way to obtain the canonical distribution. Here the energy

E(~R1, ~R2, · · · ~RN ) represents the ground state electronic energy at given ionic positions ~R1, ~R2 · · · ~RN ,

consistently with the Born-Oppenheimer approximation discussed above.

In general the ions have different masses, namely a valueMi can be given for each ion corrspond-

ing to the position ~Ri. In the following, for simplicity of notations, we assume that ions have unit

mass Mi = 1, a semplification that can be generally obtained by a simple rescaling of lengths

for each independent ion coordinate ~Ri → ~Ri
√
Mi. We often omit the ionic subindices i when

not explicitly necessary for clarity and compactness of notations. Moreover matrices (vectors) are

indicated by a bar (arrow) over the corresponding symbols, and the matrix (left symbol) vector

(right symbol) product is also implicitly understood.

As we have mentioned in the previous section a possible way to simulate the canonical distribu-

tion with noisy forces is to use a first order Langevin dynamics:

~̇R = β̂
[

~f~R + ~η
]

(6.21)

〈ηi(t)〉 = 0 (6.22)

〈ηi,ν(t)ηj,µ(t′)〉 = α̂iν,jµδ(t− t′). (6.23)

where the matrix α, as well as β, has 3N × 3N entries because for each ion i there are three

coordinate components ν, µ = x, y, z. It is also clear that α is a positive definite symmetric matrix.

In this case it is simple to show that, in order to obtain the usual Boltzmann distribution the

matrix β̂ has to satisfy:

β̂ = 2α̂−1KbT (6.24)

whenever α̂ is assumed to be independent of ~xi. In fact by discretizing the above continous equation

and following the same steps as in the previous section we arrive at the following Master equation

for the probability density Pt(~xi):

∂tPt(~R) =
1

2
∂~R

[

β̂α̂β̂†
]

∂~RPt(
~R)− ∂~Rβ̂

~f~RPt(
~R) (6.25)

and the result (6.24), obviously follows, because in the stationary solution of the above equation,

namely by searching for the equilibrium distribution that allows to vanish identically the RHS

of the above equation, it is easily verified that the matrix α̂−1 factors out and the equilibrium

distribution satisfies the same equation of the conventional Langevin dynamics with uncorrelated

noise , i.e. with α̂ = 2kBT Î and β̂ = Î, where Î is the identity matrix.

The above property is not verified in the more realistic case, when the covariance matrix is

explicitly dependent on the atomic coordinates ~R. Indeed, even within this assumption this equa-

tion turns out to be unstable, because the matrix α̂ can be ill-conditioned for the presence of very

small eigenvalues, that can be further reduced by statistical fluctuations, and therefore the matrix

inversion α̂−1 required for the evaluation of β̂ may often lead to numerical instabilities during the

dynamics.

Here we present a method[4] that uses the noisy forces to perform a Molecular Dynamics at a

finite temperature without the restricton of a covariance matrix independent of the ionic positions
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~R. In the past the major problem of using QMC to perform ab-initio Molecular Dynamic was the

presence of the statistical noise, but in this formulation this noise can be efficiently used as thermal

bath.

In the corresponding simulation there is a correlated noise associated to the forces, that we assume

to be Gaussian with a given covariance matrix. In order to evaluate the covariance matrix in an

efficient way during the statistical evaluation of the forces (e.g. by VMC) it is convenient to use

the Jackknife re-sampling method (see Appendix A) to estimate the covariance matrix.

It is possible to use this noise to simulate a finite temperature using a Generalized Langevin

Equation (GLE), that we are going to describe in the following. The first who used this approach

were Schneider and Stoll [31], to study distortive-phase transitions. Later the GLE was used to

simulate different systems and also to stabilize the usual Molecular Dynamics [20].

As we will see in the following, the use of a second order Langevin Dynamics doesn’t require

the inverse evaluation of the matrix α̂. Moreover, by properly tuning the friction matrix, and

an additional source of noise it is possible to achieve a very fast convergence to equilibium finite

temperature properties.

6.8 Canonical ensemble by Generalized Langevin Dynamics

In order to simulate the canonical ensemble we use a Langevin dynamics and we assume that

our system is coupled with a thermal bath due to Quantum Monte Carlo statistical noise plus an

additional friction term γ̂, that here is assumed to be a symmetric matrix:

~̇v = −γ̄(~R)~v + ~f(~R) + ~η(t) (6.26)

~̇R = ~v (6.27)

〈ηi,ν(t)ηj,µ(t′)〉 = α̂iν,jµδ(t− t′). (6.28)

The friction matrix γ̂(~R) will be chosen in such a way that the stationary solution of the

associated Fokker-Planck equation is the canonical distribution:

peq(~v1, ..., ~vn, ~R1, ..., ~Rn) ≃ e−β(
1
2 |~v|2+E(~R)) (6.29)

Following Sec.(6.2), in order to derive the Focker-Planck equation, we consider a time discretized

version of Eq. (6.26), namely for discrete times tn = ∆n ( ~v(tn) = ~vn, ~R(tn) = ~Rn), obtained by

integrating both sides of Eq.(6.26) in the interval tn ≤ t ≤ tn+1:

~vn+1 = ~vn +∆~f~Rn
−∆γ̂(~R)~vn +

√
∆~zn (6.30)

~Rn+1 = ~Rn +∆~vn, (6.31)

where the covariance matrix of the random vector ~zn is finite for ∆ → 0 and is given by:

〈~zn~zn′〉 = δn,n′α̂(~Rn) (6.32)

where the matrix α̂, defining the noise acting on the forces has been previously defined in Eq.(6.28).

Notice however that here we assume also an explicit dependence on the ionic positions ~R. As
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usual the above discretized version of the Langevin equation defines a Markov process, for which

the Master equation can be given explicitly, and expanded in small ∆. For this purpose the

conditional probability K(x′|x), appearing in the mentioned Master equation, is defined in terms

of both velocities and positions, namely x = (~R,~v) = (~Rn, ~vn) and x′ = (~R′, ~v′) = (~Rn+1, ~vn+1)

are 6N dimensional vectors, and therefore K(x′|x) reads:

K(x′|x) =
∫ ∫

d3N~znδ(~R
′ − ~R−∆~v)δ(~v′ − ~v −∆(~f~R − γ̂(~R)~v)−

√
∆~zn)exp

[

−1

2
(~znα̂

−1(~R)~zn)

]

(6.33)

we obtain therefore, by using that Pn+1(x
′) =

∫

dxK(x′|x)Pn(x), and carrying out the 6N integral

over dx, which is simple due to the corresponding δ functions:

Pn+1(~R
′, ~v′) =

∫ ∫

d3N~znexp

[

−1

2
(~znα̂

−1(~R)~zn)

]

µ(~R′)P (~R′−∆~v′, ~v′−∆(~f~R′− γ̂(~R′)~v′)−
√
∆~zn)

(6.34)

where the measure term µ(~R′), coming after integration over the velocities is given simply by:

µ(~R′) = [1 + ∆ (Trγ̂(R′))] +O(∆3/2) (6.35)

where Tr is the trace of a matrix. By expanding in small ∆ and using that Pn+1(x
′) − Pn(x

′) =

∆∂tP (x
′) +O(∆3/2) the corresponding Fokker-Planck equation will be:

∂P (~R′, ~v′, t)
∂t

=

{

− ∂

∂ ~R′
~v′ +

∂

∂~v′

[

γ̂(~R′)~v′ − ~f~R′

]

+
∂

∂~v′

[

α̂(~R′)
2

∂

∂~v′

]}

P (~R′, ~v′, t) (6.36)

It is clear that in the above equation the primed indices can be omitted, and in order to to find

the matrix γ̂(~R) we substitute the Boltzmann distribution

Peq(~R,~v) = e
−

|~v|2

2
+V (x)

KbT (6.37)

in the equation 6.36 and we obtain:

~γ(~R) =
~α(~R)

2
β (6.38)

And so for a given noise on the forces α̂(~R) and the temperature we can set the friction tensor in

this way to obtain the Boltzmann distribution.

6.9 Integration of the second order Langevin dynamics and

relation with first order dynamics

In order to derive the relation between first order and second order Langevin dynamics, we integrate

the latter ones using the same approximation we have already employed in the first order dynamics.

Since the relation will be obtained in the limit of large friction matrix γ(R), we assume that this

matrix is diagonal and independent on R. Care should be taken to employ an integration scheme

that remains valid even in the limit of γ → +∞.

Then, in the interval tn < t < tn +∆t = tn+1 and for ∆t small, the positions ~R are changing a

little and, within a good approximation, the ~R dependence in the Eq.(6.26) can be neglected, so
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that this differential equation becomes linear and can be solved explicitly. The closed solution for

the velocities can be recasted in the following useful form:

~vt = e−γ̂(
~Rn)(t−tn)~vn +

t
∫

tn

dt′exp[γ̂(t′ − t))][~fRn + ~η(t′)] (6.39)

We can then formally solve the second equation~̇R = v:

Rn+1 = ~Rn +

tn+1
∫

tn

dt′~v(t) (6.40)

by explicitly substituting the RHS of Eq.(6.39) in the above one. The solution can be formally

written as:

~Rn+1 = (
∆

γ̂(~R)
− 1− exp(−γ̂(~R)∆)

γ̂(~R)2
)~fRn +~̄ηn (6.41)

where:

~̄ηn =

tn+1
∫

tn

dt

t
∫

tn

dt′exp[γ̂(~Rn)(t
′ − t)] (6.42)

By using relation (6.38), namely α(~R) = 2Tγ(~R) and carrying out the related four-fold time

integral the correlation of the above gaussian random variables can be explicitly evaluated:

〈η̄iη̄j〉 = 2T

[

∆

γ̂(~Rn)
− 1

2γ̂(~Rn)2

(

4− 3exp(−∆γ̂(~Rn))− exp(−2∆γ̂(~Rn))
)

]

i,j

(6.43)

For large friction, γ̂(~Rn) is a positive definite matrix with large positive eigenvalues, and all ex-

ponentially small quantities vanishing as ≃ e−∆γ̂(~Rn) can be safely neglected. The final iteration

looks very similar to the discretized version of the first order Langevin equation, namely:

~Rn+1 = ~Rn + ∆̄~f(~Rn) +
√

2T ∆̄~zn (6.44)

with ∆̄ = ∆
γ̂ , being indeed a matrix. In the particular case the friction is proportional to the

identity matrix, we obtain therefore exact matching between the first order Langevin equation

with time step discretication ∆
γ , where ∆ is the discrete time used in the second order Langevin

equation. The temperature appears in the noisy part exactly in the same way
√
2T .
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Chapter 7

Stochastic minimization

Optimization schemes are divided into two categories: variance and energy minimization. The

former is widely used, since it has proven to be stable and reliable, even for a poor sampling of

the variational wave function. Nevertheless, a lot of effort has been put recently into developing

new energy minimization methods, which could be as efficient and stable as the variance based

optimizations. Indeed the use of the energy minimization is generally assumed to provide “better”

variational wave functions, since the aim of either the VMC or the DMC calculations is to deal

with the lowest possible energy, rather than the lowest variance. Moreover the latest energy

minimization schemes based on the stochastic evaluation of the Hessian matrix (SRH) [34] are

shown to be robust, stable and much more efficient than the previously used energy optimization

methods, like e.g. the Stochastic Reconfiguration (SR) algorithm [33].

7.1 Wave function optimization

As already mentioned in the introduction, there has been an extensive effort to find an efficient

and robust optimization method with the aim to improve the variational wave function. Indeed,

a good wave function yields results with greater statistical accuracy both in VMC and in DMC

simulations. Moreover, within the DMC framework, the FNA and the LA (used in the case of

non local potentials), benefit from an optimized wave function since all these approximations

become exact as the trial state approaches an exact eigenstate of the Hamiltonian. Therefore a

well optimized variational ansatz is crucial to obtain reliable and accurate results. The usual trial

wave function used in QMC calculation is the product of an antisymmetric part and a Jastrow

factor. The antisymmetric part can be either a single Slater determinant or a multi configuration

state, while the Jastrow factor is a bosonic many body function which accounts for the dynamical

correlations in the system.

Two different approaches exist for the wave function optimization: the variance and the energy

minimization. The former has been presented by Umrigar et al.[40] in 1988 and widely used in
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the last two decades. Let {αi} be the variational parameters contained in the trial wave function.

These are obtained by minimizing the variance of the local energy over a set of M configurations

{R1,R2, . . . ,RM} sampled from the square of the initial guess ΨT (R, α
0):

σ2(α) =

M
∑

i

[

HΨT (Ri, α)

ΨT (Ri, α)
− Ē

]2

w(Ri, α)/

M
∑

i

w(Ri, α), (7.1)

where

Ē =

M
∑

i

HΨT (Ri, α)

ΨT (Ri, α)
w(Ri, α)/

M
∑

i

w(Ri, α), (7.2)

is the average energy over the sample of configurations. The weights w(Ri, α) = |ΨT (Ri, α)/ΨT (Ri, α
0)|2

take into account the change of the variational wave function due to the change of the parameters,

while the set of configurations remains the same. In this way, it is enough to generate about 2000

points from the starting guessed distribution in order to find the minimum of σ2(α) and to iterate

few times the procedure until the starting set of parameters is close to the optimal one. A different

version of the algorithm is the unreweighted variance minimization[21, 12], i.e. with all unitary

weights, which is more stable since it avoids weights fluctuations. The advantage of the variance

minimization method is that σ2(α) is the sum of all positive terms, therefore the optimization

iterated over a fixed sample leads to a real minimization of the variance, once it is calculated over

a wider sample based on the new wave function. Instead, for a naive minimization of energy over

a limited sample, it is not guaranteed that the new energy will be really lower than the starting

one, and often the minimum does not even exist.

Despite the efficiency and robustness of the existing variance minimization, the possibility to de-

velop an energy minimization method is still appealing, since the structural optimization of a com-

pound is feasible only within an energy based approach, and also because it has been observed[32]

that an energy optimized wave function gives better expectation values for operators which do not

commute with the Hamiltonian. Therefore a lot of energy based optimization methods for QMC

calculations have been proposed during these last few years, ranging from the simplest steepest de-

scent (SD) approach [19] to the more sophisticated Newton method [24, 23, 39]. The goal is always

to design a scheme which is stable even in the presence of the statistical noise of QMC sampling,

and which converges quickly to the global minimum of the estimator. In the two next subsections

we will present the Stochastic Reconfiguration (SR) method and the Stochastic Reconfiguration

method with Hessian accelerator (SRH). Both of them are energy minimization procedures largely

used in the present study, the latter is an evolution of the former after the introduction of a reliable

and efficient scheme to estimate the Hessian matrix.

7.2 Stochastic reconfiguration method

We introduce the stochastic minimization of the total energy based upon the SR technique, already

exploited for lattice systems [33]. Let ΨT (α
0) be the wavefunction depending on an initial set of p

variational parameters {α0
k}k=1,...,p. Consider now a small variation of the parameters αk = α0

k +
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δαk. The corresponding wavefunction ΨT (α) is equal, within the validity of the linear expansion,

to the following one:

Ψ′
T (α) =

(

ΨT (α
0) +

p
∑

k=1

δαk
∂

∂αk
ΨT (α

0)
)

(7.3)

Therefore, by introducing local operators defined on each configuration x = {r1, . . . , rN} as the

logarithmic derivatives with respect to the variational parameters:

Ok(x) =
∂

∂αk
ln ΨT (x) (7.4)

and for convenience the identity operator O0 = 1, we can write Ψ′
T in a more compact form:

|Ψ′
T (α)〉 =

p
∑

k=0

δαk O
k|ΨT 〉, (7.5)

where |ΨT 〉 = |ΨT (α0)〉 and δα0 = 1. However, as a result of the iterative minimization scheme we

are going to present, δα0 6= 1, and in that case the variation of the parameters will be obviously

scaled

δαk → δαk
δα0

(7.6)

and Ψ′
T will be proportional to ΨT (α) for small δαk

δα0
.

