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Stick-slip nanofriction in trapped cold ion chains
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Stick slip—the sequence of mechanical instabilities through which a slider advances on a solid substrate—is
pervasive throughout sliding friction, from nanoscales to geological scales. Here we suggest that trapped cold
ions in an optical lattice can also be of help in understanding stick-slip friction, and also the way friction changes
when one of the sliders undergoes structural transitions. For that scope, we simulated the dynamical properties of
a 101-ion chain, driven to slide back and forth by a slowly oscillating electric field in an incommensurate periodic
“corrugation” potential of increasing magnitude U0. We found the chain sliding to switch, as U0 increases and
before the Aubry transition, from a smooth-sliding regime with low dissipation to a stick-slip regime with high
dissipation. In the stick-slip regime the onset of overall sliding is preceded by precursor events consisting of
partial slips of a few ions only, leading to partial depinning of the chain, a nutshell remnant of precursor events at
the onset of motion also observed in macroscopic sliders. Seeking to identify the possible effects on friction of a
structural transition, we reduced the trapping potential aspect ratio until the ion chain shape turned from linear to
zigzag. Dynamic friction was found to rise at the transition, reflecting the opening of other dissipation channels.
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I. INTRODUCTION

Similarly to colloidal monolayers driven across laser-
generated surfaces,1,2 linear chains of cold ions trapped
inside optical lattices have been recently proposed as novel
candidates for studies in the field of friction.3 One of the
motivations has been the possibility to observe, thanks to their
exceptional parameter tunability, the long theorized Aubry
transition, namely, the switch between a regular frictional state
and the “superlubric” state of vanishing static friction between
idealized incommensurate one-dimensional (1D) “crystals.”
The key feature of friction between solid bodies is hysteresis,
that is, the difference between to and fro motion. In time-
periodic sliding motion, for example, hysteresis is responsible
for the finite area enclosed by the force-displacement cycle,
which exactly equals the frictional heat per cycle. Smallest
when the sliding regime is smooth, friction turns large when
sliding occurs by stick slip—a discontinuous stop and go which
constitutes the largest and most common source of frictional
hysteresis. Generally triggered by mechanical instabilities,
stick slip takes place at geological, ordinary, and at nanometer
length scales alike.4–6 Restricting here to the nanoscale and
microscale, which is the focus of much current work, we
are naturally interested in microscopical systems exhibiting
a controlled transition between smooth and stick-slip sliding
regimes.

One-dimensional periodic (“crystalline”) sliding models,
although highly simplified, have long been used to illustrate
frictional phenomena between periodic lattices.7 In the so-
called Frenkel-Kontorova (FK) model,8 a harmonic chain
of classical masses with average spacing ao in a sinusoidal
periodic potential of amplitude U0 and wavelength λ (leading
to a commensuration ratio η = ao/λ between the two) idealizes
the sliding of two crystalline surfaces. Irrational values of
η characterize the most interesting incommensurate case
between slider and substrate. Aubry9,10 proved long ago that
a transition (where the ground state “hull function” exhibits

analyticity breaking) occurs for increasing U0, from what is
now known as a superlubric state where the static friction
FS—the minimal force capable of initiating sliding—is exactly
zero, to a pinned state where FS is finite. While exceptionally
low friction between incommensurate three-dimensional (3D)
surfaces has indeed been observed experimentally,11 experi-
mental demonstrations of the Aubry transition in genuinely 1D
systems are still lacking. Cold ion traps were recently invoked
as possible candidates to display the Aubry transition, thereby
surprisingly entering the field of nanotribology.3 Although not
identical to the FK model, the physics of repulsive 1D particles
is expected to be essentially the same as each particle can still
be seen as occupying the center of some overall harmonic
potential. Experimentally,12 chains of up to several tens of
positive ions such as Ca+ can be stabilized using rf quadrupolar
fields and cooled down to temperatures below 1 μK. By tuning
the confining cigar-shaped potential to a sufficiently elongated
form, the ions can be forced to form linear chains. The periodic
optical lattice potential for the ions is provided by a laser
standing wave [see Fig. 1(a)].

