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The ability to recognize objects despite substantial variation in their appearance (e.g., because of position or size changes) represents such
a formidable computational feat that it is widely assumed to be unique to primates. Such an assumption has restricted the investigation
of its neuronal underpinnings to primate studies, which allow only a limited range of experimental approaches. In recent years, the
increasingly powerful array of optical and molecular tools that has become available in rodents has spurred a renewed interest for rodent
models of visual functions. However, evidence of primate-like visual object processing in rodents is still very limited and controversial.
Here we show that rats are capable of an advanced recognition strategy, which relies on extracting the most informative object features
across the variety of viewing conditions the animals may face. Rat visual strategy was uncovered by applying an image masking method
that revealed the features used by the animals to discriminate two objects across a range of sizes, positions, in-depth, and in-plane
rotations. Noticeably, rat recognition relied on a combination of multiple features that were mostly preserved across the transformations
the objects underwent, and largely overlapped with the features that a simulated ideal observer deemed optimal to accomplish the
discrimination task. These results indicate that rats are able to process and efficiently use shape information, in a way that is largely
tolerant to variation in object appearance. This suggests that their visual system may serve as a powerful model to study the neuronal
substrates of object recognition.

Introduction
Visual object recognition is an extremely challenging computa-
tional task because of the virtually infinite number of different
images that any given object can cast on the retina. Although we
know that the visual systems of humans and other primates suc-
cessfully deal with such a tremendous variation in object appear-
ance, thus providing a robust and efficient solution to the
problem of object recognition (Logothetis and Sheinberg, 1996;
Tanaka, 1996; Rolls, 2000; Orban, 2008; DiCarlo et al., 2012), the
underlying neuronal computations are poorly understood, and
transformation-tolerant (also known as “invariant”) recognition
remains a major obstacle in the development of artificial vision
systems (Pinto et al., 2008). This is not surprising, given the for-
midable complexity of the primate visual system (Felleman and
Van Essen, 1991; Nassi and Callaway, 2009) and the limited un-
derstanding of neuronal mechanisms that primate studies allow

at the molecular, synaptic, and circuitry levels. In recent years, the
powerful array of experimental approaches that has become
available in rodents has reignited the interest for rodent models of
visual functions (Huberman and Niell, 2011; Niell, 2011), includ-
ing visual object recognition. However, it remains controversial
whether rodents possess higher-order visual processing abilities,
such as the capability of processing shape information and ex-
tracting object-defining visual features in a way that is compara-
ble to primates.

The studies that have explicitly addressed this issue have
reached opposite conclusions. Minini and Jeffery (2006) con-
cluded that rats lack advanced shape-processing abilities and rely,
instead, on low-level image cues to discriminate shapes. By con-
trast, two recent studies have shown that rats can recognize ob-
jects despite remarkable variation in their appearance (e.g.,
changes in size, position, lighting, in-depth and in-plane rota-
tion), thus arguing in favor of an advanced recognition strategy in
this species (Zoccolan et al., 2009; Tafazoli et al., 2012). However,
studies based on pure assessment of recognition performance
cannot reveal the complexity of rat recognition strategy; that is,
they cannot tell: (1) whether shape features are truly extracted
from the test images; (2) what these features are and how many;
and (3) whether they remain stable across the object views the
animals face. Despite a recent attempt at addressing these issues
by Vermaercke and Op de Beeck (2012), who used a version of
the same image classification technique we have applied in our
study, these questions remain largely unanswered. Indeed, the
authors’ conclusion that rats are capable of using a flexible
mid-level recognition strategy is affected by several limitations
of their experimental design, which prevented a true assess-
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ment of shape-based, transformation-tolerant recognition
(see Discussion).

In this study, we trained six rats to discriminate two visual
objects across a range of sizes, positions, in-depth rotations, and
in-plane rotations. Then, we applied to a subset of such trans-
formed object views the bubbles masking method (Gosselin and
Schyns, 2001; Gibson et al., 2005, 2007), which allowed extracting
the diagnostic features used by the rats to successfully recognize
each view. Our results show that rats are capable of an advanced,
shaped-based, invariant recognition strategy, which relies on ex-
tracting the most informative combination of object features
across the variety of object views the animals face.

Materials and Methods
Subjects
Six adult male Long–Evans rats (Charles River Laboratories) were used
for behavioral testing. Animals were 8 weeks old at their arrival, weighted
�250 g at the onset of training and grew to �600 g. Rats had free access
to food but were water-deprived throughout the experiments; that is,
they were dispensed with 1 h of water pro die after each experimental
session, and received an amount of 4 – 8 ml of pear juice as reward during
the training. All animal procedures were conducted in accordance with
the National Institutes of Health, International, and Institutional Stan-
dards for the Care and Use of Animals in Research and after consulting
with a veterinarian.

Experimental rig
The training apparatus consisted of six operant boxes. Each box hosted
one rat, so that the whole group could be trained simultaneously, every
day, for up to 2 h. Each box was equipped with: (1) a 21.5” LCD monitor
(Samsung; 2243SN) for presentation of visual stimuli, with a mean lumi-
nance of 43 cd/mm 2 and an approximately linear luminance response
curve; (2) an array of three stainless steel feeding needles (Cadence Sci-
ence) �10 mm apart from each other, connected to three capacitive
touch sensors (Phidgets; 1110) for initiation of behavioral trials and col-
lection of responses; and (3) two computer-controlled syringe pumps
(New Era Pump Systems; NE-500), connected to the left-side and right-
side feeding needles, for automatic liquid reward delivery.

A 4-cm-diameter viewing hole in the front wall of each box allowed
each tested animal to extend its head out of the box, so to frontally face
the monitor (placed at �30 cm in front of the rat’s eyes) and interact with
the sensors’ array (located at 3 cm from the opening). The location and
size of the hole were such that the animal had to reproducibly place its
head in the same position with respect to the monitor to trigger stimulus
presentation. As a result, head position was remarkably reproducible
across behavioral trials and very stable during stimulus presentation.
Video recordings obtained for one example rat showed that the SD of
head position, measured at the onset of stimulus presentation across 50
consecutive trials, was �3.6 mm and �2.3 mm along the dimensions that
were, respectively, parallel (x-axis) and orthogonal ( y-axis) to the stim-
ulus display (with the former corresponding to a jitter of stimulus posi-
tion on the display of �0.69° of visual angle). For the same example rat,
the average variation of head position over 500 ms of stimulus exposure
was �x � 2.5 � 0.5 mm (mean � SD) and �y � 1.0 � 0.2 mm (n � 50
trials), with the former corresponding to a jitter of stimulus position on
the display of �0.48° of visual angle. Therefore, the stability of rat head
during stimulus presentation was close to what was achievable in head-
fixed animals. This guaranteed a very precise control over stimulus reti-
nal size and prevented head movements from substantially altering
stimulus retinal position (see Results and Discussion for further com-
ments about stability of stimulus retinal position).

Visual stimuli
Each rat was trained to discriminate the same pair of 3-lobed visual
objects used by Zoccolan et al. (2009). These objects were renderings of
3D models that were built using the ray tracer POV-Ray (http://www.
povray.org/). Both objects were illuminated from the same light source
location; and, when rendered at the same in-depth rotation, their views

were approximately equal in height, width, and area (Fig. 1A). Objects
were rendered in a white, bright (see below for a quantification), opaque
hue against a black background. Each object’s default size was 35° of
visual angle, and their default position was the center of the monitor
(their default view was the one shown in Fig. 1A).

As explained below, during the course of the experiment, transformed
views of the objects were also shown to the animals (i.e., scaled, shifted,
in-plane and in-depth rotated object views; Fig. 1C). The mean lumi-
nance of the two objects (measured in their center) across all the trans-
formed views was 108 � 3 cd/mm 2 (mean � SD) and 107 � 4 cd/mm 2,
respectively, for Object 1 and Object 2 (thus, approximately matching the
display maximal luminance). Therefore, according to both behavioral
and electrophysiological evidence (Jacobs et al., 2001; Naarendorp et al.,
2001; Fortune et al., 2004; Thomas et al., 2007), rats used their photopic
vision to discriminate the visual objects.

Experimental design
Phase I: critical features underlying recognition of the default object views.
Rats were initially trained to discriminate the two default views of the
target objects (Fig. 1A). Animals initiated each behavioral trial by insert-
ing their heads through the viewing hole in the front wall of the training
box and licking the central sensor. This prompted presentation of one of
the target objects on the monitor placed in front of the box. Rats learned
to associate each object identity with a specific reward port (Fig. 1B). In
case of correct response, reward was delivered through the port and a
reinforcement tone was played. An incorrect choice yielded no reward
and a 1–3 s timeout (during which a failure tone sounded and the mon-
itor flickered from black to middle gray at a rate of 15 Hz). The default
stimulus presentation time (in the event that the animal made no re-
sponse after initiating a trial) was 2.5 s. However, if the animal responded
correctly before the 2.5 s period expired, the stimulus was kept on the
monitor for an additional 4 s from the time of the response (i.e., during
the time the animal collected his reward). In the event of an incorrect
response, the stimulus was removed immediately and the timeout se-
quence started. If the animal did not make any response during the
default presentation time of 2.5 s, it still had 1 s, after the offset of the
stimulus presentation and before the end of the trial, to make a response.

Once a rat achieved �70% correct discrimination of the default object
views (this typically required 3–12 weeks of training), an image masking
method, known as the bubbles (Gosselin and Schyns, 2001), was applied
to identify the visual features the animal relied upon to successfully ac-
complish the task. This method consists of superimposing on a visual
stimulus an opaque mask punctured by a number of circular, semitrans-
parent windows (or bubbles; Fig. 2A). When one of such masks is applied
to a visual stimulus, only those parts of the stimulus that are revealed
through the bubbles are visible. Hence, this method allows isolating the
image patches that determine the behavioral outcome, for whether a
subject (e.g., a rat) can identify the stimulus depends on whether the
uncovered portions of the image are critical for the accomplishment of
the recognition task.

In our implementation of the Bubbles method, any given bubble was
defined by shaping the transparency (or alpha) channel profile of the
image according to a circularly symmetrical, 2D Gaussian (with the peak
of the Gaussian corresponding to full transparency). Multiple such
Gaussian bubbles were randomly located over the image plane. Overlap-
ping of two or more Gaussians led to summation of the corresponding
transparency profiles, up to the maximal level corresponding to full trans-
parency. The size of the bubbles (i.e., the SD of the Gaussian-shaped trans-
parency profiles) was fixed to 2° of visual angle, whereas the number of
bubbles was chosen so to bring each rat performance to be �10% lower
than in unmasked trials (this typically brought the performance down
from �70 – 80% correct obtained in unmasked trials to 60 –70% correct
obtained in bubbles masked trials; see Figs. 3A and 4). This was achieved
by randomly choosing the number of bubbles in each trial among a set
of values that was specific for each rat. These values ranged between
10 and 50 (in steps of 20) for top performing rats, and between 50 and
90 (again, in steps of 20) for average performing rats (examples of
objects occluded by masks with a different number of bubbles are
shown in Fig. 2B).
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Trials in which the default object views were shown unmasked (named
regular trials in the following) were randomly interleaved to trials in
which they were masked (named bubbles trials in the following; see Fig.
2C). The fraction of bubbles trials presented to a rat in any given daily
session varied between 0.4 and 0.75. To obtain enough statistical power
to extract the critical features underlying rat recognition, at least 3000
bubbles trials for each object were collected over the course of 16.3 � 4.4
sessions (rat group average � SD, n � 6).