Our purpose is to set up an iterative scheme to reach the minimum possible energy for the

parameters α, exploiting the linear approximation for ΨT (α), which will become more and more

accurate close to the convergence, when the variation of the parameters is smaller and smaller. We

follow the stochastic reconfiguration method and define

|Ψ′
T 〉 = PSR(Λ −H)|ΨT 〉 (7.7)

where Λ is a suitable large shift, allowing Ψ′
T to have a lower energy than ΨT [33], and PSR is a

projection operator over the (p+1)–dimensional subspace, spanned by the basis {Ok|ΨT 〉}k=0,...,p,

over which the function |Ψ′
T 〉 has been expanded (Eq. 7.5). In a continuous system, if its energy

is unbounded from above, Λ should be infinite. However, in this case, the optimal Λ is finite, since

the basis is finite, and the spectrum of the Hamiltonian diagonalized in this basis is bounded from

above as in a lattice system. In order to determine the coefficients {δαk}k=1,...,p corresponding to

Ψ′
T defined in Eq.7.7, one needs to solve the SR conditions:

〈ΨT |Ok(Λ−H)|ΨT 〉 = 〈ΨT |Ok|Ψ′
T 〉 for k = 0, . . . , p (7.8)

that can be rewritten in a linear system:

∑

l

δαl sl,k = fk, (7.9)

where sl,k = 〈ΨT |OlOk|ΨT 〉 is the covariance matrix and fk = 〈ΨT |Ok(Λ−H)|ΨT 〉 is the known

term; both sl,k and fk are computed stochastically by a Monte Carlo integration. These linear

equations (7.9) are very similar to the ones introduced by Filippi and Fahy [15] for the energy

minimization of the Slater part. In our formulation, there is no difficulty to optimize the Jastrow

and the Slater part of the wavefunction at the same time. The present scheme is also much simpler
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because does not require to deal with an effective one body Hamiltonian, but is seems to be less

efficient, since it treats all energy scales at the same footing (see Subsection “Different energy

scales” and Ref. [30]).

After the system (7.9) has been solved, we update the variational parameters

αk = α
(0)
k +

δαk
δα0

for k = 1, . . . , p (7.10)

and we obtain a new trial wavefunction ΨT (α). By repeating this iteration scheme several times,

one approaches the convergence when δαk

δα0
→ 0 for k 6= 0, and in this limit the SR conditions

(7.8) implies the Euler equations of the minimum energy. Obviously, the solution of the linear

system (7.9) is affected by statistical errors, yielding statistical fluctuations of the final variational

parameters αk even when convergence has been reached, namely when the {αk}k=1,...,p fluctuate

without drift around an average value. We perform several iterations in that regime; in this way,

the variational parameters can be determined more accurately by averaging them over all these

iterations and by evaluating also the corresponding statistical error bars.

It is worth noting that the solution of the linear system (7.9) depends on Λ only through the

δα0 variable. Therefore the constant Λ indirectly controls the rate of change in the parameters

at each step, i.e. the speed of the algorithm for convergence and the stability at equilibrium: a

too small value will produce uncontrolled fluctuations for the variational parameters, a too large

one will allow convergence in an exceedingly large number of iterations. The choice of Λ can be

controlled by evaluating the change of the wavefunction at each step as:

|Ψ′
T −ΨT |2
|ΨT |2

=
∑

k,k′>0

δαk δαk′ sk,k′ (7.11)

By keeping this value small enough during the optimization procedure, one can easily obtain

a steady and stable convergence. Moreover, we mention that the stochastic procedure is able in

principle to perform a global optimization, as discussed in Ref. [33] for the SR and in Ref. [19] for

the Stochastic Gradient Approximation (SGA), because the noise in the sampling can avoid the

dynamics of the parameters to get stuck into local minima.

7.2.1 Stochastic reconfiguration versus steepest descent method

SR is similar to a standard SD calculation, where the expectation value of the energy E(αk) =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 is optimized by iteratively changing the parameters αi according to the corresponding

derivatives of the energy (generalized forces):

fk = − ∂E

∂αk
= −〈Ψ|OkH +HOk + (∂αk

H)|Ψ〉
〈Ψ|Ψ〉 + 2

〈Ψ|Ok|Ψ〉〈Ψ|H |Ψ〉
〈Ψ|Ψ〉2 , (7.12)

namely:

αk → αk +∆tfk. (7.13)

∆t is a suitable small time step, which can be taken fixed or determined at each iteration by

minimizing the energy expectation value. Indeed the variation of the total energy ∆E at each step
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is easily shown to be negative for small enough ∆t because, in this limit

∆E = −∆t
∑

i

f2
i +O(∆t2).

Thus the method certainly converges at the minimum when all the forces vanish. Notice that

in the definition of the generalized forces (7.12) we have generally assumed that the variational

parameters may appear also in the Hamiltonian. This is particularly important for the structural

optimization since the atomic positions that minimize the energy enter both in the wave function

and in the potential.

In the following we will show that similar considerations hold for the SR method, that can be

therefore extended to the optimization of the geometry. Indeed, by eliminating the equation with

index k = 0 from the linear system (7.9), the SR iteration can be written in a form similar to the

steepest descent:

αi → αi +∆t
∑

k

s̄−1
i,kfk (7.14)

where the reduced p× p matrix s̄ is:

s̄j,k = sj,k − sj,0s0,k (7.15)

and the ∆t value is given by:

∆t =
1

2(Λ− 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 −∑k>0 ∆αksk,0)

. (7.16)

From the latter equation the value of ∆t changes during the simulation and remains small for large

enough energy shift Λ. However, using the analogy with the steepest descent, convergence to the

energy minimum is reached also when the value of ∆t is sufficiently small and is kept constant for

each iteration (we have chosen to determine ∆t by verifying the stability and the convergence of

the algorithm at fixed ∆t value). Indeed the energy variation for a small change of the parameters

is:

∆E = −∆t
∑

i,j

s̄−1
i,j fifj .

It is easily verified that the above term is always negative because the reduced matrix s̄, as well

as s̄−1, is positive definite, being s an overlap matrix with all positive eigenvalues.

For a stable iterative method, such as the SR or the SD one, a basic ingredient is that at each

iteration the new parameters α′ are close to the previous α according to a prescribed distance.

The fundamental difference between the SR minimization and the standard steepest descent is just

related to the definition of this distance. For the SD it is the usual one defined by the Cartesian

metric ∆α =
∑

k |α′
k − αk|2, instead the SR works correctly in the physical Hilbert space metric

of the wave function Ψ, yielding ∆α =
∑

i,j s̄i,j(α
′
i − αi)(α

′
j − αj), namely the square distance

between the two normalized wave functions corresponding to the two different sets of variational

parameters {α′} and {αk} 1. Therefore, from the knowledge of the generalized forces fk, the most

1∆α is equivalent to the quantity of Eq. 7.11, but the variation of the wave function is expressed in the orthogonal

basis {(Ok− < Ok >)|ΨT 〉}k=1,...,p
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convenient change of the variational parameters minimizes the functional ∆E+Λ̄∆α, where ∆E is

the linear change in the energy ∆E = −∑i fi(α
′
i −αi) and Λ̄ is a Lagrange multiplier that allows

a stable minimization with small change ∆α of the wave function Ψ. The final iteration (7.14) is

then easily obtained.

The advantage of SR compared with SD is obvious because sometimes a small change of the

variational parameters correspond to a large change of the wave function, and the SR takes into

account this effect through the Eq. 7.14. In particular the method is useful when a non orthogonal

basis set is used as we have done in this work. Indeed by using the reduced matrix s̄ it is also

possible to remove from the calculation those parameters that imply some redundancy in the

variational space. A more efficient change in the wave function can be obtained by updating only

the variational parameters that remain independent within a prescribed tolerance, and therefore,

by removing the parameters that linearly depend on the others. A more stable minimization

is obtained without spoiling the accuracy of the calculation. A weak tolerance criterium ǫ ≃
10−3, provides a very stable algorithm even when the dimension of the variational space is large.

For a small atomic basis set, by an appropriate choice of the Jastrow and Slater orbitals, the

reduced matrix s̄ is always very well conditioned even for the largest system studied, and the above

stabilization technique is not required. Instead the described method is particularly important for

the extension of QMC to complex systems with large number of atoms and/or higher level of

accuracy, because in this case it is very difficult to select - e.g. by trial and error - the relevant

variational parameters, that allow a well conditioned matrix s̄ for a stable inversion in (7.14).

Once all the parameters are independent, that can be checked by explicit calculation of the

spectrum of the reduced matrix s̄, the simulation is stable whenever 1/∆t > Λcut, where Λcut is

an energy cutoff that is strongly dependent on the chosen wave function and is generally weakly

dependent on the bin length. Whenever the wave function is too much detailed, namely has a lot

of variational freedom, especially for the high energy components of the core electrons, the value

of Λcut becomes exceedingly large and too many iterations are required for obtaining a converged

variational wave function. In fact a rough estimate of the corresponding number of iterations P is

given by P∆t >> 1/G, where G is the typical energy gap of the system, of the order of few eV

in small atoms and molecules. Within the SR method it is therefore extremely important to work

with a bin length rather small, so that many iterations can be performed without much effort.

7.2.2 Statistical bias of forces

In a Monte Carlo optimization framework the forces fk are always determined with some statistical

noise ηk, and by iterating the procedure several times with a fixed bin length the variational

parameters will fluctuate around their mean values. These statistical fluctuations are similar to

the thermal noise of a standard Langevin equation:

∂tαk = fk + ηk, (7.17)

where

〈ηk(t)ηk′ (t′)〉 = 2Tnoiseδ(t− t′)δk,k′ . (7.18)
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Within a QMC scheme, one needs to control Tnoise, by increasing the bin length as clearly Tnoise ∝
1/Bin length, because the statistical fluctuations of the forces, obviously decreasing by increasing

the bin length, are related to the thermal noise by Eq. 7.18. On the other hand, the number of

iterations necessary to reach the convergence is weakly dependent on the bin length, but it depends

mainly on the energy landscape of the system. The optimal value for the bin length is the smallest

one that provides Tnoise within the desired accuracy.

The variational parameters αk, averaged over the Langevin simulation time will be close to the

true energy minimum, but the corresponding forces fk = −∂αk
E will be affected by a bias that

scales to zero with the thermal noise Tnoise, due to the presence of non quadratic terms in the

energy landscape. The systematic bias on the forces should be controlled through an appropriate

choice of the bin length in order to not exceed the statistical error of the averaged parameters.

7.2.3 Structural optimization

In the last few years remarkable progress has been made in developing Quantum Monte Carlo

(QMC) techniques which are able in principle to perform structural optimization of molecules and

complex systems [1, 2, 9, 35]. Within the Born-Oppenheimer approximation the nuclear positions

Ri can be considered as further variational parameters included in the set {αi} used for the

SR minimization (7.14) of the energy expectation value. For clarity, in order to distinguish the

conventional variational parameters from the ionic positions, in this section we indicate with {ci}
the former ones, and with Ri the latter ones. It is understood that Rνi = αk, where a particular

index k of the whole set of parameters {αi} corresponds to a given spatial component (ν = 1, 2, 3)

of the i−th ion. Analogously the forces (7.12) acting on the ionic positions will be indicated by

capital letters with the same index notations.

The purpose of the present section is to compute the forces F acting on each of the T nuclear

positions {R1, . . . ,RT }, being T the total number of nuclei in the system:

F(Ra) = −∇RaE({ci},Ra), (7.19)

with a reasonable statistical accuracy, so that the iteration (7.14) can be effective for the structural

optimization. In this work we have used a finite difference operator ∆
∆Ra

for the evaluation of the

force acting on a given nuclear position a:

F(Ra) = − ∆

∆Ra
E = −E(Ra +∆Ra)− E(Ra −∆Ra)

2∆R
+O(∆R2) (7.20)

where ∆Ra is a 3 dimensional vector. Its length ∆R is chosen to be 0.01 atomic units, a value that

is small enough for negligible finite difference errors. In order to evaluate the energy differences

in Eq. 7.20 we have used the space-warp coordinate transformation [38, 16] briefly summarized in

the following paragraphs. According to this transformation the electronic coordinates r will also

be translated in order to mimic the right displacement of the charge around the nucleus a:

ri = ri +∆Ra ωa(ri), (7.21)
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where

ωa(r) =
F (|r−Ra|)

∑T
b=1 F (|r−Rb|)

. (7.22)

F (r) is a function which must decay rapidly; here we used F (r) = 1
r4 as suggested in Ref. [16].

The expectation value of the energy depends on ∆R, because both the Hamiltonian and the

wave function depend on the nuclear positions. Now let us apply the space-warp transformation

to the integral involved in the calculation; the expectation value reads:

E(R +∆R) =

∫

drJ∆R(r)Ψ2
∆R(r(r))E∆R

L (r(r))
∫

drJ∆R(r)Ψ2
∆R(r(r))

, (7.23)

where J is the Jacobian of the transformation and here and henceforth we avoid for simplicity to use

the atomic subindex a. The importance of the space warp in reducing the variance of the force is

easily understood for the case of an isolated atom a. Here the force acting on the atom is obviously

zero, but only after the space warp transformation with ωa = 1 the integrand of expression (7.23)

will be independent of ∆R, providing an estimator of the force with zero variance.

Starting from Eq. 7.23, it is straightforward to explicitly derive a finite difference differential

expression for the force estimator, which is related to the gradient of the previous quantity with

respect to ∆R, in the limit of the displacement tending to zero:

F(R) = −
〈

lim
|∆R|→0

∆

∆R
EL
〉

(7.24)

+ 2
(

〈

H
〉〈

lim
|∆R|→0

∆

∆R
log(J1/2Ψ)

〉

−
〈

H lim
|∆R|→0

∆

∆R
log(J1/2Ψ)

〉

)

,

where the brackets indicate a Monte Carlo like average over the square modulus of the trial wave

function, ∆
∆R

is the finite difference derivative as defined in (7.20), and EL = 〈Ψ|H|x〉
〈Ψ|x〉 is the local

energy on a configuration x where all electron positions and spins are given. In analogy with

the general expression (7.12) of the forces, we can identify the operators Ok corresponding to the

space-warp change of the variational wave function:

Ok =
∆ν

∆R
log(J

1/2
∆RΨ∆R) (7.25)

The above operators (7.25) are used also in the definition of the reduced matrix s̄ for those elements

depending on the variation with respect to a nuclear coordinate. In this way it is possible to

optimize both the wave function and the ionic positions at the same time, in close analogy with the

Car-Parrinello[7] method applied to the minimization problem. Also Tanaka [36] tried to perform

Car-Parrinello like simulations via QMC, within the less efficient steepest descent framework.

An important source of systematic errors is the dependence of the variational parameters ci on

the ionic configurationR, because for the final equilibrium geometry all the forces fi corresponding

to ci have to be zero, in order to guarantee that the true minimum of the potential energy surface

(PES) is reached [8]. As shown clearly in the previous subsection, within a QMC approach it is

possible to control this condition by increasing systematically the bin length, when the thermal

bias Tnoise vanishes. In Fig. 7.1 we report the equilibrium distance of the Li molecule as a function

of the inverse bin length, for two different basis sets, so that an accurate evaluation of such an
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important quantity is possible even when the number of variational parameters is rather large, by

extrapolating the value to an infinite bin length.
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Figure 7.1: Plot of the equilibrium distance of the Li2 molecule as a function of the inverse bin

length. The total energy and the binding energy are reported in Chapter ?? (HERE DEFINE) in

Tables ?? and ?? (HERE DEFINE) respectively. The triangles (full dots) refer to a simulation

performed using 1000 (3000) iterations with ∆t = 0.015H−1 (∆t = 0.005H−1) and averaging over

the last 750 (2250) iterations. For all simulations the initial wavefunction is optimized at Li− Li

distance 6 a.u.

We have not attempted to extend the geometry optimization to the more accurate DMC, since

there are technical difficulties [27], and it is computationally much more demanding.

Different energy scales

The SR method performs generally very well, whenever there is only one energy scale in the

variational wave function. However if there are several energy scales in the problem, some of the

variational parameters, e.g. the ones defining the low energy valence orbitals, converge very slowly

with respect to the others, and the number of iterations required for the equilibration becomes
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exceedingly large, considering also that the time step ∆t necessary for a stable convergence depends

on the high energy orbitals, whose dynamics cannot be accelerated beyond a certain threshold.