The confined ion chains do constitute 1D crystal segments,
but are not really homogeneous. The nearest-neighbor ion-ion
distance, fairly constant at the center, increases at the periphery
and diverges near the extremities, as shown in Fig. 1(b). Still,
the chain center is a reasonable realization of an FK-like
model, and some of the properties of an ideal infinite system
can be in principle realized and observed there. When λ is
incommensurate with respect to the central ion-ion spacing
ao, one can achieve, according to our recent predictions,3 a
strong and observable remnant of the Aubry transition also in
such trapped ion chains. In the confined ion chain, the standard
Aubry transition, which in the infinite chain occurs when
the periodic potential (“corrugation”) amplitude U0 exceeds
some critical threshold Uc, is replaced by a static, symmetry
breaking transition of the ground state chain configuration
and geometry. Benassi and co-workers3 proposed to observe
this transition by measuring the external uniform force FR
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FIG. 1. (Color online) (a) Schematic of a linear ion chain
trapped by an anisotropic confining potential. Typical ions used in
experiments are Ca+ or Mg+, and the ion-ion distance at the center of
the chain is of the order of few μm. (b) Nearest-neighbor distance (in
dimensionless units, see Sec. II) between the ions of a 101-ion chain
at rest and in the absence of the corrugation potential. (c) A possible
experimental setup for the study of the dynamics of the chain using
an external oscillating electric field.

needed to restore the symmetry. Simulations indeed showed
that the effective static friction force FR behaves and grows
as a function of U0 > Uc very closely as the static friction
force FS of the ideal infinite chain, thus demonstrating the
connection between the two [see Fig. 2].

In this paper we move from static friction to the dynamical
sliding properties of the ion chain, once depinned by an
additional external electric field, as a function of the periodic
corrugation amplitude U0 [see Fig. 1(c)]. We show that the
trapped cold ions can slide either smoothly or by stick slip, with
a parameter-controlled transition and a correspondingly strong
frictional rise between the former and the latter. Drawing an
analogy with macroscopic frictional experiments, the corru-
gation U0 plays here the role of the load in ordinary sliding

FIG. 2. (Color online) Effective static friction of a 101-ion chain
in the linear (red) and zigzag (blue) configuration plotted against the
corrugation potential amplitude U0. The black dashed line is the static
friction of the ideal FK model. The arrows indicate the values of U0

at which FR vanishes. (From Ref. 3.)

friction. As expected, we find and characterize the transition
from a poorly dissipative smooth-sliding regime to a highly
dissipative stick-slip regime as U0 is increased. Moreover,
since the cold ion ground state geometric configuration can
be pushed across parameter-driven structural transitions by
changing the trapping potential conditions, we investigate the
effect of a phase transition on sliding friction, which is of
interest as well.13 As is known both theoretically14,15 and
experimentally,16 a change of aspect ratio in the confining
trap effective potential causes the ion chain to cross a series of
structural transitions. If and when for a sufficiently long chain
these transitions can be considered continuous, the friction
behavior near the transition point could show remnants of the
chain’s critical behavior, as recently suggested theoretically.13

In anticipation of future experiments, we carried out
classical molecular dynamics simulations of a 101-ion chain
sliding in a golden ratio incommensurate corrugated potential,
with a view to predict and discuss the basic dynamic frictional
phenomena of an electric field solicited trapped ion chain. In
Sec. II we will describe the model and the protocol used for
the molecular dynamics (MD) simulations. Section III will be
devoted to the resulting smooth to stick-slip frictional switch
and the observation of precursor events at the onset of the chain
sliding. In Sec. IV we describe the change of the frictional
behavior across the linear-zigzag structural transition. Finally,
Sec. V contains our discussion and conclusions.

II. TRAPPED ION CHAIN MODEL AND SLIDING
SIMULATION PROTOCOL

The effective potential of an ion of charge q in a linear
anisotropic (Paul) trap can be written as17

Veff(x,y,z) = 1

2m
[ω2

⊥(x2 + y2) + ω2
‖z

2], (1)

where m is the mass of the ion and ω2
⊥ and ω2

‖ are the strengths
of the confining effective potential, supposed to be harmonic,
in the transverse and longitudinal directions. In order to work
in dimensionless units we define the length unit d:

d =
(

q2

4πε0mω2
⊥

)1/3

. (2)

We then measure masses in units of m, charges in units of q,
energy in units of q2/(4πε0d), forces in units of q2/(4πε0d

2),
and time in units of 1/ω⊥. The effective Hamiltonian of N
trapped ions is then18,19
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}
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where the sinusoidal term represents a laser induced periodic
potential, mimicking the corrugation of a hypothetical crys-
talline substrate lattice.