Phase II: critical features underlying recognition of the transformed object
views. After having collected sufficient data to infer the critical fea-
tures used by rats to discriminate the default object views, the animals
were trained to tolerate variation in the appearance of the target
objects along a variety of transformation axes. The goal of this train-
ing was to engage those high-level visual processing mechanisms that,
at least in primates, allow preserving the selectivity for visual objects
in the face of identity-preserving object transformations (Zoccolan et

Figure 1. Visual stimuli and behavioral task. A, Default views (0° in-depth and in-plane rotation) of the two objects that rats were trained to discriminate during Phase I of the study (each object
default size was 35° of visual angle). B, Schematic of the object discrimination task. Rats were trained in an operant box that was equipped with an LCD monitor for stimulus presentation and an array
of three sensors. The animals learned to trigger stimulus presentation by licking the central sensor and to associate each object identity to a specific reward port/sensor (right port for Object 1 and
left port for Object 2). C, Some of the transformed views of the two objects that rats were required to recognize during Phase II of the study. Transformations included the following: (1) size changes;
(2) azimuth in-depth rotations; (3) horizontal position shifts; and (4) in-plane rotations. Azimuth rotated and horizontally shifted objects were also scaled down to a size of 30° of visual angle;
in-plane rotated objects were scaled down to a size of 32.5° of visual angle and shifted downward of 3.5°. Each variation axis was sampled more densely than shown in the figure: sizes were sampled
in 2.5° steps; azimuth rotations in 5° steps; position shifts in 4.5° steps; and in-plane rotations in 9° steps. This yielded a total of 78 object views. The red frames highlight the subsets of object views
that were tested in bubbles trials (Fig. 2).
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al., 2005, 2007; Li et al., 2009; Rust and DiCarlo, 2010; DiCarlo et al.,
2012). Four different transformations were tested (Fig. 1C), in the
following order: (1) size variations, ranging from 35° to 15° visual
angle; (2) azimuth rotations (i.e., in-depth rotations about the ob-
jects’ vertical axis), ranging from �60° to 60°; (3) horizontal position
changes, ranging from �18° to �18° visual angle; and (4) in-plane
rotations, ranging from �45° to �45°.

Size transformations were trained first, using an adaptive staircase
procedure that, based on the animal performance, updated the lower

bound of the range from which the object size was sampled (the upper
bound was fixed to the default value of 35° visual angle). Once the sizes’
lower bound reached a stable (asymptotic) value across consecutive
training sessions (i.e., 15° of visual angle), a specific size (i.e., 20° of visual
angle; Fig. 1C, see rightmost red frame in the top row) was chosen so that:
(1) its value was different (lower) enough from the default one; and (2)
most rats achieved �70% correct recognition for that value. Rats were
then presented with randomly interleaved regular trials (in which
unmasked objects could be shown across the full 15–35° size range)

Figure 2. The Bubbles method. A, Illustration of the Bubbles method, which consists of generating an opaque mask (fully black area) punctured by a number of randomly located
transparent windows (i.e., the bubbles; shown as white, circular clouds) and then overlapping the mask to the image of a visual object, so that only parts of the object remain visible. B,
Examples of the different degrees of occlusion of the default object views that were produced by varying the number of bubbles in the masks. C, Examples of trial types shown to the rats
at the end of experimental Phase I. The object default views were presented both unmasked and masked in randomly interleaved trials (named, respectively, regular and bubbles trials).
D, Examples of trial types shown during experimental Phase II, after the rats had learned to tolerate size and azimuth rotations. The animals were presented with interleaved regular and
bubbles trials. The former included all possible unmasked object views to which the rats had been exposed up to that point (i.e., size and azimuth changes), whereas the latter included
masked views of the �40° azimuth rotated objects.
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and bubbles trials (in which bubble masks were superimposed to the
20° scaled objects).

This same procedure was repeated for each of the other tested object
transformations. For instance, after having trained size variations and
having applied the Bubbles method to the 20° scaled objects, a staircase
procedure was used to train the rats to tolerate the azimuth rotations.
After reaching asymptotic azimuth values (i.e., �60°), two azimuth ro-
tations were chosen (using the same criteria outlined above) for applica-
tion of the Bubbles method: �40° and �20° (Fig. 1C, see red frames in
the second row). Again, regular trials (in which unmasked objects could
be shown across the full 15–35° size range and the full �60°/�60° azi-
muth range) were then presented interleaved with bubbles trials (in
which bubble masks were superimposed to either the �40° or the �20°
azimuth rotated objects; Fig. 2D).

After the azimuth rotations, position changes were trained (with bubble
masks applied to objects that were horizontally translated of �18° of
visual angle; see red frames in the third row of Fig. 1C) and then in-plane
rotations (with bubble masks applied to objects that were rotated of
�45°; Fig. 1C, see red frames in the fourth row). Noticeably, as explained
above, while a new transformation was introduced, the full range of
variation of the previously trained transformations was still shown to the
animal, with the result that the task became increasingly demanding in
terms of tolerance to variation in object appearance.

The staircase training along each transformation axis typically pro-
gressed very rapidly. On average, rats reached: (1) the asymptotic size
value in 1.2 � 0.4 sessions (mean � SD; n � 6); (2) the asymptotic
azimuth rotation values in 5.5 � 1.0 sessions (n � 6); (3) the asymptotic
position values in 2.8 � 1.9 sessions (n � 5); and (4) the asymptotic
in-plane rotation values in 2.0 � 0.0 sessions (n � 2). As for the default
object views, at least 3000 bubbles trials were collected for each of the
transformed views that were tested with the Bubbles method. This re-
quired, on average across rats: (1) 34.0 � 13.7 sessions (mean � SD; n �
6) for the 20° scaled view; (2) 40.1 � 19.5 sessions (n � 6) and 15.6 � 9.3
sessions (n � 5) for, respectively, the �40° and the �20° azimuth rotated
views; (3) 27.6 � 15.3 sessions (n � 5) and 14.0 � 5.2 sessions (n � 3) for,
respectively, the �18° and the �18° horizontally shifted views; and (4) 21
sessions (n � 1) and 20.5 � 14.9 sessions (n � 2) for, respectively, the
�45° and the �45° in-plane rotated views. In general, for each rat, bub-
bles trials could be collected only for a fraction of the seven transformed
views we planned to test (Fig. 1C, red frames). This was because the
overall duration of experimental Phase II varied substantially among rats,
depending on the following: (1) how many trials each animal performed
per session (this number approximately varied between 250 and 500); (2)
what fraction of trials were bubbles trials (this number, which ranged
between 0.4 and 0.75, had to be adjusted in a rat-dependent way, so to
avoid the performance in bubbles trials to drop below �10% less of the
performance in regular trials); and (3) the longevity of each animal (some
rats fell ill during the course of the experiment and had to be killed before
being able to complete the whole experimental phase).

All experimental protocols (from presentation of visual stimuli to col-
lection of behavioral responses) were implemented using the freeware,
open-source software package MWorks (http://mworks-project.org/).
An ad-hoc plugin was developed in C�� to allow MWorks building
bubbles masks and presenting them superimposed on the images of the
visual objects.

Data analysis
Computation of the saliency maps. The critical visual features underlying
rat recognition of a given object view were extracted by properly sorting
all the correct and incorrect bubbles trials obtained for that view. More
specifically, saliency maps were obtained that measured the correlation
between the transparency values of each pixel in the bubbles masks and
the behavioral responses. That is, saliency map values c i for each pixel i
were defined as follows:

c i �
xi � B

�xi�L1
, (1)

where xi is a vector containing the transparency values of pixel i across all
collected bubbles trials for a given object view; B is a binary vector coding

the behavioral outcomes on such trials (i.e., a vector with elements equal
to either 1 or 0, depending on whether the object view was correctly
identified or not); and �xi�L1 is the L1 norm of xi, i.e.:

�xi�L1
� �

n�1

N

�xn
i �, (2)

where N is the total number of collected bubbles trials. Throughout the
article, saliency maps are shown as grayscale masks superimposed to the
images of the corresponding object views, with bright/dark pixels indi-
cating regions that are salient/antisalient (i.e., likely/unlikely to lead to
correct identification of an object view when visible through the bubbles
masks) (e.g., see Figs. 3 and 6). For the sake of providing a clearer visu-
alization, the saliency values in each map are normalized by subtracting
their minimum value and dividing by their maximum value, so that all
saliency values are bounded between 0 and 1.

To show which pixels, in the image of a given object view, had a
statistically significant correlation with the behavior, the following per-
mutation test was performed. All the bubbles trials that had been col-
lected for that object view were divided in subsets, according to the
number of bubbles that were used in a trial (e.g., 10, 30, or 50 for a
top-performing rat; see previous section). Within each subset of trials
with the same number of bubbles, the behavioral outcomes (i.e., the
elements of vector B) were randomly shuffled. Chance saliency map
values ci were then computed according to Equation 1, but using the
shuffled vector B. Among all the chance saliency values, only those cor-
responding to pixels within the image of the object view were considered
(i.e., those corresponding to background pixels were discarded). This
yielded an average of 28,605 chance saliency values per object view. This
procedure was repeated 10 times, so as to obtain a null distribution of
saliency values for each object view.

Based on this null distribution, a one-tailed statistical test was per-
formed to find what values, in each saliency map, were significantly
higher than what obtained by chance ( p � 0.05), and, therefore, what
pixels, in the image, could be considered as significantly salient. Simi-
larly, significant antisalient pixels were found by looking for correspond-
ing saliency values that were significantly lower than that expected by
chance ( p � 0.05). Throughout the article, significantly salient regions of
an object view are shown in red, whereas antisalient regions are shown in
cyan (e.g., see Figs. 3 and 6).

Group average saliency maps and significant salient and antisalient
regions were obtained using the same approach described above, but
after pooling the bubbles trials obtained for a given object view across all
available rats (see Fig. 10).

Ideal observer analysis. Rats’ average saliency maps were compared
with the saliency maps obtained by simulating a linear ideal observer
(Gosselin and Schyns, 2001; Gibson et al., 2005; Vermaercke and Op de
Beeck, 2012). Given a bubble-masked input image, the simulated ob-
server classified it as being either Object 1 or Object 2, based on which of
the eight views of each object, to which the mask could have been applied
(shown by red frames in Fig. 1C), matched more closely (i.e., was more
similar to) the input image. In other words, the simulated ideal observer
performed a template-matching operation between each bubble-masked
input image and the 16 templates (i.e., eight views for each object) it had
stored in memory. The ideal observer was linear in that the template-
matching operation consisted of computing a normalized dot product
between each input images and each template. For better consistency
with the experiment, we chose as input images the bubbles trials pre-
sented to the rat that could be tested with all the eight object views (i.e.,
rat 3; see Fig. 6B). Also, to better match the actual retinal input to the rats,
each input image was low pass-filtered so that its spatial frequency con-
tent did not exceeded 1 cycles per degree (i.e., the maximal retinal reso-
lution of Long–Evans rats) (Keller et al., 2000; Prusky et al., 2002).
Finally, to lower the performance of the ideal observer and bring it close
to the performance of the rats, Gaussian noise (SD � 0.5 of the image
grayscale) was independently added to each pixel of the input images.
This assured that potential differences between rats’ and ideal observer’s
saliency maps were not merely the result of performance differences.
Crucially, this constraint did not force the recognition strategy of the
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ideal observer to be similar to the one used by rats (the ideal observer had
no knowledge of how rats responded to the bubble-masked input im-
ages). This was empirically assessed by running the ideal observer analy-
sis with different levels of noise added to the input images and verifying
that the resulting saliency maps did not substantially change as a function
of noise level (i.e., as a function of the ideal observer’s performance).
Saliency maps and significant salient and antisalient regions for the ideal
observer were obtained as described above for the rats (see previous
section).

