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THE BIGGER PICTURE Electrical stimulation of the optic nerve can allow the restoration of lost visual func-
tions in an effective and clinically exploitable way. To achieve this goal, it is crucial to develop a suitable
approach to target selectively nerve fiber subpopulations thatmediate different sensations but share similar
locations in the nerve. In the present work, we use a simple computational model of the primate visual sys-
tem to show that it is possible to optimize the stimulation at the level of the optic nerve to replicate a pattern
of activity in a cortical region, producing, at the same time, reliable sensations. This result could produce
nerve stimulation patterns that exploit the convergent nature of the visual system to ‘‘correct’’ the represen-
tation error introduced at the nerve level. In the long term, this would lead to eliciting naturalistic sensations
from non-intuitive protocols that exploit machine learning to overcome the technological limits of nerve in-
terfaces.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Optic nerve electrical stimulation is a promising technique to restore vision in blind subjects. Machine
learning methods can be used to select effective stimulation protocols, but they require a model of the stim-
ulated system to generate enough training data. Here, we use a convolutional neural network (CNN) as a
model of the ventral visual stream. A genetic algorithm drives the activation of the units in a layer of the
CNN representing a cortical region toward a desired pattern, by refining the activation imposed at a layer rep-
resenting the optic nerve. To simulate the pattern of activation elicited by the sites of an electrode array, a
simple point-source model was introduced and its optimization process was investigated for static and dy-
namic scenes. Psychophysical data confirm that our stimulation evolution framework produces results
compatible with natural vision. Machine learning approaches could become a very powerful tool to optimize
and personalize neuroprosthetic systems.
INTRODUCTION

The feasibility of neuroprosthetic devices aiming at sensory

restoration via nerve electrical stimulation has been shown in

the past years by both acute and chronic clinical tests for

touch,1–4 proprioception,5 and vision6,7 restoration. In partic-

ular, optic nerve stimulation can elicit controllable visual re-
This is an open access article under the CC BY-N
sponses in subjects who exhibit outer retinal degeneration dis-

eases and cannot be implanted with a retinal device.6,7

Concurrently, optic nerve implants are less invasive than

cortical implants and could allow control of the sensations eli-

cited inside a wide portion of the visual field with a modest

number of stimulation sources, in contrast to cortical and

retinal implants.6,8
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However, the effectiveness of a neuroprosthetic device de-

pends on the possibility of identifying the best stimulation pa-

rameters, an optimization process living in a huge search space.

The current approach has been to restrict the attention to

‘‘reasonable’’ stimulation protocols. In Raspopovic et al.,1 a sim-

ple amplitude modulation was applied to a sensor readout, and

the corresponding intensity profile was used as a waveform for

the stimulating sites. A more complex alternative, which we will

call the ‘‘biomimetic approach,’’ aims at replicating as loyally

as possible the natural patterns of activation of the targeted

nerves.9,10

The state-of-the-art biomimetic approaches, nonetheless,

limit themselves to extracting some very general, a priori features

from the simulated afferent activity, using them to modulate

stimulation. These methods operate thus an ‘‘open loop,’’ as

they assume that if an appropriate model of nerve activation is

available, the activity in the nerve and thus in all the downstream

regions in a sensory system will be replicated. The main limita-

tion of this approach is given by the imperfect selectivity of the

current stimulation technology, which allows only the concurrent

stimulation of bundles of neighboring fibers, and introduces an

unavoidable error in the replication of nerve activation patterns.

One idea to quantify and correct this systematic bias would be

to ‘‘close the loop,’’ checking the proposed stimulation patterns

with their effect on neural activation at the level of the nerve or of

more downstream regions. Nonetheless, comparing the artifi-

cially elicited neural activation with a natural target, one needs

to be able to record peripheral nerve activity with single-fiber res-

olution, which is currently an open challenge. Because it is

instead possible to achieve single-unit recordings in the cortex

using a microelectrode array, we could monitor the effects of

nerve stimulation and produce nerve-stimulation protocols that

activate it toward a natural pattern of activation. This new idea

of ‘‘closing the loop on the cortex’’ could also lead to ‘‘non-bio-

mimetic,’’ optimal stimulation protocols. It is indeed possible that

imperfect selectivity of current neural interfaces may cause the

existence of stimulation patterns that are suboptimal in the repli-

cation of nerve activation but produce better replication of more

downstream (i.e., cortical) activation patterns, because of the

high degree of convergence along the sensory stream. More-

over, as higher layers in the cortex encode more complex fea-

tures, it could be easier to produce stimulation patterns that

exploit low-dimensional stimulation protocols to reproduce

complex sensations. The natural framework for the required

multipolar optimization is provided by machine learning (ML)

techniques, whose need for a large amount of training data

can be mitigated, in this case, through the definition of an appro-

priatemodel of the sensory processing hierarchy and of the stim-

ulation procedure. Exploiting the controllability of such a model,

we can also compare our idea of closing the loop on the cortex to

the experimentally infeasible ‘‘closing the loop on the nerve,’’

which produces the stimulation protocols that replicate best

nerve activation. This last proposed strategy can be thought of

as the ideal, unattainable, best-case scenario for the biomimetic

approach.

The primate visual system involved in object recognition

(ventral visual pathway)11–13 is constituted by a hierarchy of vi-

sual processing areas in the cortex that produce more and

more complex representations of the external world. Before
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entering the cortex, visual information is transduced to electrical

signals by approximately a hundred million (in humans) photore-

ceptors14 and, after being processed by the retinal circuits, en-

ters into the optic nerve through the axons of retinal ganglion

cells (approximately a million in humans).15 Since more than a

hundred million (in humans) neurons are present in the primary

visual cortex (V1),16 the optic nerve strongly constrains the infor-

mation that can be conveyed to the cortex acting as an anatom-

ical bottleneck.

Recently, convolutional neural networks (CNNs)17–19 have

emerged as promisingmodels of the visual system (and in partic-

ular the ventral stream),11 allowing the simulation of the natural

single-unit cortical response to ecological visual stimuli. In our

study, we exploited a CNN variation proposed by Lindsey and

colleagues,20 which includes a single, very-low-dimensional hid-

den layer whose units are meant to explicitly represent optic

nerve fibers (wewill call it the ‘‘optic nerve’’ layer in the following).

The downstream layers, instead, aremeant to represent different

‘‘cortical’’ layers.20

We simulated the technological limitations of current neural

interfaces by introducing a model of ‘‘imperfect-selectivity’’

control of activation. The stimulation is applied by a number of

current sources—representing the active sites of a generic intra-

neural electrode—characterized by a location in the optic nerve

section and by an intensity value. The optic nerve excitation

pattern is obtained assuming that the nerve is a homogeneous

isotropic medium. The corresponding activation pattern is ob-

tained by passing the excitation values through a sigmoidal

non-linearity compatible with the inputs expected by the optic

nerve layer in our CNN model, which simulates the typical

sigmoidal frequency-current characteristic of neurons. The

described simple framework produces activation patterns natu-

rally clustered around the stimulating sources. To assess the

influence of this constraint on our stimulation optimization rou-

tines, we also implemented a ‘‘perfect-selectivity’’ control strat-

egy, where we control perfectly the activity of single optic

nerve fibers.

We then used an evolutionary heuristic to optimize the stimu-

lation pattern applied to the optic nerve layer of the network.

Simple evolutionary heuristics have been already used, for

example, to craft input stimuli to a very simple CNN in order to

replicate the activation of the last hidden layer of the network.21

They are robust to modifications of the underlying models

because they have been conceived to optimize black-box func-

tions, and they allow adding constraints to the optimization pro-

cess straightforwardly. In our study, a visual scene is input to the

CNN and produces an activation pattern in the target cortical

layer. Our ML framework computes the ‘‘artificial’’ activation

that should be imposed at the optic nerve layer in order to repli-

cate the target cortical activation pattern. It does so by evolving a

population of candidate stimulations along a given number of

generations, from an initial random population. The fitness of a

candidate stimulation is given by the distance between the

cortical activation obtained by applying it to the optic nerve layer

and a target cortical activation. At each generation, the best-

fitting individual candidates are retained and merged to a set

of random perturbations of the best individuals (mutated individ-

uals) and a set of random individuals (immigrants). Retaining the

best-fitting individuals allowsmaintaining thememory of the best
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Figure 1. Abstract formulation of the optimization problem
(A) ‘‘Traditional biomimetic’’ approach, in which the electrical stimulation is computed ‘‘open loop,’’ using global features of a simulated nerve activation pattern.

(B) ‘‘Closing the loop on the nerve’’ approach, in which the stimulation optimization ‘‘loop’’ is closed on nerve activation (ideal best-case scenario for the bio-

mimetic approach). Such methods could lead to important error amplification because of sensory stream high non-linearity.

(C) Our ‘‘closing the loop on the cortex’’ approach, where the stimulation optimization loop is closed on cortical activation.
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stimulation ever produced, and the relative sizes of the mutated

and immigrant populations regulate the trade-off between global

exploration and local exploitation.

After a given number of generations, we obtain a ‘‘best candi-

date’’ stimulation protocol, which produces the most similar

target activation patter. We assess ex-post the quality of such

reconstruction, comparing the classification produced by the

network for both the natural and the best candidate stimulation.

If they coincide, we have the two stimulations that produce pat-

terns of activation interpreted as being produced by the same

class of stimuli; i.e., they are ‘‘perceptually’’ equivalent.

Because the stimulus to be replicated does not change during

the evolution time, we call the above optimization settings ‘‘static

landscape’’ optimization. In addition to this static landscape

optimization problem, we simulated ‘‘natural vision’’ experi-

ments by proposing two ‘‘dynamic landscape’’ settings, where

the stimulus to be reconstructed periodically changes. We pro-

posed adequate turnover strategies in our evolutionary heuristic

that can deal with such time-varying visual stimuli.

We have shown that it is possible to exploit a model of the vi-

sual system to evolve optic nerve stimulation patterns that repli-

cate the chosen region cortical activation for static and dynamic

stimuli, with a stimulus-identification accuracy that is acceptable

notwithstanding the evident limitations of employing a fixed, low

number of stimulating sites.

RESULTS

Our theoretical framework is depicted in Figure 1. Figure 1A

shows the traditional biomimetic approach to sensory restora-

tion; Figure 1B depicts the ideal closing the loop on the nerve,

which is the best-case scenario for the biomimetic approach;
finally, Figure 1C displays our closing the loop on the cortex opti-

mization strategy. The choice of closing the loop on higher re-

gions along the visual system allows us to exploit the higher,

more invariant representation of the stimulus provided more

complex areas, but has the immediate drawback that a model

of the visual system from the stimulation site to the target region

must be provided.

