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(1.A) Selection of the spike count window 

For each neuron, responses to each stimulus condition were computed over the 

same spike count time window. That window was optimally chosen for each neuron 

using the following algorithm (see also Supp. Fig. 2). Given a neuron, we first computed 

its average firing rate profiles FRobj(t) across multiple presentations of each object 

condition in overlapping time bins of 25 ms shifted in time steps of 1 ms. Then, we 

averaged the FRobj(t) evoked by all the object pairs and by the single objects whose 

average response (computed between 75 and 225 ms after stimulus onset) was at least 

70% of the response produced by the most effective object of the set. By averaging across 

these same object conditions, we also computed the background rate FRbk of the neuron 

(spikes were counted between 0 and 50 ms after stimulus onset). Then, by subtracting this 

stimulus-averaged background from the stimulus-averaged firing rate profile, we 

obtained a stimulus-averaged driven rate profile FRdriven(t) = 〈FRobj(t)〉obj - FRbk. Finally, 

we identified the samples for which FRdriven(t) was at least 20% of its peak value. The 

largest continuous interval of samples fulfilling this requirement was always centered on 

the peak of the neuronal response. If no other samples, outside this main “peak” interval, 

fulfilled the requirement, the extremes of the interval were chosen as the extremes of the 

optimal spike count window for that neuron (Supp. Fig. 2A). If the firing profile 

exceeded 20% of its peak in other regions of the time axis, these were merged with the 

main interval only if they were within 25 ms from it (Supp. Fig. 2A). In this case, the 

extremes of the merged interval were chosen as the extremes of the optimal spike count 

window. For each neuron, the extremes of the spike count window were never allowed to 

be lower than 50 ms and higher than 300 ms from stimulus onset.  

All analysis presented in the main text were carried out by counting spikes in 

these neuron-specific optimized time windows. The mean window start time (± s.d.) was 



101 ± 18 ms, the mean window end time was 236 ± 48 ms, and the median duration was 

135 ± 48 ms. These time windows are consistent with previous work52 and with animal 

reaction times in recognition tasks62. All analyses were also repeated using fixed spike 

count windows for all the recorded neurons, yielding very similar results (see Supp. 

Tables 1- 2). 

 

(1.B) Independence of data sets used to compute selectivity and tolerance metrics 

Five to eight presentation repetitions were collected for each shape in the fixed 

object set. Ten to eighteen repetitions were collected for the object conditions used to 

measure the tolerance properties and selectivity within the morphed sets. The reference 

object was presented 20 to 30 times. 

Selectivity and tolerance properties of neuronal responses were measured using 

the metrics defined in Methods. Since we sought to understand the relationship between 

these properties, we took care to measure them using independent data sets. In general, 

independent sets of object conditions were used to assess selectivity and tolerance 

properties. However, since a measure of the response to the very effective reference 

object (see Methods) was needed for both the sparseness metric and most of the tolerance 

metrics (and, occasionally, the morph tuning metric), we split the stimulus presentations 

collected for the reference object in such a way that: 1) a subset of presentations was used 

to compute selectivity; and 2) an independent subset with the remaining presentations 

was used to compute the tolerance metrics. As assessed by bootstrap, tolerance metrics 

were much more sensitive to spike train variability than the sparseness metric. In fact, the 

sparseness metric is computed using a huge number of stimuli (>200). As a consequence, 

this metric is pretty much insensitive to variations in the average firing rate produced by 

each stimulus. On the opposite, tolerance metrics are computed using a much more 

limited number of object conditions and, therefore, are more sensitive to spike train 

variability. Therefore, 90% of the presentations collected for the reference object were 

used in the tolerance metrics, while the remaining, non-overlapping 10% entered the 

sparseness metric. Similarly, the presentations collected for the reference object were 

split in two non-overlapping halves, one contributing to the morph tuning metric, the 



other to the tolerance metrics. Therefore, all scatter plots and correlation coefficients 

(Fig. 4, Supp. Tables 1-3) presented in this study were obtained using completely 

independent data sets. 

 

(1.C) Inclusion of neurons in correlation analyses 

As explained in Methods, 94 neurons were selected for recording in two monkeys 

using a very inclusive criterion. Each analysis presented in the manuscript was carried out 

using a subset of neurons that was selected according to specific criteria. 