The ground state geometry of the ions at T = 0 depends on
the aspect ratio R = (ω‖/ω⊥)2 of the anisotropic harmonic
confining potential. For small enough R the potential is
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FIG. 3. (a) Linear-zigzag structural transition of a 101-ion chain.
rxy is the maximum displacement of the ions from the z axis.
(b) Zigzag-helix transition. The order parameter is the number of
windings of the ions around the z axis.

cigarlike, and ions form a linear chain along the trap symmetry
axis z. As R is increased, there is a sequence of shape
transitions: first, from a straight chain to a planar zigzag chain,
and next, a second transition where planarity is lost, and the
planar zigzag turns into a helix. Still at T = 0, and for an
infinite chain, both classical transitions are continuous,20 as
shown in Fig. 3.

We simulated, following Benassi et al.,3 a chain of 101
positive ions choosing ω2

‖ = 0.0005, R = 0.0005, and η =
λ/ao = 2/(1 + √

5), where ao is the center ion-ion spacing.
Chain sliding is caused by an external slowly oscillating
electric field E(t) = ẑE0 sin(�t) acting on each ion in the
longitudinal direction z. We carried out classical damped
molecular dynamics (MD) integrating the equations of motion
using a standard velocity-Verlet algorithm with time step
�t = 0.005. At each time the total force acting on the ith
ion is given by

r̈i = FCoul
i + Ftrap

i + Fsub
i − γ vi , (4)

where we have, respectively, the force due to the ion-ion
Coulomb repulsion, the confining potential force, the cor-
rugation force, and a velocity dependent dissipative force
controlled by a damping parameter γ . There is no random
force, corresponding to our T = 0 background assumption.
The trap confinement plus oscillating potential is given by

Vext(z) = ω2
‖

2
z2 − zE0 sin(�t), (5)

which is a confining parabola of vertex ztrap = E0 sin(�t)/ω2
‖

moving at velocity vtrap = E0� cos(�t)/ω2
‖. In order to follow

stick slip, when present, we monitored the distance of the
center of mass of the chain from the minimum of the moving
parabola:

δzcm(t) = ztrap(t) − zcm(t). (6)

Figure 4 shows an example of the time evolution of δzcm cor-
responding to a sequence of external electric field oscillations.
The dynamic friction of the system is computed as the work
W done by the oscillating electric field on all the particles:

Wk = 1

N

N∑
i=1

∫
k

dt[vi · ẑE0 sin(�t)], (7)

where the integral is calculated over the kth period correspond-
ing to the electric field going from its minimum value −E0 to
its maximum value +E0 and back. The final estimate of the
dynamic friction is obtained from the average of the M samples
Wk measured during the whole trajectory: W= 1

M

∑M
k=1 Wk .

FIG. 4. (Color online) Dynamics of δzcm (see text) under periodic
sliding. At t = 0 the chain is almost symmetric with respect to the
vertex of the confining parabola and δzcm ≈ 0; if the chain is locked to
the substrate, δzcm increases as the confining potential moves until a
slip event occurs, which corresponds to a sudden drop to zero of δzcm.
The plot shows a result from a simulation where many slip events are
observed during each oscillation back and forth of the chain over the
substrate. The gray dashed line corresponds to the external electric
field.

III. RESULTS: DYNAMIC FRICTION, STICK-SLIP,
AND PRECURSOR EVENTS

Figure 5(a) shows the frictional work W done by the
external electric field on the trapped ion chain as a function of
the corrugation amplitude U0. The inset depicts schematically
the expected behavior in the infinite incommensurate FK
model, where for U0 < Uc, below the Aubry transition,

FIG. 5. (a) Dynamic friction W of the oscillating ion chain as a
function of the corrugation amplitude U0. The values of E0 = 0.1625,
� = 0.0002, γ = 0.01 were chosen so as to yield 4–5 slip events
during each oscillation, in correspondence to the highest values of
U0 investigated. (b) Dynamics of δzcm in the three different regimes
of smooth sliding, regular, and irregular stick slip. The time interval
plotted corresponds approximately to half a period of the oscillating
electric field which increases from −E0 to +E0.
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(a) (c)