Each rat group average saliency map was compared with the corre-
sponding map obtained for the ideal observer by computing their Pear-
son correlation coefficient. The significance of the correlation was
assessed by running a permutation test, in which the behavioral out-
comes of the bubbles trials were randomly shuffled 100 times for both the
average rat and the ideal observer, yielding 100 pairs of random rat-ideal
saliency maps. Computation of the Pearson correlation coefficient
between each pair of random maps yielded a null distribution of 100
correlation values, against which the statistical test was performed
with p � 0.05.

All data analyses were performed in Matlab (http://www.mathworks.
com).

Results
The goal of this study was to understand the visual processing
strategy underlying rat ability to recognize visual objects despite
substantial variation in their appearance (Zoccolan et al., 2009;
Tafazoli et al., 2012). To this aim, rats were trained in an object
recognition task that required them to discriminate two visual
objects under a variety of viewing conditions. An image masking
method known as bubbles (Gosselin and Schyns, 2001) was then
applied to a subset of the trained object views to infer what object
features rats relied upon to successfully recognize these views.
This approach not only revealed the complexity of rat recognition
strategy but also allowed tracking if and how such a strategy
varied across the different viewing conditions to which the ani-
mals were exposed.

Critical features underlying recognition of the default
object views
During the initial experimental phase, six Long–Evans rats were
trained to discriminate the default views (or appearances) of a
pair of visual objects (Fig. 1A). Details about the training/testing
apparatus and the behavioral task are provided in Materials and
Methods and Figure 1B. The animals were trained for 3–12 weeks
until they achieved �70% correct discrimination. Once this cri-
terion was reached, regular trials (i.e., trials in which the default
object views were shown unoccluded) started to be randomly
interleaved with bubbles trials (i.e., trials in which the default
object views were partially occluded by opaque masks punctured
by a number of circular, randomly located, semitransparent win-
dows; see Materials and Methods and Fig. 2C).

The rationale behind the application of the bubbles masks was
to make it harder for the rats to correctly identify an object, by
revealing only parts of it (Gosselin and Schyns, 2001; Gibson et
al., 2005, 2007) (see Fig. 2A). Obviously, the effectiveness of a
bubbles mask at impairing recognition of an object depended on
the position of the semitransparent bubbles (thus revealing what
object features a rat relied upon to successfully recognize the
object), but also on their size and number. Following previous
applications of the Bubbles method (Gosselin and Schyns, 2001;
Gibson et al., 2005), in our experiments the bubbles size was kept
fixed (i.e., set to 2° of visual angle), whereas their number was
adjusted so as to bring each rat performance in bubbles trials to be
�10% lower than in regular trials (this was achieved by randomly
sampling the number of bubbles in each trial either from a 10 –50

or from a 50 –90 range, according to the fluency of each animal in
the recognition task; see examples of bubbles masked objects in
Fig. 2B; see Materials and Methods). In the case of the default
object views tested during this initial experimental phase, rat av-
erage recognition performance dropped from �75% correct in
regular trials to �65% correct in bubbles trials (Fig. 3A).

The critical visual features underlying rat recognition of the
default object views were extracted by computing saliency maps
that measured the correlation between bubbles masks’ transpar-
ency values and rat behavioral responses, as done previously
(Gosselin and Schyns, 2001; Gibson et al., 2005) (see Materials
and Methods). For each rat, the resulting saliency maps are
shown in Figure 3B as grayscale masks superimposed on the im-
ages of the corresponding object views (with the brightness of
each pixel indicating the likelihood, for an object view, to be
correctly identified when that pixel was visible through the bub-
bles masks). Whether a saliency map value was significantly
higher or lower than expected by chance was assessed through a
permutation test at p � 0.05 (see Materials and Methods). This
led to the identification of significantly salient and antisalient
regions in the images of the default object views (Fig. 3B, red and
cyan patches, respectively). These regions correspond to those
objects’ parts that, when visible through the masks, likely led,
respectively, to correct identification and misidentification of the
object views.

Visual inspection of the patterns of salient and antisalient re-
gions obtained for the different rats revealed several key aspects of
rat object recognition strategy. In the case of Object 1, salient and
antisalient regions were systematically located within the same
structural parts of the object (Fig. 3B, top row). Namely, for all
rats, salient regions were contained within the larger, top lobe,
whereas antisalient regions lay within the smaller, bottom lobes.
Therefore, despite some variability in the size and compactness of
the salient and antisalient regions (e.g., compare the large, single
salient region found for rats 2 and 5 with the smaller, scattered
salient patches observed for rats 3 and 4), the perceptual strategy
underlying recognition of Object 1 was highly preserved across
subjects.

In contrast, a substantial intersubject variability was observed
in the saliency patterns obtained for Object 2 (Fig. 3B, bottom
row). Although the central part of the object (at the intersection
of the three lobes) tended to be consistently antisalient across rats
and the salient regions were always located within the peripheral
part (the tip) of one or more lobes, the combination and the
number of salient lobes varied considerably from rat to rat. For
instance, rats 2 and 3 relied on a single lobe (the upper-left one),
whereas rats 1, 4, and 6 relied on the combination of the upper-
left and bottom lobes, and rat 5 relied on all three lobes. More-
over, some lobe (e.g., the bottom one) was salient for some
animal, but fully (rat 2) or partially (rat 4) antisalient for some
other.

The larger intersubject diversity in the pattern of salient and
antisalient features that was found for Object 2, compared with
Object 1, is not surprising, given the different structural complex-
ity of the two objects. Indeed, Object 2 is made of three fully
visible, clearly distinct, and approximately equally sized lobes,
whereas the three lobes of Object 1 are highly varied in size, with
the smaller, bottom lobes that are partially overlapping and
therefore harder to distinguish. As a consequence, Object 2 af-
fords a larger number of distinct structural parts, compared with
Object 1, hence a larger number of “perceptual alternatives” to be
used for its correct identification. As such, the saliency patterns
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obtained for Object 2 are more revealing of the complexity and
diversity of rat recognition strategies.

Specifically, our data suggest that rat recognition will typically
rely on a combination of multiple object features, as long as those
features are, structure-wise, distinct enough to be parsed by the
rat visual system. This is demonstrated by the fact that four out of
six rats recognized Object 2 based on a combination of at least
two significantly salient lobes. In addition, for the two remaining
rats, saliency map values were high (i.e., bright) not only in the
significantly salient upper-left lobe, but also in one (rat 2) or
more (rat 3) additional lobes (although they did not reach signif-

icance in these lobes, except in a very
small, point-like patch of the upper-right
lobe, in the case of rat 2, and of the bottom
lobe, in the case of rat 3). Overall, this sug-
gests that rats naturally tend to adopt a
shape-based, multifeatural processing
strategy, rather than a lower-level strategy,
based on detection of a single image patch.
In particular, the fact that salient features
were found in both the upper and lower
half of Object 2 (together with the obser-
vation that salient and antisalient features
were typically found in the upper lobes of
both objects; e.g., see rat 5) rules out the
possibility that rat recognition was based
on detection of very low-level stimulus
properties, such as the amount of lumi-
nance in the lower or upper half of the
stimulus display (Minini and Jeffery,
2006).

Recognition of the transformed
object views
After the critical features underlying rec-
ognition of the default object views were
uncovered (Fig. 3B), each rat was further
trained to recognize the target objects de-
spite substantial variation in their appear-
ance. Namely, objects were transformed
along four different variation axes: size,
in-depth azimuth rotation, horizontal po-
sition, and in-plane rotation (the trained
ranges of variation are shown in Fig. 1C).
These transformations were introduced
sequentially (i.e., size variation was

trained first, followed by azimuth, then by position, and finally by
in-plane variation) and each of them was trained gradually, using
a staircase procedure (see Materials and Methods). Rats reached
asymptotic values along these variation axes very quickly (i.e., in
�1–5 training sessions, depending on the axis; see Materials and
Methods), which is consistent with their recently demonstrated
ability to spontaneously generalize their recognition to novel ob-
ject views (Zoccolan et al., 2009; Tafazoli et al., 2012) (see Discus-
sion). Once the animals reached a stable, asymptotic value along
a given transformation axis, one or two pairs of transformed

Figure 3. Critical features underlying recognition of the default object views. A, Rat group average performance at discriminating the default object views was significantly lower in bubbles trials
(light gray bar) than in regular trials (dark gray bar): p � 0.001 (one-tailed, paired t test). Both performances were significantly higher than chance: ****p � 0.0001 (one-tailed, unpaired t test).
Error bars indicate SEM. B, For each rat, the saliency maps resulting from processing the bubbles trials collected for the default object views are shown as grayscale masks superimposed on the images
of the objects. The brightness of each pixel indicates the likelihood, for an object view, to be correctly identified when that pixel was visible through the bubbles masks. Significantly salient and
antisalient object regions (i.e., regions that were significantly positively or negatively correlated with correct identification of an object; p � 0.05; permutation test) are shown, respectively, in red
and cyan.

Figure 4. Recognition performance of the transformed object views. Rat group average recognition performance over
the four variation axes along which the objects were transformed. Gray and black symbols represent performances in,
respectively, regular and bubbles trials that were collected over the course of the same testing sessions of experimental
Phase II (see Materials and Methods). Solid and open symbols represent performances that were, respectively, significantly
and nonsignificantly higher than chance: A–C, p � 0.0001 (one-tailed, unpaired t test); D, p � 0.05 (one-tailed, unpaired
t test). Error bars indicate SEM.
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object views along that axis were chosen
for further testing with the bubbles masks
(these pairs are marked by red frames in
Fig. 1C). Such views were chosen so as to
be different enough from the objects’ de-
fault views yet still recognized with a per-
formance close to 70% correct by most
animals. Rats were then presented with
randomly interleaved bubbles trials (in
which these transformed views were
shown with superimposed bubble masks)
and regular trials (in which unmasked ob-
jects were randomly sampled across all the
variation axes tested up to that point; e.g.,
see Fig. 2D). A total of seven different
pairs of transformed object views were
chosen for testing with bubbles masks
(Fig. 1C), although, because of across-rat
variation in longevity and fluency in the
invariant recognition task (see Materials
and Methods), all animals but one (rat 3)
were tested only with a fraction of them.