If the interest is limited to a rather small atomic basis, the SR technique is efficient, and general

enough to perform the simultaneous optimization of the Jastrow and the determinantal part of the

wave function, a very important feature that allows to capture the most non trivial correlations

contained in our variational ansatz. Moreover, SR is able to perform the structural optimization of

a chemical system, which is another appealing characteristic of this method. However, to optimize

an extended atomic basis, it is necessary to go beyond the SR method, and the use of the second

energy derivatives ( the Hessian matrix) will be necessary to speed up the convergence to the

minimum energy wave function.



Chapter 8

Green’s function Monte Carlo

8.1 Exact statistical solution of model Hamiltonians: moti-

vations

As we have seen in the Introduction, it is important to go beyond the variational approach, because,

for correlated systems with a large number of electrons, it is very difficult to prepare a variational

wavefunction with a good enough variational energy. Remember that a good accuracy in the energy

per particle does not necessarily imply a sufficent quality for the correlation functions, which is

indeed the most important task of a numerical approach. For that, you would need an accuracy

of the variational energy below the gap to the first excited state, which is generally impossible.

8.2 Single walker technique

In the following we will denote by x the discrete labels specifying a given state of the N -electron

Hilbert space of our system (for instance, specifying all the electron positions and spins). We will

also assume that, given the Hamiltonian H , the matrix elements 〈x′|H |x〉 = Hx′,x, for given x,

can be computed efficiently for each x′. Typically, for a lattice Hamiltonian, though the dimension

of the Hilbert space spanned by {x′} increases exponentially with the system size L, the number

of vanishing entries of the matrix representing H , Hx′,x = 0, is very large, so that the non-zero

column elements in Hx′,x, for given x, are of the order of the system size L, and can be therefore

computed with a reasonable computational effort.

Using the above property, it is possible to define a stochastic algorithm that allows to perform

the power method (see the Introduction) in a statistical way, in the sense that the wavefunction

ψn(x) = 〈x|(Λ1−H)n|ψG〉 , (8.1)

with |ψG〉 some initial trial state, is evaluated with a stochastic approach. To this purpose, we
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define the basic element of this stochastic approach, the so called walker. A walker is basically

determined by an index x, labelling a configuration |x〉 in the Hilbert space of our system, with an

associated weight w (roughly speaking associated to the amplitude of the wavefunction at x, see

below).

The walker “walks” in the Hilbert space of the matrix H , by performing a Markov chain with a

discrete iteration time n, and thus assuming configurations (xn, wn) according to a given probability

density Pn(xn, wn). (Recall that a walker is associated to the pair (x,w), so that the Markov chain

involves both the weight w and the configuration x.)

The goal of the Green’s function Monte Carlo (GFMC) approach is to define a Markov process,

yielding after a large number n of iterations a probability distribution for the walker, Pn(w, x),

which determines the ground state wavefunction ψGS . To be specific, in the most simple formula-

tion we would require:
∫

dw w Pn(x,w) = 〈x|ψn〉 , (8.2)

i.e., the probability that, at time n, a walker is at x, multiplied by w and integrated over all weights

w, is just the amplitude of the wavefunction |ψn〉 at x.

In order to apply a statistical algorithm for solving the ground state of the Hamiltonian H , it

is necessary to assume that all the matrix elements of the so called Green’s function

Gx′,x = 〈x′|Λ1−H |x〉 = Λδx′,x −Hx′,x , (8.3)

appearing in (9.1) are positive definite, so that they may have a meaning of probability. For the

diagonal element Gx,x there is no problem: we can always satisfy this assumption by taking a

sufficiently large shift Λ. However, the requirement of positiveness is indeed important, and non

trivial, for the non-diagonal elements of G, and is fulfilled only by particularly simple Hamiltonians.

If it is not fulfilled, i.e., if Gx′,x < 0 for some pairs (x′, x), we say that we are in presence of the

so-called sign problem, that will be discussed in the forthcoming chapters.

Once positiveness (Gx′,x ≥ 0) is assumed to hold, we can divide up the Green’s function into the

product of two factors: a stochastic matrix px′,x – by definition, a matrix with all positive elements

px′,x ≥ 0, and with the normalization condition
∑

x′ px′,x = 1 for all columns – times a scale factor

bx. Indeed, if we define bx =
∑

x′ Gx′,x > 0 to be such a scale factor, then px′,x = Gx′,x/bx is

trivially positive and column normalized, and is therefore the stochastic matrix we are looking for.

In summary, we have split G into:

Gx′,x = px′,xbx

bx =
∑

x′

Gx′,x

px′,x = Gx′,x/bx . (8.4)

We now want to device a simple Markov process that guarantees Eq. (8.2). Indeed, given (wn, xn),

we can, by using the decomposition (8.4),

a) generate xn+1 = x′ with probability px′,xn

b) update the weight with wn+1 = wnbx . (8.5)
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px1,xn
px2,xn

px3,xn
px4,xn

✲

ξ

Figure 8.1: The interval (0,1] is divided up into sub-intervals of length equal to the probability pxi,xn
, for

all i’s labelling the possible configurations x′ with non zero probability pxi,xn
(the example shown has only

four entries). Then a random number 0 < ξ ≤ 1 is generated, and the new configuration xn+1 = x3 (in

the example shown) is selected, as ξ lies in the corresponding interval. The index n indicates the Markov

chain iteration number.

The reader should pose here, to get fully convinced that this Markov process leads to Eq. (8.2).

This Markov process can be very easily implemented for generic correlated Hamiltonians on a

lattice, since the number of non-zero entries in the stochastic matrix px′,xn , for given xn, is small,

and typically growing only as the number of lattice sites L. Thus, in order to define xn+1, given

xn, it is enough to divide the interval (0, 1) into smaller intervals (see Fig. 8.2) of lengths px′,xn

for all possible {x′} connected to xn with non-zero probability px′,xn . Then, a pseudo-random

number ξ between 0 and 1 is generated. This ξ will lie in one of the above defined intervals, with

a probability of hitting the interval corresponding to a certain x′ exactly equal to px′,xn . This

clearly defines xn+1 according to the desired Markov chain (8.5). From Eq. (8.5) it is immediate

to verify that the conditional probability K of the new walker (xn+1, wn+1), given the old one at

(xn, wn), is simply:

K(xn+1, wn+1|xn, wn) = pxn+1,xnδ(wn+1 − wnbxn) . (8.6)

Thus, the Master equation corresponding to the probability density Pn(xn, wn) is given by (see

Eq.5.15):

Pn+1(x
′, w′) =

∑

x

∫

dwK(x′, w′|x,w)Pn(x,w) . (8.7)

Hereafter, the integration limits over the variable w are assumed to run over the whole range

−∞,∞, the probability density P (x,w) being zero for the values of w that are not allowed by the

Markov chain (e.g., w < 0).

Finally, it is simple enough to show that the walker – defined by the stochastic variables xn and

wn – determines statistically the state ψn(x) in Eq. (9.1) by means of the relation:

ψn(x) =< wnδx,xn >=

∫

dwnwn Pn(x,wn) , (8.8)

where the first average, intended over infinitely many independent realizations of the Markov

chain, is rarely pursued in actual practice as there is too much information contained in ψn(x) for

every configuration x in the Hilbert space. The Quantum Monte Carlo approach is based on the

possibility that for physical correlation functions, like e.g. the energy, it is not necessary to have an

accurate statistical information of the wavefunction, namely to have each component ψn(x) of the
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wavefunction with a standard deviation much smaller than its value. In a many body system with

an Hilbert space exponentially large, this information cannot even be stored. Moreover, in order

to have an adequate error bar on all configurations, each of them has to be visited at least once,

implying an exponentially large computation time. It turns out that the standard deviation on the

total energy or other physical quantities corresponding to the same state ψn(x) is instead adequate

even when the number of configurations generated by the Monte Carlo algorithm is much smaller

than the Hilbert space. In the Monte Carlo scheme, there are random variables like wnδx,xn in

Eq.(8.8) that cannot even be sampled. Eventually physical correlation functions can be computed,

with reasonable accuracy corresponding to the well defined state ψn(x).

Indeed, once the relation (8.8) is supposed to hold for some n, using the Master equation (8.7)

we will immediately obtain:
∫

dwn+1wn+1 Pn+1(x
′, wn+1) =

∫

dwn+1wn+1

∑

x

∫

dwnpx′,xδ(wn+1 − wnbx)Pn(x,wn)

=
∑

x

∫

dwnpx′,xbxwnPn(xn, wn)

=
∑

x

Gx′,xψn(x) = ψn+1(x
′) , (8.9)

where in the latter equality we have used the assumed form of ψn(x), Eq. (8.8), and the Green’s

function decomposition (8.4). Eq. (8.9), therefore, allows us to state that (8.8) holds also for n+1,

and, by induction, it is valid for each n, once the initial condition ψ0(x) =< w0δx,x0 > is imposed,

e.g., by P0(x,w) = δ(w − 1)δx,x0, representing a walker with weight 1 in the configuration x0, i.e.,

an initial wavefunction completely localized at x0, ψ0(x) = δx,x0. For large n, as explained in the

Introduction, the power method converges to the ground state of H and thus the walker wn, xn

contains, for large n, the information of the ground state wavefunction ψGS(x), namely:

ψGS(x) =< wnδx,xn > .

8.2.1 Correlation functions

In principle, using the basic relation (8.8) we can have information on the ground-state wavefunc-

tion amplitudes for each configuration x, when n is large enough. However this information is too

large for being physically relevant, especially for large number of sites, when the Hilbert space is

huge. The most important physical quantities are, as usual, ground state energy and correlation

functions over the state (8.8). In particular, the ground state energy can be obtained by averaging

the random variable

e(x) =
∑

x′

Hx′,x = Λ− bx . (8.10)

Indeed, if we take the ratio between the means of the two random variables wne(xn) and wn over

the Markov chain (8.5), by using (8.8), we easily obtain:

< wne(xn) >

< wn >
=

∑

xn

∫

dwnwneL(xn)Pn(xn, wn)
∑

xn

∫

dwnwnPn(xn, wn)
=

∑

xn
eL(xn)ψn(xn)
∑

xn
ψn(xn)

. (8.11)



8.2 Single walker technique 97

Thus, for large n, when ψn(x) is equal to the ground-state wavefunction ψGS(x) (up to a normal-

ization constant) the numerator will converge exactly to the ground state energy EGS times the

denominator,

∑

x

e(x)ψGS(x) =
∑

x′,x

Hx′,xψGS(x) =
∑

x′

〈x′|H |ψGS〉 = EGS
∑

x′

ψGS(x
′) ,

where in the latter equality we have used that H |ψGS〉 = EGS |ψGS〉.

At variance with the Variational Monte Carlo, the statistical evaluation of the energy shown

above is obtained by taking the ratio of two random variables e(xn)wn and wn, which leads

to some complications in the evaluation of the error bars. Moreover, there is a difficulty for

computing generic operator averages, because the Green’s function Monte Carlo does not give

explicit information of the square of the wavefunction ψn(x). Before explaining how to remedy to

these problems, we consider in more detail the convergence properties of the Markov process (8.5),

and (8.7), which will be useful for the forthcoming sections.

8.2.2 Convergence properties of the Markov process

First of all we consider the marginal probability ψ̄n(xn) =
∫

dwnPn(xn, wn) of the configuration

xn, regardless of what the random weight wn is (ψ̄n should not be confused with the wavefunction

ψn, where the weight factor wn appears explicitly). It is straightforward to derive, using the

Markov iteration (8.5), that this marginal probability evolves in a simple way:

ψ̄n+1(xn+1) =
∑

xn

pxn+1,xn ψ̄n(xn) , (8.12)

as pxn+1,xn is just the conditional probability of having xn+1, once xn is given. Since the matrix

Gx′,x is symmetric, by using the definitions in (8.4) it is simple to show that the probability function

ψ̄(x) =
bx

∑

x′ bx′

(8.13)

is a right eigenvector of the stochastic matrix p with unit eigenvalue, namely
∑

x px′,xψ̄(x) = ψ̄(x).

It is also possible to show that, under the iteration (8.12), the probability ψ̄n(x) will converge to

ψ̄(x) no matter what is the initial condition, and exponetially fast, provided the stochastic matrix

p, alias the Hamiltonian H itself, satisfy the following:

Definition 8.1 (Ergodicity.) Any configuration x′ can be reached, in a sufficiently large number

of Markov iterations, starting from any initial configuration x, formally for each couple of config-

urations x and x′ belonging to the Hilbert space considered, there exists an integer M such that

(pM )x′,x 6= 0.

As we have shown in Sec.(5.5), it is possible to define an effective Hamiltonian H̄x′,x corresponding

to the above Markov iteration (8.12) defined by px′,x. Indeed using the same notations of Sec.(5.5)

with g(x) =
√

ψ̄(x) and:

H̄x′,x = − 1√
bxbx′

Gx′,x . (8.14)
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the Markov process (8.5) defines a Master equation (8.12), whose solution is independent of the

initial condition, and the speed of convergence to the so-called equilibrium distribution ψ̄ = g2(x)

(8.13) is related to the spectrum of the effective Hamiltonian H̄ (11.1), which is in turn closely

related to the physical one H .

8.3 Importance sampling

According to Eq. (8.10), the calculation of the energy in the above described Green’s function

technique will not satisfy the “zero variance property” because the random quantity eL does not

depend on any variational guess ψg, as in the variational Monte Carlo (see Eq.(5.6), where, by

improving ψg, one can substantially reduce the statistical fluctuations.

It is possible to recover this important property of the variational Monte Carlo, by a slight

modification of the iteration technique. To this purpose, it is enough to consider the so-called

importance sampling Green’s function:

Ḡx′,x = ψg(x
′)Gx′,x/ψg(x) . (8.15)

In general, Ḡx′,x is no longer symmetric. Whenever Ḡx′,x ≥ 0 for all (x′, x), it is possible to apply

the same decomposition in (8.4) to Ḡ, defining the corresponding Markov chain (8.5) with:

px′,x = Ḡx′,x/bx

bx =
∑

x′

Ḡx′,x = Λ−
∑

x′ ψg(x
′)Hx′,x

ψg(x)
= Λ− eL(x) . (8.16)

Quite amusingly, if the guess wavefunction ψg used in the importance sampling procedure is the

correct ground state wavefunction ψg(x) = ψGS(x), then eL(x) = EGS is a constant, and statistical

fluctuations vanish exactly. Another useful property of the importance sampling procedure is a

possible remedy to the sign problem. There are cases, in practical applications, where the original

Green’s function Gx′,x does not satisfy the positivity condition for all off-diagonal matrix elements.

The antiferromagnetic nearest-neighbor Heisenberg model on the square lattice is a particularly

important example of such a case. On the square lattice, we can define two sublattices A and B, the

sites Ri = (xi, yi), with xi, yi ∈ Z, belonging to the A(B)-sublattice whenever (−1)xi+yi = +1(−1).

In this case the standard Monte Carlo approach is defined with configurations {x} where electrons

have definite spin along the z−axis. In this basis, all the spin-flip terms in the Hamiltonian,

(S+
i S

−
j + H.c.), act on antiparallel spins located at nearest-neighbor lattice points i and j that

belong to opposite sublattices. These terms generate positive matrix elements for H , Hx′,x = J/2,

and hence negative matrix elements for G, Gx′,x = −J/2. On the other hand, by choosing any

guiding function ψg(x) satisfying the so-called Marshall sign rule, i.e.,

Sign ψg(x) = (−1)Number of spin up in A sublattice for configuration x , (8.17)

it is readily verified that the importance sampled Green’s function Ḡ in (8.15) has instead all

positive matrix elements Gx′,x ≥ 0 (Λ = 0 can be chosen in this case).
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All the derivations of Section 8.2 can be repeated exactly in the same way for the importance

sampled Ḡ, with trivial factors of ψg appearing here and there. We thus obtain, for instance, that:

< wnδx,xn >= ψg(x)ψn(x) (8.18)

where ψn(x) is defined in Eq. (9.1). On the other hand, for large n, the configurations xn will

be distributed according to ψ̄(x) =
ψ2

g(x)bx∑
x′ ψ2

g(x
′)bx′

, where g(x) =
√

ψ̄(x) remains the scale factor in

the similarity transformation (5.19) defining the effective Hamiltonian H̄ in Eq. (11.1). Using the

results of Sec.(5.5), assuming that at n = 0 the configurations are already equilibrated according

to ψ̄, we obtain:

EGS = lim
n→∞

< wneL(xn) >

< wn >
=

〈ψg|H(Λ−H)n|φ̄〉
〈ψg|(Λ−H)n|φ̄〉 . (8.19)

where 〈x|φ̄〉 = bxψg(x).