Our computational framework is depicted in Figure 2. In Fig-

ure 2A, it is shown how the CNN model of the visual system

and the evolutionary heuristic are interfaced. In Figures 2B–2D

we describe the simplified models for the association of CNN

units with optic nerve fibers and the assumptions employed to

compute their activation in perfect-selectivity and imperfect-

selectivity control paradigms.

We have performed a number of in silico experiments to

assess and interpret the performance of our framework in static

and dynamic settings. In the following paragraph, we will briefly

introduce the assessment measures that will be used to report

our results throughout the entire article. A detailed account of

the computation of these quantities can be found in the experi-

mental procedures.

For each evolution generation, we will call the best individual

stimulation pattern in the current population the candidate stim-

ulation pattern. Applying this candidate stimulation pattern at the

optic nerve layer, we can obtain through our CNNmodel an acti-

vation at the target cortical layer and an output array of probabil-

ities for each stimulus class (from the softmax output of the

network). From the cortical layer activation, we can obtain a

fitness error value, while from the softmax output we can obtain

an output loss value and an output class. End-generation output

classes will be used to obtain confusion matrices and accuracy

values (end-generation accuracy). Finally, we propose the
Patterns 2, 100286, July 9, 2021 3
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(A) An evolutionary heuristic is used to evolve activation patterns at the level of the optic nerve such that a given response is attained at a chosen hidden cortical

layer. Target and candidate activation patterns are obtained by commuting the green switches in position 1 or 2, respectively. The aim of the whole routine is to

produce activation patterns that produce the same classification of a given natural stimulus fed to the network.

(B) Given an active site (red triangle), the corresponding activation map for a perfect-selectivity control is concentrated at the location of the active site. For

imperfect-selectivity control, activation is obtained computing a potential according to a 1/distance characteristic and by passing it to a sigmoidal activation

function. This produces multiunit, correlated activation maps.

(C) We suppose that the distance between two fibers in the optic nerve is proportional to the distance between the corresponding units in the optic nerve layer (we

assume that an appropriate normalization process has been carried out).

(D) We assume that the activation imposed by an active site is the same on all the filters making up the optic nerve. This is because units in the same location in

different filters of a CNN are ‘‘hard-wired’’ to have receptive fields in similar locations in the input image space. Assuming retinotopy, this means that the cor-
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introduction of one-match accuracy, which measures the pro-

portion of runs that produced at least one class-identifying stim-

ulation protocol for the given stimulus along the evolution (see

the experimental procedures for further explanations). Unless

specified otherwise, generation-wise fitness error and output

loss curves will be averaged across the entire proposed stimulus

dataset.

Static landscape settings
In the following, we outline the in silico experiment carried out to

characterize the base behavior of our computational framework

for ‘‘static stimulus’’ optimization, and a number of variations to

assess the influence of different factors on our routine perfor-

mance. For every experiment in this section, 25 different stimuli

are selected from each stimulus class (10 classes), one evolution

run consists of ngen = 200 generations, each run is initialized in-

dependent of the others, and the stimulated layer is always the

optic nerve layer. The chosen values for the evolutionary heuris-

tic parameters can be found in Table 3 (see also the experimental

procedures section).

Base scenario

To investigate the base behavior of our framework, the second

cortical layer was employed as the target layer, a single-filter op-

tic nerve layer was employed, MNIST stimuli were employed,

and 15 sources were used in the optimization. The resulting

confusion matrices and generation-wise average fitness error

and output loss plots are shown in Figure 3A.

The one-match accuracies were 0.99 and 0.94 for perfect-

selectivity and imperfect-selectivity control, respectively. In

contrast, the end-generation accuracies were 0.95 and 0.82 for

perfect-selectivity and imperfect-selectivity control, respec-

tively. Thus, for imperfect-selectivity control, we were able to

determine class-identifying stimulations for 94% of the stimuli.

These class-identifying stimulations did not always correspond

to the evolution end generation. Indeed, the end-generation

stimulation produced class identification for 82% of the stimuli.

Runs that produced at least one time along evolution stimulation

patterns ‘‘evoking’’ the right class perception produced a class-

identifying end-generation stimulation 82%/94% = 87% of the

time. This confirms that when a class-identifying stimulation

pattern emerges along the evolution process, this can be usually

linked to having ‘‘identified’’ the underlying stimulus class.

The interquartile ranges of the fitness errors at the start and

end generations are disjoint and the output loss decreases sub-

stantially, confirming the goodness of the evolution procedure.

Changing the stimulus dataset

We employed fashion MNIST (FMNIST) stimuli22 to assess how

employing a different, more complex set of visual stimuli would

affect our optimization performance. The one-match accuracies

were0.92and0.63 forperfect-selectivityand imperfect-selectivity

control, respectively. In contrast, the end-generation accuracies

were0.52and0.36 forperfect-selectivityand imperfect-selectivity

control, respectively. The accuracies stayed above chance but

there was a substantial degradation of the performance from

MNIST to FMNIST (Figures 3A and 3B), highlighting a limited

generalization capacity of our simple network and algorithm to

more complex datasets. When FMNIST instances were grouped

into four macroclasses (representing shirts, trousers, bags, and

shoes, see experimental procedures), the accuracies rose to
values compatible with MNIST results. Specifically, the one-

match accuracies were 0.96 and 0.94 for perfect-selectivity and

imperfect-selectivity control, respectively. In contrast, the end-

generation accuracies were 0.74 and 0.75 for perfect-selectivity

and imperfect-selectivity control, respectively. Imperfect-selec-

tivity end-generation accuracy increased by more than 100%

passing from FMNIST classes to macroclasses.

Changing the target layer

To study the influence of the target-layer choice on the perfor-

mance of our evolution routines, we performed imperfect-selec-

tivity control, static landscape optimization using different

cortical layers as target layers. For each target cortical layer,

we performed five independent runs to assess the robustness

of our findings with respect to random initialization andmutation.

To compare the end-generation accuracies between different

cortical layers, we performed the Kruskal-Wallis test obtaining

p = 0.015. To check which pairs of simulations produced signif-

icantly different accuracies, we performed a Conover post hoc

test with Holm-Bonferroni correction. The obtained corrected p

values were p12 = 0.37, p13 = 0.005, and p23 = 0.02, where pxy

is the p value obtained comparing cortical layer x with cortical

layer y. In addition, we performed one run using as a target the

optic nerve layer itself, thus simulating the biomimetic approach

referred to in the introduction and the experimental procedures.

We notice that the biomimetic approach end-generation accu-

racy value of 0.82 is outside the range of the accuracy values

obtained for cortical layer 3 (0.85, 0.88). Figure 4A shows the re-

sulting accuracies.

We decided to assess whether closing the loop on the nerve

layer led to a significant error amplification in cortical layers.

We computed the error at the level of cortical layer 3 when the

target was the optic nerve and when the target was cortical layer

3 and obtained comparable values. In addition, we computed the

error at the other cortical layers when the target was the optic

nerve and we found that the error increases as expected mono-

tonically with the distance from the optic nerve layer. Finally, we

computed the errors at the optic nerve layer and at the other

cortical layers when the target was cortical layer 3, obtaining er-

rors comparable to the case when the target is the optic nerve.

The results are shown in Figure 4B.

Changing the optic nerve model

Then, we wanted to assess the influence that changing different

features of the optic nerve model has on our results. We investi-

gated the effect of modifying the number of filters in the optic

nerve layer and the effect of different extents of retinotopy linking

the stimulation pattern to the optic nerve activation.

In Figures 5A–5D, we can compare the optimization routines

performed using a three-filter and a single-filter optic nerve layer.

In the hypothesis of perfect retinotopy, units in the same location

in different filters correspond to approximately the same location

in the nerve physical space as they are linked to the same units in

the input stimulus space. This leads the units to share the

received excitation and to display the same activation in the

imperfect-selectivity control settings. This limitation is not

shared with the perfect selectivity control scenario, where each

fiber is stimulated independently, irrespective of its location in

the nerve physical space. Figure 5A schematically depicts this

activation sharing and an example of the resulting activation

patterns.
Patterns 2, 100286, July 9, 2021 5
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Figure 3. Static landscape optimization, base scenario

(A–C) Confusion matrices, average fitness error, and output loss curves for (A) MNIST and (B) FMNIST datasets. (C) For the macroclass FMNIST classification,

only confusion matrices are meaningful. Average fitness error curves are displayed with their interquartile range. The first-generation interquartile range is re-

ported across all generations for comparison.
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In the case of three-filter optic nerve optimization, the one-

match accuracies were 0.99 and 0.82 for perfect-selectivity

and imperfect-selectivity control, respectively. The end-genera-

tion accuracies were 0.95 and 0.67 for perfect-selectivity and
6 Patterns 2, 100286, July 9, 2021
imperfect-selectivity control, respectively (see Figure 5B). It is

interesting to compare the evolution processes in the case of

single- and three-filter optic nerve (see Figures 5C and 5D).

Imperfect-selectivity control of a multiple-layer and of a single-
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(A) Accuracy bar chart giving the end-generation
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initializations.
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layer optic nerve leads to different plateaus in both average

fitness error and output loss. In the case of perfect-selectivity

control, they settle on the same output loss plateau, resulting

in comparable accuracies between controls in multiple- and sin-

gle-filter optic nerves. As we expected, imperfect-selectivity

control of a multiple-layer optic nerve led to higher average

fitness error and output loss values and lower classification ac-

curacies than that of a single-layer optic nerve. Interestingly,

the temporal dynamics for the convergence of the evolution

was the same for the two optic nerve models in the case of

imperfect-selectivity control.

We then built a simplified model of retinotopic assignment, in

which two parameters control the association between the unit

locations in the optic nerve filters (which follow a perfect retino-

topy assignment) and the locations of the corresponding units

in the optic nerve physical space, thus establishing the dis-

tance between each unit and each stimulating source (see

experimental procedures and Figure 5E). These two variables

control respectively the probability of swapping two pixels in

the physical nerve space and the average distance between

two swapped pixels. We ran optimizations with increasing mix-

ing (base, p = 0, r = 0; variations, p = 0.1, r = 4; p = 0.25, r = 7; p =

0.5, r = 14; p = 1, r = 28) and we additionally tried the cases of a

very high probability, very low radius mixing (p = 1, r = 4) and of

a very low probability, very high radius mixing (p = 0.1, r = 28);

see Figure 5F. In Figures 5G and Table 1 we can see the result-

ing performancemeasures. As was expected, increasing levels

of optic nerve fiber mixing led to a performance decrease.

Interestingly, it seems that the parameter affecting the perfor-
mance drop more is the mixing probabil-

ity and not the average swapping

distance.