Rat average recognition performance
was significantly higher than chance for
almost all tested object transformations
(Fig. 4), typically ranging from �70% to
�80% correct, and dropping �70% cor-
rect only for some extreme transforma-
tions (Fig. 4, gray lines). This confirmed
that rat recognition is remarkably robust
against variation in object appearance, as re-
cently reportedbytwostudies (Zoccolanetal.,
2009; Tafazoli et al., 2012). As previously observed in the case of the
default views (Fig. 3A), rat performance at recognizing the transformed
object views was generally 5–15% lower in bubbles trials than in regular
trials (see Fig. 4, black diamonds).

Rat average reaction time (RT) was �850 ms for the default
object views. RT increased gradually (almost linearly) as object
size became smaller (reaching �950 ms for the smallest size; see
Fig. 5A). A gradual (albeit not as steep) increase of RT was also
observed along the other variation axes, with RT reaching � 900
ms for the most extreme azimuth rotations (Fig. 5B), position
shifts (Fig. 5C), and in-plane rotations (Fig. 5D). Overall, the
smooth increase of RT as a function of the transformation mag-
nitude and the fact that such an increase was at most �50 ms
(with the exception of the smallest sizes) strongly suggest that rats
did not make stimulus-triggered saccades (or head movements)
to compensate for the retinal transformations the objects under-
went. Indeed, it is well established that, in primates, target-
oriented saccades have a latency of at least 200 ms (saccadic
latency, i.e., the interval between the time when the decision is
made to move the eyes and the moment when the eye muscles are
activated) (Melcher and Colby, 2008). Therefore, it is reasonable
to assume that in rats, which move their eyes much less frequently
than primates do (Chelazzi et al., 1989; Zoccolan et al., 2010), the
saccadic latency should have at least the same magnitude (no data
are available in the literature because no evidence of target-
oriented saccades has ever been reported in rodents). As a conse-
quence, if rats made target-oriented saccades to, for example,
adjust their gaze to the visual field locations of the target objects,
a much larger and abrupt increase of the RT would have been
observed for the horizontally shifted views (relative to the default
views), compared with that shown in Figure 5C. Rather, the grad-

ual increase of RT as a function of the transformation magnitude
is consistent with the recognition task becoming gradually harder
and, therefore, requiring an increasingly longer processing time
(as revealed by the overall agreement between the trends shown
in Figs. 4 and 5). Among the tested transformations, size reduc-
tions had the strongest impact on RT, probably because substan-
tially longer processing times were required to compensate for
the loss of shape details in the smallest object views (given rat
poor visual acuity).

Critical features underlying recognition of the transformed
object views
The critical features underlying rat recognition of a transformed
view were extracted by properly processing all the correct and
incorrect bubbles trials obtained for that view (see previous sec-
tion and Materials and Methods). This yielded saliency maps
with highlighted significantly salient and antisalient regions that
revealed if and how each animal recognition strategy varied
across the different viewing conditions to which it was exposed
(Fig. 6).

As previously reported for the default object views (Fig. 3B), a
larger intersubject variability was observed in the patterns of crit-
ical features obtained for Object 2 compared with Object 1.
Namely, although for most rats a single and compact salient re-
gion was consistently found in the larger, top lobe of Object 1,
regardless of the transformation the object underwent (Fig.
6A–C, odd rows), in the case of Object 2 not only different rats
relied on different combinations of salient lobes, but for some
rats such combinations varied across the transformed object
views (Fig. 6A–C, even rows). Therefore, the saliency patterns
obtained for Object 2 were more revealing of the diversity and

Figure 5. RTs along the variation axes. Rat group average RTs over the four variation axes along which the objects were
transformed. RTs were measured across all the sessions performed by each rat during experimental Phase II (see Materials and
Methods) and then averaged across rats. Error bars indicate SEM. Panels A–D refer to size variations (A), azimuth rotations (B),
horizontal position shifts (C), and in-plane rotations (D).
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stability of rat recognition strategies in the face of variation in
object appearance.

For some rats, all the lobes used to discriminate the default
view of Object 2 remained salient across the whole set of trans-
formations the object underwent (Fig. 6A, yellow arrows). This
was particularly striking in the case of rat 5, which consistently
relied on all three lobes of Object 2 as salient features across all
tested transformations. Rat 6 showed a similarly consistent rec-
ognition strategy, although it relied only on two salient lobes (the
upper-left and bottom ones). Also in the case of rat 3, the single

salient lobe that was used for recognition of the default object
view (the upper-left one) remained salient for all the subse-
quently tested transformed views (Fig. 6B, yellow arrows). In this
case, however, the bottom lobe, which only contained a point-
like hint of a salient patch in the default view, emerged as a
prominent salient feature when the animal had to face size
variations, and remained consistently salient for all the ensu-
ing transformations (Fig. 6B, white arrows). In still other
cases, lobes that were originally used by a rat to discriminate
Object 2’s default view became no longer salient for some of

Figure 6. Critical features underlying recognition of the transformed object views. For each rat, the saliency maps (with highlighted significantly salient and antisalient regions; same color code
as in Fig. 3B) that were obtained for each transformed object view are shown. Maps obtained for different rats are grouped in different panels according to their stability across the tested views. A,
For rats 5 and 6, the same pattern of salient features (i.e., lobes’ tips) underlay recognition of all the views of Object 2 (see yellow arrows). B, For rat 3, one salient feature (i.e., the tip of the upper-left
lobe) was preserved across all tested views of Object 2 (see yellow arrows), whereas a second feature (i.e., the tip of the bottom lobe) became salient after the animal started facing variation in object
appearance (see white arrows). C, For rats 1, 2, and 4, features that underlay recognition of Object 2 ’s default view became no longer salient for some of the transformed views (see yellow circles)
and were replaced by other salient features.
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the transformed views (Fig. 6C, yellow circles) and were re-
placed by other salient lobes.

In summary, half of the rats showed a remarkably stable rec-
ognition strategy (Fig. 6A,B) in the face of variation in object
appearance, with the same combination of salient object parts
(i.e., lobes) being relied upon across all (Fig. 6A) or most (Fig. 6B)
object views. The other half of the rats showed a more variable
recognition strategy, based on view-specific salient features’ pat-
terns (Fig. 6C). Such a difference in the stability of the recognition
strategies may reflect a different ability of rats to spontaneously
generalize their recognition to novel object appearances (thus
consistently relying on the same salient features), without the
need to explicitly learn the associative relations between different
views of an object (Tafazoli et al., 2012) (see Discussion).

Crucially, regardless of its stability across transformations, rat
recognition strategy relied on a combination of at least two dif-
ferent salient features for most tested views of Object 2 (i.e., in 26
out of 34 cases). Because these features are located in structurally
distinct parts of the object (i.e., distinct lobes), and, in all cases, in
both its lower and upper half, this strongly suggests that rats are
able to process global shape information and extract multiple
structural features that are diagnostic of object identity. Such a
shape-based, multifeatural processing strategy not only rules out
a previously proposed low-level account of rat visual recognition
in terms of luminance detection in the lower half of the stimulus
display (Minini and Jeffery, 2006) but also suggests that rats are
able to integrate shape information over much larger portions of
visual objects (virtually, over a whole object) than reported by a
recent study (Vermaercke and Op de Beeck, 2012).

However, having assessed that rats are able to process global
shape information does not imply, per se, that they are also capa-
ble of an advanced transformation-tolerant (or invariant) recog-
nition strategy. Indeed, having excluded one very low-level
account of rat object vision (Minini and Jeffery, 2006) does not
automatically rule out that some other low-level recognition
strategies may be at work when rats have to cope with variation in
object appearance. For instance, rats could rely on detection of
some object feature(s) that is (are) largely preserved (in terms of
position, size, and orientation) across the tested object transfor-
mations. This would result in higher-than-chance recognition of
the transformed object views, without the need for rats to form
and rely upon higher-level, transformation-tolerant object fea-
tures’ representations. This is not a remote possibility, since re-
cent computational work has shown that even large databases of
pictures of natural objects (commonly used by vision and com-
puter vision scientists to probe invariant recognition) often do
not contain enough variation in each object appearance to re-
quire engagement of higher-level, truly invariant recognition
mechanisms (Pinto et al., 2008). This is especially true if objects
do not undergo large enough changes in position over the image
(e.g., retinal) plane (Pinto et al., 2008).

Assuring that the transformations we applied to the objects
produced enough variation in the appearance of the objects’ di-
agnostic features is particularly crucial in this study, since many
transformations (i.e., size changes, azimuth rotations, and in-
plane rotations) did not alter the position of the objects over the
stimulus display; therefore, the images of many object views sub-
stantially overlapped (see examples in Fig. 7). As a consequence,
the possibility that a given object feature partially retained its
position/size/orientation cannot be excluded (Pinto et al., 2008).
One could argue that, despite object position being unchanged
over the stimulus display, some amount of trial-by-trial variation
in the retinal position of the object views was likely present. In-

deed, stimulus presentation was not conditional upon fixation of
a dot (given that rats, differently from primates, cannot be
trained to make target-oriented saccades toward a fixation dot);
therefore, rat gaze direction was not necessarily reproducible
from trial to trial. However, the few data available in the literature
show that rat gaze tends to be very stable over long periods of time
and typically comes back to a default, “resting” position after the
rarely occurring saccades (Chelazzi et al., 1989; Zoccolan et al.,
2010). Therefore, it is not safe to assume that across-trial varia-
tions in the retinal position of the object views would prevent rat
recognition to be based on some transformation-preserved diag-
nostic features. Rather than relying on such an assumption, we
explicitly tested whether diagnostic features existed that re-
mained largely unchanged across the transformations the object
underwent (see next section). We tested this, assuming the “worst
case scenario” that rat gaze was fully stable across trials and,
therefore, no trial-by-trial variation in the retinal position of the
object views diminished their overlap in the visual field of the
animals.

No transformation-preserved diagnostic features can explain
rat invariant recognition
As a way to inspect whether any diagnostic object feature existed that
was consistently preserved across the tested object transformations,
the saliency maps obtained for different pairs of object views were
superimposed and the overlap between pairs of significantly salient
regions assessed. In fact, the existence of transformation-preserved
features that are diagnostic of object identity would result in a large,
systematic overlap between the significantly salient regions obtained
for different object views. Examples of superimposed patterns of
salient regions obtained for two or more object views are shown in
Figure 7 (for clarity, the salient regions of different object views are
depicted in different colors and the corresponding views are shown
in the background).

In the case of Object 1, the lobe in which the salient region was
located (the top one) was so large that, despite the transforma-
tions the object underwent, a substantial portion of it always
occupied the same area within the image plane (i.e., the stimulus
display). As a consequence, a substantial overlap was typically
observed between the salient regions obtained for different views
of the object (see Fig. 7A–C, orange patches in the top rows).
However, not only such an overlap was not complete, but, for
same pairs of object views, was minimal (e.g., see default vs azi-
muth left-rotated view, or default vs in-plane rotated views for rat
3, Fig. 7C, top row) and, in the case of the horizontally shifted
views, it was null (see Fig. 7B,C, leftward- vs rightward-shifted
views in the top rows).