Since the responses to the reference object (Rref) and to identity-preserving 

transformations of this object entered all the tolerance metrics, we required that each 

neuron fired at least 10 spikes/s to the reference object in order to be included in any 

correlation analysis. To focus only on neurons that were strongly activated by the 

reference object, all analyses were also repeated using stricter thresholds on Rref, such as: 

Rref  ≥ Th, with Th = 15, 20, 30 spikes/s (see Figs 4 and 6A and Supp. Tables 1-3). 

As explained in Methods, clutter tolerance (CT) was assessed using responses to 

six isolated flanking objects (Rflanker) and to six object pairs composed of the reference 

object and each flanker (Rref & flanker).  Clutter tolerance was meant to assess the amount of 

interference in the response to a preferred reference object caused by the presence of 

poorly-effective flanker objects. Although we used preliminary screening in an attempt to 

choose only flanker objects (see Methods) that were poorly effective, this was not always 

born out by more thorough testing. Thus, only object conditions such that Rflanker < 0.5 

Rref were allowed to contribute to the clutter tolerance metrics (but stricter criteria has 

been applied in Fig. 6A). Therefore, neurons for which no flankers satisfied such criterion 

were excluded from any correlation analysis involving clutter tolerance. 

Size tolerance was measured for all neurons recorded from monkey 2 (34 cells) 

but only for a subset of neurons recorded from monkey 1 (18 cells), for a total of 52 

neurons. 

The tuning within a morphed set (morph tuning, MT) was measured only for a 

subpopulation of 49 neurons that responded to some of the morphed objects. In addition, 



we required that each neuron fired at least 10 spikes/s to the most effective morphed 

object in order to be included in any correlation analysis (all 49 neurons met such 

requirement). 

Since sensitivity to contrast changes of the reference object was measured 2.5º above the 

RF center, as a part of a more general assessment of clutter tolerance (see Methods), we 

required that the response to the reference object at the reference contrast in this RF 

position was at least 25% of the response to the same object in the RF center. Neurons 

that did not fulfill this requirement were excluded from any analyses involving contrast 

tolerance. Since the contrast tolerance metric measures how much of the response to the 

reference object at the reference (high) contrast is preserved when the contrast is reduced 

to much lower levels, we also excluded 4 neurons with contrast tolerance CrT > 1. In 

fact, these neurons had “inverted” contrast sensitivity, i.e. their average response across 

the low contrast stimuli was higher than the response to the reference (higher) contrast. 

These 4 neurons were excluded from our analysis, since our goal was to measure contrast 

tolerance for a population of neurons with “regular” contrast sensitivity function (i.e., that 

all preferred the object at the highest contrast). 

These different screenings were combined yielding the neuronal subpopulations 

used in the correlation analyses shown in Fig. 4 and Supp. Tables 1-3. 

 



 

(2.A) Overview of the computational model of object recognition 

We used a model of object recognition to explore the mechanisms underlying the 

trade-off between selectivity and tolerance that was observed in IT. The model is 

composed of hierarchical layers of neuronal units performing feedforward operations that 

gradually build up selectivity and tolerance for robust object recognition. A short 

overview of the model is provided below, and more details and other aspects of the model 

can be found in previous reports (Riesenhuber and Poggio, 1999a; Serre, 2005; Serre et 

al., 2007a; Serre et al., 2007b). 

There are two principle operations in the model: one for Gaussian-like tuning and 

the other for max-like selection or tolerance (Riesenhuber and Poggio, 1999a; Serre, 

2005; Serre et al., 2007a; Serre et al., 2007b). Each unit (“neuron”) in the model is 

connected to n afferent or input units (i.e., the “presynaptic neurons”). The tuning 

operation is performed by a Gaussian-like function over a space of continuous-value 

inputs (i.e., the activation values of the afferent units). A high response is produced when 

an input pattern across the afferent units matches a stored preferred pattern (e.g., the 

center of the Gaussian-like tuning function; see Figs. 8A-B). The other principle 

operation in the model is the maximum (MAX) and its approximations, to implement 

translation and scale tolerances, based on some physiological evidence and biologically 

plausible neural circuits1,2.  

Along the hierarchy of the model, these two operations are repeated in an 

interleaved manner by the units performing the Gaussian-like operation and the units 

performing the maximum-like operation. As a result, progressively more tolerant (to 

changes in position and scale) and more complex neural selectivities are generated, as 

observed along the ventral pathway.   