Changing the number of employed

sources

In all the previous experiments, a

maximum number of 15 sources have

been employed. This is compatible with

the number of active sites normally im-

planted in nerves, which ranges from 10

to 20. We performed additional optimiza-

tion runs with 1, 5, and 50 sources, repre-

senting, respectively, monopolar stimula-

tion, multipolar stimulation using a

number of sites lower than the number

of available sites, and multipolar stimula-

tion using a very high number of sites.
The last case can help us understand if we need to push tech-

nology toward significantly increasing the number of sites in our

current electrodes. The results of our analysis are shown in Fig-

ure 6. We can see that, as expected, an increasing number of

available sources resulted in increased accuracies for all the da-

tasets. Furthermore, restricting to 15 sources leads to a reduc-

tion in accuracy of only 10% with respect to the case of 50

sources for the MNIST and macroclass FMNIST problems

and of 40% for the FMNIST problem. Surprisingly, for the

MNIST and macroclass FMNIST problems, monopolar stimula-

tion performed substantially better than chance. Finally, a multi-

polar stimulation employing only 5 sources produced relatively

low performance deterioration with respect to the case of 15

sources. The fitness curves for both MNIST and FMNIST stimuli

show that increasing the number of sources leads to a higher

first-generation average fitness error and to a higher improve-

ment in fitness along generations. The trade-off between these

quantities is such that ultimately using more sources always

leads to a lower end-generation average fitness error. Another

interesting thing to observe is that for FMNIST stimuli the cross-

ings of the average fitness error curves between the same

numbers of sources happen systematically at earlier genera-

tions with respect to MNIST stimuli, which shows how

increasing the number of sources generally leads to proportion-

ally better fitting capabilities on more complex stimuli.

Dynamic landscape settings
Once we assessed the stimulation optimization performance for

static visual stimuli, we wanted to set the ground for confronting
Patterns 2, 100286, July 9, 2021 7
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Figure 5. Static landscape optimization, changing the nerve model

(A–D) Changing the number of filters in the nerve layer. (A) Correspondence between optic nerve physical space and activation space and resulting filter activation

patterns for perfect- and imperfect-selectivity control; units in the same location in different filters correspond to approximately the same location in the physical

space and undergo the same stimulation when selectivity is not perfect. (B) Accuracy bar charts for one- and three-filter optic nerve evolution. (C) Average fitness

error and output loss curves for one- and three-filter optic nerve optimization. (D) Plots of the difference between average fitness error and output loss between

one- and three-filter optic nerve.

(E–G) Changing retinotopy. (E) Correspondence between optic nerve physical space and activation space and resulting filter activation patterns for different

degrees of retinotopy; imperfect retinotopic assignment can be implemented by swapping units in the optic nerve activation space. (F) Retinotopy parameter

combinations for which an optimization run has been executed. (G) Average fitness error and output loss curves for the different degrees of retinotopy.
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with dynamic vision. Here, we performed two in silico experi-

ments, corresponding to gradually and abruptly changing visual

stimuli. In the gradual variation scenario, we wanted to deter-

mine whether we could adapt stimulation to stimuli rigidly mov-

ing in the field of view. In the abrupt variation scenario, we

wanted to determine whether it is possible to leverage the

capability of static reconstruction to cope with sudden visual

stimulus changes. For simplicity, we always used the single-fil-
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ter optic nerve model and the second cortical layer as the

target layer.

Gradual variation

In gradual variation, we chose a stimulus and generated its trans-

lated copies with translations corresponding to a maximum of 5

pixels inbothdirections.Wethen formedastimulus familyselecting

among these derived images the ones that the network correctly

classified as belonging to the class of the parent image. For each



Table 1. Evolution heuristic parameters

Variable Value Description

nsamples 250 (25 3 10) number of stimuli to replicate

nbest 50 number of best individuals

selected at each generation

nimm 100 number of random immigrant

individuals per generation

G 0.6 Zipf law parameter (determines

number of mutated individuals)

nsources 15 number of sources in

source-wise control

nunits 28 3 28 3 nfilters number of controllable units in

point-wise control

pxy 0.5 proportion of mutated

source locations

pcurr 0.5 proportion of mutated

source currents

pzero
src 0.05 proportion of source currents

set to zero

pmut 0.1 proportion of mutated units

pzero
pts 0.01 proportion of units set to zero

xystart U(0, 28) source location initialization

currstart U(�3, 3) source current initialization

Dxy U(�0.5, 0.5) source location mutation step

Dcurr U(�0.25, 0.25) source current mutation step

actstart U(0, 1) unit activation initialization

Dact U(�0.1, 0.1) unit activation mutation step
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stimulus family,weperformedanevolution run for a number ngen of

generations. Every ngenperswitch generations, we chose one of the

available stimuli from the given family, and substituted the corre-

sponding target to the current one (see Figure 7A). Because the

change of target stimulus modifies the evolution fitness function,

the individuals from the past generation are reevaluated and the

best are chosen according to the new target stimulus.

We performed a simulation on 250 parent stimuli, with

ngenperswitch equal to 5 or 25 generations, for a total of ngen =

200. This resulted in, respectively, 40 and 8 stimuli for each parent

stimulus. The results can be seen in Figures 7B–7D. The one-

match accuracies were 0.99 and 1.00 for 5 and 25 generation var-

iations, respectively. The end-generation accuracies were 0.73

and 0.77 for 5 and 25 generation variations, respectively. The

end-generation fitness error intervals are compatible with the

one found for static landscape evolution. In Figure 7C, we

compare the generation-wise average fitness error curves for the

case of ngenperswitch equal to 5 or 25 generations. After-switch

fitness errors are comparable, while the effect of longer inter-

switch time was mainly on the last generation before switch

average fitness error. This gained representation advantage,

nonetheless, does not have a strong repercussion on the first gen-

eration after switch error. In Figure 7D, the generation-wise

average output loss curves for the case of ngenperswitch equal to 5

or 25 generations and for the static landscape case are compared.

Abrupt variation

In abrupt variation, we selected a sequence of stimuli and

switched between them every ngenperswitch generations. We pro-
posed three possible turnover variants to manage this dynamic

setting. The first possibility (no archive, variation 1) corresponds

to thestandard turnoverperformed in thecaseof static landscape

optimization, which was enough to grant good convergence also

for a gradually varying landscape. The second possibility (no

archive, variation 2) is to reinitialize the population when the stim-

ulus is changed; the whole archived population is substituted to

the current population, with the addition of a random immigrant

population. The new population is evaluated with respect to the

new fitness function, and the best individuals are chosen accord-

ing to it. This corresponds to passing to the next generation only

the archived individuals that capture best the features of the stim-

ulus to be replicated. In addition, no knowledge of the stimulus

class is required.

We performed a simulation on 250 samples, with ngenperswitch

equal to 5. The results can be seen in Figures 8B–8E. The end-

generation accuracies were 0.41, 0.44, and 0.71 for no-archive

variations 1 and 2 and the archive variation, respectively. Notice

that the end-generation fitness error interval for the archive vari-

ation is compatible with the one found for static landscape evo-

lution. In Figure 8C, the first generation after switch fitness errors

(non-averaged) is shown for 70 following stimuli for the three

turnover variants. In Figures 8D and 8E, the average fitness error

and output loss curves are shown for a switch duration (5 gener-

ations) for the three turnover variants.

Psychophysics experiments

We performed psychophysics experiments in order to provide

a sort of benchmark for the performance achieved in silico for

imperfect-selectivity control for static and dynamic landscape

optimization. In the case of static landscape optimization, we

wanted to investigate how the lower resolution of the stimuli

produced by imperfect-selectivity stimulation alone could

cause a drop in classification accuracy, regardless of the po-

wer of our optimization algorithm. Thus, we administered to

the human subjects degraded (blurred) input images of the

two image sets (indicated as ‘‘mnist’’ and ‘‘fmnist’’ in Figure 9)

to check the extent to which this degradation of resolution

could yield a drop in discrimination performance. If the classi-

fication error from healthy subjects confronted with natural im-

ages constituted by a low number of intensity blobs (our ‘‘sour-

ces’’) is comparable to the algorithmic one, then we can

assume that the latter can be explained mostly by taking into

account the imperfect-selectivity control constraint and not

by some issue in our optimization. The number of sources

used to build the blurred images was equal to the one em-

ployed in our base evolutionary routine (which is compatible

with the current technological limits). See the experimental

procedures for a detailed account of stimulus generation. In

gradual variation dynamic landscape settings, we asked our-

selves whether and how much the evolution of class-identi-

fying stimulation protocols was affected by smoothly moving

the visual stimulus to be reconstructed. We tried to translate

it in a psychophysical scenario by showing the blurred images

described above for a limited time span of 2 s, smoothly chang-

ing the stimulus locations every 0.1 s (indicated as ‘‘grad’’ in

Figure 9). Our question here was whether the fact that the

blurred image was constantly moving would have affected

the classification capabilities of healthy subjects. As for abrupt

variation settings, we were interested in characterizing the time
Patterns 2, 100286, July 9, 2021 9



0 25 50 75 100 125 150 175 200
25.0

30.0

35.0

40.0

45.0

0 25 50 75 100 125 150 175 200

0.6
0.7
0.8
0.9
1.0
1.1
1.2

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100 125 150 175 200

0.2

0.4

0.6

0.8

1.0

1.2

0 25 50 75 100 125 150 175 200
12

16

20

24

28

1 source 5 sources 15 sources 50 sources
perfect 

selectivity

Generation [1] Generation [1]

Av
er

ag
e 

fit
ne

ss
 e

rro
r [

a.
u.

]
Av

er
ag

e 
fit

ne
ss

 e
rro

r [
a.

u.
]

Av
er

ag
e 

ou
tp

ut
 lo

ss
 [a

.u
.]

Av
er

ag
e 

ou
tp

ut
 lo

ss
 [a

.u
.]

MNIST FMNIST FMNIST macro

Ac
cu

ra
cy

 [1
]

M
N

IS
T

FM
N

IS
T

Figure 6. Static landscape optimization,

changing the number of employed sources

Average fitness error, output loss curves, and ac-

curacy bar charts for optimization runs employing

different numbers of sources and MNIST/FMNIST

datasets.

ll
OPEN ACCESS Article
response of our optimization system to rapid discontinuities of

the visual stimulus. In our psychophysical setting, we pre-

sented subjects with a sequence of static blurred stimuli with

one stimulus every second or every 1.5 s (indicated as ‘‘abr

10’’ and ‘‘abr 15,’’ respectively, in Figure 9). Finally, we pro-

posed the original MNIST stimuli in an abr 10 setting, to assess

if subjects were able to classify non-blurred stimuli in the short

given time span. All the experimental paradigms are depicted

schematically in Figure 9A.