Since the convergence of the above limit is exponentially fast in n (at least for any finite size

lattice, where a finite gap to the first excitation exists) it is enough to stop the iteration to a

reasonably small finite n = l. Instead of repeating the Markov chain several times up to n = l,

to accumulate statistics, it is clearly more convenient to average over a long Markov chain with

N >> l, where N is the total number of iterations of (8.5), and considering the corresponding

estimates in (8.19):

EGS = lim
l→∞

=
〈ψg|H(Λ−H)l|φ̄〉
〈ψg|(Λ −H)l|φ̄〉 =

N
∑

n>n0

GlneL(xn)

N
∑

n>n0

Gln

(8.20)

where n0 is the number of iterations required for the statistical equilibration of the Markov process

and the weighting factors Gln are given by:

Gln =

l
∏

i=1

bxn−i . (8.21)

The above equations (8.20,8.21) are easily explained. At each discrete time n− l we can take an

equilibrated configuration distributed according to ψ̄(x), and consider l iterations of the Markov

process (8.5) with initial condition wn−l = 1, namely

Pn−l(x,w) = δ(w − 1)ψ̄(x) , (8.22)

leading, after l iterations, to a final weight wl = Gln at time n.

The relation (8.20) is exact in the statistical sense relating exact quantum averages to corre-

sponding averages of random variables (Gln and eL(xn)) , and allows us to compute the energy

with an error bar decreasing like the inverse square root of the Markov chain length N . In order to

estimate this error bar, it is useful to apply the “bin technique” of Section 5.7, especially because,

in this case, the numerator and the denominator in (8.20) are highly correlated. After computing

the bin average of the ratio ēj in each bin (8.20), the error bar of the total average ē over the whole

Markov chain can be estimated by assuming that each bin average is not correlated with the other
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ones, leading to:

σ2
ē =

1

k(k − 1)

k
∑

j=1

(ē− ēj)2 , (8.23)

where σē is the estimated standard deviation of ē. The above expression is valid only when the

bin lenght M = N/k is large enough compared to the correlation time, and k >≃ 30 for a good

statistical accuracy of the estimated variance. A practical implementation of the above algorithm

is given in App.(B.1.

8.4 The limit Λ → ∞ for the power method, namely contin-

uous time approach

The constant Λ appearing in Gx′,x = Λ− δx′,x, which defines the the Green function with impor-

tance sampling Ḡ in Eq.(8.15) has to be taken large enough to determine that all the diagonal

elements of Ḡ are non-negative (by definition the off-diagonal ones of Ḡ are always non-negative).

This requirement often determines a very large constant shift which increases with larger size and

is not known a priori. The trouble in the simulation may be quite tedious, as if for the chosen Λ a

negative diagonal element is found for Ḡ, one needs to increase Λ and start again with a completely

new simulation. The way out is to work with exceedingly large Λ, but this may slow down the

efficiency of the algorithm as in the stochastic matrix px′,x the probability to remain in the same

configuration pd may become very close to one

pd =
Λ−Hx,x

Λ− eL(x)
(8.24)

where eL(x) is the local energy Eq. (5.6) that do not depend on Λ given the configuration x.

In the following we will show that The problem of working with large Λ can be easily solved

with no loss of efficiency. We report this simple idea applied to the simple algorithm introduced

so far for a single walker. If Λ is large it is possible to remain a large number kp of times (of order

Λ) in the same configuration before a new one is accepted. The idea is that one can determine a

priori, given pd what is the probability t(k) to make k diagonal moves before the first acceptance

of a new configuration with x′ 6= x. This is given by t(k) = pkd(1 − pd) for k = 0, · · · , L − 1 and

t(L) = pLd if no off-diagonal moves are accepted during the L trials.

It is a simple exercise to show that, in order to sample t(k) one needs one random number

0 < ξ < 1, so that the stochastic integer number k can be computed by the simple formula

k = min(L, [
ln ξ

ln pd
]) , (8.25)

where the brackets indicate the integer part. During the total L iterations one can iteratively apply

this formula by bookkeeping the number of iterations Lleft, that are left to complete the loop of

L iterations. At the first iteration Lleft = L, then k is extracted using (8.25), and the weight w

of the walker is updated according to k diagonal moves , namely w → wbkx and if k < Lleft a new
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configuration is extracted randomly according to the transition probability tx′,x defined by:

tx′,x =

{

px′,x

Z(x)/bx
for x 6= x′

0 for x = x′
(8.26)

where:

Z(x)=
∑

x′ 6=x
Ḡx′,x = −eL(x) +Hx,x (8.27)

Finally, if k < Lleft, Lleft is changed to Lleft− k− 1, so that one can continue to use Eq. (8.25)

until Lleft = 0, meaning that all the L steps are executed, with a finite number of steps even when

Λ and L ∝ Λ ie extremely large.

Indeed it is interesting to observe that this method can be readily generalized for Λ → ∞ by

increasing L with Λ, namely L = [Λτ ], where τ represents now exactly the imaginary time evolution

of the exact propagator e−Hτ applied statistically. To this purpose it is enough to bookkeep the

corresponding time left tleft remaining to complete the imaginary time propagation of length τ .

Indeed before generating a new configuration according to the same transition probability (8.26),

one needs only to generate a random time interval:

ttry = Min(− ln z/Z(x), tleft) (8.28)

where z is a random number uniformly distributed in the interval (0, 1] and update the weights

and tleft according to:

tleft → tleft − ttry (8.29)

w → w exp(−ttryeL(x)) (8.30)

The loop is completed when tleft = 0.

8.4.1 Local operator averages

The Green’s function Monte Carlo can be also used efficiently to compute expectation values of

local operators Ô, i.e., operators which are diagonal on all the elements of the configuration basis

|x >,
Ô|x >= Ox|x > , (8.31)

where Ox is the eigenvalue corresponding to the configuration x. For instance, in the Heisenberg

model a particularly important operator is the square of the order parameter along the z direction:

Ô =

[

1

L

∑

R

ei
~Q·~RSzR

]2

, (8.32)

where Q = (π, π) in two-dimensions. This operator allows us to verify the existence of antiferro-

magnetic long-range order, by evaluating the expectation value 〈ψGS |O|ψGS〉 on any finite system.

The limiting L → ∞ value, when finite, implies a finite antiferromagnetic order parameter, the

so-called staggered magnetization m†, for the infinite system.



102 Green’s function Monte Carlo

For local operators, the local estimator is simply
〈ψg |Ô|x〉
〈ψg |x〉 = Ox. Moreover, the Markov chain

(8.5) is easily modified for accounting for the application, at a selected iteration time n−m, of the

operator Ô. This is in fact exactly equivalent – in the statistical sense – to modifying the weight

w′
n−m → Oxn−mwn−m. In this way, it is simple to verify that:

< wnOxn−m >

< wn >
=

〈ψg|(Λ −H)mÔ(Λ −H)l−m|φ̄〉
〈ψg|(Λ−H)l|φ̄〉 → 〈ψGS |Ô|ψGS〉 . (8.33)

In the above equation, wn−l = 1 is assumed, according to the initial condition (8.22) for the

definition of the weighting factorsGln in (8.21), implying thatm ≤ l, so that the practical expression

of Eq.(8.33) becames:

〈ψGS |Ô|ψGS〉 ≃
∑

nG
l
nOxn−m

∑

nG
l
n

. (8.34)

valid for l −m,m >> 1. Indeed the latter equation (8.34) is satisfied for l → ∞, provided also

m→ ∞ in this limit. Indeed, only with a very large m, we can filter out the ground state from the

left-hand side state 〈ψg|. A practical implementation of the above algorithm is given in App.(B.1.

By using (8.33) form = 0, the so calledmixed averaged < Ô >MA is obtained, a biased estimator

of the exact quantum average:

< Ô >MA=
〈ψg|Ô|ψGS〉
〈ψg|ψGS〉

. (8.35)

The calculation of these mixed averages is possible for any type of operator, not only the local ones.

For operators that are defined on the ground state, Ô|ψGS〉 = γO|ψGS〉 (γO being the eigenvalue),

such as the total spin S2 or the total energy, the mixed average estimator is exact (as we have seen

in particular for the energy in (8.19)). For all other operators, a well known scheme to evaluate

the ground state expectation value is known as the Ceperley correction:

〈ψGS |Ô|ψGS〉
〈ψGS |ψGS〉

≈ 2 < Ô >MA − < Ô >VMC , (8.36)

where< Ô >VMC=
〈ψg|Ô|ψg〉
〈ψg|ψg〉 is the simple variational estimate corresponding to ψg. This approach

is justified provided the variational wavefunction ψg is very close to ψGS and can be written as

ψg = ψGS + ǫψ′, with ψGS and ψ′ normalized, and ǫ << 1. The expression (8.36) clearly holds up

to O(ǫ2).

8.5 Many walkers formulation

The practical reason for taking l as small as possible in (8.20) is that for large l the variance of

the weight factors Gln diverges exponentially, leading to uncontrolled fluctuations, as we will now

show. To this purpose it is enough to compute the variance of the Gln factors

var Gln = (δGl)2 =< w2
l > − < wl >

2

and show that it diverges. We use the Master equation (8.7), with the initial condition (8.22), and

consider the following quantity Φn(x) =< w2
nδx,xn >, that is easily related to the desired quantity,
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since < w2
l >=

∑

xΦl(x). Then, following (8.9) we write:

Φn+1(x
′) = < w2

n+1δx′,xn+1 >=

∫

dwn+1w
2
n+1Pn+1(x

′, wn+1)

=

∫

dwn+1w
2
n+1

∑

x

∫

dwnpx′,xδ(wn+1 − bxwn)Pn(x,wn)

=
∑

x

∫

dwnpx′,xb
2
xw

2
nPn(x,wn)

=
∑

x

(Gx′,xbx)Φn(x) . (8.37)

According to Eq.(8.37), < w2
l >=

∑

xΦl(x) will diverge, for large l, exponentially fast, as ∝ λl2,

where λ2 is the maximum eigenvalue of the matrix Gb (b is here a diagonal matrix (b)x,x′ = δx,x′bx).

At the same time, < wl > will diverge as < wl >∼ λl, where λ = Λ − EGS is the maximum

eigenvalue of the Green’s function G. In general λ2 ≥ λ2 as < w2
l > has to be bounded by < wl >

2

by the Schwartz inequality. The equality sign holds only if the matrix b is a constant times the

identity matrix, namely, by Eq.(8.16), when the guiding function is exact and the local energy

has zero variance. It is therefore clear that, quite generally, we get an exponential increase of the

fluctuations

(δGl)2 ∼ (λl2 − λ2l) → ∞ ,

as l → ∞.

In order to overcome this problem of an exponentially increasing variance, we will discuss in

the following section a way to propagate a set of M walkers simultaneously defined by weights wi

and configurations xi, for i = 1, · · ·M . By evolving them independently, clearly no improvement is

obtained for the aforementioned large fluctuations. Instead, we will consider the following recon-

figuration of the walkers: before the variance of the weights wi becomes too large, we will redefine

the set of walkers by dropping out those with a weight which is too small, and correspondingly

generate copies of the more important ones, in such a way that after this reconfiguration all the

walkers have approximately the same weight. By iterating this process, the weights of all the walk-

ers will be kept approximately equal during the simulation. This property yields a considerable

reduction of statistical errors, as the variance of the average weight w̄ = 1
M

∑

iwi is reduced by a

factor ∝
√
M . This allows therefore a more stable propagation even for large l.

8.5.1 Carrying many configurations simultaneously

Given the M walkers we indicate the corresponding configurations and weights with a couple of

vectors (x,w), with each vector component xi, wi i = 1, · · · ,M , corresponding to the ith walker.

It is then easy to generalize the Master equation Eq. (8.7) to many independent walkers. If the

evolution of P is done without further restrictions, each walker is uncorrelated from any other one,

and we have:

Pn(x1, x2, · · · , xM , w1, w2, · · · , wM ) = Pn(x1, w1)Pn(x2, w2) · · ·Pn(xM , wM ) .
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Old walkers New Walkers

w1 x1 −→ w̄ x′1 = xj(1) with probability pj

w2 x2 −→ w̄ x′2 = xj(2) with probability pj

w3 x3 −→ w̄ x′3 = xj(3) with probability pj
...

...
...

...

wM xM −→ w̄ x′M = xj(M) with probability pj

Table 8.1: Reconfiguration scheme with bias control. Here w̄ = 1
M

M
∑

k=1

wk and the probability

pj =
wj

M∑

k=1

wk

can be sampled by using a random number for each walker according to the same scheme

reported in Fig.(8.2) for px′,x. This allows to define the table j(i) for i = 1, · · ·M corresponding

to the selected new configurations.

Similarly to the previous case (8.18), we can define the state evolved at iteration n with the Green’s

function G (with importance sampling implemented) by:

ψn(x)ψg(x) = <
1

M

M
∑

i=1

wiδx,xi >

=

∫

dw1

∫

dw2 · · ·
∫

dwM
∑

x

(

w1δx, x1 + w2δx, x2 + · · ·wMδx, xM
M

)

Pn(x,w) .

(8.38)

Since we are interested in the state ψn, we can define a reconfiguration process that changes the

probability distribution Pn without changing the statistical average < 1
M

∑M
i=1 wiδx,xi > that is

relevant in the calculations of ψn. This can be obtained by a particular Markov process applied to

the configurations (xj , wj), which leads to new walkers (x′j , w
′
j). Each new walker (x′j , w

′
j), with

j = 1 · · ·M , will have the same weight w′
j = w̄ =

∑
j wj

M and an arbitrary configuration x′j , among

the M possible old configurations xk, k = 1 · · ·M , chosen with a probability pk proportional to

the weight of that configuration, pk = wk/
∑

j wj (see picture 8.5.1).

It is clear that, after this reconfiguration, the new set of M walkers have by definition the same

weights w′
j = w̄, and most of the irrelevant walkers with small weights have dropped out. This

reconfiguration plays the same stabilization effect of the conventional branching scheme, but with

a few extra advantages that we will mention later on.

It is easy to derive the Master equation corresponding to this reconfiguration Markov process (see

previous chapter) and show that indeed the relevant average (8.38), is not statistically modified.

The corresponding conditional probability K is simple, in this case, because all the new walkers

are independent from each other, and K factorizes for each walker:

P ′
n(x

′, w′) =
∑

x

∫

[dw] K(x′, w′|x,w)Pn(x,w) (8.39)

K(x′, w′|x,w) =

M
∏

j = 1

(
∑

i wiδx′
j,xi

∑

iwi

)

δ

(

w′
j −

∑

i wi
M

)

. (8.40)
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Hereafter
∫

[dw] will be a convenient shorthand notation for the multiple integrals over all the wi

variables. Notice, finally, that the conditional probability K is correctly normalized

∑

x′

∫

[dw′]K(x′, w′|x,w) = 1 .

The proof that this reconfiguration scheme does not influence the relevant average we are in-

terested in is detailed in the next section. For an efficient implementation of this reconfiguration

scheme, see the Appendix (B).

8.5.2 Bias control

One of the problem of the traditional branching scheme adopted in GFMC in order to control the

walker population size M and the fluctuations of the weights, is that, in so doing, one introduces

a bias in the simulation, i.e., a sistematic error which is simply due to some kind of correlation

between the walkers that the reconfiguration introduces. For high accuracy calculations, this bias

often becomes the most difficult part of the error to control. In this section we will prove that the

present reconfiguration scheme, defined in Eq. (8.39), does a much better job: Though it clearly

introduces some kind of correlation among the walkers, we can rigorously prove that the average

Γn(x) = ψn(x)ψg(x) =<
1

M

∑

i

wiδx,xi >

calculated with the probability Pn is exactly equal to the corresponding average Γ′
n(x) calculated

with the probability P ′
n, obtained after reconfiguration (see Eq. (8.39)),

Γ′
n(x) = Γn(x) . (8.41)

This means that there is no loss of information in the present reconfiguration process.