(b) (d)

(e)

(f)

FIG. 6. (a) Dynamics of δzcm in the smooth-sliding regime; (b) shows the corresponding trajectories of each ion. (c) Dynamics of δzcm

in the regular stick-slip regime; (d) shows the corresponding trajectories of each ion. (e) Dynamics of δzcm in the irregular stick-slip regime;
(f) shows the corresponding trajectories of each ion. The features highlighted in the figure are discussed in Sec. III.

motion takes place without static friction, and kinetic friction
vanishes in the limit of infinitely slow sliding. In the chain
of trapped ions, finite and inhomogeneous, the static friction
force needed for overall chain motion is nonzero for all
corrugations, since the two extremities are always locked to the
corrugation potential. Correspondingly, there is upon sliding
a finite frictional dissipation W for all values of U0. For the
chosen external field frequency � = 0.0002 and amplitude
E0 = 0.1625 friction grows steadily with corrugation U0

and nothing significant happens to the dynamic friction W

across the nominal3 Aubry value Uc = 0.016 28. In fact, the
dynamics of the chain does not change appreciably above
U0 ≈ 0.01.

We can resolve, based on the detailed nature of the sliding
trajectories, three different dynamical regimes. Figure 5(b)
shows the dynamics of δzcm for three representative values
of U0. For small corrugations U0 � U01 = 0.005 the chain
follows smoothly the external force and the friction is modest
(with a value determined by, and growing with, the sliding
velocity, in turn proportional to �). As U0 is increased
further, the smooth-sliding dynamics is replaced by a regular,
time-periodic stick-slip regime with an accompanying increase
of dissipation. As long as U01 � U0 � U02 = 0.01 the slip
magnitude is fairly constant during each oscillation. For larger
corrugations finally, U0 � U02 the chain enters a chaotic
regime of irregular stick slip.

Figure 6 shows details of the trajectories of the chain center
of mass and of all individual ions in the three regimes. For U0 �
U01 the chain is weakly pinned at the inversions of motion
occurring for E(t) = ±E0. After the depinning the chain
follows smoothly the external force; small oscillations of δzcm

are due to the internal motion of the chain [see Figs. 6(a) and
6(b)]. A number of interesting features appear at the onset of
stick-slip U0 � U01 and they are shown in Figs. 6(c)–6(f). The
head and the tail of the ion crystal are locked to the corrugation
potential [see the top and bottom parts of Fig. 6(d), initial
times] while the truly incommensurate central part is free to
slide, thus increasing the ion density of the head, reducing
that of the tail and inducing partial depinnings of the chain.
The precursor events appear in the head part [see the top part

of Fig. 6(d), times between t = 1.16 and t = 1.22]. Although
different and connected with inhomogeneity of stress rather
than of contact, partial precursors were also shown to precede
the onset of macroscopic sliding by Fineberg’s group.21,22

Partial slips of the chain always start within the central
superlubric region and proceed moving in the direction of the
external force. They are present only in the stick-slip regime
and disappear by increasing the average pulling velocity
|vtrap| = 2E0�/πω2

‖ of the trapping potential [see Fig. 7].
Following the precursors, as stress accumulates more and
more in time, the system undergoes a mechanical instability

FIG. 7. Precursor events observed between two main slip events
for (a) |vtrap| = 10−2 and (b) |vtrap| = 10−1. As the pulling velocity
is increased, the precursor events disappear, signaling the transition
from stick-slip motion to smooth sliding.
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FIG. 8. (Color online) Example of a triggering event inducing the
main slip.