As previously observed, in the case of Object 2, the larger
number of smaller and distinct structural parts (compared with
Object 1) resulted in a richer variety of patterns of multiple salient
features, each located at the tip of a lobe. Such tips typically oc-
cupied different, non-overlapping portions of the image plane
when the object underwent size, rotation, and position changes.
As a consequence, the overlapping between salient features ob-
tained for different views was null or minimal (see Fig. 7A–C,
bottom rows). Noticeably, the lack of overlap was observed not
only when a salient lobe was replaced by a different one, after a
given transformation (e.g., see default vs azimuth left-rotated
view, or default vs in-plane rotated view for rat 2 in Fig. 7B), but
also when the same lobe remained salient across multiple object
views (e.g., see the non-overlapping red and yellow patches in the
object’s left lobe for rats 5 and 3 in Fig. 7A,C). These examples
exclude that rat recognition of Object 2 may have relied on some
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transformation-preserved feature that was diagnostic of the ob-
ject’s identity across all or most of the tested views.

To further assess whether rat recognition strategy was more
consistent with a high-level, transformation-tolerant representa-
tion of diagnostic features or, rather, with low-level detection of
some transformation-preserved image patches, we measured the
overlap between the salient features obtained for all possible pairs
of object views produced by affine transformations (i.e., all tested

object views with the exclusion of in-depth azimuth rotations).
The overlap was computed for both: (1) raw salient features’
patterns, in which the image planes containing the salient fea-
tures of the views to compare were simply superimposed (Fig. 8A,
left plot, second row); and (2) aligned salient features’ patterns, in
which the transformations that produced the two object views
were “undone” (or reversed), so as to perfectly align one view on
top of the other (e.g., in the case of the comparison between the

Figure 7. Overlap between the salient features obtained for different views of an object. Several pairs/triplets of views of Object 1 and Object 2 are shown superimposed, together with their
salient features, to allow appreciating whether, and to what extent, such features overlapped. The salient features are the same as those shown in Figure 6, only here are shown in either yellow or
red, to distinguish the features obtained, respectively, for the default and the transformed views. The orange patches indicate the overlap between the salient features of two different views in a
pair/triplet. A, Rat 5. B, Rat 2. C, Rat 3.
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default and the horizontally translated views shown in Fig. 8A,
the latter was shifted back to the center of the screen and scaled
back to 35°, so as to perfectly overlap with the default view; Fig.
8A, right plot, second row). The overlap was quantified as the
ratio between overlapping area and overall area of the signifi-
cantly salient regions of the two object views (Nielsen et al., 2006)
(e.g., as the ratio between the orange area and the sum of the red,
yellow, and orange areas in Fig. 8A, second row).

The resulting pairs of raw and aligned overlap values obtained
for all tested combinations of object views are shown in Figure 8B
(circles and diamonds refer, respectively, to pairs of views of Ob-
ject 1 and Object 2). Similarly to what was done by Nielsen et al.
(2006), the significance of each individual raw and aligned over-
lap was assessed through a permutation test, in which the salient

regions of each object view in a pair were randomly shifted within
the minimum bounding box enclosing each view. As illustrated
by the example shown in Figure 8A, in the case of the raw overlap,
the bounding boxes enclosing the two views partially overlapped
(Fig. 8A, left plot, compare the white frames in the third row),
whereas in the case of the aligned overlap, by construction, the
bounding boxes enclosing the two views were coincident (Fig.
8A, right plot, single white frame in the third row). Null distribu-
tions of raw and aligned overlap values were obtained by running
1000 permutation loops, and the significance of the measured
raw and aligned overlaps was assessed at p � 0.05 (significance is
coded by the shades of gray filling the symbols in Fig. 8B).

For most pairs of object views (71 out of 76), the overlap
between salient features was higher in the aligned than in the raw

Figure 8. Raw versus aligned features’ overlap for all pairs of object views. A, Illustration of the procedure to compute the raw and aligned overlap between the salient features’ patterns obtained
for two different views of an object. The default and the leftward horizontally shifted views of Object 1 are used as examples (first row). To compute the raw features’ overlap, these two object views
(and the corresponding features’ patterns) were simply superimposed (second row, left plot), as previously done in Figure 7. To compute the aligned features’ overlap, the transformation that
produced the leftward horizontally shifted view was reversed. That is, the object was shifted to the right of 18° and scaled back to 35°, so to perfectly overlap with the default view of the object itself
(second row, right plot). In both cases, the overlap was computed as the ratio between the orange area and the sum of the red, yellow, and orange areas. The significance of the overlap was assessed
by randomly shifting the salient regions of each object view within the minimum bounding box enclosing each view (see Results). Such bounding boxes are shown as white frames in the third row
of the figure, for both the raw and aligned views. B, The raw features’ overlap is plotted against the aligned features’ overlap for each pair of views of Object 1 (circles) and Object 2 (diamonds)
resulting from affine transformations (i.e., position/size changes and in-plane rotations). The shades of gray indicate whether the raw or/and the aligned overlap values were significantly larger than
expected by chance ( p � 0.05).
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case (Fig. 8B). Namely, the average overlap between aligned views
was 0.30 � 0.01 (mean � SEM), whereas the average overlap
between raw views was 0.07 � 0.01, with the former being signif-
icantly higher than the latter (p � 0.0001; significance was as-
sessed through a paired permutation test, in which the sign of the
difference between aligned and raw overlap for each pair of views
was randomly assigned in 10,000 permutation loops).

The larger overlap found for aligned versus raw views was
particularly striking in the case of Object 2, with most raw overlap
values being zero and the average overlap being one order of
magnitude larger for aligned than raw views (i.e., 0.30 � 0.02 vs
0.01 � 0.00; such a difference was statistically significant at p �
0.0001, paired permutation test). Moreover, in the large majority
of cases (30 out of 38), the aligned overlap was significantly
higher than expected by chance (see Fig. 8B, black and dark gray
diamonds), whereas the raw overlap was significantly higher than
chance only for a few pairs of object views (2 out of 38; see Fig. 8B,
black diamonds). This confirmed that the transformations Ob-
ject 2 underwent were large enough to displace its diagnostic
features in non-overlapping regions of the stimulus display
(hence, the zero or close-to-zero salient features’ overlap ob-
served for the raw views), thus preventing rats from relying on
any transformation-preserved feature to succeed in the invariant
recognition task (see also Fig. 7). At the same time, the large and
significant salient features’ overlap found for the aligned views of
Object 2 indicates that the same structural parts were deemed
salient for most of the object’s views the rats had to face, thus
suggesting that rats truly had to rely on some transformation-
tolerant representation of these diagnostic structural features.

In the case of Object 1, in agreement with the examples shown
in Figure 7, the overlap between raw views was considerably
larger, compared with that obtained for Object 2 (Fig. 8B, com-
pare circles and diamonds). However, in most cases, the overlap
between aligned views was higher than the corresponding overlap
between raw views (i.e., 33 out of the 38 circles are in the lower
quadrant in Fig. 8B) and, in several cases, the raw overlap was
zero or close to zero. As a result, the average overlap was signifi-
cantly larger for aligned than raw views (i.e., 0.30 � 0.02 vs 0.13 �
0.02; p � 0.0001, paired permutation test). This suggests that,
although a salient feature existed that was partially preserved
across many tested views, rat strategy was nevertheless more con-
sistent with “tracking” that feature (i.e., its position, size, orien-
tation) across the transformations Object 1 underwent, rather
than merely relying on the portion of that feature that remained
unchanged across such transformations. This observation, to-
gether with the fact that the same feature was relied upon also
when shifted in nonoverlapping locations of the stimulus display
(as in the case of the horizontally translated views), indicates that
also recognition of Object 1 was more consistent with a high-
level, transformation-tolerant representation of diagnostic
features, rather than with low-level detection of some
transformation-preserved luminance patch. Finally, the fraction
of overlap values that were significantly higher than expected by
chance was similarly small for both the raw (8 out of 38) and the
aligned (9 out of 38) views of Object 1 (Fig. 8B), gray and black
circles). This reflects the fact that relatively large overlaps were
produced by chance in the permutation test (given the large area
occupied by Object 1 ’s salient regions), thus making the thresh-
old to reach significance higher than in the case of Object 2. This
confirms that the saliency regions/maps obtained for Object 2
were, in general, more powerful to understand the complexity of
rat recognition strategy compared with the ones obtained for
Object 1.

As mentioned above, the comparison between raw and
aligned overlap was performed for all pairs of views, with the
exception of those produced by in-depth azimuth rotations. In
fact, the in-depth rotations revealed portions of the objects that
were not visible under the other viewing conditions. This made
pointless to compute the aligned overlap between an azimuth
rotated object view and another view because, even if both views
were aligned to the same reference view, their diagnostic features
would occupy parts of the object that could not possibly fully
overlap. However, it was still possible (and meaningful) to com-
pute the raw overlap between the salient features obtained for an
azimuth rotated view and any other view of an object. This
yielded 50 raw overlap values per object (one for each pair of
views obtained by including an azimuth rotation), with an aver-
age raw overlap of 0.28 � 0.02 (mean � SEM) for Object 1 and
0.05 � 0.01 for Object 2. Crucially, only a small fraction of these
overlap values were significantly larger than expected by chance
(13 out of 50 and 6 out of 50 in the case, respectively, of Object 1
and Object 2). Together with the small average overlap observed
for Object 2, this confirmed that, also in the case of the in-depth
rotated views, rat recognition could not simply be accounted by
detection of some transformation-preserved luminance patch.

Noticeably, the overlap analysis described above was per-
formed under the “worst case scenario” assumption that rat gaze
was stable across trials and, therefore, the relative position of two
raw views on the retina matched their relative position on the
stimulus display (see previous section). Any deviation from this
assumption (i.e., any possible across-trial variability in rat gaze
direction) could only reduce the overlap between a pair of raw
views on the retina. Therefore, for any given pair of views, the raw
overlap reported in Figure 8B actually represents an upper bound
of the possible raw retinal overlap. Finding that such an upper
bound was, in general, lower than the overlap between aligned
views, guarantees that, regardless of the stability of rat gaze direc-
tion, no trivial recognition strategy (based on detection of some
transformation-preserved diagnostic features) underlay rat rec-
ognition behavior.

As a further assessment of the complexity of rat recognition
strategy in the face of variation in object appearance, we checked
whether any salient feature underlying recognition of Object 1
overlapped with a salient feature underlying recognition of Ob-
ject 2. The rationale behind this analysis is that, if the features that
are salient for a view of Object 1 and a view of Object 2 do overlap,
then the area of the overlap within the stimulus display (i.e., the
animal’s visual field) cannot, per se, be diagnostic of the identity
of any object. This, in turn, implies that rats must definitely adopt
a strategy that goes beyond associating high luminance in a given
local region of the display with a given object identity; they need
to take into account the shape (e.g., size, orientation, aspect ratio)
of that high luminance region and, possibly, rely on the presence
of additional diagnostic regions (i.e., salient features) to success-
fully identify the object to which that region belongs. As shown in
Figure 9, several cases could indeed be found, in which one of the
salient features (red patches) located in the top lobes of Object 2
overlapped with the salient feature (yellow patch) located in the
top lobe of Object 1 (the overlapping area is shown in orange).

Overall, the overlap analyses shown in Figures 7, 8, and 9
indicate that rat invariant recognition of visual objects does not
trivially rely on detection of some transformation-preserved ob-
ject features that are diagnostic of object identity across multiple
object views. Instead, rat recognition appears to be consistent
with the existence of high-level neuronal representations of visual
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objects that are largely tolerant to substantial variation in the
appearance of the objects’ diagnostic features.