Proof: By definition, using (8.39), we have:

Γ′
n(x) =

∑

x, x′

∫

[dw]

∫

[dw′]





∑

j w
′
jδx, x′j
M



K(x′, w′|x,w)Pn(x,w) .

The first term in the integrand contains a sum. It is simpler to single out each term of the sum

w′
kδx, x′k

/M , and to integrate over all the possible variables x′, w′ but x′k and w′
k. It is then easy

to show that this contribution to Γ′
n, which we will indicate by [Γ′

n]k, is given by:

[Γ′
n]k =

∑

x, x′k

∫

[dw]

∫

[dw′
k]
w′
k

M
δx,x′

k

(

∑

iwiδx′
k
,xi

∑

i wi

)

δ

(

w′
k −

∑

i wi
M

)

Pn(x,w) .

Then, by integrating simply in dw′
k and summing over x′k in the previous expression, we easily get

that [Γ′
n]k = 1

M Γn, independent of k. Therefore, by summing over k we have proven the statement

in (8.41).
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8.6 The GFMC scheme with bias control

We are finally in the position of presenting a GFMC scheme that works well in practice, because

of the control of the weight fluctuations that the reconfiguration scheme introduced provides. It

is straightforward to generalize the equations (8.20,8.33), to many walkers (configurations). We

assume that the reconfiguration process described in the previous sections is applied repeteadly,

each kb steps of independent walker propagation. The index n appearing in the old expressions

(8.21) will now label the nth reconfiguration process. The measurement of the energy can be done

immediately after the reconfiguration process, when all the walkers have the same weight, thus in

Eq. (8.20) we would need to substitute:

eL(xn) →
1

M

M
∑

j=1

eL(x
n
j ) , (8.42)

or, for a better statistical error, the energy can be sampled just before the reconfiguration, taking

properly into account the weight of each single walker:

eL(xn) →
∑M

j=1 wjeL(x
n
j )

∑M
j=1 wj

. (8.43)

It is useful, after each reconfiguration, to store the quantity w̄ = 1
M

∑M
j=1 wj resetting to w′

n = 1

the weights of all the walkers (instead of taking w′
j = w̄). Thus, the total weights Gln correspond

to the application of l× kb iterations of the power method (as in Eq. 9.1) towards the equilibrium

distribution ψ̄(x) =< 1
M

∑

j δx,xj >, equilibrium distribution that is independent of n for large

enough n, as in the single walker formulation. The value of the weighting factor Gln can be easily

recovered by following the evolution of the M walkers weights in the previous l reconfiguration

processes, and reads:

Gln =

l−1
∏

j=0

w̄n−j , (8.44)

where the average weight of the walkers w̄ after each reconfiguration has been defined previously.

An example of how the method works for the calculation of the ground state energy of the

Heisenberg model on a 4 × 4 square lattice is shown in Fig. (8.2). Remarkably, the method

converges very fast, as a function of l, to the exact result, with smaller error bars as compared

to traditional branching schemes. The fact that the reconfiguration scheme does not need to be

applied at every iteration, leads to a much smaller bias (the l = 1 value for kb = 4, dotted line,

is five times closer to the exact result than the corresponding kb = 1 value). In all cases, the bias

introduced by the reconfigurations is corrected by a sufficiently large value of l, which keeps the

correct weighting factors into account. An extra advantage of the present reconfiguration scheme is

that the number of walkers M is mantained strictly fixed, while some of the traditional branching

schemes work with a fluctuating number of walkers M .

Exercise 8.1 Consider a single spinless particle in a one dimensional chain described by lattice

points |xi >= |i >, where |i > is the state with the particle at site i. The particle can move to the
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Figure 8.2: Energy per site for a 4× 4 Heisenberg model cluster. The x-label L is simply what we

denote by l in the text, and should not be confused with the lattice size. The continuous line is the

exact result, obtained by exact diagonalization, while the dotted (dashed) line connects GFMC

data as a function of the number l of weight factors included in Gln. The number of walkers was

in all cases M = 10, and the reconfiguration scheme was applied at each iteration (kb = 1, slower

convergence – dashed line), or every four iterations (kb = 4, dotted line). The guiding wavefunction

ψg(x) is a standard one for the Heisenberg model, satisfying the Marshall sign rule (8.17), which

we do not specify further here. All the data are obtained with the same amount of computer time.

The inset shows an enlargement of the bottom-left part of the main plot.

left or to the right, with hopping matrix elements −t, apart for the boundary site i = 1 (i = L)

where the particle can move only to the right (left). The particle is also subject to a linear potential

increasing with the distance from the i = 1 boundary, thus the Hamiltonian reads:

H = −t
L−1
∑

i=1

(c†i ci+1 +H.c.) + V

L
∑

i=1

(i− 1)c†i ci (8.45)

and V/t represents the dimensionless coupling of the model.

1. Write the matrix elements of the Hamiltonian in configuration space, namely in the basis

|xi >= |i >.

2. For V/t = 10, L = 30 compute, using the variational Monte Carlo, the expectation value of

the energy on the variational state ψg(x) = e−g|i|, where g is a variational parameter to be

optimized (finding the g which gives the minimum energy expectation value).
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3. Compute the exact ground state energy for V/t = 10 using the single walker technique de-

scribed by the Markov chain (8.5).

4. Compute the mixed average and the exact expectation value on the ground state of the average

position of the particle, corresponding to the operator Ô =
∑

i ic
†
ici.



Chapter 9

Reptation Monte Carlo

9.1 motivations

As we have seen it is possible to solve the problem of the exponential growth of the weights in the

Green’s function Monte Carlo technique (GFMC), by introducing many walkers and iteratively

propagate them with approximately the same weight. This technique, though widely used, can be

inefficient when the number of walkers necessary to carry out a simulation becomes too large. This

may happen when the wavefunction used for importance sampling is rather poor or it is necessary

to compute correlation functions without biased estimator (e.g. mixed average) or the too much

expensive forward walking technique.

The reptation Monte Carlo algorithm has been introduced recently[25] as a simpler and more

efficient way to make importance sampling on the walker weights. In principle this technique

requires only one walker, and represents a straighforward change of the basic single walker GFMC

technique introduced in the previous chapter.

9.2 A simple path integral technique

As before we will denote by x the discrete labels specifying a given state of the N -electron Hilbert

space of our system (for instance, specifying all the electron positions and spins). We will also

assume that, given the Hamiltonian H , the matrix elements 〈x′|H |x〉 = Hx′,x, for given x, can

be computed efficiently for each x′. Typically, for a lattice Hamiltonian, though the dimension

of the Hilbert space spanned by {x′} increases exponentially with the system size L, the number

of vanishing entries of the matrix representing H , Hx′,x = 0, is very large, so that the non-zero

column elements in Hx′,x, for given x, are of the order of the system size L, and can be therefore

computed with a reasonable computational effort.

Using the above property, it is possible to define a stochastic algorithm that allows to perform
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the power method (see the Introduction) in a statistical way, in the sense that the wavefunction

ψn(x) = 〈x|(Λ1−H)n|ψt〉 , (9.1)

with |ψt〉 some initial trial state, is evaluated with a stochastic approach.

The goal of the Reptation Monte Carlo (RMC) approach is to define a Markov process, that

allows to sample a sort of partition function:

Z(ψt) = 〈ψt|(ΛI −H)T |ψt〉 (9.2)

where T is a large integer power, where it is undestood that several physical quantities like the

energy expectation value, can be written as a classical average, where Z(ψt) represents the partition

function. In order to achieve this target, we use in RMC the same decomposition of the Green’s

function with importance sampling, that has been previously adopted for the GFMC, namely:

Gx′,x = ψt(x
′)(Λδx,x′ −Hx′,x)/ψt(x) = bxpx′,x (9.3)

By means of this decomposition, by inserting the completeness
∑

x |x〉〈x| = I before and after

each ΛI −H power in Eq.(9.4), and some simple algebra, we obtain:

Z(ψt) =
∑

x0,x1,··· ,xT

bxT−1bxT−2 · · · bx0pxT ,xT−1 , · · · px1,x0ψt(x0)
2 (9.4)

The above partition function is defined in terms of a generalized coordinate R -the Reptile-

where the coordinates x are specified at all integer times T = 0, · · · , T :

R = xT · · · , x2, x1, x0 (9.5)

In this way it is simple to convince ourselves that the energy and many correlation functions (the

operators diagonal in the local basis as in the forward walking) can be written in a classical looking

form.

For instance the energy estimator can be conveniently written as:

E(T ) =

∑

RW (R)(eL(x0) + eL(xT ))/2
∑

RW (R)
(9.6)

where eL(x) = 〈ψt|H|x〉
〈ψt|x〉 = 〈x|H|ψt〉

〈x|ψt〉 is the local energy already met in GFMC and the classical

weight is:

W (R) = bxT−1bxT−2 · · · bx0pxT ,xT−1 , · · · px1,x0ψt(x0)
2 (9.7)

Notice that E(T ), by the variational principle, is an upper bound of the true ground state energy,

because it corresponds to the energy expectation value of the energy over the state (ΛI−H)T/2|ψt〉.
On the other hand for T → ∞, E(T ) converges to the exact ground state energy E0, due to the

power method projection. Analogously all correlation functions that are defined in the given local

basis (corresponding operators are diagonal) can be computed at the middle interval for |x〉 = xT/2

and averaged over the same classical weight W (R).
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9.3 Sampling W (R)

In order to sample this weight we need to define two basic moves R → R′, that are used to update

globally the reptile, and considered at this stage with equal probability. It is convenient to indicate

these two updates with the label d = ±1. For d = 1 (d = −1) we adopt the convention that the

reptile is moving right (left) in time. The variable d in the standard RMC is chosen randomly at

each step with equal probability for a left or a right move.

9.3.1 Move RIGHT d = 1

R′ =
{

x′T , x
′
T−1 · · · , x′1, x′0

}

= {x̄, xT , · · · , x2, x1} (9.8)

where x̄, the trial move at the rightmost side of the reptile, is obtained by sampling the matrix

px̄,xT , i.e. the transition probability T d(R′|R), defining this process is given by:

T 1(R′|R) = 1

2
px̄,xT (9.9)

The corresponding weight on the new reptile R′ is given by:

W (R′) = bxT bxT−1 · · · bx1px̄,xT pxT ,xT−1 · · · px2,x1ψt(x1)
2 (9.10)

Thus the ratio W (R′)/W (R) required to implement the Metropolis algorithm(5.25) is easily eval-

uated:

W (R′)/W (R) =
bxT px̄,xTψt(x1)

2

bx0px1,x0ψt(x0)
2

(9.11)

9.3.2 Move LEFT d = −1

R′ = {x′T , · · · , x′1, x′0} = {xT−1, · · · , x1, x0, x̄} (9.12)

where x̄, the trial move at the leftmost side of the reptile, is obtained by sampling the matrix px̄,x0 ,

i.e. the transition probability T d(R′|R), defining this process is given by:

T−1(R′|R) = 1

2
px̄,x0 (9.13)

The corresponding weight on the new reptile R′ is given by:

W (R′) = bxT−2bxT−3 · · · bx0bx̄pxT−1,xT−2pxT−2,xT−3 · · · px0,x̄ψt(x̄)
2 (9.14)

Thus the ratio W (R′)/W (R) required to implement the Metropolis algorithm(5.25) is easily eval-

uated:

W (R′)/W (R) =
bx̄px̄0,x̄ψt(x̄)

2

bxT−1pxT ,xT−1ψt(x0)
2

(9.15)

Now we are in the position to simplify the term appearing in the Metropolis algorithm (Eq.5.25).
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For the right move the opposite one that brings back R′ → R is a left move d = −1 with x̄ = x0

and (notice that the leftmost configuration of the R′ reptile is x1), namely by using Eq.(9.13):

T−1(R|R′) =
1

2
px0,x1 (9.16)

Therefore the right move will be accepted with probability:

a(R′|R) =Min(1, r(R′, R)) (9.17)

where:

r(R′, R) =W (R′)/W (R)T−d(R|R′)/T d(R′|R) (9.18)

where we have used that for the step labeled by d = ±1 that brings R → R′ the reverse move can

be obtained only by applying the opposite move −d = ∓1. The global transition probability of the

Markov process is given by K(R′|R) = a(R′|R)T d(R′|R) for R 6= R′ and d univocally determined

by the choice of R′ and R. Then it is simple to show that the detailed balance condition is always

verified.

Moreover, by using the Eqs.(9.11,9.9,9.16) we can simplify the above ratio and obtain for d = 1:

r(R′, R) =
bxTψt(x1)

2px0,x1

bx0px1,x0ψt(x0)
2

(9.19)

Now using the definition of the stochastic matrix and the symmetry of the Hamiltonian

px0,x1/px1,x0 =
bx0ψt(x0)

2

bx1ψt(x1)
2

which further simplify the final expression for r when d = 1:

r(R′, R) = bxT /bx1 (9.20)

With analogous steps we can also derive the expression for r(R′, R) in Eq.(9.18) with the left

move d = −1:

r(R′, R) = bx0/bxT−1 (9.21)

which completely define in a simple way the rules for accepting or rejecting the new proposed

reptile R′ in the standard Metropolis algorithm (5.25).

9.4 Bounce algorithm

The bounce algorithm is more efficient than the standard one because one can obtain a shorter

autocorrelation time by doing many steps in one direction (only right or only left), and was

introduced recently for an efficient simulation of electrons and protons at finite temperature[28].

In practice the algorithm is easily explained. The variable d = ±1 is no longer randomly sampled,

but d changes sign only when the move is rejected in Eq.(9.17), so that the transition probability

used in the bounce algorithm is simply multiplied by a factor two: T dB(R
′|R) = 2T d(R′|R).
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In order to prove that the bounce algorithm samples the correct distribution W (R) we need to

include in the state space also the direction d , namely R → R, d, and prove that the conditional

probability associated to this Markov process KB(R
′, d′|R, d) determines an equilibiurm distribu-

tion Π(R, d) = W (R)/
∑

R′ W (R′), that does not depend on d. In more details the conditional

probability describing this Markov process is given by:

KB(R
′, d′|R, d) = T dB(R

′|R)a(R′|R)δd′,d
+ δ(R′ −R)B(R, d)δd′,−d (9.22)

where R′ is the proposed move in the right or left direction according to the running value of d

and Bd(R) can be easily obtained by using that the conditional probability is normalized, namely
∑

R′,d′ KB(R
′, d′|R, d) = 1, yielding:

B(R, d) = 1−
[

∑

R′

T dB(R
′|R)(1 − a(R′|R))

]

=
∑

R′

T dB(R
′|R)a(R′|R) (9.23)

where the latter equality follows from the normalization condition of the transition probability

T dB(R
′, R), i.e.

′
∑

R

T dB(R
′, R) = 1.

In this way, though the transition probabilityKB does not satisfy the detailed balance condition,

it is possible to show that the master equation:

∑

R,d

KB(R
′, d′|R, d)Pn(R, d) = Pn+1(R

′, d′) (9.24)

remains stationary for the desired equilibrium distribution Pn(R, d) =
W (R)

2 . Indeed by assuming

to apply the above Markov iteration in Eq.(8.19) with Pn(R, d) =
W (R)

2 , we obtain:

Pn+1(R
′, d′) =

W (R′)
2

B(R′,−d′) + 1

2

∑

R

T d
′

(R′, R)ad
′

(R′, R)W (R). (9.25)

In the last term of the above equation, in order to carry out the formal integration over R, we

apply the following relation:

T dB(R
′|R)a(R′|R)W (R) =W (R′)T−d

B (R|R′)a(R|R′) (9.26)

that can be obtained as a consequence of Eqs.(9.17,9.18) and the definition of T dB = 2T d. Then,

after simple substitution, we get:

Pn+1(R
′, d′) =

W (R′)
2

B(R′,−d′) + W (R′)
2

∑

R

T−d′(R,R′)a−d
′

(R,R′) (9.27)

Finally by noticing that
∑

R

T−d(R,R′)a−d(R,R′), in the above equation is nothing but the defini-

tion of B(R′,−d′) in Eq.(9.23) we easily get:

Pn+1(R
′) =

W (R′)
2

B(R′,−d′) + W (R′)
2

[1−B(R′,−d′)] = W (R′)
2

(9.28)
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that proves the stationarity of the distribution.