typical of stick slip.6 The ensuing main slip of the whole
system is triggered by the creation of a kink-antikink pair (see
Fig. 8). In the regular stick-slip regime U01 � U0 � U02 the
tail drives the sliding onset, and the triggering pair forms in
the tail region, while the chain center and front are still free
to slide [see Fig. 6(d), times between t = 1.22 and t = 1.25].
In the chaotic stick-slip regime U0 � U02 instead, the onset
of sliding is different. The central superlubric flow and partial
slips of the front ions first bring the chain into a metastable
state where each ion is locked to the corrugation [see Fig. 6(f),
times between t = 3.5 and t = 3.6]. The generation of a
kink-antikink pair forming now in the chain head, as opposed
to the chain tail of the previous regime, eventually leads to
global sliding, as shown by the main slip event at the initial
times of Fig. 6(f). This tail-to-head switch of the triggering
event is a characteristic signature always accompanying the
passage from regular to chaotic stick slip. On the other hand,
neither the sliding onset dynamics nor the dynamical friction
magnitude finally display any particular feature or singularity
when the corrugation grows across the Aubry transition. This
result underlines a substantial difference between the frictional
behavior of this short and inhomogeneous chain, and that
expected of an ideally infinite and uniform FK-like chain.
In the latter and ideal system there is no other transition than
Aubry, and in the limit of zero sliding speed stick-slip sliding
can only take place when static friction turns nonzero, which
is above the Aubry transition. Figure 9 shows details of the
sliding dynamics in the strongly corrugated, chaotic stick-slip
regime. The average nearest-neighbor distance between the
central 31-ion portion is displayed as a function of time
between two main slips of the crystal. The initial passage of
the “superlubric” front brings the central part to a com-
mensurate configuration with ions spaced exactly by 2λ

(instead of the original golden ratio spacing 1.618λ) from one
another. This dynamically induced commensuration brings the
whole chain to a temporarily locked state, thus increasing the
static friction force needed for the onset of overall motion.23

Subsequent depinning of the chain off this locked state only
occurs as the external force grows further, and is sudden. This
two-stage nature of sliding, and the relative abruptness of the

FIG. 9. Average ion-ion distance (in units of λ) vs time; we
considered only the central 31 ions of the chain. After the passage of
the superlubric front, the center of the chain is left in a commensurate
configuration with ions equally spaced by 2λ. The same kind of
dynamics occurs at the onset of motion at each values of U0 in the
stick-slip region.

depinning, is at the origin of the chaotic behavior of stick slip
in this regime.

IV. FRICTION SINGULARITY AT THE LINEAR-ZIGZAG
STRUCTURAL TRANSITION

Benassi et al. recently proposed that interesting frictional
changes or anomalies could be observed in the presence of
structural phase transitions.13 Although a 101-ion chain is a
long way away from an infinite system, it is still interesting
to find out what singularities would friction develop upon an
overall, collective shape change. To study that, we carried
out simulations at values of the trapping potential aspect
ratio R straddling the critical value Rc = 0.0008 for the
linear-zigzag transition. Although this kind of effect should be
quite general, the expected delicacy of this frictional feature
should best become apparent under sliding conditions with
limited noise, such as those expected at weak corrugations.
Setting U0 = 0.0008 and also γ , �, and E0 values which
lead to a smooth and gentle sliding dynamics (disturbing
the chain to a minimal extent) we obtained the dynamic
friction of Fig. 10(a). Deep enough in the linear chain regime
(R � 0.000 64) the ions remain in a strictly 1D configuration
during the whole dynamics. Here, only longitudinal internal
vibration degrees of freedom of the chain are excited and
W is small and essentially independent of R. As the critical
anisotropy Rc is approached, the transverse vibration modes
of the chain soften and become rather suddenly excitable, a
different dissipative channel opens, and W rises, anticipating
the linear-zigzag transition. In a hypothetical infinite chain,
where the transition occurs continuously and critically, the
frictional behavior will presumably also exhibit a critical
singularity. Given the finite chain size, the frictional rise is
smooth, although it can still be sharpened by reducing the
corrugation amplitude. Figures 10(b) and 10(c) show results
of simulations with U0 reduced down to 0.0004, 0.0001, and a
lower value of E0. The transverse mode excitation onset occurs
nearer to Rc.