Comparison between the critical features’ patterns obtained
for the average rat and a simulated ideal observer
Having found that rats are capable of an advanced, shape-based
and transformation-tolerant recognition strategy raises the ques-
tion of just how optimal such strategy is, given the amount of
discriminatory information a pair of visual objects (each pre-
sented under many different viewing conditions) affords. To ad-
dress this issue, we built a linear ideal observer and we extracted
the critical features underlying its recognition of the same
bubble-masked images that had been presented to one of the rats.
The simulated observer was ideal because it had stored in mem-
ory, as templates, the eight views each object could take (i.e., Fig.
1C, red frames) and was linear because it classified each bubble-
masked input image as being either Object 1 or Object 2, based on
which of these templates had the highest correlation with the
image itself (see Materials and Methods). Given its full access to
all possible appearances the objects could take, the ideal observer,
by construction, was able to perform optimally in the invariant
recognition task and, as such, its recognition strategy represents
an upper, optimal bound.

The saliency maps obtained for the ideal observer were com-
pared with rat group average saliency maps (i.e., the maps ob-
tained by pooling the bubbles trials collected for a given object
view across all available rats). Such group average maps summa-
rized rat invariant recognition strategy in a way that was more
robust to noise (given the larger number of trials on which they
were based) and more suitable for comparison with the ideal
observer, because idiosyncratic aspects of individual rat strategies
were averaged out, whereas the features that were more consis-
tently relied upon across subjects emerged more clearly. As a
result, the patterns of critical features extracted from the average
saliency maps (Fig. 10A,B, top rows, red and cyan patches) were
a cleaner version of what observed at the level of individual rats
(Fig. 6). For Object 1, a large salient region (covering most of the
upper lobe) and a smaller antisalient region (covering the bottom
part of the lower lobes) were found (Fig. 10A, top row). For
Object 2, different combinations of salient features (located at the

tips of the lobes) and a large antisalient area (located at the lobes’
intersection) were found (Fig. 10B, top row).

These patterns of critical features bore many similarities, but
also some key differences, with those obtained for the ideal ob-
server (Fig. 10A,B, bottom rows). The structural parts in which
the salient and antisalient features were located were largely the
same for the rats and the ideal observer. However, in the case of
Object 1, the salient region in the upper lobe was fragmented and
smaller for the ideal observer, compared with the average rat,
whereas the antisalient region was larger, extending from the
bottom lobes to the upper one, and branching in two arms that
resembled an outline of Object 2 (Fig. 10A, compare top and
bottom rows). In the case of Object 2, the location and size of the
salient features found for the ideal observer and the average rat
closely matched, although the salient region in the bottom lobe
was larger for the ideal observer and typically extended over the
lobes’ intersection, at the expense of the central antisalient region,
which was smaller and restricted to the base of the upper lobes
(Fig. 10B, compare top and bottom rows). For any given object
view, the similarity between the saliency maps obtained for the
average rat and the ideal observer was quantified by computing
the Pearson correlation coefficient (r values are reported under
each pair of saliency maps in Fig. 10). Such a correlation was
significantly higher than expected by chance for four out of eight
views of Object 1 and for all the views of Object 2 (p � 0.05;
permutation test; see Materials and Methods).

Overall, this comparison shows that rat recognition strategy was
highly consistent with that of the ideal observer and, as such, relied
on close-to-optimal use of the discriminatory information afforded
by the two objects across their various appearances. At the same
time, it is interesting to note that where rat strategy departed from
the ideal one was mainly because it better parsed the structure of the
objects. That is, objects’ structural parts, such as the upper lobe of
Object 1, were considered salient as a whole by rats, whereas the
ideal observer carved the negative image of Object 2 out of Object
1, even if this operation resulted in a critical features’ pattern that
did not match the natural boundary of Object 1 ’s upper lobe (see
Discussion for possible implications).

In general, the pattern of critical features found for the view of
a given object closely resembled the negative image of the pattern

Figure 9. Overlap between the salient features obtained for exemplar views of Object 1 and Object 2. Several examples in which one or more salient features of Object 2 (red patches located at
the tips of the upper and bottom lobes) overlapped with the salient feature located in the upper lobe of Object 1 (yellow patch). Overlapping regions are shown in orange.
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of visual features found for the matching view of the other object.
This was more apparent for the ideal observer (because of the
above-mentioned carving of the silhouette of Object 2 out of
Object 1), but it was true also in the case of rat recognition strat-
egy. Indeed, all the saliency maps obtained for matching views of
the two objects in Figures 6 and 10 show a clear phase opponency.
This was quantified, in the case of the ideal observer and the
average rat, by computing the Pearson correlation coefficient be-
tween saliency maps of matching object views. Most correlation
coefficients ranged between �0.6 and �0.8 (Table 1) and were all
significantly lower than expected by chance (p � 0.05; permuta-
tion test; see Materials and Methods), thus showing that the
saliency maps of matching object views were strongly anticorre-
lated, for both the average rat and the ideal observer. Although
the average correlation coefficient was larger for the average rat
than for the ideal observer (�0.76 � 0.03 vs �0.66 � 0.04), such
a difference was not significantly larger than expected by chance
(p � 0.5, paired permutation test). Overall, this suggests that the
phase opponency of the saliency maps obtained for matching
views of the two objects is a property of rat recognition strategy
that is fully consistent with extraction of the optimal discrimina-
tory information afforded by the tested objects’ views.

Discussion
In this study, we investigated the perceptual strategy underlying
rat invariant recognition of visual objects, by exploiting an image
classification technique known as the Bubbles method (Gosselin

and Schyns, 2001; Gibson et al., 2005, 2007; Nielsen et al., 2006,
2008; Vermaercke and Op de Beeck, 2012). This approach uncov-
ered four key aspects of rat recognition strategy.

First, when it comes to recognize a given objet view, rats ap-
pear to rely on most or all the distinct structural parts that object
view affords (Fig. 6). Second, for many rats, the recognition strat-
egy was remarkably stable in the face of variation in object ap-
pearance. That is, in many cases, the combination of diagnostic
structural parts a rat relied upon was the same across all or most
of the object views the animal faced (Fig. 6A,B). Third, no trivial
low-level strategies (e.g., relying on transformation-preserved di-
agnostic features; see Figs. 7, 8, and 9) could account for rat
invariant recognition behavior. Fourth, the critical features’ pat-
terns underlying rat recognition strategy closely (although not
fully; see Results) matched those obtained for a simulated ideal
observer engaged in the same invariant recognition task (Fig. 10).
Overall, these findings imply that rats: (1) do process global shape
information and make close-to-optimal use of the array of diag-
nostic features an object is made of; and (2) do so, in a way that is
largely tolerant to variation in the appearance of diagnostic object
features across a variety of transformation axes.

Comparison with previous studies
Our findings directly compare with those of two recent studies
(Minini and Jeffery, 2006; Vermaercke and Op de Beeck, 2012).
Minini and Jeffery (2006) found that rats did not process global
shape information and relied, instead, on luminance in the lower

Figure 10. Critical features’ patterns obtained for the average rat and a simulated ideal observer. Rat group average saliency maps, with highlighted significantly salient (red) and antisalient
(cyan) features (A, B, top rows), are compared with the saliency maps obtained for a linear ideal observer (A, B, bottom rows). For each object view, the Pearson correlation coefficient between the
saliency maps obtained for the average rat and the ideal observer is reported below the corresponding maps. *p � 0.05, significant correlation (permutation test).

Table 1. Phase opponency of the saliency maps obtained for matching views of Object 1 and Object 2a

Default Size Azimuth left Azimuth right Position left Position right In-plane left In-plane right

Average rat �0.80* �0.66* �0.82* �0.90* �0.76* �0.67* �0.76* �0.75*
Ideal observer �0.43* �0.61* �0.63* �0.60* �0.68* �0.76* �0.77* �0.78*
aPearson correlation coefficients between the saliency maps obtained for matching views of Object 1 and Object 2 (i.e., the same maps shown in Figure 10). For both the average rat and the ideal observer, the correlation coefficients were
all negative and significantly lower than expected by chance.

*p � 0.05, permutation test.
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half of the stimulus display to discriminate two geometrical shapes (a
square and a triangle). Vermaercke and Op de Beeck (2012) also
concluded that rats discriminate squares and triangles by re-
lying on their bottom part, unless this part is largely occlud-
ed— hence, the authors’ conclusion that rats are capable of a
mid-level, context-dependent recognition strategy.

Our findings not only contradict the low-level account of rat
visual processing provided by Minini and Jeffery (2006), but also
argue in favor of an invariant, shape-based, multifeatural recog-
nition strategy that is more advanced than concluded by
Vermaercke and Op de Beeck (2012). Such a discrepancy can be
explained by several key methodological differences between
these previous studies and ours.

First, in our study, we used renderings of 3D object models
that were made of several structural parts, as opposed to the
simple, planar geometrical shapes used in these previous studies.
Our findings show that the complexity of rat recognition strategy
closely matches the structural complexity of the object to process
(see Results and Fig. 6). Therefore, the squares and triangles used
in these previous studies simply lacked the structural complexity
to properly probe advanced visual shape processing.

Second, in our experiments, rats were required to tolerate
large variation in object appearance along a variety of transfor-
mation axes, whereas in these previous studies, a much smaller
number of simpler transformations was tested; only position
changes were tested by Vermaercke and Op de Beeck (2012). As
previously suggested (Minini and Jeffery, 2006; Zoccolan et al.,
2009), the extended training in a challenging, invariant recogni-
tion task was likely crucial to engage rat more advanced shape-
processing abilities in our study.

Finally, these previous studies used a two-alternative forced-
choice procedure that requires the animals to compare two si-
multaneously presented visual objects, which may consistently
differ in some low-level visual feature, even across transformed
views, especially if both objects are equally transformed. Notice-
ably, this is the case of Vermaercke and Op de Beeck (2012), in
which, when position tolerance was tested, not only both target
shapes were simultaneously presented to the rats and shifted of
the same amount, but they were also covered by the same pattern
of occluding bubbles. Therefore, the shapes could have been eas-
ily discriminated by adopting such a low-level strategy as looking
for the stimulus that was brighter in its lower part. As a conse-
quence, the conclusions of Vermaercke and Op de Beeck (2012),
although useful to explain the findings of Minini and Jeffery
(2006), cannot be taken as a general assessment of rat invariant
recognition abilities. By contrast, in our study, each transformed
object view was presented in isolation, and a rat had to implicitly
compare it to all other possible transformed views of the other
object to succeed in the task. This forced the subjects to perform
a truly transformation-tolerant recognition task, which could
hardly be solved by relying on low-level image cues.