In order to prove that the Markov process converges certainly to this equilibrium distribution

one has to assume that the equilbrium distribution is unique even though the bounce Markov

chain does not satisfy the detailed balance condition (see excercize). I was not able to prove in a

simple way this more general property of Markov chains even though there is some attempt in the

literature to have a simple proof[26], which is however wrong. Rigorous proof that a Markov chain

converges to a unique distribution can be obtained by a generalization of the Perron-Frobenius

theorem to non symmetric matrices. This is a well known result and can be applied to this case,

as we have done for a Markov chain satisfying the detailed balance condition.

Exercise 9.1 Prove that the detailed balance condition is not satisfied in the bounce algorithm.



Chapter 10

Fixed node approximation

10.1 Sign problem in the single walker technique

In the previous chapter we have described a method that allows to compute the ground state

property of a given Hamiltonian H , once the matrix elements:

Gx′,x = ψg(x
′)Λδx′,x −Hx′,x/ψg(x) ≥ 0

for a suitable guiding function ψg(x) and a sufficiently large constant shift Λ. In principle the

approach (8.5) can be easily generalized to a non positive definite Green function, for the simple

reason that we can apply the scheme (8.5) to the positive Green function Ḡx′,x = |Gx′,x|, and
take into account the overall sign of the Green function sx′,x = SignGx′,x in the walker weight w.

Indeed the approach will change for an additional operation:

a) generate xn+1 = x′ with probability px′,xn

b) update the weight with wn+1 = wnbx

c) update the weight with wn+1 → wn+1sxn+1,xn . (10.1)

10.2 An example on the continuum

It is convenient to consider the following toy model:

H = −1/2∂2x + V (x) (10.2)

of a particle in a segment 0 ≤ x ≤ L, under a potential V (x) which is symmetric under the reflection

around the center xc = L/2, namely P+V = V , where P+ (P−) is the projection operation over

this symmetric subspace for even (odd) wavefunctions. The operator P± acts on a wavefunction

φ(x) in the simple way:

P±φ = 1/2(φ(x)± φ(L − x)) (10.3)
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and clearly commutes with the hamiltonian. In the following we will define an algorithm that

will allow to sample the lowest excitation ψ0 with odd reflection symmetry (ψ0(L− x) = −ψ0(x))

around the center.

This toy-model is a very simplified version of the many electron problem calculation. The

ground state of the many body hamiltonian is always bosonic if we do not take into account the

antisymmetry of the fermionic wavefunction. The projection P in this case is just the projection

over this antisymmetric subspace and, just like in the toy model problem, the physical eigenvalue

of the many-electron system is the one corresponding to the lowest energy antisymmetric subspace.

In the following all the properties derived for the toy model will be also valid for the more com-

plicated many-fermion realistic model, upon the identification of P as the projector onto the fully

antisymmetric fermionic subspace.

The antisymmetry under permutations just like the reflection over the center in the toy model,

implies that the wavefunction is no longer positive, and there should exist regions of both positive

and negative signs.

In the continuous case we cannot apply the power method to filter the ground state wavefunction

because of the presence of unbounded positive eigenvalues. In this case, the Green function has to

be written in an exponential form:

G(x′, x) = 〈x′|e−Hτ |x〉 ≃ 1√
2πτ

e−
1
2τ (x′−x)2e−τV (x) (10.4)

where in the latter expression we have neglected terms of order τ as τ is assumed to be small. The

first term can be taught as a diffusion process, and the second is the responsible of the branching

scheme. An algorithm implementing the above iteration is given in (8.5), where bx = e−τV (x) and

px′,x = 1√
2πτ

e−
1
2τ (x′−x)2 defines the diffusion process as the normalization condition:

∑

x′

px′,x

is verified (summation replaced by integral is understood). This term can be implemented by the

Markov iteration:

xn+1 = xn +
√
τηn (10.5)

where ηn is a random number distributed according to the Gaussian probability distribution.

Similarly to the power method, after applying several times the Green function multiplication:

ψn+1(x
′) =

∑

x

G(x′, x)ψn(x) (10.6)

we obtain the lowest energy eigenstate non orthogonal to the initial one ψ0(x) = ψg(x), that can

have a definite symmetry under reflection (or permutation in the many-body case).

Consider now the simpler case V = 0. We know exactly the lowest state of the model with odd

reflection:

φ0(x) =
√

2/L sin(2πx/L) (10.7)
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with energy

E0 = 1/2(
2π

L
)2 (10.8)

0.0 0.5 1.0
-2

-1

0

1

2

 

 

(x
)

x

 Exact 
 Fixed (wrong) Node 

Figure 10.1: Comparison of the exact first excited state for the toy model considered in the text

with L = 1 and V = 0, with the Fixed node approximate excited state with a wrong node located

at l = 0.4 (l = L/2 = 0.5 being the exact node in this case).

The iteration (8.5) cannot be applied in this case as the initial wavefunction cannot have a

meaning of probability. In order to solve this problem, we consider the restricted space H̄ of

wavefunctions that vanish outside a given interval (see Fig.10.1)

0 < x ≤ l

After acting with a projector P− on such a wavefunction we obtain a well defined odd reflection

symmetry state that can be used as a variational wavefunction of H :

φP (x) = P−φ (10.9)

as indicated in Fig.(10.1) by the red curve.

It is simple to convince that this extended wavefunction φP (x) has the same energy expectation
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value of the wavefunction φ(x) restricted in the nodal pocket because simply:

EFN =

L
∫

0

dxφP (x)(−1/2∂2x)φP (x)

L
∫

0

φP (x)2
=

l
∫

0

dxφ(x)(−1/2∂2x)φ(x)

l
∫

0

dxφ(x)2
(10.10)

It is important to emphasize that this equality holds despite the fact the wave function has a

discontinuous first derivative at the wrong nodal point (see Fig.10.1), yielding:

(−1/2∂2x)φP (x) = −1/4∂2x[φ(x) − φ(L − x)] + 1/4[δ(x− l)− δ(L− l − x)]φ
′

(l) (10.11)

where φ
′

(l) = lim
x→l|x<l

∂xφ(x). In fact the singular contribution coming from this δ function does

not play any role in the integrals appearing in Eq.(10.10) because the wave function φP (x) = 0 at

the nodal point x = l.

Given the equality (10.10) valid for any function φ(x) defined in the nodal pocket 0 < x ≤ l ≤
L/2 it is clear that the lowest possible energy can be obtained by optimizing the wave function just

in the nodal pocket, which turns in a bosonic nodeless problem, suitable for the Green Function

Monte Carlo. In this simple case we can also provide the best φ(x) analytically because is the

standing wave satisfying φ(0) = φ(l) = 0:

φ(x) =
√

2/l sin(πx/l) (10.12)

and is displayed by the red curve in Fig.(10.1). The corresponding variational energy EFN can be

immediately computed as:

EFN = 1/2(π/l)2 > E0 (10.13)

With this simple example it is possible to emphasize the most important properties of the Fixed

node approximation:

• the method is clearly variational as the projected wavefunction φP = P−φ has exactly the

energy EFN obtained with a bosonic ground state calculation in the nodal region 0 < x ≤ l.

• In this simple example the error in the node position is simply given by ǫ = L/2 − l. It is

important to observe that the corresponding error in the Fixed node energy is not quadratic in

this error but linear, namely from Eqs. (10.13,10.8) we obtain: EFN = E0(1+4ǫ/L+O(ǫ2)).

This property is the main reason why the energy is very sensitive to the accuracy of the nodes

of a variational wave function. Therefore it is reasonable to expect accurate nodes by using

the variational approach. On the contrary, low energy effects are expected to be determined

mainly by the amplitude of the wave function. The diffusion Monte Carlo applied to a good

variational wave function optimized with the variational approach, appears so far a rather

accurate method for strongly correlated fermion systems.

• Though the energy corresponding to the projected wavefunction φP (x) and the one defined

in the nodal pocket φ(x) coincide due to Eq.(10.10), the same does not hold for the variance

(5.12) calculated for φP (x) and φ(x). It is simple to show that the variance of the Fixed
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node ground state (10.12) is zero in the nodal pocket, but when the physical projected wave

function is considered in the whole space 0 ≤ x ≤ L an infinite contribution to the variance

comes from the δ functions in the RHS of Eq.(10.11). In this case in fact the infinite terms
∫

δ(x− l)2+ δ(L−x− l)2− 2δ(x− l)δ(L−x− l) cancels only when the node position is exact

l = L/2 . As expected the variance calculated correctly in the total space can be zero only

if the wave function φP (x) is just an exact eigenstate of the hamiltonian H .

10.3 Effective hamiltonian approach for the lattice fixed

node

In the lattice case, that should be more simple, the fixed node approximation was introduced much

later, because in a lattice the hamiltonian can have non zero matrix elements that connect two

regions of opposite signs in the guiding function ψg(x). In this case the basic equality (10.10),

which defines the fixed node method in the continous case, no longer applies. In order to overcome

this difficulty one can generalize the Fixed node to the lattice case, considering that the fixed node

method can be thought as a systematic improvement of a variational guess, that is defined by an

effective Hamiltonian:

Heff = −∆

2
+

∆ψg
2ψg

(x) (10.14)

in the nodal pocket region where ψg(x) does not change sign. Here we use shortand notations

for the N−electron laplacian ∆ =
N
∑

i=1

∆i, and x, as usual, denotes the N− electron configurations

defined by the N positions ~ri, i = 1, · · ·N and their spins. A simple inspection leads to the following

important properties, the first one is that:

Heffψg = 0 (10.15)

which means that ψg is an exact eigenstate of Heff and actually is the ground state, since in the

nodal pocket where the effective Hamiltonian is defined, ψg(x) represents just the true bosonic

ground state. The second property is to realize that the fixed node approximation, corresponds to

define a better Hamiltonian HFN , defined in the nodal pocket, by realizing that in this region of

space:

HFN = H = Heff + eL(x) (10.16)

where eL(x) =
〈ψg |H|x〉
〈ψf |x〉 = − 1

2
∆ψg

ψg
+ V (x), where V (x) defines formally the Coulomb interactions

acting on a given configuration x.

Can we do a similar thin in a lattice model?

Given any Hamiltonian and any guiding function ψg(x) defined on a lattice, it is possible to

define an effective Hamiltonian Heff with the same property of Eq.(10.15).
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Heff
γ =















Hx,x + (1 + γ)Vsf (x)− eL(x) for x′ = x

Hx′,x if x′ 6= x and sx′,x < 0

−γHx′,x if x′ 6= x and sx′,x > 0

(10.17)

where:

sx′,x =

{

ψg(x
′)Hx′,xψg(x) if x′ 6= x

0 if x′ = x
(10.18)

With the above definitions that may appear quite cumbersome, but indeed are quite simple and

general, one can easily prove that Eq.(10.15) is indeed satisfied by definition. With a little inspec-

tion we can easily realize that the Hamiltonian Heff is non frustrated, as a unitary transformation

|x〉 → Sgnψg(x)|x〉 (10.19)

transforms the Hamiltonian into a ”bosonic one” with all negative off diagonal matrix elements,

implying that the ground state |ψg(x)| is unique and the lowest energy is zero.

Now, following the fixed node scheme, we can improve the above effective Hamiltonian for any

value of γ, by adding to the diagonal part a term proportional to the local energy, namely:

HFN
γ = Heff + δx′,xeL(x) (10.20)

This hamiltonian will also satisfy the Perron-Frobenius property defined before and the sign of its

ground state will be the same as the one defined by ψg(x). With the above definition it also follows

that
〈ψg|HFN

γ |ψg〉
〈ψg|ψg〉

=
〈ψg|Hγ |ψg〉
〈ψg|ψg〉

= EVMC (10.21)

Therefore the ground state energy EFNγ of the hamiltonian HFN
γ is certainly below or at most

equal to the variational energy EVMC .

We have now to prove that EFNγ is a variational upper bound of the true ground state energy

E0 of H . To this purpose we note that, by using its definition (10.20) and Eq.(10.17)

HFN
γ = H + (1 + γ)O (10.22)

where O is a positive definite operator defined in terms of a guiding function ψg(x), that does

not vanish in any configuration x of a subspace S of the total Hilbert space H (tipically S = H
otherwise the guiding function provides a restriction of the Hilbert space, where the variational

upper bound holds a fortiori) where the Markov process is ergodic. More specifically the operator

O is defined in the following way:

Ox′,x =

{

−Hx′,x if sx′,x > 0
∑

x′ sx′,x/ψg(x)
2 if x′ = x

(10.23)

Now if O is semipositive definite, as it is shown in the Appendix (C), we can consider the ground

state ψFNγ (assumed here normalized) as a variational state of the true Hamiltonian H , and we

have:

E0 ≤ 〈ψFNγ |H |ψFNγ 〉 = 〈ψFNγ |HFN
γ − (1 + γ)O|ψFNγ 〉 ≤ EFNγ (10.24)
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This concludes the proof that EFNγ improves the variational estimate in the sense that the state

ψFNγ has an expectation value of the energy lower than the variational estimate EVMC , and that

EFNγ ≥ E0. An important remark is that in the lattice case, not necessarily EFNγ is the lowest

energy compatible with the nodes of the guiding function, as indeed, numerical calculations shows

that EFNγ has a weak dependence on the parameter γ. This is also easily understood because

EFNγ at least on a finite system has to be an analytic function of γ. We can formally continue this

function to negative value of γ where for γ = −1, by means of Eq.(10.22) we have to obtain the

exact ground state energy. Hence, whenever EFN is not exact there should be some dependence

on γ.

We can establish also another important property of this effective Hamiltonian approach. Indeed,

by using the Helmmann-Feynman theorem and Eq.(10.22), we have:

〈ψFNγ |O|ψFNγ 〉 = dEFNγ
dγ

(10.25)

Therefore the expectation value of the energy EFNAγ of the exact hamiltonian on the fixed node

ground state |ψFNγ 〉 can be numerically evaluated by using again the simple relation (10.22):

EFNAγ = EFNγ − (1 + γ)
dEFNγ
dγ

(10.26)

EFNAγ further improves the variational estimate given by EFNγ , and shows also that the fixed node

ground state is a variational state better than the original VMC ansatz given here by ψg. As a

last remark we can easily show that EFNAγ is minimum for γ = 0 because:

dEFNAγ

dγ
= −(1 + γ)

d2EFNγ
dγ2

> 0 (10.27)

where the latter inequality comes from the convexity property (see App.D) of the ground state

energy (EFNγ ) of an Hamiltonian (HFN
γ )) depending linearly upon a parameter (γ).
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Chapter 11

Auxiliary field quantum Monte

Carlo

One of the most important advantages of the Hartree-Fock or more genenally of mean field theo-

ries is that a complete and efficient numerical solution is possible in terms of simple linear algebra

operations and at most the diagonization of small matrices. The main task of the auxiliary field

technique is to reduce the many-body problem to the solution of several mean-field Hartree-Fock

calculations. This is generally possible by using the stochastc method, and therefore the statistical

errors are under control provided the sign problem do not appear during the mentioned transfor-

mation, that is indeed possible in many interesting cases. Moreover, as we will see in the following,

when the sign problem appears with this technique, it is milder than the conventional case, ob-

tained in a configuration space of distinguishable particles. In fact the sign problem instability is

not related to the bosonic-fermionic instability, because in this approach explicit antisymmetric

Slater determinant are sampled.

11.1 Trotter approximation

We define an effective Hamiltonian H̄ , implicitly depending on ∆τ , by the following relation:

exp(−∆τH̄) = exp(−∆τ

2
K) exp(−∆τV ) exp(−∆τ

2
K) (11.1)

Since both the LHS and the RSH of the above equation are Hermitian and positive definite op-

erators the solution of the above equation exists and can be made explicit by using perturbation

theory in small ∆τ . In this limit we find that:

H̄ = H +∆τ2O

O =
1

12
[[K,V ] , V ] +

1

24
[[K,V ] ,K] (11.2)
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The kinetic energy K and the potential energy V are extensive operators, namely with a number of

terms localized around a given site and proportional to the number of sites, namely can be written

as:

V =
∑

i

Vi Vi = Uni,↑ni,↓

K =
∑

i

Ki Ki = −t/2
∑

τ,σ

(c†i+τ,σci,σ + h.c.)