The model is constructed to reflect the anatomy and physiology of the ventral 

pathway, so that the hierarchical layers in the model correspond to the visual areas V1, 

                                                
1 Lampl, I., Ferster, D., Poggio, T. & Riesenhuber, M. Intracellular measurements of spatial integration and 
the MAX operation in complex cells of the cat primary visual cortex. J Neurophysiol 92, 2704-13 (2004). 
2 Yu, A. J., Giese, M. A. & Poggio, T. A. Biophysiologically plausible implementations of the maximum 
operation. Neural Comput 14, 2857-81 (2002). 



V2, V4, and IT, and the receptive field sizes and tuning properties of the model units 

closely match those of the neurons in the corresponding areas (see Serre, 2005; Serre et 

al., 2007a; Serre et al., 2007b). The model units in the top layer are the most relevant in 

this study, as they correspond to the neurons in the anterior inferotemporal (IT) cortex. 

Each model IT unit is connected to a subset of input units from the previous layer (PIT) 

through a Gaussian-like tuning operation. The tuning function of each model IT unit was 

centered on the activation pattern produced, across its set of input units, by one of the 

objects of the fixed stimulus set. This means that a model IT neuron had, as a preferred 

stimulus, one of objects of the fixed stimulus set. Simulation results did not change when 

the preferred stimuli of the model IT units did not exactly match the objects of the fixed 

stimulus set used to probe their selectivity and clutter tolerance. 

 

(2.B) Trade-off between selectivity and tolerance in the model of object recognition 

Our simulations tried to follow as closely as possible the experimental protocols used 

during recordings. The same object stimuli (Supp. Fig. 1) were “presented” as inputs to 

the model and the same metrics (with the exception of position tolerance, see Legend of 

Supp. Fig. 7) were computed to measure selectivity and tolerance of the responses of the 

model units. We fixed all the parameters in the lower layers of the model and asked 

whether a range of selectivity and tolerance similar to that found in the recorded IT 

neuronal population (as well as the trade-off between these properties) could be observed 

in the layer of the model corresponding to anterior IT. 

As shown in Supp. Fig. 7, having a population of model IT units with a variable number 

of afferents produced wide ranges of selectivity and tolerance and a trade-off between 

these two properties in a very close agreement with the experimental results. The reason 

is that, as the number of afferents increases, it becomes harder for an arbitrary visual 

stimulus to produce a pattern of activation across the afferents that matches the stored, 

preferred pattern. As a consequence, the selectivity of the unit increases. At the same 

time, the tolerance of the unit decreases, since it becomes easier, for some stimulus 

transformations (such as adding arbitrary flanker (clutter) stimuli and changing the 

position, size and contrast of the preferred stimulus), to produce large deviations from the 



optimal input pattern. Increasing the dimensionality of the input space (i.e., the number of 

afferents) as done in Fig. 8 and Supp. Fig. 7 is just one way to shrink such a volume. 

Another obvious way is to increase the sensitivity of the tuning along each input 

dimension (i.e., to reduce σ of the Gaussian-like tuning function), while keeping the 

number of afferents constant. This again produces a similarly robust trade-off between 

selectivity and tolerance in the model IT units. Finally, it should be noticed that any 

plasticity mechanism able to modify the number of inputs to a given neuron, by 

strengthening or pruning certain synapses, can be used to control the amount of 

selectivity and tolerance of the neuron. 

 



Supp. Fig. 1

Supplemental Figure 1.  The fixed stimulusset. The full set of 213 stimuli used to probe the selectivity of each recorded neuron. 
The set consists of: i) 188 images of real-world objects belonging to 94 different categories (e.g., two hats, two accordions, two 
monkey faces, etc.); ii) 5 objects belonging to each of three different sets of morphed shapes (cars, faces and 2D silhouettes; see 
below); iii) 5 patches of texture (e.g., random dots and oriented bars); iv) a blank frame (used to compute background rate); v) 4 
low contrast (10%, 3%, 2% and 1.5%) images of one of the objects (a camera).

