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Nonequilibrium molecular-dynamics simulations, of crucial importance in sliding friction, are hampered by
arbitrariness and uncertainties in the way Joule heat is removed. We implement in a realistic frictional simu-
lation a parameter-free, non-Markovian, stochastic dynamics, which, as expected from theory, absorbs Joule
heat precisely as a semi-infinite harmonic substrate would. Simulating stick-slip friction of a slider over a
two-dimensional Lennard-Jones solid, we compare our virtually exact frictional results with approximate ones
from commonly adopted empirical dissipation schemes. While the latter are generally in serious error, we show
that the exact results can be closely reproduced by a viscous Langevin dissipation at the boundary layer, once
the backreflected frictional energy is variationally optimized.
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The role of molecular-dynamics �MD� simulation in the
theory of sliding friction and nanofriction can hardly be
overestimated.1,2 In a typical simulation, a slider is driven by
an external force over a simulated solid substrate whose at-
oms, interacting through realistically chosen interatomic
forces, vibrate and move according to Newton’s law. Natu-
rally, in order to attain a frictional steady state the Joule heat
must be removed. Unfortunately, a realistic energy dissipa-
tion is generally impossible to simulate reliably, owing to
size �and time� limitations. In a small-size simulation cell,
the phonons generated at the sliding interface are backre-
flected by the cell boundaries, rather than propagated away
to properly disperse the Joule heat. The ensuing problem is a
spuriously accumulating phonon population in the slider-
substrate interface region. The empirical introduction in the
equations of motion of ad hoc Langevin viscous damping
terms −m�iq̇i �with m and q̇i the mass and the velocity of the
ith particle� and of an associated random noise, correspond-
ing to some “thermostat” temperature T,3 represents the
handiest and commonest solution. However, both this proce-
dure and the choice of thermostat and damping parameters �i
are vastly arbitrary. The problem is not just one of principle.
Dry friction generally involves stick slip,1 and each slip gen-
erates a burst of phonons of very specific nature and compo-
sition. In realistic simulations, the overall effect on frictional
dynamics of the partial backreflection of this burst must be
minimized. Unless dealt with, backreflection will cause the
simulated steady state and friction coefficient to depend on
unphysical damping parameters. In the Prandtl-Tomlinson
model,4 for instance, damping is known to modify the kinet-
ics and the friction, both in the stick-slip regime �including
the multiple slips seen in atomic force microscopy5� and in
the smooth sliding state. To a lesser or larger extent, this
lamentable state of affairs is common to all MD frictional
simulations.

Pursuing a viable solution, one wishes to modify the
equations of motion inside a relatively small simulation cell
so that they will reproduce the frictional dynamics of a much
larger system, once the remaining variables are integrated
out. Integrating out degrees of freedom is a classic problem,

largely analyzed in literature.3,6–9 In the context of MD simu-
lation, Green’s function methods were formulated for quasi-
static mechanical contacts;10 approaches based on a discrete-
continuum matching have also been discussed.11,12 Among
others, a formally exact dissipation formulation was given
early on by Rubin.6 Integrating out N−1 atoms in a linear
harmonic chain yields a non-Markovian Langevin-type equa-
tion of motion of a single atom of interest. Extensions of this
method were applied to a variety of problems, including the
relaxation of impurity molecules in solids,13,14 and atom-
surface scattering.15,16 Detailed formulations suitable for MD
simulations were given by Li et al.7 and by Kantorovich.8,9,17

The idea to variationally minimize backreflection of indi-
vidual phonons has also been put forward.7 However, this
body of theory has not yet found its way into realistic sliding
friction MD simulations so that neither the importance of
backreflection errors in dry friction nor a realistic way to get
rid of them have really been demonstrated. Here we describe
how both goals are achieved, in a simulated two-dimensional
�2D� Lennard-Jones �LJ� system that exhibits a realistic stick
slip. We find that exact stick-slip friction is indeed different
from that of empirical damping schemes. However, the back-
reflected energy can be variationally minimized—although
differently from Li et al.—the resulting approximate dynam-
ics now reproducing quite accurately the exact benchmark
stick-slip friction.

We focus on a model sliding system made of a semi-
infinite two-dimensional crystalline substrate with Nz mon-
atomic layers each of Nx atoms, and of a slider made of a
single chain of Nx� atoms. All atoms interact via a LJ poten-
tial �cutoff for simplicity to first neighbors�. The slider is
pressed against the substrate by a normal “load” force F0,
and is driven along x �parallel to the substrate� through a
spring of strength k, whose end is pulled at constant velocity
v0. Following similar earlier formulations,7–9 the ideal infi-
nitely thick substrate is divided as in Fig. 1�a�, into three
regions: �i� a live slab comprising Nz−1 atomic layers whose
motion is fully simulated by Newton’s equations; �ii� the
dissipative boundary �Nzth� layer, whose motion includes the
effective non-Markovian Langevin terms; �iii� the remaining
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semi-infinite solid acting as a phonon absorber, or heat bath,
whose degrees of freedom are integrated out, providing the
source of effective damping terms in �ii�. In our practical
implementation, we substitute the full LJ potential within
region �iii� and between �ii� and �iii� with its harmonic ap-
proximation. This approximation, necessary in order to get
an analytical form for the effective forces on the boundary
atoms, is all the more accurate the weaker the intensity of
frictional phonons. In practice, for crystal substrates above
quantum freezing and below the Debye temperature, this
level of accuracy can always be attained by a sufficient thick-
ness Nz−1 of the live simulation cell �i�. The harmonic heat
bath �iii� is decoupled by diagonalizing the dynamical matrix
D��

kl �k , l denoting atoms�, obtaining eigenvalues �k
2 and

eigenvectors �k. The equations of motion for the boundary
layer atoms are7,8

mq̈�
i �t� = −

�Usub

�q�
i − m�

j,�
�

0

t

dsK��
ij �t − s�q̇�

j �s� + R�
i �t�

+ �
j,�

q�
j �t��K��

ij �0� − D��
ij � , �1�

where i and j denote boundary layer atoms, � and � indicate
x /z components, Usub is the LJ interaction between the ith
boundary atom and those inside the simulation cell �i�. The
second term is non-Markovian and nonconservative, intro-
ducing an effective damping proportional to the velocity of
the jth atom, through a time convolution with the memory
kernel functions K��

ij �t�. Standard kernels are built from the
harmonic eigenvalues and eigenvectors of the heat-bath dy-
namical matrix and from the coupling vectors ��

i containing
the harmonic coupling constants D��

ik and D��
ik of the ith atom

of region �ii� with the kth heat-bath atom K��
ij �t�

=�k���k ·��
i ����

j ·�k� /�k
2�cos��kt�. They oscillate and decay

with time, with power-law tails due to the bath acoustical
phonon branches. Periodic boundary conditions along the x

direction guarantee translational invariance so that K��
ij �t� is a

function of �i− j� only. As kernels inherit their symmetry
properties from those of the heat-bath dynamical matrix, one
can show that K��

ij �t�=−K��
ij �t� and K��

ij �t�=K��
ji �t�. As �i− j�

grows, �K��
ij �t�� decrease, but again not exponentially, so that

correlations must be included up to large distance.7 By cut-
ting kernels off at time �c, one could limit the time integrals
in Eq. �1�, which need to be calculated at each time step. By
increasing both �c and the live simulation cell size Nz, one
refines the dissipation scheme accuracy as much as desired,
although at increased computational cost. The third term in
Eq. �1� is a Gaussian stochastic force present at nonzero
temperature, responsible for the energy transfer between the
heat bath �iii� and the live substrate �i�, with �R�

i �t�	=0 and
�R�

i �t�R�
j �t��	=mkBTK��

ij �t− t��, where brackets denote en-
semble average, kB is Boltzmann’s constant, and T the tem-
perature. As is well known,3 this relationship fulfils the
fluctuation-dissipation theorem—the scheme represents a
well-defined thermostat in contact with the simulation cell.
The last term in Eq. �1� is the harmonic coupling between
atoms ith and jth within the boundary layer, where the cou-
pling constant D��

ij is modified by K��
ij �0�.

As a first step before simulating friction, we implement
the set of Eq. �1�, along with ordinary Newton’s equations
governing the live cell in an MD simulation, to test phonon
reflection. Starting with the equilibrated system �Nz=30
close-packed layers and Nx=10 atoms per layer� at tempera-
ture T, a test burst of phonons is introduced at the topmost
layer and time evolved. Results in Fig. 1�b� show how a
relatively thin Nz=30 layer substrate �i+ ii� is able to mim-
ick, within the exact dissipation scheme, the full ideal semi-
infinite system �i+ ii+ iii�. Layer-resolved kinetic energies in-
side the simulated substrate show the group of phonons
propagating below the surface. Upon reaching the boundary
layer, the phonons are perfectly absorbed as if they propa-
gated into the �integrated out� semi-infinite crystal �iii�. For
comparison, Fig. 1�c� shows the same phonons massively
backreflected once the memory kernels are removed from the
boundary layer.

We next simulate stick-slip sliding friction by driving
a slider, here consisting of a LJ chain of Nx�=9 atoms,
over the same live substrate as above.18 The instantaneous
friction force is measured by the spring elongation
F�t�=k�xCM −v0t�, xCM being the slider center of mass posi-
tion. The sawtooth force profile typical of stick-slip friction
is obtained �Fig. 2�a��. The friction coefficient, obtained by
averaging over a stationary sequence of stick slips is
�F	 /F0=0.116�0.002. The stick-slip pattern is irregular,
with a periodicity similar but not exactly matching, a
substrate lattice spacing. The highest spikes signal the
forward jump of most slider atoms, smaller ones
involve only about 2/3 of them. A measure of the distribution
of the spike heights is the variance of F�t�, i.e.,
�= 1

�s�F	2 
0
�s�F�t�− �F	�2dt, where �s is the total simulation

time. These simulations using the full Eq. �1�, and the corre-
sponding frictional results can be considered essentially ex-
act, and represent our benchmark reference of stick-slip fric-
tion with a correct Joule heat removal. The numerical
implementation of this standard scheme in a generic three-

FIG. 1. �Color online� �a� Sketch of the simulated system. �b�
and �c� Layer-averaged kinetic-energy time evolution of a surface-
injected phonon burst. Phonon backreflection is strong without dis-
sipation at the boundary layer �c� but accurately canceled once the
correct dissipative kernels are included �b�.
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dimensional �3D� case will, in principle, be possible but time
consuming, and far from handy. Long-range non-Markovian
correlations imply a general scaling as Nx

2 so that simulations
for large-size 3D sliding systems may pose a practical chal-
lenge of parallel computing.