Validity and limitations of our findings
One limitation of our study is that we did not probe pure gener-
alization of rat recognition to novel object views. This requires
withholding feedback (e.g., reward) to the rats about the correct-
ness of their response, which can only be done in a small fraction
of trials (Zoccolan et al., 2009). However, very likely, rat recog-
nition of the transformed views mainly resulted from generaliz-
ing rather than learning/memorizing each individual view. This
speculation is based on three arguments. First, two previous stud-
ies (Zoccolan et al., 2009; Tafazoli et al., 2012) have rigorously
established that rats do spontaneously generalize their recogni-

tion to novel appearances of visual objects across many different
transformations axes/ranges (including those tested in this
study). Second, rat progression along each transformation axis
during the staircase training was very quick, in some case requir-
ing a single training session (see Materials and Methods). Third,
bubbles trials were randomly interleaved with regular trials, in
which objects were sampled from any of the variation axes to
which a rat had been exposed. For instance, when bubbles were
applied to in-plane rotations, any of 78 possible different views
could be presented in a regular trial, which makes it highly un-
likely that rats memorized each of them. Moreover, the bubbles
masks themselves produced large changes in object appearance.
Crucially, masks varied randomly across trials, thus making even
more unlikely for rats to memorize each object appearance.

Another potential limitation of our study is that rat gaze was
not monitored. However, our study was appositely designed so
that the lack of precise eye control did not affect our conclusions.
First, rat recognition strategy was recovered by a method that, by
its very nature, is not only alternative but superior to eye-tracking
in revealing the visual information correlated with behavioral
outcomes (Schyns et al., 2002; Murray, 2011; Jack et al., 2012);
none of the behavioral studies that has previously applied the
Bubbles method in humans, avian, and rodents has made use of
eye-tracking or fixation dots (Gosselin and Schyns, 2001; Gibson
et al., 2005; Vermaercke and Op de Beeck, 2012). Second, with the
exception of position shifts, none of the transformations the ob-
jects underwent in our study could be undone by compensatory
eye movements (i.e., saccades). Although size changes and in-
plane rotations could, in principle, be compensated by head
movements, rat head position was highly reproducible/stable
across trials (see Materials and Methods). This guaranteed full
control over stimulus size and in-plane rotation. Azimuth rota-
tion was equally well controlled, given that viewpoint changes
were virtual. Finally, position shifts too were unlikely to be com-
pensated by saccades. Indeed, the increase of RT as a function of
stimulus position was so gradual and small (Fig. 5C) to exclude
that rats, after the trial onsets, made target-oriented saccades to
bring the horizontally shifted stimuli always in the same retinal
position. This, by itself, is a very remote possibility because rats
do not have a fovea (Paxinos, 2004), saccade much less frequently
than primates do (Chelazzi et al., 1989; Zoccolan et al., 2010), and
no evidence of target-oriented saccades has even been reported in
rodents. Finally, although we cannot exclude possible (unmea-
sured) trial-by-trial variations in the retinal position of the object
views (caused by across-trial variations in rat gaze direction),
such variations would make the recognition task even more (not
less) demanding in terms of tolerance to variation in object ap-
pearance. This, in turn, would make even less likely for rats to rely
on some low-level strategy to succeed in the recognition task.
Therefore, the lack of gaze monitoring in our study could only
result in an underestimation (not an overestimation) of rat in-
variant shape-processing abilities (e.g., see the overlap analysis
shown in Fig. 8).

Open questions and future developments
One interesting open question is whether primates (humans and
monkeys) would adopt a recognition strategy that is similar to the
strategy found for rats, when required to discriminate the same
object views that were tested in this study. Such a comparison is
beyond the scope of this study, but it is worth speculating what
features of the recognition task used for the rats would need to be
adjusted to avoid primate performance to saturate at 100% cor-
rect, given their superior visual processing abilities. Based on
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previous studies (Gosselin and Schyns, 2001; Gibson et al., 2007;
Serre et al., 2007; Nielsen et al., 2008; Vermaercke and Op de
Beeck, 2012), this could be achieved as follows: (1) by increasing
the amount of occlusion of the target objects (i.e., reducing the
number of bubbles); and/or (2) by reducing the stimulus presen-
tation time to a few tens of milliseconds; and/or (3) by applying a
backward noise mask, after presentation of each bubbles masked
stimulus. A combination of these approaches would allow keep-
ing primate performance on bubbles trials close to 75% correct,
which is ideal to recover stimulus saliency maps with the Bubbles
method (Gosselin and Schyns, 2001).

Another interesting question is how rat recognition strategy
would compare with the strategy of different simulated observers
(e.g., in the presence of noise added at the level of the response/
decision, rather than at the level of the input images). In general,
the effect of different kinds of noise on the outcome of the Bub-
bles method has not been investigated in the literature. A thor-
ough analysis of this issue is beyond the scope of this study.
However, we have run preliminary simulations showing that the
method is, indeed, robust (i.e., consistently retrieves the same
diagnostic features), even in the presence of response-based noise
(i.e., when the responses of the simulated observer in a fraction of
trials are fully random and stimulus-unrelated), provided that
perceptual noise is also present (e.g., the pixel-level Gaussian
noise that was added to the input images in our simulated ideal
observer; see Materials and Methods). Finally, it would also be
interesting to compare the complexity of rat recognition strategy
with that of state-of-the-art computational models of the visual
system and machine vision algorithms (e.g., Serre et al., 2007;
Pinto et al., 2008, 2009).

In conclusion, over the past five years, a new tide of studies, en-
compassing behavior (Zoccolan et al., 2009; Busse et al., 2011; Meier
et al., 2011; Histed et al., 2012; Tafazoli et al., 2012; Vermaercke and
Op de Beeck, 2012), imaging (Greenberg et al., 2008; Sawinski et al.,
2009; Andermann et al., 2011; Bonin et al., 2011; Marshel et al.,
2011), and electrophysiology/anatomy (Van Hooser et al., 2006;
Niell and Stryker, 2008, 2010; Gao et al., 2010; Wang et al., 2011; Kerr
and Nimmerjahn, 2012), has reignited the interest for the use of
rodent models in vision research (Van Hooser and Nelson, 2006;
Huberman and Niell, 2011; Niell, 2011). However, it remains un-
clear to what extent the rodent visual system can support advanced,
shape-based processing of visual objects. To our knowledge, our
study provides the most compelling evidence, to date, that rats pro-
cess visual objects through rather advanced, shape-based,
transformation-tolerant mechanisms. As such, given the powerful
array of experimental approaches that are available in rats (Ohki et
al., 2005; Lee et al., 2006; Sawinski et al., 2009), this model system will
likely become a valuable tool in the study of the neuronal mecha-
nisms underlying object vision.

References
Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC (2011)

Functional specialization of mouse higher visual cortical areas. Neuron
72:1025–1039. CrossRef Medline

Bonin V, Histed MH, Yurgenson S, Reid RC (2011) Local diversity and
fine-scale organization of receptive fields in mouse visual cortex. J Neu-
rosci 31:18506 –18521. CrossRef Medline

Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB, Schölvinck ML, Zaharia
AD, Carandini M (2011) The detection of visual contrast in the behav-
ing mouse. J Neurosci 31:11351–11361. CrossRef Medline

Chelazzi L, Rossi F, Tempia F, Ghirardi M, Strata P (1989) Saccadic eye
movements and gaze holding in the head-restrained pigmented rat. Eur
J Neurosci 1:639 – 646. CrossRef Medline

DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual
object recognition? Neuron 73:415– 434. CrossRef Medline

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in
the primate cerebral cortex. Cereb Cortex 1:1– 47. CrossRef Medline

Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia L,
Barber S, Cioffi GA (2004) Selective ganglion cell functional loss in rats
with experimental glaucoma. Invest Ophthalmol Vis Sci 45:1854 –1862.
CrossRef Medline

Gao E, DeAngelis GC, Burkhalter A (2010) Parallel input channels to mouse
primary visual cortex. J Neurosci 30:5912–5926. CrossRef Medline

Gibson BM, Wasserman EA, Gosselin F, Schyns PG (2005) Applying Bub-
bles to localize features that control pigeons’ visual discrimination behav-
ior. J Exp Psychol Anim Behav Process 31:376 –382. CrossRef Medline

Gibson BM, Lazareva OF, Gosselin F, Schyns PG, Wasserman EA (2007)
Nonaccidental properties underlie shape recognition in mammalian and
nonmammalian vision. Curr Biol 17:336 –340. CrossRef Medline

Gosselin F, Schyns PG (2001) Bubbles: a technique to reveal the use of in-
formation in recognition tasks. Vision Res 41:2261–2271. CrossRef
Medline

Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of on-
going neuronal activity in the visual cortex of awake rats. Nat Neurosci
11:749 –751. CrossRef Medline

Histed MH, Carvalho LA, Maunsell JH (2012) Psychophysical measure-
ment of contrast sensitivity in the behaving mouse. J Neurophysiol 107:
758 –765. CrossRef Medline

Huberman AD, Niell CM (2011) What can mice tell us about how vision
works? Trends Neurosci 34:464 – 473. CrossRef Medline

Jack RE, Garrod OG, Yu H, Caldara R, Schyns PG (2012) Facial expressions
of emotion are not culturally universal. Proc Natl Acad Sci U S A 109:
7241–7244. CrossRef Medline

Jacobs GH, Fenwick JA, Williams GA (2001) Cone-based vision of rats for
ultraviolet and visible lights. J Exp Biol 204:2439 –2446. Medline

Keller J, Strasburger H, Cerutti DT, Sabel BA (2000) Assessing spatial vision:
automated measurement of the contrast-sensitivity function in the
hooded rat. J Neurosci Methods 97:103–110. CrossRef Medline

Kerr JN, Nimmerjahn A (2012) Functional imaging in freely moving ani-
mals. Curr Opin Neurobiol 22:45–53. CrossRef Medline

Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in
freely moving rats. Neuron 51:399 – 407. CrossRef Medline

Li N, Cox DD, Zoccolan D, DiCarlo JJ (2009) What response properties do
individual neurons need to underlie position and clutter “invariant” ob-
ject recognition? J Neurophysiol 102:360 –376. CrossRef Medline

Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev
Neurosci 19:577– 621. CrossRef Medline

Marshel JH, Garrett ME, Nauhaus I, Callaway EM (2011) Functional spe-
cialization of seven mouse visual cortical areas. Neuron 72:1040 –1054.
CrossRef Medline

Meier P, Flister E, Reinagel P (2011) Collinear features impair visual detec-
tion by rats. J Vis. 11:3. CrossRef Medline

Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci
12:466 – 473. CrossRef Medline

Minini L, Jeffery KJ (2006) Do rats use shape to solve “shape discrimina-
tions?” Learn Mem 13:287–297. CrossRef Medline

Murray RF (2011) Classification images: a review. J Vis. 11:5. CrossRef
Medline

Naarendorp F, Sato Y, Cajdric A, Hubbard NP (2001) Absolute and relative
sensitivity of the scotopic system of rat: electroretinography and behavior.
Vis Neurosci 18:641– 656. CrossRef Medline

Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate
visual system. Nat Rev Neurosci 10:360 –372. CrossRef Medline

Niell CM (2011) Exploring the next frontier of mouse vision. Neuron 72:
889 – 892. CrossRef Medline

Niell CM, Stryker MP (2008) Highly selective receptive fields in mouse vi-
sual cortex. J Neurosci 28:7520 –7536. CrossRef Medline

Niell CM, Stryker MP (2010) Modulation of visual responses by behavioral
state in mouse visual cortex. Neuron 65:472– 479. CrossRef Medline

Nielsen KJ, Logothetis NK, Rainer G (2006) Discrimination strategies of
humans and rhesus monkeys for complex visual displays. Curr Biol 16:
814 – 820. CrossRef Medline