Object set: 213 grayscale images of natural objects



Supp. Fig. 2
Optimal spike count window computed for three example neurons
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Supplemental Figure 2. Spikes count windows computed for three example neurons. In each plot, the black continuous line and 
the horizontal dashed line are, respectively, the stimulus-averaged firing rate profile �<FRobj(t)>obj and background rate FRbk (see 
Supp. Material 1.A). The red line shows the portion of the firing profile that exceeds 20% of its peak value (relative to the 
background rate). A, For this example neuron, the 20% threshold was crossed in a single continuous interval centered around the 
peak of the firing profile (yellow patch). This interval was chosen as the spike count window for the neuron. B, For this example 
neuron, the 20% threshold was crossed in two distinct regions (yellow and cyan patches) that were merged to obtain the final spike 
count window, since they were separated by less than 25 ms. C, For this example neuron, the 20% threshold was crossed in two 
distinct regions (yellow patch and interval between the vertical dashed lines) that were not merged because they were separated 
by more than 25 ms. Therefore, the interval centered around the peak of the firing (yellow patch) was taken as the spike count 
window for the neuron.



Supp. Fig. 3

Supplemental Figure 3. The trade-off between selectivity and clutter tolerance does not depend on the contrast of the flankers in 
the object pairs used to measure clutter tolerance. We asked if covariation of flanker contrast with selectivity could explain the 
inverse relationship. This could, in principle, happen, since: i) flankers chosen for less selective neurons might be expected to 
have, on average, a lower contrast than flankers used for very selective cells; and ii) flankers with low contrast may have a lower 
suppressive power when paired to a very effective object. If both i) and ii) were true, then a strong inverse relationship may be 
expected between contrast of individual flankers and the amount of response suppression they produced (i.e., the clutter tolerance 
for individual flankers). Panel A shows that this was not the case. In fact, contrast and clutter tolerance of individual flankers were 
only weakly and not significantly negatively correlated (left panel; r = -0.092, p = 0.094, two-tailed t-test, n = 330). In addition, 
multiple flankers (up to 6) were used to compute the clutter tolerance (CT) of each neuron (see Methods), and they typically 
spanned a broad range of contrasts, regardless of the neuron's selectivity (compare the sets of red and blue dots, which refer to 
the flankers used to assess the clutter tolerance of the example neurons shown, with corresponding colors, in Figs. 2 and 3). 
Interestingly, the average contrast of the flankers used for a given neuron was positively, although weakly and not significantly, 
correlated with the clutter tolerance across the neuronal population (panel B; r = 0.065, p = 0.61, two-tailed t-test, n = 63; vertical 
and horizontal bars are the SD of the average contrast and clutter tolerance across the flankers used for each neuron; same color 
code as in the left panel). This shows that the inverse relationship between selectivity and CT cannot simply be explained by 
differences in the contrast of the flanker objects (see also Supp. Fig. 4).
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Supplemental Figure 4. The trade-off between selectivity and clutter tolerance does not depend on the identity of the flankers in 
the object pairs used to measure clutter tolerance. A, To fully remove all possible properties of the chosen flanker objects that 
might happen to covary with shape selectivity, we specifically examined cases where neurons were tested with the exact same 
flanker objects. The figure shows 16 sets of neurons (each set is identified by a color, and ranges from 2 to 7 neurons in size). For 
neurons in a given set, clutter tolerance (ordinate) was measured using exactly the same flanker object. Each set contained at 
least one neuron with selectivity (sparseness, S) within the first third of its possible range of values  (i.e., to the left of the leftmost 
dashed line) and one neuron with S within the last third  (i.e., to the right of the rightmost dashed line). For each set, we computed 
a linear regression between selectivity and clutter tolerance (regression lines for each set are shown with color matching the color 
of the corresponding data points). The mean slope of the regression lines was significantly negative (-0.52, p = 0.00039, one-tailed 
t-test, n = 16) and very close to the slope of the regression line obtained from the whole data set (slope = -0.54, withRref ≥ 30 
spikes/s). Also, the mean value of the clutter tolerance for neurons within the first third of S was significantly higher than the mean 
clutter tolerance of neurons within the last third of S (p = 0.0015, one-tailed t-test). B, We directly compared the strength of the 
inverse relationship (shape selectivity vs. clutter tolerance) when measured with the exact same flanker objects with that observed 
in the entire data set (Fig 4), in which the flanker identity typically varied from neuron to neuron. To do this, we again focused on 
those sets of neurons that were tested with the same flankers (as in A). For each pair of neurons within a set, we computed the 
difference in sparseness (∆S > 0, since we always subtracted the lower sparseness value from the higher) and the corresponding 
change in clutter tolerance (∆CT). The histogram shows the distribution of the ∆CTs, for  ∆S > 0.4. As expected, there was a 
significantly higher number of negative, rather than positive, ∆CTs (p = 0.00034, χ2 test). More importantly, the observed median 
∆CT (red dashed line) was almost identical to the median of the predicted ∆CTs (blue dashed line) based on applying the slope of 
the linear regression obtained from the whole data set (as in Fig 4; slope = -0.46 with Rref ≥ 10 spikes/s) to the observed ∆Ss. 
Together, the analyses presented in B and C, show that the trade-off between S and CT: i) was present in neuronal populations in 
which clutter tolerance was measured using the exact same flanker objects; and ii) was quantitatively very close to that obtained 
from the whole data set.