The virtually exact frictional dynamics just obtained can
now be compared with empirical Langevin schemes com-
monly adopted in friction simulations, where a viscous
damping −�q̇ is arbitrarily applied to the motion of some
atoms in the system, for instance to slider atoms �L1, dashed
line in Fig. 3� or to all substrate atoms �L2, dotted line�, or to
the boundary atomic layer only �L3, solid line�. As antici-
pated, the stick-slip friction simulated with all these empiri-
cal schemes depends vastly on �, and generally deviates sys-
tematically from the correct benchmark. The closest
agreement is obtained in case L3 where the viscous
damping −m�q̇�

i �t� is applied to the ith boundary layer atom
motion, mq̈�

i �t�=− �U
�q�

i −m�q̇�
i �t�+R�

i �t�, with the appropriate
Gaussian stochastic force Ri�t� with �R�

i �t�	=0 and
�R�

i �t�R�
j �t��	=2mkBT�	�,�	i,j	�t− t��. Since the parameter �

is adjustable, we may seek to optimize it in order to approxi-
mate the exact results. Li et al.7 considered variationally
minimizing a group-velocity weighted phonon reflection. In
the actual friction simulation, the steady-state internal energy
increase W= �E	− �E0	 over the equilibrium value E0 is easily
computable. Our proposed scheme is to variationally mini-
mize W, a quantity generally positive and proportional to the
Joule frictional heat. In absence of backreflection, W is mini-
mal whereas partial energy reflection at the boundary will
cause Joule heat to artificially accumulate in the slab and
increase W so that for any arbitrary dissipation scheme
W /Wexact
1. As a function of �, a variational minimum of
W /Wexact occurs because backreflection of frictional phonons
is large both when the boundary layer damping � is too small

FIG. 2. �Color online� �a� Simulated friction force F�t� for the “exact” non-Markovian dissipation scheme of Eq. �1�, and �b�–�d� for
empirical Langevin schemes with a −�q̇ damping applied to tip L1, whole substrate L2 and bottom layer L3. The � value is identified by
numbers 1–5 in Fig. 3. Dashed lines: mean value �F	.

FIG. 3. �Color online� �a� and �b� Friction coefficient �F	 /F0

and variance ��	 as a function of a viscous damping � for different
empirical Langevin dissipation schemes, compared with exact non-
Markovian values �thick horizontal stripes�. �c� Average internal
energy W per substrate atom for the Markovian thermostat L3 di-
vided by the internal energy Wexact per substrate atom for the non-
Markovian scheme �1�. The exact and empirical frictional behavior
nearly coincide when the boundary layer parameter � is such as to
variationally minimize the relative total backreflected energy
W /Wexact.
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and too large. This ratio is shown in Fig. 3�c�. The agreement
between the exact frictional results, where no phonons are
backreflected and the variational one at �=10 is excellent.
�We note incidentally that at the optimal � the friction coef-
ficient also peaks.� To confirm the variational result, we
changed system parameters, including sliding velocity, and
load. The variable load results of Fig. 4 �inset� show that the
coincidence of optimal and exact friction is systematic. Fig-

ure 4 also shows a dependence of calculated friction on the
thickness of the simulated substrate portion �i+ ii�, converg-
ing for sufficiently large Nz. The required thickness of a few
tens of layers depends on velocity, and is reached once the
substrate inertia grows large enough to stop interfering spu-
riously with the frictional dynamics.

In conclusion, we demonstrated frictional MD simulations
with a non-Markovian dissipation, enacting the correct dis-
posal of generated phonons, even in the relatively violent
stick-slip case. Using the virtually exact frictional results so
obtained as a reference, we benchmarked common empirical
viscous dissipation schemes, finding them generally wanting.
There exists, however, an optimal viscous damping �opt
which, once applied to the cell boundary layer, yields results
nearly indistinguishable from the exact ones. The optimal
damping parameter variationally minimizes the total backre-
flected energy at the cell boundary, and can be identified
even without any exact reference calculation. This optimal
damping scheme, which unlike the exact one does not re-
quire a knowledge of the substrate vibrational properties, is a
good candidate for adoption in future practical MD frictional
simulations.
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FIG. 4. �Color online� Friction coefficient as a function of the
simulated cell thickness Nz for different driving velocities
v0=0.01 �blue, upper curve� and v0=0.02 �black, lower curve� ob-
tained with the non-Markovian dissipation scheme. The inset re-
ports the average friction force for different loads F0 obtained with
the non-Markovian approach �thick horizontal stripes� and the com-
parison with the Markovian Langevin scheme L3 at different �
�black curves�.
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