We testedn=10subjects,withmedianage23.5 years (minimum

22 years, maximum 61 years). The accuracy of classification for

healthy subjects was computed for MNIST stimuli classification

and for FMNIST class andmacroclass (deduced a posteriori) clas-

sifications. In Figure 9B, the accuracy results for healthy subjects

are displayed and compared with those obtained through our

computational framework. Healthy subjects presented lower clas-

sification accuracies for the FMNIST dataset with respect to the

MNIST dataset, and the classification into FMNIST macroclasses

performed substantially better. This pattern is consistent with

what we found with our framework and can be justified with the

different complexities of the classification problems. Nonetheless,

we observed that healthy subjects performed consistently worse

than our framework in classifying MNIST stimuli (algorithm per-

formscomparable to themostaccurate individual) andconsistently
10 Patterns 2, 100286, July 9, 2021
better than our framework in classifying

FMNIST stimuli (algorithmperforms compa-

rable to the least accurate individuals).

We applied repeated-measurement

ANOVA to the set of mnist, grad, abr 10,

and abr 15 experiment accuracies and

found that therewere significant differences

between the different conditions (p = 0.01).

We applied a post hoc paired t test with

Holm correction and found that abr 10

was significantly different from mnist and

grad (p = 0.02 and p = 0.03, respectively).

We characterized inter-subject variability

presenting subject-wise accuracy values

(Table 2), experiment-wise accuracy box-

plots (Figure 9B), and a homogeneity score

(Figure 9C). Because every subject was

shown a randomization of the same stimuli,

we could compute the proportion of homo-

geneous classifications between subjects

(both subjects attributed the same class to

the stimulus, irrespective of its correctness).

It interesting to notice that average inter-

subject homogeneity has a drop between

the static MNIST stimulus set (0.69) and

both the FMNIST stimulus set (0.61) and

the dynamic MNIST stimulus sets (0.56).
Because during the static and dynamic MNIST stimulations

each subject was presented a different randomization of the

same stimuli, we computed the within-subject homogeneity (or

the agreement between different classifications of the same stim-

ulus in different conditions by the same subject). We can see that

in general the within-subject homogeneity is higher than the inter-

subject homogeneity (with a notable outlier), but that on average,

almost one-third of the stimulus classifications disagreed.

DISCUSSION

Wehave presented anML framework (described in Figures 1 and

2) to optimize optic nerve electrical stimulation for vision restora-

tion. We have outlined a number of in silico experiments to eval-

uate the performance and suitability of our framework for scene

reconstruction under static and dynamic (see Figures 7A and

8A) conditions. In the following, wewill in turn discuss our results,

comment on several modeling choices and their consequences,

and, finally, illustrate the limitations and the corresponding future

actions to improve our modeling framework.

Discussion of our results
In general, as expected, imperfect-selectivity control is system-

atically more difficult than perfect-selectivity control when using
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Figure 7. Dynamic landscape optimization, gradual variation

(A) Schematic of the adopted turnover strategy.

(B) Confusion matrices for the two proposed variants.

(C) Performance plots for the two proposed variants.

(D) Comparison of the average output loss curves for the two variants and static landscape optimization.

(E) Comparison of the average fitness error curves for the two variants, where the first and last generations after switch have been highlighted by triangle and

square markers, respectively.
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a number of sources compatible with the current technology.

Still, imperfect-selectivity control evolution routines allow

evolving stimulation patterns that can adapt or respond

adequately (with an accuracy of stimulus class identification

around 0.7) to changing scenes.

Static landscape

In the base scenario, it is possible to obtain good last-generation

decoding for perfect-selectivity and imperfect-selectivity con-

trol, and almost perfect decoding in a one-match paradigm.

Changing dataset. In contrast to what happened for the

network training on MNIST, in this case we obtained good accu-

racy values but very high validation and test accuracy loss (see

Figure 10). This can partially justify our poor results and should

convince us that more complex networks should be deployed

to grant full generalizability to our approach. The very large
improvement in classification accuracy when passing from the

full FMNIST classification to macroclass classification, and the

fact that perfect-selectivity controlwas lessaffectedby themerg-

ing of different similar classes, could be linked to the intrinsic lim-

itation of imperfect-selectivity stimulation protocols. Indeed, we

expect that current electrical stimulation technology exhibits

some kind of threshold for replicable stimulus detail. However,

the fact that both imperfect-selectivity and perfect-selectivity

control routines are visibly affected (even if in different measures)

by the transition from MNIST to FMNIST can be explained also

through the partial inadequacy of our simple search algorithm.

The investigation of this very important scientific question will

be one of our goals in the near future.

Changing the target layer. The performance of cortical layer-

driven evolution improves the more we move toward the output
Patterns 2, 100286, July 9, 2021 11
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(A) Schematics of the adopted turnover strategies.

(B) Confusion matrices for the three proposed variants.

(C) Fitness error curves for the three proposed variants across a 70 stimulus evolution.

(D) Average fitness error curves for the three proposed variants.

(E) Average output loss curves for the three proposed variants.
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layer. This is reasonable, as deeper layers should produce a hi-

erarchy of representations that are more and more informative

and invariant with respect to the classification problem. Interest-

ingly, the performance of ‘‘biomimetic’’ stimulation is located be-

tween the performances of the first and the last cortical layer-

driven simulations. We conclude that replicating nerve activation

patterns seems to be an intrinsically easier task than replicating

cortical activation patterns, but that this intrinsic advantage can

be compensated for using layers that are nearer to the classifica-

tion output, whose activation is thus more representative of the
12 Patterns 2, 100286, July 9, 2021
target class. This could be the case because of the direct influ-

ence of the feedback input on its output and because of the

lower dimensionality of the nerve activation space. This lower

dimensionality is here simulated by allowing for fewer filters in

the optic nerve layer. The natural counterpart of having a lower

number of filters is possessing a lower number of independent

receptive field types. This is observed naturally, as cortical cell

receptive fields are naturally more complex and more diverse

than those of retinal ganglion cells.20,23 Nonetheless, what we

can gain from the invariance of higher representations can
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Figure 9. Psychophysics experiments

(A) Schematics of the experiments performed, with sample stimuli.

(B and C) (B) Boxplots for static and dynamic landscape experiments (10 subjects). Diamonds denote outliers; asterisks indicate p values < 0.05; the circle

markers indicate the (end-generation) accuracy values obtained with the presented ML routines. (C) Inter-subject and within-subject homogeneity matrices.
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Table 2. Accuracy results for optimization under different

retinotopy assumptions

p R Accuracy [1]

0 0 0.82

0.1 4 0.84

0.25 7 0.75

0.5 14 0.54

1 28 0.44

1 4 0.44

0.1 28 0.87
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ultimately overcome the advantage of optic nerve activation

space lower dimensionality. Of course, before being able to

conclude anything about true nerve electrical stimulation, we

need to properly validate this model and procedure, but it is still

an encouraging result. We did not observe error amplification in

the downstream layers when using as a target the optic nerve

layer. Thismay suggest that indeed replicating with very high loy-

alty the activation at the level of the optic nerve will produce

cortical activations that are comparable to closing the loop

directly on the cortex. On one hand, this paves the way for a

quantitative justification of the traditional biomimetic approach.

In fact, it suggests that the unavoidable error due to the imperfect

selectivity of imperfect-selectivity stimulation produces errors

that are not substantially amplified along the sensory stream.

On the other hand, it suggests that closing the loop on the cortex

may lead to results comparable to a biomimetic approach. This

could provide an alternative, technologically feasible approach

to the biomimetic approach, whose ‘‘closed-loop implementa-

tion’’ is currently limited by the limited resolution of nerve record-

ings. In principle, it may seem obvious that closing the loop

‘‘more downstream’’ could lead to a performance improvement.

Indeed, here we are suggesting that notwithstanding the

compactness of nerve representation and the higher complexity

and harder interpretability of cortical activation patterns, it may

be indeed feasible to close the loop on the cortex, obtaining a

performance comparable to an optimal biomimetic implementa-

tion. Finally, we remark that the fact that closing the loop on the

last cortical layer leads to very low nerve activation errors pro-

vides evidence against the claim that we may generate adversa-

rial examples using our optimization routines. Indeed, in that

case, we would expect that we could find optic nerve activations

very different from the natural one producing very similar cortical

activations, which is excluded by the error similar to the one ob-

tained closing directly on the nerve.

Changing the optic nerve model. In imperfect-selectivity multi-

ple-filter optic nerve control, we are assuming that the same

stimulation is applied to the same location in different filters.

This relies on the fact that different retinal ganglion cell functional

populations are arranged in independent mosaics covering the

retina and thus, via retinotopy, the optic nerve section. We hy-

pothesize that all units in a given location inside each filter are

connected to the same region of the input image space and

are thus located in nearby positions in the optic nerve cross sec-

tion. Thus, they share stimulation intensity because of their

spatial proximity. Notice that this constraint is not present in per-

fect-selectivity control. There, every unit can be activated inde-
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pendently, without considering the filter it belongs to. For this

reason, the difference between perfect-selectivity control of

stimulation of single- and multiple-filter optic nerves is only

quantitative, in that the search space dimension has been

increased, but its controllability is unaltered. In contrast, the dif-

ference between imperfect-selectivity control of single- andmul-

tiple-filter optic nerves is also qualitative because of the

‘‘coupling’’ between units belonging to different filters. This is re-

flected in the fact that for perfect-selectivity control, the output

loss curves reach the same plateau. Interestingly, the same phe-

nomenon cannot be highlighted in the fitness error curves.

Changing the extent of retinotopic organization in the optic

nerve (namely, the spatial reorganization between unit assign-

ment between the retina and the optic nerve) showed that our

results are actually robust and perfect retinotopy is not a

necessary requirement for our algorithm to provide class-iden-

tifying stimulation protocols. Indeed, when 25% of the fibers

were displaced by an average distance of 25% of the nerve

‘‘diameter,’’ the class identification accuracy stayed above

0.7. This result is actually extremely relevant as the precise

extent of retinotopic organization in themore proximal sections

of the optic nerve is still a matter of debate. Here we have

shown that our possible ignorance on such anatomical con-

straints does not jeopardize the results shown in the pre-

sent work.