Supp. Fig. 4

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Selectivity (sparseness, S)

C
lu

tte
r T

ol
er

an
ce

 (C
T)

Trade-off between sparseness and clutter tolerance (only flankers with fixed identity)

-1.5 -1 -0.5 0 0.5 1 1.5
0

4

8

12

16

C
ou

nt
s

∆ CT (for ∆S ≥ 0.4)

observed median ∆CT = -0.25
predicted median ∆CT = -0.24

A B



Supp. Fig. 5
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Supplemental Figure 5. Correlation between sparseness and neuronal maximal firing rate over the fixed stimulus set
When the whole neuronal population (n = 94) was taken into account, a significant, negative correlation was found between the 
maximal firing of neurons across the stimulus set and their sparseness (r = -0.21*, p = 0.043, n = 94; two-tailed t-test). Such 
correlation, however, was mainly driven by a few “outlier” putative inhibitory neurons (open circles; see Fig. 5A) with very high firing 
rate and minimal selectivity. Indeed, the correlation coefficient computed over the population of excitatory neurons only (filled 
circles) was not significantly different from zero (r = -0.045, p = 0.7, n = 80; two-tailed t-test).



A Object selectivity (sparseness) vs. tolerance

B Object selectivity (morph tuning) vs.tolerance
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Supp. Fig. 6

Supplemental Figure 6. Trade-off between object selectivity and tolerance to identity-preserving transformations in IT after 
subtraction of minimal rates. For each neuron, sparseness, morph tuning and each of the tolerance metrics were computed using 
firing rates that were corrected by subtracting the minimal neuronal response across the fixed object set of 213 stimuli (see Supp. 
Fig. 1). A, The scatter plots show the inverse relationship between sparseness and each of the tested tolerance properties. Open 
and filled circles refer, respectively, to putative inhibitory and excitatory neurons, according to the analysis shown in Fig. 5A. 
Regression lines through, respectively, all data points (solid) and only putative excitatory neurons (dashed) are also shown. B, The 
scatter plots show the inverse relationship between shape selectivity measured within a set of parametrically morphed objects and 
each of the tested tolerance properties. Same symbols as in A. Neurons that fired at least 10 spikes/s to the reference object were 
included in the plots shown in A and B. Correlation coefficients between object selectivity (either sparseness or morph tuning) and 
each of the tolerance properties are reported in Supp. Table 4.