The operator O, at first sight, appears to contain a number of terms poportional to the cube

of the number of sites, because by expanding the commutators we get terms such as KVK,

a product of three extensive operators. However a closer inpection, by evaluating for instance

the commutator between K and V , leads us to conclude that the commutator of two extensive

operators is again an extensive operator, and therefore the operator O defined in Eq.(11.2) is a

perfectly consistent extensive operator. All properties therefore that we can compute at fixed ∆τ

refers to the ones of an effective Hamiltonian H̃ , that differs by the correct one by means of a small

extensive perturbation. This clearly suggests that, in this case, the error associated to the Trotter

decomposition is perfectly under control as it can be reduced systematically by decreasing ∆τ2.

Moreover, for a given accuracy on thermodynamic quantities (e.g. the energy per site), one does

not need to decrease the Trotter time ∆τ as one increases the system size, i.e. the error associated

to the Trotter approximation is size consistent.

11.2 Auxiliary field transformation

The generalization of the continuous auxiliary field transformation:

∞
∫

−∞

dσ√
2π

exp

(

−1

2
σ2

)

expλσ(n↑ − n↓) = exp
(g

2
(n↑ − n↓)

2
)

(11.3)

with lambda2 = g is given by the much more efficient expression:

∑

σ=±1

1

2
expλσ(n↑ − n↓) = exp

(g

2
(n↑ − n↓)

2
)

(11.4)

that is valid upon an appropriate change of lambda obtained by solving the simple equation

coshλ = exp(g/2). This expression can be easily proved by Taylor expanding exp(λn↑) and noting

that all powers different from zero contribute with λk/k!, because nk↑ = n↑ for k ≥ 1. Therefore:

exp(λn↑) = 1 + (expλ− 1)n↑ (11.5)

With similar algebra it can be readily shown that:

exp(−g/2(n↑ − n↓)
2) = 1 + (exp(g/2)− 1)(n↑ + n↓) + 2(1− exp(g/2))n↑n↓

∑

σ=±1

1

2
expλσ(n↑ − n↓) = 1 + (coshλ− 1)(n↑ + n↓) + 2(1− coshλ)n↑n↓,
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namely that Eq.(11.4) is indeed verified.

The above transformation is very useful because semplifies a very complicated many-body op-

erator exp
(

g
2 (n↑ − n↓)2

)

, namely containing in the exponent the square of a simple one-body

operator n↑ − n↓, i.e. quadratic when expressed in terms of c and c†. By means of the so called

Hubbard-Stratonovich transformation (HST) it is written as a superposition of simple one body

propagation expλσ(n↑ − n↓), depending upon an auxiliary field σ.

In particular the many-body propagator can be recasted, using again that n2
σ = nσ, in a form

suitable for HST:

exp(−∆τV ) = exp(−∆τ

2
N)
∏

i

exp
(

U∆τ (ni↑ − ni↓)
2
)

(11.6)

where N is the total number operator. In this way, by introducing an independent Ising field

σi = ±1 for each site, we can write:

exp(−∆τV ) =
∑

σi=±1

exp(
∑

i

λσi(ni↑ − ni↓)) (11.7)

apart for an irrelevant constant C = exp(−∆τ
2 N)/2L, because we assume in the following that the

total number of particles N is fixed and L is the number of sites.

Finally we have to remark that there are several ways to recast the many body term V̂ in a

form suitable for HST decomposition, for instance a famous one starts from the consideration that

V̂ can be also written as a sum of local density operators-ni =
∑

σ niσ- squared

V̂ =
U

2

∑

i

n2
i −

UN

2
(11.8)

A transformation similar to Eq.(11.3) is possible, by using an imaginary constant λ→ iλ, because

in this case the propagator exp(−V̂ ) contains squared one body operators with negative prefactors.

This introduces some phase problem in quantum Monte Carlo, that however disappears at half

filling, or can be afforded by using some approximation, namely the Constrained Path Quantum

Monte Carlo (CPQMC), introdued long time ago by S. Zhang and collaborators. To our knowledge

no systematic study has been done, aimed to identify the most efficient HST for a given model

, namely the one that minimizes the statistical errors for a given computational time. In our

experience the real HST introduced above is the most efficient for the Hubbard model at least

away from the half filling conditions. Instead for electronic structure applications, though the

long range Coulomb interaction can be formally recasted as a sum of squared one body operators

with negative prefactors, a complex HST where the field σ is coupled to the density appears

unavoidable for affordable computations, because the real HST introduces too large fluctuations

at large momenta.

11.3 A simple path integral technique

Now we are in the position to compute exactly all properties of the ground state of the effective

Hamiltonian H̄, that can be set arbitrarily close to the exact Hubbard Hamiltonian, with an error



126 Auxiliary field quantum Monte Carlo

vanishing as ∆τ2.

To this purpose we consider the quantity:

Z = 〈ψt|
[

exp(−H̄∆τ)
](2T ) |ψt〉 (11.9)

where 2T is the total number of times the propagator is applied to a trial function |ψt〉. For T → ∞
the many-body state

|ψT 〉 =
[

exp(−∆τH̄)
]T |ψt〉 = exp(−T∆τH̄)|ψt〉

converges obviously to the exact ground state of H̄ and Z can be useful to compute correlation

functions O over the ground state ψ̄0〉 of H̄ :

〈ψ̄0|O|ψ̄0〉 = lim
T→∞

〈ψT |O|ψT 〉
Z

(11.10)

We then replace both in Z and in the numerator of the above equation, the auxiliary field trans-

formation (11.7) for each Trotter slice, so that the field σji = ±1 acquires also a discrete time index

1 ≤ j ≤ 2T , thus for instance the quantity Z is expressed as an Ising partition function over this

discrete field:

Z =
∑

σj
i=±1

〈ψt| exp(−
∆τ

2
K) exp[λ

∑

i

σ2T
i (ni↑ − ni↓)] exp(−∆τK) exp[λ

∑

i

σ2T−1
i (ni↑ − ni↓)]

· · · exp(−∆τK) exp[λ
∑

i

σ1
i (ni↑ − ni↓)] exp(−

∆τ

2
K)|ψt〉

=
∑

σj
i=±1

〈ψt|Uσ(2T, 0)|ψt〉 (11.11)

where we have introduced the compact definition of the one body propagator Uσ(2T, 1), acting from

the first time slice to the last one, form left to right. This one body propagator has the property

that, if applied to a Slater determinant, transforms it to a Slater determinant, and therefore if

the trial function ψT is chosen as a Slater determinant, for a fixed field configuration the quantity

〈ψT |Uσ(2T, 0)|ψT 〉 can be numerically evaluated.

This is the basis of the auxiliary field transformation, as, using the same fields also the numerator

in expression (11.10) can be computed and we obtain:

〈ψT |O|ψT 〉
〈ψT |ψT 〉

=

∑

σj
i=±1

〈ψt|Uσ(2T, T )OUσ(T, 0)|ψt〉
∑

σj
i=±1

〈ψt|Uσ(2T, 0)|ψt〉
(11.12)

The Monte Carlo can be done by using a positive weight dependent on the fields σji given by:

W (σji ) = |〈ψt|Uσ(2T, 0)|ψt〉| (11.13)

we indicate also with S(σji ) the sign of 〈ψt|Uσ(2T, 0)|ψt〉. In order to compute any correlation

function it is enough to compute the average of two random variables over configurations {σji }
distributed according to W (σji ), namely:

〈ψT |O|ψT 〉
〈ψT |ψT 〉

=
< 〈ψt|Uσ(2T,T )OUσ(T,0)|ψt〉

W (σj
i )

>W

< S(σji ) >W
(11.14)
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where the symbol < A >W indicates the statistical average of the random variable A over the

distribution defined by the weight W . It is important to emphasize that the algorithm is in

principle defined here, because all quantities (random variables and weights), can be computed

numerically in polynomial time once the fields σji are given: ψT is a Slater determinant and can

be characterized by an orbital matrix N × 2L, ψij.

11.4 Some hint for an efficient and stable code

11.4.1 Stable imaginary time propagation of a Slater Determinant

The method described in the previous sections is essentially defined for infinite precision arithmetic.

Unfortunately real computations are affected by truncation errors, namely the basic limitation is

that summing two real numbers differing by several order of magnitudes leads to loss of information,

namely:

1 + ǫ = 1 (11.15)

if ǫ ≤∼ 10−15 in double precision arithmetic.

This limitation of finite precision arithmetic leads to an instability problem, when trying to apply

a one-body propagator U(τ, 0) to a Slater determinant for large imaginary time τ . Consider for

instance U(τ, 0) = exp(−H0τ), where H0 is a one body hamiltonian with single particle eigenvalues

Ei -assumed in ascending order, E1 being the lowest one and EN representing the finite size Fermi

energy- and corresponding eigenvectors φi(r, σ). As we have seen in the previous chapters the

propagation of a Slater determinant of the type:

|SD〉 =





N
∏

j=1

∑

r,σ

ψj(r, σ)c
†
r,σ



 |0〉 (11.16)

leads to another SLater determinant |SD(τ)〉 = exp(−H0τ)|SD〉, which is obtained by propagating

each orbital ψj → ψj(τ) independently:

ψj(τ) =
∑

i

exp(−τEi)〈φi|ψj〉φi (11.17)

which means that for large enough time τ , most of the eigenvector components of ψi will disappear

for the limitation given in Eq.(11.15). More precisely, whenever exp [−(EN − E1)τ ] ≤∼ 10−15,

there will be only N − 1 linearly independent orbitals within numerical accuracy, leading to an

ill defined Slater determinant. In order to overcome this problem a simple solution can be found.

One can divide the large time propagation in several much shorter ones, with propagation time

τ̃ = τ/p where p is chosen in a way that:

(EN − E1)τ/p << ln 1015 (11.18)

Notice also that the condition given in Eq.(11.18) is also size consistent (as the Trotter approxi-

mation), because for instance in a lattice model the band width of the single particle eigenvalues is

finite in the thermodynamic limit (e.g. 4Dt for the Hubbard model where D is the dimensionality)
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After each short propagation |SD(t + τ̃ )〉 = exp(−H0τ̃ )|SD(t)〉 the propagated orbitals in

Eq.(11.17) can be orthogonalized without loosing information of the Slater determinant. One

can use indeed that any linear transformation:

ψi →
∑

k

Uikψk (11.19)

leaves unchanged the Slater determinant apart for an overall constant equal to detU , which can

be saved and updated during the total propagation obtained after applying p times an orthogo-

nalization between the orbitals. The Gram-Schmidt orthogonalization is the most simple to code

for this purpose, but we have found that a more efficient one is obtained by applying the Cholesky

decomposition. In this technique the N ×N overlap matrix is considered:

Si,j = 〈ψi|ψj〉 (11.20)

Since it is obviously positive definite (for N independent orbitals), it can be decomposed as S =

LL†, where L is an upper triangular matrix. Then the new orbitals:

ψ′ = L−1ψ (11.21)

will be obviously orthogonal each other, and will describe the same determinant apart for an overal

constant equal to 1/ detL, which is rather simple to compute as L is an upper triangular matrix

and its determinant is simply the product of its diagonal terms. After the orthogonalization the

new orbitals start to be again orthonormal and another stable propagation can be done without

facing any instability problems, until for large p we obtain the exact N lowest eigenstates of the

one body Hamiltonian H0.

11.4.2 Sequential updates

In order to speed up each Metropolis update, it is important to propose new values of the fields σij

for all sites in a given time slice j = 1, · · · 2T . On each time slice j we have two Slater determinants

the left one 〈ψjL| and the right one |ψjR〉 that do not change if we change the site index i, namely:

〈ψt|Uσ(2T, 0)|ψt〉 = 〈ψjL| exp
(

λ
∑

i

σi,j(ni↑ − ni↓)

)

|ψjR〉

= 〈ψjL| expVj |ψjR〉. (11.22)

where |ψjR〉 = exp(−∆τ
2 K)U(j − 1, 1)|ψt〉 and 〈ψjL| = 〈ψt|U(2T, j + 1) exp(−∆τ

2 K).

A flip of the field on a given site k, σkj → −σkj can be employed by first computing the

generalized Green’s function between the left and right states, and including also the expVj term:

gr′σ′,rσ =
〈ψjL|c

†
r′,σ′cr,σ expVj |ψjR〉
〈ψjL| expVj |ψjR〉

. (11.23)

We assume for generality that the above Green function can have also off-diagonal spin components

σ 6= σ′, that allows the implementation of a rather general wave function (e.g. also the BCS wave
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function. In this case the anomalous averages can be replaced, after a simple particle-hole on the

spin-down electrons, with the off-diagonal spin elements).

This quantity can be evaluated by scratch at the beginning of the loop over the sites and the

time slices (j = 2T ), by using standard linear algebra operations:

gr′σ′,rσ = [ψjLS
−1ψ̄TjR ] (11.24)

where the column (raw) index in ψjR and ψjL is the orbital index (site and spin σ) in the matrix

products defined in the RHS of the above equation, T is the symbol for the transpose of a matrix,

and ψ̄R = expVjψR, S = ψTRψL is the overlap matrix between the right and the left determinants.

The recomputation by scratch of the Green’s function is required for stability reasons (see later)

and it is therfore convenient to perform it at selected time slices, e.g. j = k × p, where p is a

sufficiently small number (in the Hubbard case p×∆τt ≤ 1/2 is usually enough).

After any computation by scratch of the Green’s function one can employ much faster updates

for computing the Green’s function itself and all the quantity necessary to the Markov chain.. For

instance the ratio of the new and old determinant corresponding to the change of one spin can be

written as (by applying the Wick’s theorem):

〈ψt|U ′
σ(2T, 0)|ψt〉

〈ψt|Uσ(2T, 0)|ψt〉
=

〈ψjL| exp(∓2σkj(n↑ − n↓))|ψ̄jR〉
〈ψjL|ψ̄jR〉

= (1 + λ↑gk↑,k↑)(1 + λ↓gk↓,k↓)− λ↑λ↓gk↑,k↓gk↓,k↑ (11.25)

where λ± 1
2
= exp(∓2λσkj)−1. Once accepted the move the Green’s function can be updated with

similar algebra (not shown), basically using again the Wicks’ theorem, with a computational effort

that scales at most as the square of the number of sites. First one can compute the new Green’s

function corresponding to the spin-up update expV ↑
j → exp(−2λσjn↑) expVj :

g↑r′σ′,rσ = gr′σ′,rσ +
λ↑

1 + λ↑gk↑,k↑
gr′σ′,k↑(δk,rδσ,↑ − gk↑,rσ) (11.26)

then the final one obtained by employing the spin down flip expV ′
j → exp(2λσjn↓) expV

↑
j :

g′r′σ′,rσ = g↑r′σ′,rσ +
λ↓

1 + λ↓g
↑
k↓,k↓

g↑r′σ′,k↓(δk,rδσ,↓ − gk↓,rσ) (11.27)

A better and numerically more stable algorithm is obtained by updating directly g′ in term of the

original g, by substituing g↑ given by Eq.(11.26) in Eq.(11.27).

So far the loop over all the sites at given time slice can be done with ≃ L3 operations. In

order to go from one time slice to a neighboring time slice one needs to propagate the left and

right Slater Determinants ψjL and ψjR with matrix-matrix operations, amounting again at most

to L3 operations. Also the green function does not need to be computed by scratch but can be

propagated beackward with analogous matrix matrix operations. Thus a sweep over all the time

slices costs at most L3T operations. This algorithm is therefore particularly efficient for ground

state properties since the T → ∞ limit can be reached with a cost proportional to the number of

time slices only.
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11.4.3 Delayed updates

The basic operation in Eqs.(11.26,11.27) is the so called rank-1 update of a generic 2L×2Lmatrix:

g′i,j = gi,j + aibj (11.28)

where L is the number of sites here and henceforth we omit the spin indices for simplicity. This

operation can be computationally inefficient, when, for large size, the matrix g is not completely

contained in the cache of the processor. A way to overcome this drawback is to delay the update

of the matrix g, without loosing its information. This can be obtained by storing a set of left and

right vectors and the initial full matrix g0, from which we begin to delay the updates:

gi,j = g0i,j +

m
∑

l=1

alib
l
j (11.29)

as, each time we accept a new configuration, a new pair of vectors am+1
i and bm+1

j can be easily

computed in few operations in term of g0, ali, b
l
j l = 1, · · ·m, by substituting Eq.(11.29) into the

RHS of Eqs.(11.26):

am+1
i = griσi,k↑ (11.30)

bm+1
j =

λ↑
1 + λ↑gk↑,k↑

(δk,rj δσj ,↑ − gk↑,rjσj ). (11.31)

where here the index j of the vector b runs over the 2L possible values of {r, σ}. Notice that the

number of operations required to evaluate the above expressions in term of g written in the form

(11.29) is ≃ m(2L + N), neglegible compared to the full update for m << L. Analogous and

obvious expressions can be found for the spin down update to be done sequentially to the spin up

update as shown in Eq.(11.27).