Changing number of sources

We see that, as was expected, decreasing the number of avail-

able sources leads to lower accuracy values. Anyway, we

observe that this decrease is strongly sublinear, even with a

low number of sources. This could be a by-product of the

simplicity of the chosen datasets. In fact, we see that, for

example, we have an increase of approximately 2 times in pass-

ing from one to five sources for MNIST stimuli, but of 3.5 times

for FMNIST stimuli. This highlights another reasonable result:

the more complex a set of stimuli, the more sources we need

to restore at a given level or to improve to a given extent the

corresponding sensations. We can observe that monopolar

stimulation (only one source) reached end-generation accu-

racies substantially above chance for MNIST and FMNIST-

macro, but it is compatible with chance-level classification for

the full FMNIST. A likely explanation for this result may be

that the CNN is able to discriminate between simple stimuli us-

ing a single well-placed relevant feature. Indeed, the fitness

values do not decrease substantially along the generations,

which indicates a very limited training extent. Another very inter-

esting result is that when 50 sources were used for FMNIST

stimuli optimization, we could attain better end-generation ac-

curacies than when employing perfect-selectivity control. While

this may seem unreasonable, because the set of imperfect-

selectivity stimulations is a subset of the set of perfect-selec-

tivity stimulations, it is also true that perfect-selectivity control

requires optimizing with respect to many more parameters

and is thus more prone to local minima. In addition, complex

naturalistic images are naturally spatially correlated, which

could be leveraged by imperfect-selectivity stimulation, while

perfect-selectivity control has to build these structures of corre-

lation from scratch. This also explains why this differential

improvement manifests on the FMNIST dataset, which contains

more complex and realistic visual stimuli.
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Figure 10. Training of the CNN models

Accuracy and loss curves for the training process of

the CNNmodels on MNIST and FMNIST data, in the

cases of single- and multiple-filter optic nerve

layers.
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Dynamic landscape

Dynamic landscape gradual variation. We showed that imper-

fect-selectivity evolution can adapt readily to rigid movement of

the stimulus exploiting the current evolved population from

different translated copies of the stimulus. The average fitness er-

ror (Figure 7C) exhibits strong seasonality synchronous with the

stimulus changes. If we look at the error values corresponding

to the first and last generation for each stimulus replica, we can

make the following considerations. Looking at first-generation er-

rors (Figure 7E, triangle markers), we can see that the evolu-

tionary heuristic rapidly builds a population that is able to repli-

cate any variation of the base stimulus with substantially lower

error than a random population could. It is interesting to notice

that when periodicity is very low, ‘‘learning’’ is smooth and both

first- and last-generation errors exhibit a characteristic ‘‘power-

law-like’’ behavior, which is observed also in static landscape

optimization. High-periodicity landscape variation seems to

exhibit a more stable first-generation error. It could emerge

from the fact that when the stimulus changes, the population

has more time to converge toward a specific sample replica

and can gain less from ‘‘inter-sample learning.’’

Average output loss curves (Figure 7D), in contrast, exhibit

lessmarked seasonality. Thismay be explained by the higher de-

gree of stimulus invariance displayed by higher order layers and

whose decreasing behavior may indicate an inter-sample class

identification process. The comparison between low- and high-

period dynamic landscape and static landscape optimization

shows that static optimization is, expectedly, more effective in

class identification. Interestingly, high-period dynamics allow a
jump to a very loyal representation after

the first stimulus replica, and loss

decrease is slower after the first stimulus

is observed, possibly for some ‘‘premature

convergence’’ effect.

Dynamic landscape, abrupt variation. We

showed that an archive of ‘‘converged’’

stimulation patterns can be used as a

start-point population. The performance

employing an archive is better than the

performance of an evolution from a

random population or from the last-gener-

ation population (Figure 8C). This was ex-

pected, as it suggests the following fact:

consider two sets of stimuli, S1 and S2,

containing images sampled from the

same classes. For a stimulus s2 in S2 we

can find a stimulus s1 in S1 so that: (1) the

cortical activation pattern corresponding

to s2 is similar to the one corresponding

to s1 and (2) s2 and s1 share the same class.

In Figure 8C, we can visualize the erratic

behavior of first-generation (after switch)
fitness error, where no ongoing learning process can be spotted.

Interestingly, variant 2 of the no-archive setting (current popula-

tion retained) performs substantially better than variant 1 (current

population entirely replaced by random individuals). This is

further explored in Figures 8D and 8E, where it can be seen that

no-archive variant 2 is nearest to archive in terms of average

fitness error but is nearest to no-archive variant 1 in terms of

average output loss. This suggests that no-archive variant 2 pop-

ulations rapidly converge toward and remain in the subspace of

possible activations due to a meaningful (cipher) stimulus, while

no-archive variant 1 proposes random, potentially ‘‘meaning-

less’’ stimulations. This explains why the two archive-less vari-

ants lead to comparable loss values. For the network, trained

only for cipher classification, a different class cipher produces a

loss comparable to any other ‘‘meaningless’’ input sample, as it

produces in any case a wrong cipher classification.

Psychophysics experiments

In static landscape experiments, the general changes in accu-

racy among the different classification problems for both human

subjects and our algorithm can be justified by the complexity of

the classification task (10 class MNIST classification is easier

than 10 class FMNIST classification; 4 class FMNIST classifica-

tion is easier than 10 class FMNIST classification). Nonetheless,

we find it encouraging that the performance of our framework is

in general comparable to the human one. This was not obvious,

as it could have happened that human subjects performed sub-

stantially better than our routines on all the tasks or at least on the

‘‘easier’’ ones. In contrast, it seems that in addition to the fact
Patterns 2, 100286, July 9, 2021 15
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that those accuracy ranges are compatible, human subjects

actually displayed a worse average performance in the ‘‘easy’’

MNIST classification task.

One fundamental point motivating these static landscape psy-

chophysics experiments was to ‘‘decouple’’ the influence on our

optimization results coming from the limited interface selectivity

and the limited capabilities of the optimization routine. Because

healthy human subjects did not perform substantially better than

our framework, we may advance the hypothesis that to increase

stimulus-encoding performance we need to develop more

selected neural interfaces, which could at least partly mitigate

the intrinsic limitations in imperfect-selectivity control.

In gradual variation dynamic landscape psychophysical ex-

periments, we wanted to investigate whether the robustness

of our ML routine with respect to smoothly moving stimuli is a

common feature with natural vision. Indeed, we found in

healthy subjects that there was no significant performance

drop because the stimuli to be classified were moving during

the time of presentation. In abrupt variation dynamic landscape

psychophysical experiments, we wanted to pave the way for

some quantitative comparison of the time dynamics of animal

vision and of our evolutionary heuristic. Indeed, the translat-

ability of our heuristic to more ecologically valid scenarios de-

pends on the speed of stimulus identification allowed by the

relatively naive algorithm that we have proposed in the present

work. We found that when stimuli were presented for a period

of 1 s, the performance of healthy subjects was significantly

lower than in the static case (where subjects controlled presen-

tation time). When stimulus presentation had a period of 1.5 s

instead, the performance change was not significant. This

kind of result gives us some indication about the reasonable

time dynamics for stimulus class identification given the imper-

fect-selectivity constraint on stimulus reconstruction, and it

could help in the future in setting reasonable evolution dura-

tions for online object recognition experiments attaining per-

formances similar to those of healthy subjects. We remark

that such a long time is needed for healthy subjects because

stimuli were heavily blurred. Indeed, when the true MNIST ci-

phers were presented at a rate of 1 s, the subjects scored

almost perfect accuracies.

Finally, we notice how such psychophysics experiments

display large inter-subject and even within-subject variabilities,

which complicates any parallel between natural vision and our

framework, in that the performance differences between sub-

jects vary widely and show no notable regularity.

Justification of our modeling choices
General significance of dynamic landscape settings

Gradual variation simulates the slight variations occurring when

looking at a homogeneous dynamic scene.24 Abrupt variation

simulates sudden changes in a visual scene.25,26 We hypothe-

size that physiological vision can be seen as a flow of gradual

variations interrupted by point-like abrupt variations. We have

shown that it is possible to respond readily to both types of

scene variation expected in natural vision, if an archive of pre-

computed stimulation patterns is available. In the future, we

can imagine using a similarity-based classifier (in the space of

natural stimuli) to classify each scene variation into (1) negligible

variations, (2) gradual variations, or (3) abrupt variations, thus
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deciding whether to maintain the current population (settings 1

and 2) or to exploit the archive (setting 3).

General significance of imperfect-selectivity control

Our introduction to the imperfect-selectivity control paradigm

has to be intended as a first step toward simulating realistic stim-

ulation devices, where it is impossible to stimulate individual fi-

bers independently and stimulation instead must target bundles

of fibers. At the current state of the work, we are not yet simu-

lating realistic electrode geometries, as active sites are allowed

to distribute themselves inside the nerve section without any

geometrical constraint. This is nonetheless compatible with

penetrating intraneural electrodes. The model used to convert

active-site stimulation intensity to the activation of optic nerve fi-

bers is extremely simple but retains some fundamental physio-

logical mechanisms.

Proneness of our method to ‘‘adversarial examples’’

Adversarial examples were introduced in Szegedy et al.,27

where it was observed that ‘‘deep neural networks learn

input-output mappings that are fairly discontinuous to a signif-

icant extent. We can cause the network to misclassify an image

by applying a certain hardly perceptible perturbation, which is

found by maximizing the network’s prediction error.’’ Following

this definition, we can see that what we have proposed is

indeed not related to adversarial examples or ‘‘attacks.’’ First,

in the present work, we were interested in replicating the acti-

vation pattern in an intermediate layer (representing a target

cortical region), and we have never constrained the network

to output the right prediction. Second, our main interest was

in performing this task while employing the superposition of a

set of highly correlated activation maps applied at an upstream

layer (ideally representing the optic nerve): the highly correlated

nature of the introduced stimulation strongly limits the ability

of constructing very complex ‘‘hardly perceptible perturba-

tion[s].’’

Nonetheless, something similar to adversarial attacks could

be happening, but we find it more likely that it may be penalizing

our results instead of playing in our favor. We generally assume

that the more an intermediate activation pattern resembles a

target one leading to a given classification outcome, the higher

the probability that such activation pattern will also lead to the

same classification. Indeed, the proneness of deep neural net-

works to adversarial examples means that it is possible to find

extremely similar activation patterns leading to different classi-

fication outcomes. In contrast, it is generally recognized that

adversarial attacks are a weakness that is not shared with bio-

logical vision. Indeed, it has even been proven recently that

constraining an upstream layer of a CNN to resemble the pri-

mate visual cortex leads to improved resistance of the network

to adversarial attacks.28 Thus, it could be possible that here

some of the best-fitting activation patterns are actually adversa-

rial examples and lead to the wrong classification in our CNN,

whereas they would be class identifying when elicited in animal

experiments.