Supplemental Figure 7. Trade-off between selectivity and tolerance to stimulus transformations in the model of object recognition
In the top panels, the tuning curves of 4 model IT units (with different number of afferent units as indicated in the legend of the first 
panel) to four different stimulus transformations (position, size, contrast, and clutter) are shown (cf. Fig. 3). In the bottom panels, 
the sparseness and the tolerance metrics for these four transformations are plotted for a population of model units (a total of 120 
model units with 4 different numbers of afferent units) (cf. Fig. 4). As discussed in the text, the units with more afferents inputs are 
more selective and less tolerant resulting in an inverse relationship, similar to that observed in the recorded IT neuronal population 
(Fig. 4). A, B, Because of the maximum-like operations across different positions and scales in the lower layers of the model, the 
responses of the model IT units show some degree of tolerance to position and scale changes. However, it should be noted that in 
general the presence of OR-like (e.g., maximum) operations does not guarantee perfect invariance across position and size 
changes, because these tolerance operations are applied in a hierarchical manner, interleaved by AND-like (e.g., Gaussian) 
operations. In the model, a hierarchy of OR-like operations followed by AND-like operations is not equivalent to a global OR 
operation at the top level. Additionally, pooling over only a finite number of positions and sizes over which the model units perform 
the OR-like operations contribute to the imperfect invariance of the model. Since model IT units perform a Gaussian-like tuning 
operation over their afferents, those IT units that are more selective (e.g., they receive more inputs) will still be more sensitive to 
the (not completely invariant) activation of their afferents due to position and size changes. Note that, although these simulations 
show a qualitative agreement with the data, the ranges of positions and scale changes tested in the model do not match those 
probed during recordings, because of the limited span of visual field simulated in the model. Moreover, a more realistic and 
quantitative comparison with the data would require modeling the variations in size and location of the receptive fields of 
inferotemporal neurons and the drop of retinal sampling as a function of retinal eccentricity. For these reasons, since a quantitative 
comparison with neuronal position data is currently beyond the scope of our simulations, we decided to quantify position tolerance 
as the average response of the model IT unit to the reference object presented in the non-preferred RF locations rather than as the 
unit RF size (as done for the experimental data). C, For the simulations on the contrast sensitivity of the model units, we assumed 
that stimuli with lower contrast would produce smaller responses in the model units representing V1 neurons. Specifically, we 
assumed that, in the model, the responses of each V1 unit to stimuli at 1.5, 2 and 3% contrast (cf. Fig. 3C) were, respectively, 70, 
80 and 90% (abscissa in the top panel) of the response to the same stimulus at its reference contrast. D, The simulation of the 
clutter condition followed the same protocols as in the physiological experiment.

Supp. Fig. 7
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Supp. Table 1 
 

Correlation between selectivity and tolerance properties 
Selectivity metric = sparseness (S) within the fixed object set 

 
Th 

(spikes/s) 
Position 
tolerance (n) Size 

tolerance (n) Contrast 
tolerance (n) Clutter 

tolerance (n) 

         
Spike count window = neuron specific (same as first two rows of Fig. 4C) 

         
10 -0.39***± 0.08 (77) -0.33**± 0.13 (52) -0.32**± 0.1 (85) -0.35***± 0.09 (88) 
30 -0.36**± 0.11 (56) -0.36**± 0.17 (42) -0.3*± 0.11 (60) -0.46***± 0.08 (63) 
         

Spike count window = neuron specific (DRIVEN rates – background rate computed at trial onset) 
         

10 (above)  -0.21 ± 0.14 (52) -0.18*± 0.1 (85) (above)  
30 (above)  -0.26*± 0.17 (42) -0.15 ± 0.11 (60) (above)  
         

Spike count window = neuron specific (DRIVEN rates – background rate computed as response to a blank frame) 
         

10 -0.38***± 0.08 (79) -0.28*± 0.14 (52) -0.19*± 0.1 (85) (above)  
30 -0.34**± 0.12 (57) -0.29*± 0.18 (42) -0.14 ± 0.13 (60) (above)  
         

Spike count window = neuron specific (NO putative INHIBITORY) 
         

10 -0.43***± 0.09 (64) -0.4**± 0.12 (44) -0.3**± 0.1 (72) -0.29**± 0.11 (74) 
30 -0.36**± 0.12 (44) -0.5***± 0.14 (34) -0.3*± 0.11 (48) -0.41***± 0.11 (50) 
         

Spike count window = [75, 225] ms 
         

10 -0.38***± 0.08 (80) -0.26*± 0.15 (52) -0.38***± 0.1 (90) -0.36***± 0.08 (92) 
25 -0.4***± 0.1 (53) -0.25 ± 0.19 (40) -0.35**± 0.12 (57) -0.43***± 0.09 (59) 
         

Spike count window = [100, 200] ms 
         

10 -0.26**± 0.12 (76) -0.21 ± 0.15 (52) -0.38***± 0.08 (87) -0.3**± 0.09 (91) 
30 -0.23**± 0.13 (57) -0.23 ± 0.19 (41) -0.33**± 0.11 (61) -0.36**± 0.09 (65) 
         

Spike count window = [100, 250] ms 
         

10 -0.29**± 0.1 (78) -0.2 ± 0.14 (52) -0.3**± 0.1 (87) -0.37***± 0.07 (90) 
25 -0.31**± 0.13 (58) -0.29* ± 0.15 (41) -0.25*± 0.13 (59) -0.45***± 0.08 (62) 
         