That result is made clearer in Fig. 10(d), where the standard
deviation σrxy

of the maximum displacement of the ions away
from the z axis is plotted against the aspect ratio R. Denoting
with 〈· · ·〉 the time average over the whole trajectory, σrxy

and
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FIG. 10. (a) Dynamic friction across the linear-zigzag transition
for U0 = 0.0008. The parameters used are γ = 0.0005, E0 =
0.005 078 125, � = 0.0032. Without a corrugation potential the chain
moves as a rigid body at a very low dissipation rate independent
on R (not shown). As U0 is switched on, the internal degrees of
freedom of the chain begin to dissipate. In this set of simulations the
transverse modes begin to be excited at R ≈ 0.000 64. (b) Dynamic
friction across the linear-zigzag transition for U0 = 0.0004 and (c)
U0 = 0.0001, using E0 = 0.002 539 063, � = 0.0032, γ = 0.0005.
By lowering the external electric field and the amplitude of the
substrate potential, the onset of the excitation of the transverse modes
is shifted towards the static critical value Rc = 0.0008. In this set of
simulations the transverse modes begin to be excited at R ≈ 0.000 72
and R ≈ 0.000 78, respectively, for U0 = 0.0004 and U0 = 0.0001.
(d) Standard deviation σrxy

of the maximum displacement rxy of the
ions from the z axis plotted as a function of R and measured using the
whole trajectories of the simulations of (a)–(c). σrxy

is zero until the
transverse modes begin to be excited and it shows a clear maximum
near Rc, which becomes sharper as U0 is decreased.

rxy are defined as

σrxy
=

√
〈(rxy − 〈rxy〉)2〉, (8)

rxy = Max{i=1,Nions}
(√

x2
i + y2

i ). (9)

σrxy
is zero until the transverse modes begin to be excited and

it displays a maximum near the critical point Rc.
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FIG. 11. Dynamic friction across the zigzag-helix transition. The
dissipative properties of the chain are not affected by the helical
distortion. The parameters used are γ = 0.0005, E0 = 0.040 625,
� = 0.0004, U0 = 0.0008.

A further increase of R drives a subsequent transition of the
trapped ion geometry from zigzag to helix. Figure 11 shows
the behavior which we obtained for the dynamic friction across
this transition. Not much happens here. In this case, in fact,
on both sides of the critical point the chain is already in a 3D
configuration and its dissipative properties are not significantly
affected by the weaker helical distortion.

V. CONCLUSIONS

By means of classical damped MD we simulated a 101-ion
linear chain executing a forced time-periodic sliding over
a (laser induced) space-periodic “corrugation” potential of
strength U0 whose wavelength λ was golden mean incom-
mensurate with respect to the center ion-ion spacing. As U0

was increased, the system turned from smooth-sliding to a
stick-slip sliding regime, first regular and then chaotic. We
observed as expected an increase in the dissipation rate at the
onset of stick slip, as is also observed in macroscopic dry
friction when the loading force is increased.

Three separate frictional regimes were identified, as a
function of corrugation amplitude. A smooth-sliding one for
weak corrugation was followed by time-periodic stick-slip
sliding at larger corrugation, eventually leading to chaotic stick
slip for even larger corrugation.

Due to the inhomogeneity of the ion crystal, the frictional
dynamics of the ion chain showed several different features
reflected in the ion trajectories. The two chain extremities were
always pinned while the incommensurate central part was free
to slide following the external force. The onset of motion in the
stick-slip regime was characterized by the presence of precur-
sor events, i.e., partial slips of side chain portions induced by
the superlubric flow of the truly incommensurate central part.

The chaotic stick slip at large corrugation was connected
by an interesting two-stage process. First, superlubric sliding
of the central portion brought the chain to a temporary
commensurate state, locked to the periodic corrugation. Sub-
sequently, as force grew, a kink-antikink pair was generated
and propagated toward the extremities, eventually inducing the
slip of the whole system.

We also studied the possible anomalies of friction dissipa-
tion across the structural phase transformations of the trapped
ions obtained by varying the aspect ratio R = (ω‖/ω⊥)2 of the
harmonic trapping potential. At fixed ω‖, as R was increased,
the ion chain transformed first from a linear configuration to
a planar zigzag and then to a helix. The energy dissipation
increased characteristically at the linear to zigzag transition.
Conversely, the zigzag to helix transition did not yield
significant frictional changes.