Finally, another concern would be that we could be attacking

the cortical layer by crafting ad hoc optic nerve activation. We

answer this possible claim in two ways. The first is that we think

that adversarial attacks loosen their meaning when the output

layer is of a higher dimension than the input one, as they are

fundamentally based on input convergence. The second is that
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the possibility of crafting such attacks could suggest that the

high dimensionality increase between the spaces of activation

in the optic nerve and in the cortex occurs so that it is possible

to craft very-low-dimensional non-intuitive (non-biomimetic)

stimulation protocols that guide cortical activation (and thus

the restored sensation) in non-trivial ways. This, indeed, could

also establish the optic nerve as an optimal site of stimulation

for vision restoration, as it is low dimensional and also provides

the ability to finely control the very-high-dimensional down-

stream regions to an acceptable extent.

Comparison between our approach and the traditional

biomimetic approach

The results obtained with our very simple model suggest that our

framework in which stimulation is optimized using cortical acti-

vations has the potential to rival a closed-loop optimization in

which the stimulation is optimal in replicating nerve activation.

As we outlined in the introduction, such optimization strategy

can be imagined as the unattainable best-case scenario for

traditional biomimetic approaches, which exploit only some fea-

tures of whole nerve activity. Even supposing that this result will

hold for more complex network models and after an in vivo vali-

dation phase, our approach still presents the relevant drawback

of requiring either a cortical recording implant or somemethod to

deduce cortical activation at the desired resolution through less

invasive technologies.

Comparison with alternative approaches

To the best of our knowledge, the present work is the first

attempt at systematic analysis of the possibility of exploiting a

CNNmodel of the visual system to optimize optic nerve stimula-

tion in a dynamic, imperfect-selectivity setting. There are some

noteworthy points of contact between our work and that of Tafa-

zoli et al.,21 where an evolutionary heuristic was employed on a

CNN to hint at the feasibility of online evolution of cortical stimu-

lation patterns in mice. There are nonetheless many notable dif-

ferences in our aims and methods that suggest to us that a

direct, explicit comparison of the two works would not be appro-

priate or informative. For example, a very different network archi-

tecture was employed (presence of a bottleneck, different num-

ber of filters at each layer, much larger stimuli in our case).

Moreover, a much different evolutionary heuristic is employed

in the present work, which does not need to evolve patterns

online. Finally, we are mainly interested in the evolution of imper-

fect-selectivity stimulation at a fixed intermediate layer (perfect-

selectivity stimuli were evolved at different locations in the

network).

Use of a CNN model instead of a physiologically

accurate model

Physiologically accurate models are often employed for similar

stimulation-control problems.29,30 Such models have a number

of advantages over the use of the employed CNN models; for

example, they allow greater interpretability, in that each model

component has a clear, a priori connection with a physiological

entity. Moreover, depending on their formulation, more elegant

and effective control-theoretic methods can be employed to

optimize their stimulation. Nonetheless, we think that the current

knowledge of the visual system is incompatible with the develop-

ment of such a model. For example, the individuation and the

characterization of the fundamental retinal ganglion cell classes

converging into the optic nerve are still a matter of active
research31 (compare them, for example, with the full character-

ization available for the tactile afferents converging into the me-

dian nerve).32 In contrast, CNNs have proven to be superior to

detailed models (given our current knowledge of them) in the

ability to explain neural selectivity in a variety of higher cortical

regions during ecological tasks (image recognition).17,18,33,34 In

addition, they provide a framework that is relatively easy to

expand with the aim of adding representative capabilities, as

was recently done by Lindsey et al.20 for the optic nerve and Da-

pello et al.28 for V1.

Study limitations and future developments
Even if promising, our study has some important limitations,

which are listed below and will be addressed in the near future.

Hybrid model improvement

The transformation from an imperfect-selectivity stimulation pro-

tocol and the corresponding optic nerve activation should come

from a less abstract model. The natural choice here would be to

insert a hybrid model35 to compute the response of the optic

nerve fibers to electrical stimulation via detailed finite element

modeling and neural computation simulation. The setting of an

accurate hybrid model for the situation under study would

require gaining some further knowledge on the morphology of

the optic nerve for the targeted subject population and the defi-

nition of viable neuroprosthetic devices.

Generalization to more complex networks and datasets

The advantage of a more complex network architecture is 2-

fold. On one side, networks that are more complex attain lower

loss values, needed because they indicate stable and informa-

tive extracted features, on top of which the whole evolution

process builds. On the other side, we are assuming a goal-

driven setting,18 which requires that the network attains ani-

mal-like performance on the task on which it is trained. In any

case, to be able to translate the optimization results to animal

experiments and human patients, it will be necessary to estab-

lish a correspondence between neural activity recordings and

the activations at the different layers of our CNN model. This

will most likely require much more complex network models.

Naturally, the passage to such networks will most likely cause

the ruggedness of the fitness landscape to increase, thus

increasing the difficulty of traversing it via simple isotropic

mutation.

‘‘Truly time-varying’’ stimuli

For the time being, we focused on static scene classification. We

tried to add the time dimension by performing different kinds of

dynamic scene classification. However, animal vision is not sim-

ply high-bandwidth image classification; thus, the next step in

this direction is to employ a sensory stream model that naturally

encompasses time.24

Need for in vivo validation

In the present work, we provided a proof of concept using a very

simple CNNmodel, whichwe assumed to be a goodmodel of the

visual system. Such assumption was motivated by the state of

the art, but should be carefully validated for future,more complex

network architectures. In particular, it will be relevant to establish

the link between the network optic nerve layer, whose position is

constrained by the corresponding architectural bottleneck, and

the physiological activation space of the animal/patient optic

nerve. Finally, the correspondence between cortical activation
Patterns 2, 100286, July 9, 2021 17
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patterns and evoked percepts needs to be characterized in vivo

and in comparison with its in silico counterpart.

Use of our model and significance of the work

We moved from the hypothesis that goal-driven CNNs can be

single-unit predictive models of the primate visual system and

provided a proof of concept that if the natural cortical activation

corresponding to the perception of a given natural visual stim-

ulus were known, it would be possible to produce via optimiza-

tion perceptually equivalent optic nerve stimulation protocols

for flows of static images. In an experimental setting, this frame-

work could be used thus to propose optic nerve stimulation pat-

terns to evoke an a priori established number of visual stimuli.We

will briefly outline three possible routes for the future use of our

framework.

The first route is to consider CNNs as a simple test bed to

perform exploratory feasibility analyses. For example, here we

haveshown that imperfect-selectivity stimulationof theopticnerve

leads to a decrease in stimulation performance that is still accept-

able. Because CNNs are in general goodmodels of the visual sys-

tem, thismotivates us to continue in the way of optical nerve stim-

ulation. The stimulation optimization framework that we have

presented is a black-box optimization and thus the patient’s visual

system can be substituted to the CNN used here. Themajor prob-

lem of this approach is the very high number of candidate stimula-

tions to be explored. Nonetheless, here we need only the cortical

response to the stimulation (and not, for example, a verbal feed-

back from the patient), and we could thus think of administering

to an anesthetized/sedated patient a very high number of optic

nerve stimulations, exploiting protocols similar to rapid-sequence

visual presentation (RSVP). A brief review of applications of this

technique can be found in Potter et al.36 Of course, the present

analysis will need to be repeated using much more complex

CNN models before the translation could work, and this could

jeopardize theeffectivenessofour very simpleevolutionary heuris-

tic, requiring some form of ‘‘smarter’’ optimization.

Even though RSVP protocols theoretically allow testing a very

high number of candidate stimulations, it could be argued that

evolving stimulation protocols from scratch still requires the eval-

uationof toomanyof them.Wecanenvisage twomainalternatives

to exploit the modeling power of CNNs for reducing their number.

Thus, the second research route would be to work in the direc-

tion of the ‘‘interpretation’’ of the optic nerve stimulation patterns

obtained by performing optimization on the CNN model. It could

be possible to extract a set of constraints and smart initializa-

tions for the in vivo optimization using RSVP, in a manner similar

to what we investigated for the management of abrupt dynamic

changes in the target stimulus. Indeed, the generality of our

evolutionary heuristics allows the straightforward integration of

additional constraints.

Finally, we could use directly the converged stimulation proto-

cols obtained through the CNN model. Because here we would

rely heavily on the hypothesis of single-unit predictivity of CNNs,

wewill need to produce filters that allow obtaining single-unit pre-

dictions fromapatient’s recordings.Onepossibility is touseRSVP

to establish a relationship between the optic nerve-to-cortex

transfer function in the CNN and in the patient’s nervous system.

At that point, the patient-specific CNN can be employed to evolve

a set of proposedoptimal optic nerve stimulation protocols, which

provide initialization points for a second, very fast, round of local
18 Patterns 2, 100286, July 9, 2021
exploitation performed using the patient’s cortical responses

directly (again, using RSVP on the anesthetized patient).

Required recording selectivity in the cortex

In the present work, we have assumed that we have perfect

knowledge of all the cortical units in the region corresponding

to the target layer of our CNN. It is indeed possible to arrive

with reasonable confidence at the extraction of single-unit tracks

for relatively high numbers of neurons in the cortex using micro-

electrode arrays and spike sorting (whereas in nerves this is still a

very complex open challenge). Nonetheless, the use of recording

microelectrode arrays as a support for optic nerve stimulation in

human patients would heavily increase the invasiveness of the

neural interface, raising the obvious alternative of performing

recording and stimulation in the cortex using a single device.

For this reason, once our method has been validated and further

explored and optimized with invasive recordings in animals, we

will move to estimating cortical activity through non-invasive

methods such as electroencephalography (EEG) and adequate

electrical inverse models. To obtain an acceptable resolution in

the cortex from the very low spatial selectivity of EEG recordings,

the characterization of the cortical neurophysiological correlates

of natural visual stimulation could be carried out usingmore inva-

sive setups (e.g., electrocorticography) already implanted for

other uses in able-sighted patients.

Conclusions
We have presented anML framework that allows us to optimize

optic nerve stimulation protocols by exploiting a model of

nerve electrical stimulation (hybrid model) and a CNN model

of a sensory system. This framework allows the development

of optimal non-biomimetic (cortically driven) stimulation proto-

cols. We have shown that in a simplified setting we could

evolve class-identifying stimulations from different stimulus

datasets of varying complexity. Our study paves the way for

the development of stimulation optimization routines based

on ML approaches.

EXPERIMENTAL PROCEDURES
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Materials availability
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Data and code availability

Data and code can be accessed at the following link: https://github.com/s-

romeni/CNN-GA-OpticStim.