In this way we can find an optimal m = krep, when we can evaluate the full matrix gi,j by a

standard matrix matrix multiplication:

g = g0 +ABT (11.32)

where A and B are 2L× krep and 2L× krep matrices made of the l = 1, 2, · · · krep column vectors

ali and blj, respectively. After this standard matrix-matrix product one can continue with a new

delayed update with a new g0 = g, by initializing again to zero the integer m in Eq.(11.29). The

clear advantage of this is that after a cicle of krep Markov steps the bulk of the computation is

given by the evaluation of the matrix-matrix product in Eq.(11.32), that is much more efficient

and is not cache limited compared with the krep rank-1 original updates of g given in Eq.(??).

With the krep delayed algorithm, once the optimal krep is found one can improve the speed of the

variational Monte Carlo code by about an order of magnitude for large number of electrons (see

Fig.11.1)
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Figure 11.1: Speedup obtained by using delayed updates in quantum Monte Carlo for the auxiliary

field method applied to the half-filled Hubbard model for a 3600 sites cluster with 3600 electrons.

With the same number of Metropolis updates and calculation of the various correlation functions

the algorithm described in this appendix is several times faster compared with the conventional

one (krep = 1). Test calculations were done in the JuGene supercomputer in Jülich (maximum

speedup 6.4 with krep = 56), in the Curie machine (maximum speedup 17.9 with krep = 56) hosted

in Bruyeres-le-Chatel France, in the K-computer hosted in Kobe Japan (maximum speedup 23.9

for krep = 56), and in the sp6-CINECA (maximum speedup 16.1 for krep = 64) in Bologna

11.4.4 No sign problem for attractive interactions, half-filling on bipar-

tite lattices

In order to understand why the auxiliary field technique is not vexed by the so called fermion sign

problem in some non trivial cases, it is better to understand first the case of attractive interaction

U < 0. In this case an auxiliary field transformation is possible with a real field σ coupled only to

the total density σ(n↑+n↓− 1). The transformation (11.4) can be readily generalized in this case:

∑

σ=±1

1

2
expλσ(n↑ + n↓ − 1) = exp

(g

2
(n↑ + n↓ − 1)2

)

(11.33)
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where coshλ = exp(g/2) with g = |U∆τ
2 |. If we take as a trial function ψt one with the same

spin-up and spin-down orbitals ψt = ψ↑
t

⊗

ψ↓
t , where:

|ψσt 〉 =





N/2
∏

i=1

∑

j

ψijc
†
j,σ



 |0〉 (11.34)

, it is easy to realize that the functional Z introduced previously becomes:

Z =
∑

σij=±1

|〈ψ↑|U↑(2T, 1)|ψ↑〉|2 (11.35)

simply because the total propagation acts in the same way over the spin up and the spin down

component of the wave function. One immediately see that in this case the integrand is strictly

positive because it is the square of a real number.

This is a general property of the auxiliary field transformation. For attractive spin-independent

interaction there is no sign problem when the number of spin down particles is exactly equal to

the number of spin down ones.

The half filled case in bipartite lattice can be easily mapped to the attractive case, by the so

called particle-hole transformation on the spin down particles:

c†i↓ → (−1)ici↓ (11.36)

where (−1)i = 1 (−1) if i is a site belonging to the A (B) sublattice of the bipartite lattice. The

above transformation changes a positive interaction to a negative one, and, as it can be easily

checked, Eq.(11.33) turns exactly to Eq.(11.4). Therefore one concludes that there is no sign

problem when the number of spin-down electrons after the particle hole transformation L−N↓ is

exactly equal to the number of spin up electrons, namely

N↓ +N↑ = L

, which is exactly the half-filled condition.

Exercise 11.1 Consider the error of the energy at the middle interval as a function of ∆τ as

defined in Eq.(11.10:

E0(∆τ ) = lim
T→∞

〈ψT |H |ψT 〉
〈ψT |ψT 〉

= 〈ψ̄0|H |ψ̄0〉 (11.37)

where ψ̄0 is the ground state of the effective hamiltonian H̄ defined by the Trotter approximation

in Eq.(11.1). Show that:

1. H̄ = H + V where V can be expanded as V = ∆τ2O2 + ∆τ3O3 + · · · and that therefore

perturbation theory in V can be generally applied if i) the ground state of H is non degenerate

(or unique) and ii) ∆τ is sufficiently small.

2. Using perturbation theory show that:

E0(∆τ ) = E0 +O(∆τ4) (11.38)

and therefore E(∆τ) can be fitted by E(∆τ) = E0 +A∆τ4 +B∆τ5 + · · · (see Fig. 11.2)
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3. This extremely fast convergence of the energy as a function of ∆τ has not been appreciated

so far, because for laziness or irrelevant gains in computational time, it is usually adopted

the asymmetric decomposition in the Trotter formula:

exp(−∆τH) = exp(−∆τK) exp(−∆τV ) +O(∆τ2) (11.39)

Show that in this case the calculation of the ground state energy as a function of the Trotter

time amounts to compute:

E(∆τ) = 〈ψ̄0| exp(
∆τ

2
K)H exp(−∆τ

2
K)|ψ̄0〉 (11.40)

leading to the much larger O(∆τ2) Trotter error for the energy.
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Figure 11.2: Energy per site of the 32 site cluster Hubbard model at U/t = 1 as a function of

the Trotter time discretization ∆τ . Antiperiodic boundary conditions are assumed in both the

independent directions τ± = (±4, 4) defining the cluster. The number of electrons is fixed at the

half-filling condition N = L = 32 and the total imaginary time projection ∆τtT = 3 large enough

to obtain ground state properties for this cluster.
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Appendix A

Re-sampling methods

There is a simple motivation to use re-sampling methods. In fact let’s consider a set of independent

and identically distributed data sample of size n of an unknown probability distribution F :

X1, X2, ..., Xn ∼ F (A.1)

We can compute the sample average x̄ =
∑n

i=1 xi/n, and then we can estimate the accuracy of x̄

using standard deviation:

σ̂ =

√

√

√

√

1

n(n− 1)

n
∑

i=1

(xi − x̄)2 (A.2)

The trouble with this formula is that it does not, in any obvious way, extend to estimators other

than x̄. For this reason a generalized version of A.2 is introduced such that it reduces to the usual

standard deviation when the chosen estimator is the average.

A.1 Jackknife

Now we briefly describe how is possible to obtain the standard deviation of a generic estimator

using the Jackknife method. For simplicity we consider the average estimator. Lets consider the

variables:

x̄i =
nx̄− xi
n− 1

=
1

n− 1

∑

j 6=i
xi, (A.3)

where x̄ is the sample average. x̄i is the sample average of the data set deleting the ith point.

Then we can define the average of x̄i:

x̄(.) =

n
∑

i=1

x(i)/n. (A.4)

The jackknife estimate of standard deviation is then defined as:

σ̂JACK =

√

√

√

√

n− 1

n

n
∑

i=1

(x̄(i) − x̄(.))2 (A.5)
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The advantage of this formula is that it can be used for any estimator, and it reduces to the usual

standard deviation for the mean value estimator.

In this lecture notes we always used the Jackknife re-sampling method. Here we want to show

that the connection between the Jackknife and another very used re-sampling method the Boot-

strap. Consider a generic estimator θ(F ) evaluated on set of data x1, x2, ..., xn of the unknown

distribution F . Let’s take a re-sampling vector

P ∗ = (P ∗
1 , P

∗
2 , ..., P

∗
n) (A.6)

such that

P ∗
i ≥ 0

n
∑

i=1

P ∗
i = 1

in other words, a probability vector. We can re-weight our data sample with the vector P ∗ and

then evaluate the estimator θ̂ on the re-sampled data:

θ̂∗ = θ̂(P ∗) (A.7)

The difference between Bootstrap and Jackknife is in the choice of this re-sampling probability

vector. In the Bootstrap we use:

P 0 =

(

1

n
,
1

n
, ...,

1

n

)

(A.8)

while in the Jackknife

P(i) =

(

1

n− 1
,

1

n− 1
, ..., 0,

1

n− 1
, ...,

1

n− 1

)

. (A.9)

The estimate of the standard deviation is then given by eq. A.2, for a good discussion about

Jackknife, Bootstrap and other re-sampling methods see Ref. [14].



Appendix B

A practical reconfiguration scheme

In this Appendix we follow the notations of Sec.(8.5.2) to describe an efficient implementation of

the reconfiguration process needed to stabilize the GFMC method.

According to the basic algorithm shown in Tab.(8.5.1) the new walker configurations x′i, at each

reconfiguration, are chosen among the old ones xj , j = 1 · · ·M , with probability pj . In order to do

that, in principle M2 operation are required, as for each walker one has to scan all the M intervals

to realize where the random number falls. A more efficient algorithm can be defined by sorting the

M random numbers before defining the index function j(i), i = 1, · · ·M , denoting the old walker

index j corresponding to the ith new walker (see Tab. 8.5.1). Notice that this index table j(i)

contains all the information required for the forward walking technique in Eq. (8.33).

After the described process, some of the old configurations (most likely those with large weights,

hence large pj) may appear in many copies, while others (most likely those with small weights,

hence small pj) have disappeared. This happens even if the distribution pj is roughly uniform

pj ∼ 1/M , yielding clearly some loss of information in the statistical process. A better way

of implementing the reconfiguration process, without loosing information and without introducing

any source of systematic error, is obtained by the following simple variation of the scheme presented

so far, which we simply state without proof. The main idea is that the permutation of the walker

index, obviously does not introduce any bias in the average quantity (8.38). and therefore we can

assume that the M random numbers z̄i required for the reconfiguration process, are already sorted

in ascending order as:

z̄i = (ξ + (i− 1))/M i = 1 · · ·M , (B.1)

where ξ is a pseudo-random number in (0, 1), so that the random numbers z̄i are correlated among

each others. This set of numbers z̄i, now uniformly distributed in the interval (0, 1) (more precisely,

z̄1 is uniformely distributed in (0, 1/M ], z̄2 in (1/M, 2/M ], etc.), is then used to select the new

configurations, yielding a more efficient implementation of the desired reconfiguration process.

In fact with this choice, that is still unbiased for the wavefunction average (8.38), there is no

loss of information if all the walkers have the same weights. Each of them will remain after the
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reconfiguration with the same weight. Instead with the previous scheme the probability that a

walker interval is never visited by any random number is (1 − 1/M)M ≃ e−1, leading to remove

about 37% of the old walker configurations (see Tab.8.5.1) . The choice (B.1) is therefore about

37% more efficient than the previous one. It is also obviously fast as it takes only O(M) operations

because it is not necessary to sort the random numbers z̄i in this case, and the index matrix j(i)

is naturally ordered j(i+ 1) ≥ j(i).

B.1 An efficient implementation of the single walker algo-

rithm

In this appendix we describe briefly an efficient way to implement the described algorithm.

We assume that a computer is given and that

1. pseudo random number ξ can be generated uniformly distributed in the interval (0.1]

2. an essentially infinite memory space is given in the hard disk.

3. a random initial configuration xn is selected for n = 0. The integer counter n associated to

the Markov iteration time is initialized to zero (n = 0).

The Markov chain of a given number of iterations N is easily simulated in such a computer

according to (8.5):

a) Compute bxn =
∑

xGx,xn , and the new table px′,xn = Gx′,xn/bxn , for the (few) non zero

matrix elements.

b) generate xn+1 = x′ with probability px′,xn .

To this purpose only a pseudo random number ξ is required and the new configuration is

selected according to Fig.(8.2).

c) Store in the file the configuration xn and the related weight bxn .

d) Set n = n+ 1 and go to (c) until n = N , then stop.

B.1.1 Second step: computation of correlation functions

After this calculation the second step is to compute correlation functions using all the information

xn, bxn stored in the file.

The calculation of the energy as a function of l, allowing to obtain a plot such as the one in

Fig.(8.2), can be therefore obtained without repeating the Markov chain for each different l:
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a) read the file (by splitting it into smaller pieces if it is too large to fit the computer memory).

b) at a given iteration n compute all the necessary correcting factors up to l ≤ lmax using that:

Gl+1
xn

= Glxn
× bxn−l

Compute the average energy using Eq.(8.20) by updating independently both the numerator

N l =
∑

n>n0

GlneL(xn)

and the denominator

Dl =
∑

n>n0

Gln

. For the numerator the local energy at iteration n is simply given by eL(xn) = Λ − bxn ,

where Λ is the constant shift of the Green function and bxn is just read from the file. This

update can be done for each of the lmax independent averages by using the two vectors N l

and Dl. The total amount of time required is proportional therefore only to lmax×N , which

is usually irrelevant in many practical purposes.

c) If average of correlation functions are required, and the forward walking (8.33) is necessary,

compute the necessary correlation function at iteration xn−m and update the corresponding

numerator

N l
m =

∑

n>n0

Gln Oxn−m =
∑

n̄>n0−m
Gln̄+m Oxn̄

where for convenience we have introduced the index n̄ = n −m running over the iterations

where the correlation function Oxn̄ is actually computed. Once n̄ is selected and Oxn̄ is

evaluated N l
m can be updated as a function of both l and m with few operations, whereas

the denominator Dl remains the same as in the calculation of the energy. It is convenient in

this case to fix m = l/4 to a given value, in order to avoid to deal with a very large matrix

N l
m, since only the m, l → ∞ is meaningful.

d) If error bars are required, the use of the binning technique is convenient. The averages (b) and

(c) are split in partial averages over smaller bins of length M = N/k and the error bars over

the whole average quantities can be easily evaluated.

With this kind of scheme, one can explicitly check the convergence in the power method, namely

the convergence in l, essentially by no extra cost in computer time. Most of the computational

time is indeed spent in the first Markov chain iteration.
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Appendix C

O is a semipositive definite

operator

We consider here any real wave function ψ(x) and compute the expectation value of O over this

state. We show in the following that 〈ψ|O|ψ〉 ≥ 0 for any ψ, implying that O is a semipositive

definite operator.

By using the definition of O in Eq.(11.2) we get:

〈ψ|O|ψ〉 =
∑

sx′,x>0

sx′,x(ψ/ψg)
2(x)−

∑

sx′,x>0

sx′,x(ψ/ψg)(x
′)(ψ/ψg)(x) (C.1)

where sx′,x has been defined in Eq.(10.18). In the RHS of the above equation the first term and the

second one come from the diagonal matrix elements and the off-diagonal ones of the operator O,

respectively. By using that sx′,x is obviously symmetric, we can interchange the dummy variables

x↔ x′ in the first term and we can recast therefore the equation in an obviously positive one:

〈ψ|O|ψ〉 =
1

2

∑

sx′,x>0

1

2
sx′,x

[

(ψ/ψg)
2(x) + (ψ/ψg)

2(x′)
]

+ sx′,x(ψ/ψg)(x
′)(ψ/ψg)(x)

=
1

2

∑

sx′,x>0

sx′,x [(ψ/ψg)(x
′)− (ψ/ψg)(x)]

2 ≥ 0 (C.2)

This concludes the main statement of this appendix.
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Appendix D

EFN
γ is a convex function of γ

This follows by writing γ = pγ1+(1−p)γ2, for any γ1, γ2 and 0 ≤ p ≤ 1, thus finding a variational

lower bound for EFNγ ≥ pEFNγ1 + (1 − p)EFNγ2 because the ground state energy EFNγ of HFN
γ is

certainly bounded by the minimum possible energy that can be obtained by each of the two terms

in the RHS of the following equation: HFN
γ = pHFN

γ1 +(1−p)HFN
γ2 . The above inequality represents

just the convexity property of EFNγ .
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