Considerations about experimentally accessible system
parameters, which are given in the Appendix, suggest that
some of these features, if not all, should become observable in
future experiments with Ca+ ion traps.
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FIG. 12. 101-ion chain. (a) δzcm in the simulation at |vtrap| =
2 × 10−5 and T = 10−7 showing stick-slip and precursor events
(indicated by the arrows) corresponding to partial slips of the central
portion of the chain. (b) Temperature measured in the center of mass
frame in the simulation of (a). After each slip event the internal
temperature is raised and then it is exponentially damped by the
thermostat. Precursor events give rise to the smaller peaks, indicated
by the arrows. This trend is always observed in the stick-slip regime.
(c) For |vtrap| = 10−4 and T = 10−7 the dynamics is chaotic. Slips of
different magnitude occur as the pulling velocity changes during each
oscillation. (d) Further increasing |vtrap| = 5 × 10−3 the dynamics
finally turns into a smooth-sliding regime, even at T = 0.

APPENDIX: PRACTICAL PARAMETER CHOICES

In order to create an optical lattice, the laser wavelength
must fit one of the electronic transitions of the chosen ions. For
Ca+ the S1/2-P1/2 transition at 397 nm is naturally exploited,
leading to a lattice spacing λ ≈ 200 nm. An achievable
amplitude for the corrugation potential is of the order of
10−27 J. If we consider a transverse trapping frequency ω⊥ =
2π × 4 MHz, we get (in dimensionless units) λ = 0.115, U0 =
2.31 × 10−5. A practically achieved temperature is T = 10−7,
corresponding to 1 μK. Setting an aspect ratio R = 0.0005,
we have ao ≈ 16λ, therefore ions are separated by several
lattice spacings, corresponding to a much “weaker” kind of
incommensurability than the golden ratio used in the study so
far. Moreover, for such a small value of U0, the chain is almost
free to slide, in this case also the two extremities being weakly
anchored to the substrate. Stick slip is therefore expected to
occur only at very small pulling velocities when, after each slip,
the chain is allowed to relax in a different metastable pinned
configuration. We performed simulations at the experimental
parameters for the 101-ion and a 35-ion chain using the same
protocol described above. We chose γ = 0.0005 and we used
a Langevin thermostat for the simulations at finite T. We also
set � and E0 in order to test different average velocities of the
moving confining parabola.

Let us consider first the 101-ion chain. At very low pulling
velocity we observed stick-slip motion, the slip amplitude

FIG. 13. 35-ion chain. (a) δzcm in the simulation at |vtrap| =
2 × 10−5 and T = 10−7. An irregular stick-slip regime is observed.
(b) Temperature measured in the center of mass frame in the
simulation of (a). The highest peaks correspond to the main slip
events, with slips of a few ions within the chain giving rise to the
smaller ones. (c) Trajectory of each ion during some slip events of
the simulation of (a) and (b). The chain slip as a whole and precursor
events are not observed due to the small size of the system. (d) δzcm in
the simulation at |vtrap| = 2 × 10−4 and T = 10−7. At the inversions
of motion the chain is pinned; owing to the small initial pulling
velocity, a sharp slip event occurs after which smooth sliding begins.

being of the order of a few lattice parameters [see Fig. 12(a)].
The dynamics of the slip events is simple and no longer shows
the variety of features described previously for the golden
ratio incommensurability. The pinned chain remained stable
upon pulling until a weak compression generated within the
chain propagates toward the head. Simple precursor events
are observed consisting of partial slips of a central portion
of the chain at fixed extremities (not shown). Figure 12(b)
shows the temperature Tcm measured in the center of mass
frame, displaying the expected inverse sawtooth behavior
when plotted in a semilogarithmic scale. After each slip Tcm

increases, and is then exponentially damped by the thermostat.
As the pulling velocity is increased, the dynamics turns
gradually into a smooth-sliding regime, as shown in Figs. 12(c)
and 12(d).

Chains of a few tens of ions may be more easily stabilized
inside a trap. We performed simulations with a 35-ion chain,
using the same parameters as above. In this case the central
ion-ion spacing is larger and corresponds to ao ≈ 30λ. As
shown in Fig. 13(a), we observed that stick-slip motion is
again preserved in this case as well as for small enough
average pulling velocities. The slip amplitude is larger than that
observed for the 101-ion chain, indicating a stronger pinning
to the substrate, as is reasonable to expect given a larger
prevalence of extremities. From the plot of the temperature
of Fig. 13(b) we see that small adjustments of the inner ions
occur, which give rise to small peaks in Tcm, however, without
proper precursor events due to the reduced size of the chain.
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