Problem statement

Let us denote the natural stimulus (i.e., image) space with SN , the electrical

stimulus space with SE , the cortical activation pattern space with C, and the

nerve activation pattern space with N . We are interested in finding a map

fSN/SE
: SN/ SE that associates anelectrical stimulationSE to a natural stim-

ulus SN, that is, SEðSNÞ = fSN/SE
ðSNÞ, so that the application of SE produces

the same sensation of SN (if we indicate the sensation evoked by a stimulus

S—natural or artificial—by ,ðSÞא we can write that the final aim of our routine

is ðSEÞא = .(ðSNÞא Because sensations cannot be ‘‘quantified’’ directly, we

will reformulate the problem in terms of replicating the nerve or cortical activa-

tion pattern produced by a natural stimulus. At the end of this section, we will

introduce a possible quantification of ðSÞא specific to our ML framework.

Such measure will be used in the following to deduce a posteriori if the optimi-

zation routines have produced sensations compatible with the natural ones.

mailto:silvestro.micera@epfl.ch
https://github.com/s-romeni/CNN-GA-OpticStim
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Table 3. Subject-wise accuracies for psychophysics experiments

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8 Subj 9 Subj 10

MNIST 0.77 0.69 0.63 0.87 0.71 0.70 0.62 0.68 0.78 0.74

FMNIST 0.53 0.55 0.49 0.55 0.47 0.42 0.40 0.50 0.46 0.42

MFMNIST 0.86 0.78 0.80 0.86 0.83 0.84 0.79 0.67 0.80 0.83

GRAD 0.76 0.71 0.76 0.76 0.76 0.75 0.62 0.69 0.69 0.62

ABR 1.0 0.68 0.57 0.58 0.76 0.66 0.70 0.63 0.65 0.60 0.51

ABR 1.5 0.77 0.66 0.56 0.85 0.67 0.70 0.59 0.66 0.61 0.56

TRUE 1.0 0.99 0.97 0.96 0.95 0.98 0.98 0.99 0.99 0.98 0.97
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A biomimetic approach assumes that we can solve the problem by

cascading the two maps f�1
SE/N and fSN/N to obtain:

fSN/SE
= f�1

SE/N+fSN/N: (Equation 1)

In other words, we determine the nerve activation pattern corresponding to a

given natural stimulus, and then we look for the electrical stimulation that rep-

licates it.

The map fSE/N cannot be inverted, and what is actually done in practice is

the solving of the optimization problem:

SEðSNÞ = argmin
S0
E

�
d
�
fSE/N

�
S0

E

�
; fSN/NðSNÞ

��
; (Equation 2)

where dð ,; ,Þ is a dissimilarity function and the optimal error in the nerve acti-

vation pattern is given by:

dN = min
S0
E

�
d
�
fSE/N

�
S0

E

�
; fSN/NðSNÞ

��
: (Equation 3)

The error dN will be in general amplified non-linearly for each processing step

from the nerve to the formation of a sensory percept. Because of this process

of non-linear error propagation, it is possible that non-biomimetic stimulation

protocols will produce sensations more similar to the natural ones than biomi-

metic protocols.

Since we want to decrease the action of non-linear processing steps, we

choose tomaintain stimulation at the level of the nerve (where it is simple tocover

thewhole view field),6 butwe close the loopon a higher region, corresponding to

a predefined cortical area C. The problem from Equation (2) becomes thus:

SEðSNÞ = argmin
S0
E

�
d
�
fSE/C

�
S0

E

�
; fSN/CðSNÞ

��
: (Equation 4)

We can write:

fSE/C = fN/C+fSE/N; (Equation 5)

where fN/C is a model of the processing applied by the nervous system to

map nerve activation patterns to the corresponding activation patterns at

the chosen cortical level, and fSE/N is amodel that converts an electrical stim-

ulation protocol into the consequent nerve activation pattern.

Both the fN/C from Equation (5) and the fSN/C from Equation (4) will be

modeled via the same goal-driven CNNmodel, which simulates the visual sys-

tem (and,more specifically, the ventral visual stream).Wepropose twodifferent

control settings to define the map fSE/N: perfect-selectivity and imperfect-

selectivity control. In perfect-selectivity control, we imagine being able to

control independently the activation of each fiber in the nerve. In imperfect-

selectivity control, we employ an elementary homogeneous, isotropic model

of the nerve to produce extracellular potential in the nerve section.37 We then

pass it through a sigmoid function to obtain an activation value. This produces

multiple-unit activation patterns, similar to what is observed in the standard

practice of neuromodulation (see ‘‘Candidate solution (individual) definition’’

and ‘‘Nerve activation in imperfect-selectivity control’’). The argmin search

will be carried through an evolutionary heuristic (see ‘‘Genetic algorithm’’).

Finally, to assess the extent to which we are able to fulfill our final aim to find

a map fSN/SE
so that ðSEÞא = ,ðSNÞא we will employ the classification output

of the CNNmodel as an estimator for the sensation evoked by a natural or arti-
ficial stimulus. Our aim will thus be bאNðSNÞ = bאEðSEÞ, where bאNðSNÞ corre-

sponds to the classification output provided by the network when given SN

as an input stimulus, and bאEðSEÞ corresponds to the classification output

yielded by the network when the activation N=fSE/NðSEÞ is imposed as a

nerve activation pattern.

For brevity, in the following wewill refer to anSN as a ‘‘stimulus’’ and to anSE

as a ‘‘stimulation pattern.’’

Convolutional neural network

TheCNNused takes inspiration from theonepresented inLindsey et al.20 It takes

as input an ‘‘MNISTdigits’’ look-alike image (283 28 pixels, gray scale) and then

it is organizedon a number of 2Dconvolutional layers. The network can be imag-

ined as divided into two subnetworks, the RetinaNet and the VVSNet, which

represent, respectively, the processing from the natural scene to the output of

the retinal ganglion cells and the processing occurring along the ventral visual

stream (we will not explicitly model the lateral geniculate nucleus here). The Ret-

inaNet consistsof twoconvolutional layerswithnumbersoffiltersequal to10and

NBN, respectively. The numberNBN is set lower than 10, tomodel the physiolog-

icalbottleneck representedby the fact that theopticnervehasa reducednumber

of fibers with respect to the number of neurons in the previous retinal layers. The

VVSNet consists of a number DVVS of convolutional layers with 10 filters each.

Each convolutional layer has kernel size of 3, stride = 1, and symmetric padding

granting that no filter dimension reduction occurs between the layers. The

network endswith two dense layers with 1,024 and 10 units. A non-linear activa-

tion follows every convolutional layer. All the activations but the very last are tanh

activations; the last is a softmax activation. Training employs categorical cross-

entropy and RMSprop optimizer. The network has been trained for 20 epochs

with batch size of 64. The network definition and training were performed with

the Python (https://www.python.org/) (3.7.6) module Keras (https://keras.io/)

(2.3.1) with Tensorflow (https://www.tensorflow.org/) (2.1.0) backend.

Because of the network being explicitly built with the aim of replicating spe-

cific entities in the visual stream, we will refer in the following for brevity to the

output layer of the RetinaNet as the ‘‘optic nerve layer’’ and to the output of any

VVSNet convolutional + activation macrolayer as a ‘‘cortical layer.’’

Genetic algorithm

The values of all the genetic algorithm parameters described in the following

section are reported in Table 3.

Candidate solution (individual) definition

In what follows, we will refer to the activation/stimulation patterns applied to

the optic nerve layer as ‘‘individuals.’’ Two different kinds of individuals are

defined: the individuals corresponding to unit-wise stimulation and the ones

corresponding to imperfect-selectivity stimulation. A perfect-selectivity indi-

vidual consists of the activation values imposed on all the units of optic nerve

layer, which are fed as inputs to the VVSNet. It thus consists of a number 283

283NBN of values. An imperfect-selectivity individual consists of the values of

x and y locations in the nerve cross section and of the value of the stimulation

current for each employed source. It thus consists of a number 3nsources of

values. See Figure 2B for a schematic. All values are intended to be real

numbers. At each generation of the genetic algorithm, a population of individ-

uals is analyzed. A population is an unstructured collection of individuals.

Nerve activation in imperfect-selectivity control

The activation elicited via imperfect-selectivity control is computed via a hybrid

model.35 Each unit in a filter of the optic nerve layer is associated with a fiber in
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the true nerve section. We compute in turn the extracellular potential gener-

ated by the active sites that stimulates the fiber and the fiber response in terms

of an abstract ‘‘firing rate,’’ normalized so that it can be used directly as the

activation value for the given unit. We employ a simple model of point

sources in a homogeneous, isotropic, infinite medium.37 In space, we

would have:

Vm =
Xnsources
n= 1

In
4ps,dm;n

; FRmfsigmoidðVmÞ; (Equation 6)

where Vm is the electric potential in location rm=(xm, ym), In is the current in-

jected by the n-th source (active site), dm,n is the Euclidean distance between

rm and the location rn=(xn, yn) of the n-th source, s is the conductivity of the

nerve, and FRm is the firing rate of a fiber in location rm in the nerve section.

Here we choose towork in normalized units so that 4ps = 1.We imagine that,

because of retinotopy,

d½rm; rn�fd½ði; jÞ; rn� ; (Equation 7)

where (i, j) is the location of the filter of the unit corresponding to the fiber that

would be in location rm in the nerve section. Filter numbers do not enter into

establishing the location of a unit, coherent with the Hubel and Wiesel hypoth-

esis of separation of ‘‘what’’ and ‘‘where.’’38 The firing rate of the true fiber

corresponds to the activation imposed on the corresponding unit, and, coher-

ently, we set the sigmoid function in Equation (6) to a tanh function, so that the

ranges of activations produced by the original network and our model match.

We thus obtain the formula:

actijkstim = tanh

0
B@ Xnsources

n= 1

Inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � iÞ2 + ðyn � jÞ2

q
1
CA: (Equation 8)

Here, k indicates the filter to which the unit belongs. See Figure 2D for a

schematic.

Retinotopy

In the past section, we implicitly hypothesized that there is complete overlap

between the stimulus image space (where the activation space coincides

with the physical space, or location (i, j) in the input tensor corresponds to loca-

tion (i, j) in the input image/field of view), the optic nerve activation space, and

the optic nerve image space. Thus, we have imagined that an optic nerve fiber

in location (i, j) in each filter of the optic nerve corresponds to the location (i, j) in

the physical space of the optic nerve, and that the center of the receptive field

for the said unit will be in location (i, j) in the image space. Because of imperfect

retinotopy, by the way, we expect that some rearrangement happens between

the image space and the optic nerve space, so that location (i, j) in the image

space will correspond to location (m, n) = (f(i), g(j)) in the optic nerve phys-

ical space.