Nielsen K, Logothetis NK, Rainer G (2008) Object features used by humans
and monkeys to identify rotated shapes. J Vis 8:9 1–15. CrossRef Medline

Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging
with cellular resolution reveals precise micro-architecture in visual cor-
tex. Nature 433:597– 603. CrossRef Medline

Alemi-Neissi, Rosselli et al. • Advanced Shape Processing in Rats J. Neurosci., April 3, 2013 • 33(14):5939 –5956 • 5955

http://dx.doi.org/10.1016/j.neuron.2011.11.013
http://www.ncbi.nlm.nih.gov/pubmed/22196337
http://dx.doi.org/10.1523/JNEUROSCI.2974-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22171051
http://dx.doi.org/10.1523/JNEUROSCI.6689-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21813694
http://dx.doi.org/10.1111/j.1460-9568.1989.tb00369.x
http://www.ncbi.nlm.nih.gov/pubmed/12106121
http://dx.doi.org/10.1016/j.neuron.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22325196
http://dx.doi.org/10.1093/cercor/1.1.1-a
http://www.ncbi.nlm.nih.gov/pubmed/1822724
http://dx.doi.org/10.1167/iovs.03-1411
http://www.ncbi.nlm.nih.gov/pubmed/15161850
http://dx.doi.org/10.1523/JNEUROSCI.6456-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20427651
http://dx.doi.org/10.1037/0097-7403.31.3.376
http://www.ncbi.nlm.nih.gov/pubmed/16045392
http://dx.doi.org/10.1016/j.cub.2006.12.025
http://www.ncbi.nlm.nih.gov/pubmed/17275301
http://dx.doi.org/10.1016/S0042-6989(01)00097-9
http://www.ncbi.nlm.nih.gov/pubmed/11448718
http://dx.doi.org/10.1038/nn.2140
http://www.ncbi.nlm.nih.gov/pubmed/18552841
http://dx.doi.org/10.1152/jn.00609.2011
http://www.ncbi.nlm.nih.gov/pubmed/22049334
http://dx.doi.org/10.1016/j.tins.2011.07.002
http://www.ncbi.nlm.nih.gov/pubmed/21840069
http://dx.doi.org/10.1073/pnas.1200155109
http://www.ncbi.nlm.nih.gov/pubmed/22509011
http://www.ncbi.nlm.nih.gov/pubmed/11511659
http://dx.doi.org/10.1016/S0165-0270(00)00173-4
http://www.ncbi.nlm.nih.gov/pubmed/10788664
http://dx.doi.org/10.1016/j.conb.2011.12.002
http://www.ncbi.nlm.nih.gov/pubmed/22237048
http://dx.doi.org/10.1016/j.neuron.2006.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16908406
http://dx.doi.org/10.1152/jn.90745.2008
http://www.ncbi.nlm.nih.gov/pubmed/19439676
http://dx.doi.org/10.1146/annurev.ne.19.030196.003045
http://www.ncbi.nlm.nih.gov/pubmed/8833455
http://dx.doi.org/10.1016/j.neuron.2011.12.004
http://www.ncbi.nlm.nih.gov/pubmed/22196338
http://dx.doi.org/10.1167/11.3.22
http://www.ncbi.nlm.nih.gov/pubmed/21454857
http://dx.doi.org/10.1016/j.tics.2008.09.003
http://www.ncbi.nlm.nih.gov/pubmed/18951831
http://dx.doi.org/10.1101/lm.84406
http://www.ncbi.nlm.nih.gov/pubmed/16705141
http://dx.doi.org/10.1167/11.5.2
http://www.ncbi.nlm.nih.gov/pubmed/21536726
http://dx.doi.org/10.1017/S0952523801184142
http://www.ncbi.nlm.nih.gov/pubmed/11829310
http://dx.doi.org/10.1038/nrn2619
http://www.ncbi.nlm.nih.gov/pubmed/19352403
http://dx.doi.org/10.1016/j.neuron.2011.12.011
http://www.ncbi.nlm.nih.gov/pubmed/22196324
http://dx.doi.org/10.1523/JNEUROSCI.0623-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18650330
http://dx.doi.org/10.1016/j.neuron.2010.01.033
http://www.ncbi.nlm.nih.gov/pubmed/20188652
http://dx.doi.org/10.1016/j.cub.2006.03.027
http://www.ncbi.nlm.nih.gov/pubmed/16631590
http://dx.doi.org/10.1167/8.2.9
http://www.ncbi.nlm.nih.gov/pubmed/18318635
http://dx.doi.org/10.1038/nature03274
http://www.ncbi.nlm.nih.gov/pubmed/15660108


Orban GA (2008) Higher order visual processing in macaque extrastriate
cortex. Physiol Rev 88:59 – 89. CrossRef Medline

Paxinos G (2004) The rat nervous system. San Diego: Academic.
Pinto N, Cox DD, DiCarlo JJ (2008) Why is real-world visual object recog-

nition hard? PLoS Comput Biol 4:e27. CrossRef Medline
Pinto N, Doukhan D, DiCarlo JJ, Cox DD (2009) A high-throughput

screening approach to discovering good forms of biologically inspired
visual representation. PLoS Comput Biol 5:e1000579. CrossRef Medline

Prusky GT, Harker KT, Douglas RM, Whishaw IQ (2002) Variation in vi-
sual acuity within pigmented, and between pigmented and albino rat
strains. Behav Brain Res 136:339 –348. CrossRef Medline

Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas
in invariant visual object and face recognition. Neuron 27:205–218.
CrossRef Medline

Rust NC, DiCarlo JJ (2010) Selectivity and tolerance (“invariance”) both
increase as visual information propagates from cortical area V4 to IT.
J Neurosci 30:12978 –12995. CrossRef Medline

Sawinski J, Wallace DJ, Greenberg DS, Grossmann S, Denk W, Kerr JN
(2009) Visually evoked activity in cortical cells imaged in freely moving
animals. Proc Natl Acad Sci U S A 106:19557–19562. CrossRef Medline

Schyns PG, Bonnar L, Gosselin F (2002) Show me the features! Understand-
ing recognition from the use of visual information. Psychol Sci 13:402–
409. CrossRef Medline

Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for
rapid categorization. Proc Natl Acad Sci U S A 104:6424 – 6429. CrossRef
Medline

Tafazoli S, Di Filippo A, Zoccolan D (2012) Transformation-tolerant object
recognition in rats revealed by visual priming. J Neurosci 32:21–34.
CrossRef Medline

Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neu-
rosci 19:109 –139. CrossRef Medline

Thomas BB, Samant DM, Seiler MJ, Aramant RB, Sheikholeslami S, Zhang K,
Chen Z, Sadda SR (2007) Behavioral evaluation of visual function of rats
using a visual discrimination apparatus. J Neurosci Methods 162:84 –90.
CrossRef Medline

Van Hooser SD, Nelson SB (2006) The squirrel as a rodent model of the
human visual system. Vis Neurosci 23:765–778. CrossRef Medline

Van Hooser SD, Heimel JA, Chung S, Nelson SB (2006) Lack of patchy
horizontal connectivity in primary visual cortex of a mammal without
orientation maps. J Neurosci 26:7680 –7692. CrossRef Medline

Vermaercke B, Op de Beeck HP (2012) A multivariate approach reveals the
behavioral templates underlying visual discrimination in rats. Curr Biol
22:50 –55. CrossRef Medline

Wang Q, Gao E, Burkhalter A (2011) Gateways of ventral and dorsal streams
in mouse visual cortex. J Neurosci 31:1905–1918. CrossRef Medline

Zoccolan D, Cox DD, DiCarlo JJ (2005) Multiple object response normal-
ization in monkey inferotemporal cortex. J Neurosci 25:8150 – 8164.
CrossRef Medline

Zoccolan D, Kouh M, Poggio T, DiCarlo JJ (2007) Trade-off between object
selectivity and tolerance in monkey inferotemporal cortex. J Neurosci
27:12292–12307. CrossRef Medline

Zoccolan D, Oertelt N, DiCarlo JJ, Cox DD (2009) A rodent model for the
study of invariant visual object recognition. Proc Natl Acad Sci U S A
106:8748 – 8753. CrossRef Medline

Zoccolan D, Graham BJ, Cox DD (2010) A self-calibrating, camera-based
eye tracker for the recording of rodent eye movements. Front Neurosci
4:193. CrossRef Medline

5956 • J. Neurosci., April 3, 2013 • 33(14):5939 –5956 Alemi-Neissi, Rosselli et al. • Advanced Shape Processing in Rats

http://dx.doi.org/10.1152/physrev.00008.2007
http://www.ncbi.nlm.nih.gov/pubmed/18195083
http://dx.doi.org/10.1371/journal.pcbi.0040027
http://www.ncbi.nlm.nih.gov/pubmed/18225950
http://dx.doi.org/10.1371/journal.pcbi.1000579
http://www.ncbi.nlm.nih.gov/pubmed/19956750
http://dx.doi.org/10.1016/S0166-4328(02)00126-2
http://www.ncbi.nlm.nih.gov/pubmed/12429395
http://dx.doi.org/10.1016/S0896-6273(00)00030-1
http://www.ncbi.nlm.nih.gov/pubmed/10985342
http://dx.doi.org/10.1523/JNEUROSCI.0179-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20881116
http://dx.doi.org/10.1073/pnas.0903680106
http://www.ncbi.nlm.nih.gov/pubmed/19889973
http://dx.doi.org/10.1111/1467-9280.00472
http://www.ncbi.nlm.nih.gov/pubmed/12219805
http://dx.doi.org/10.1073/pnas.0700622104
http://www.ncbi.nlm.nih.gov/pubmed/17404214
http://dx.doi.org/10.1523/JNEUROSCI.3932-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22219267
http://dx.doi.org/10.1146/annurev.ne.19.030196.000545
http://www.ncbi.nlm.nih.gov/pubmed/8833438
http://dx.doi.org/10.1016/j.jneumeth.2006.12.010
http://www.ncbi.nlm.nih.gov/pubmed/17289151
http://dx.doi.org/10.1017/S0952523806230098
http://www.ncbi.nlm.nih.gov/pubmed/17020632
http://dx.doi.org/10.1523/JNEUROSCI.0108-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16855096
http://dx.doi.org/10.1016/j.cub.2011.11.041
http://www.ncbi.nlm.nih.gov/pubmed/22209530
http://dx.doi.org/10.1523/JNEUROSCI.3488-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21289200
http://dx.doi.org/10.1523/JNEUROSCI.2058-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16148223
http://dx.doi.org/10.1523/JNEUROSCI.1897-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17989294
http://dx.doi.org/10.1073/pnas.0811583106
http://www.ncbi.nlm.nih.gov/pubmed/19429704
http://dx.doi.org/10.3389/fnins.2010.00193
http://www.ncbi.nlm.nih.gov/pubmed/21152259

	Multifeatural Shape Processing in Rats Engaged in Invariant Visual Object Recognition
	Introduction
	Materials and Methods
	Results
	Critical features underlying recognition of the default object views
	Recognition of the transformed object views
	Discussion
	Comparison with previous studies
	Validity and limitations of our findings

	Open questions and future developments
	References