Because the perfect retinotopy assumption is indeed ‘‘hard-wired’’ in CNNs,

we decide to swap some locations at the level of the optic nerve, so that the

activation and physical spaces of the optic nerve no longer coincide. In this

way, image location (i, j) is still the center of the receptive field of optic nerve

activation location (i, j), but corresponds to a location in the optic nerve phys-

ical space (f(i), g(j)). Because the CNN accesses only activation spaces, it will

assume that optic nerve activation location (x, y) will correspond to a location

(f�1(x), g�1(y)) in the image space. Because here f() and g() are unit location

swaps, it follows that f�1() and g�1() are also unit location swaps, which shows

that we are indeed implementing some kind of imperfect retinotopic associa-

tion. We control the amount of retinotopic ‘‘confusion’’ with two parameters, p

and r, which correspond, respectively, to the probability that two units are

swapped between the image space and the optic nerve space, and to the

average distance between the swapped units.

Fitness function definition

The fitness function associates a fitness value with each individual in a popu-

lation. Individuals are selected on the basis of their fitness values. The fitness of

an individual is defined here as the root-mean-square deviation of the activa-

tion elicited in the chosen cortical layer by the stimulation corresponding to the

given individual from a target activation corresponding to the stimulus whose

sensation has to be elicited via the stimulation:
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fitnessðindividualÞ = � RMSE
�
actstimðindividualÞ; acttargðstimulusÞ�:

(Equation 9)

The activation elicited via unit-wise control can be simply obtained through

the CNN.

Mutation strategy

Mutation consists of two types of individual perturbations: additive noise and

zeroing. Each unit or source of each individual to bemutated is modified with a

given probability by adding a disturbance according to a value sampled from a

given uniform distribution. In addition, each unit activation or source injected

current can be set to zero with a given probability, which can serve as a

‘‘long-range’’ mutation and to refresh values that could have prematurely

converged in uninteresting regions of the fitness landscape.

Turnover strategy

Every non-initial generation population is obtained from the preceding one in

the following way. A number nbest of best individuals is selected from the

past-generation population. A number nmutated of mutated individuals are

generated via mutation from these best individuals. Finally, a number nimmi-

grants of immigrant random individuals is generated. The next-generation pop-

ulation is the collection of the

nindividuals = nbest + nmutated + nimmigrants (Equation 10)

obtained individuals. Because we are applying an elitism strategy by

conserving the past best individuals, the best individual fitness will be a mono-

tonic function of the generation number.

Here, we have applied only unary (single-parent) mutations, and we did not

define n-ary mutation strategies (the n-parent generalization of crossing over).

Parents are constituted by the best individuals of the past generation. Because

the learning problem is very difficult, we decided to assign a different number

of offspring individuals to each parent individual, according to their fitness

rank. Specifically, we employed a Zipf law (power law) distribution so that

the least-represented parents provide exactly one mutated candidate, and

the better-fitting parents provide mutated candidates according to the given

law. Thus, the number nmutated (and, correspondingly, the number nindividuals)

depends on the power law constant.

Static and dynamic landscape settings

Static landscape optimization consists in evolving for a number ngen of gener-

ations the optimal stimulation pattern corresponding to a single static stimulus.

The fitness function does not change across the different generations and

consequently it defines a static ‘‘optimization landscape.’’

We propose two different types of fitness landscape time variation: (1)

gradual variation and (2) abrupt variation. In gradual variation, the same input

stimulus is employed, to which a low-magnitude (maximum of 5 pixels in 8

pixel connectivity) translation has been applied (with the appropriate padding

at the external boundaries). In contrast, in abrupt variation, different input stim-

uli are employed (with the possibility of a transition happening between two

different stimuli belonging to the same class).

Every variation event is instantaneous and its effects start during the evolu-

tion generation immediately following its occurrence. In the current implemen-

tation, the system does not have any a priori knowledge about these variations

and does not build any internal model, neither for the time location of the

changes nor for their nature or intensity.

We hypothesize that gradual variation can be adequately managed by stan-

dard archive-less evolution, while abrupt variation will benefit for the imple-

mentation of an archive. We summarize the methods proposed to deal with

dynamic landscape settings in Figures 7A and 8A.

Gradual variation

In gradual variation, we choose a stimulus and generate its translated copies

with translations corresponding to amaximum of 5 pixels in both x and y direc-

tions. We then select among these derived images the ones that the network

correctly classifies as belonging to the class of the parent image. We perform,

for each parent stimulus, one trial with a number ngen of generations. Every

ngenperswitch generations, one of the available stimuli is chosen randomly and

substituted to the current target. When the target stimulus is substituted, the

best individuals from the past generation are chosen according to the new
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target stimulus. This has the obvious consequence of disrupting the monoto-

nicity of the best individual fitness function through the generations.

Abrupt variation

In abrupt variation, we change the stimulus every ngenperswitch generations. We

perform two variants of abrupt variation evolution: (1) exploiting an archive of

converged stimulation patterns and (2)without any prior knowledge of the stimuli.

In variant (1), we needed to build an archive of stimulation patterns. We em-

ployed the MNIST test set stimuli that would not be employed in the following

experiment and we archived a stimulation pattern if it produced a right classi-

fication at generation 200 (all parameters as in static landscape optimization).

We stopped when we had the stimulation pattern corresponding to nstimpercat

stimuli per category (corresponding to a total archive dimension of

10$nstimpercat individuals). When the stimulus was changed, the whole archived

individual population was substituted to the current population, with the addi-

tion of a random immigrant population.

In variant (2), when the stimulus changes we can either (2a) maintain the cur-

rent population or (2b) replace the current population with a random popula-

tion. An immigrant random population is added so that in variants (1), (2a),

and (2b) the number of individuals for each generation is the same, enabling

us to compare the performance of the three variants. The numbers of selected

best individuals and of immigrant random individuals for each generation

except the initial one are the same in all other simulations.

FMNIST

FMNIST22 is a drop-in replacement dataset for MNIST. It depicts fashion items

divided into 10 categories, namely, (0) T-shirt, (1) trousers, (2) pullover, (3)

dress, (4) coat, (5) sandal, (6) shirt, (7) sneaker, (8) bag, and (9) ankle boot.

Given the higher complexity of the sample images with respect to standard

digit MNIST, in the following, we consider also the classification problem cor-

responding to the macrocategories (0M) shirt (which are obtained from original

classes (0), (2), (3), (4), and (6)), (1M) trousers (from class (1)), (2M) shoe (from

classes (5), (7), and (9)), and (3M) bag (from class (8)). The evolution of stimu-

lation patterns for FMNIST stimuli was carried out employing the same network

architecture and the same genetic algorithm parameters as for MNIST.

Accuracy estimation

Weare posedwith the problem of assessing the quality of our ‘‘reconstruction’’

capabilities. In what follows, we will study two different types of classification

accuracy: (1) the ‘‘end-generation’’ accuracy, computed after a very high num-

ber of generations, and (2) the ‘‘one-match’’ accuracy, which corresponds to

the fraction of samples for which a class-identifying stimulation protocol has

been used after a given number of generations (in a given time span). These

two accuracy definitions correspond to two different experimental settings.

In the first setting, we want to reconstruct an unknown class stimulus; the

end-generation accuracy can be thought as an estimate of the probability

that the ‘‘regime’’ reconstruction (the proposed stimulus reconstruction after

many generations) will allow class identification. In the second setting, we

want to find a class-identifying stimulation protocol for a given stimulus; the

one-match accuracy gives us the probability of finding such a stimulation pro-

tocol if we are willing to wait a given number of evolution generations (which is

linked to computational time).

Psychophysics experiments

Ten subjects (two females) were enrolled in the study. All participants gave

their written informed consent to participate, and the study was approved by

the Commission Cantonale d’Éthique de la Recherche Genève. All volunteers

had normal or corrected-to-normal vision. All experiments were conducted in

accordance with relevant guidelines and regulations.

Experiments

Experiments consisted of a training session and three classification sessions. At

the beginning, the subjectswere shown a subset of 100 images fromMNIST and

FMNIST datasets, with the corresponding classification. During the three classi-

fication sessions, static and dynamic stimuli were shown to the subjects, who

were asked to provide a classification for each presented stimulus. Static stim-

ulus experiments consisted in presenting 100 blurred images from MNIST and

100 blurred images from FMNIST, presented in two series of 50 images. The

gradual and abrupt variation dynamic stimulus experiments employed the

same 100 blurred images from MNIST. In static stimulus experiments, subjects

controlled the flow of stimulation and could use asmuch time as they needed for

the classification. In gradual variation dynamic stimulus experiments, subjects
controlled the flow of stimulation, but each stimulus appeared on the screen

for 2 s, moving smoothly at 10 frames per second, and then disappeared; sub-

jects could use as much time as they needed for the classification. Abrupt vari-

ation dynamic stimulus experiments consisted in the rapid presentation of 50

blurred stimuli from MNIST, without the possibility for the subject to control

the flow of presentation. We performed runs with 1 and 1.5 s spacing between

stimuli. To check that in the case of 1 s spacing the drop in performance was

motivated by the complexity of the proposed stimuli and not by some intrinsic

limitation linked to the very fast pace of stimulation, we administered a run of

1 s spaced abrupt variation experiments with true MNIST digits. Stimulus se-

quences and experiments (static, gradual, abrupt) were randomized between

subjects to avoid any (unsupervised) learning effect.

In the case of static stimulation, constraining the maximum duration of obser-

vation could have artificially lowered the classification rate, depending on the al-

lowedobservationduration.On the other hand,wecould not findany reasonable

method for the selection of an ‘‘appropriate’’ observation duration, given that the

ML accuracies were obtained at convergence, without constraining significantly

the time of evolution (see evolution performance plots, where it is evident that at

generation 200 evolution has virtually ‘‘stopped’’). Indeed, in inquiring the

‘‘maximum’’ performance that a healthy subject can attain given the imper-

fect-selectivity reconstruction constraint, we wanted to set a maximal accuracy

that we could reasonably expect from our evolutionary heuristic.

Stimulus generation

Each reconstructed stimulus is generated from an MNIST or FMNIST image.

Stimuli are obtained by passing to a sigmoid the superposition of 15 point

sources in a manner analogous to what we did in imperfect-selectivity control

of the optic nerve activation. The locations and intensities of the employed

sources for each stimulus were obtained so that they minimized the Euclidean

distance between the source-reconstructed images and the original ones. The

employedminimizer was the default Python scipy.optimize.minimizeminimizer

(L-BFGS-Bmethod). Each optimization was repeated for 25 different initializa-

tion conditions and the best-candidate solution was retained.
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