Spike count window = [75, 250] ms 
         

10 -0.41***± 0.08 (81) -0.26* ± 0.14 (52) -0.39***± 0.1 (89) -0.35***± 0.08 (90) 
25 -0.38**± 0.11 (52) -0.26 ± 0.18 (38) -0.24*± 0.13 (53) -0.46***± 0.09 (53) 
         
         

 
Supplemental Table 1. Correlation between selectivity (sparseness) and tolerance properties for different choices of the 
parameters used to compute the sparseness and tolerance metrics. The first column (Th) shows the minimal spike rate 
each neuron had to fire to the reference object in order to be included in the analysis. The first two rows show the 
correlations obtained using our standard analysis parameters (already reported in Fig. 4C), i.e. by computing raw rates in 
neuron-specific spike count windows (see Supp. Material 1.A) and including both putative excitatory and inhibitory 
neurons (see in Fig. 5A). The other rows show the correlations obtained using either: i) driven rates instead of raw rates; 
or ii) excluding putative inhibitory neurons from the analysis; or iii) using various fixed spike count windows for all the 
neurons included in the analysis. Driven rates were computed by subtracting from each response of a neuron its 
background rate. The latter was computed either as: i) the average firing rate in a 100 ms window at the beginning of each 
behavioral trial, after fixation was acquired but before any stimulus was presented; or ii) the average firing rate to a blank 
frame embedded in the stimulus sequence. Note that, since some parameter choices are the same (or equivalent) to the 
standard parameter choice, correlation values are not repeated (cells filled with “above”). This applies to the clutter 
tolerance metric that, by definition, is the same using either raw or driven rates, and to the position tolerance metric that, 
by default, is computed using driven rates (with background rate computed at the beginning of each trial). Correlation 
coefficients are all negative and, in most cases, highly significant (* p ≤ 0.05; ** p ≤ 0.01; ***p ≤ 0.001; one-tailed 
permutation test; SE computed by bootstrap). 



Supp. Table 2 
 

Correlation between selectivity and tolerance properties 
Selectivity metric = tuning within a morphed set (morph tuning, MT) 

 
Th 

(spikes/s) 
Position 
tolerance (n) Size 

tolerance (n) Contrast 
tolerance (n) Clutter 

tolerance (n) 

         
Spike count window = neuron specific (same as last two rows of Fig. 4C) 

         
10 -0.26*± 0.12 (41) -0.47**± 0.16 (26) -0.52***± 0.09 (48) -0.38**± 0.09 (48) 
20 -0.29*± 0.1 (38) -0.43*± 0.16 (25) -0.52***± 0.1 (45) -0.32*± 0.1 (45) 
         

Spike count window = neuron specific (DRIVEN rates – background rate computed at trial onset) 
         

10 (above)  -0.45* ± 0.16 (26) -0.45***± 0.11 (48) (above)  
20 (above)  -0.43*± 0.18 (25) -0.44**± 0.11 (45) (above)  
         

Spike count window = neuron specific (DRIVEN rates – background rate computed as response to a blank frame) 
         

10 -0.2 ± 0.12 (42) -0.47**± 0.16 (26) -0.41**± 0.14 (48) (above)  
20 -0.25 ± 0.11 (39) -0.46*± 0.18 (25) -0.43** ± 0.14 (45) (above)  
         

Spike count window = neuron specific (NO putative INHIBITORY) 
         

10 -0.24 ± 0.12 (30) -0.48*± 0.17 (20) -0.48**± 0.11 (37) -0.37*± 0.11 (37) 
20 -0.26 ± 0.14 (27) -0.45*± 0.17 (19) -0.47**± 0.13 (34) -0.3*± 0.13 (34) 
         

Spike count window = [75, 225] ms 
         

10 -0.22 ± 0.13 (35) -0.48**± 0.2 (25) -0.57***± 0.09 (44) -0.42**± 0.09 (44) 
20 -0.22 ± 0.14 (33) -0.48** ± 0.2 (25) -0.54***± 0.1 (41) -0.39**± 0.11 (41) 
         

Spike count window = [100, 200] ms 
         

10 -0.2 ± 0.15 (37) -0.6*** ± 0.16 (24) -0.57***± 0.1 (42) -0.39**± 0.1 (45) 
25 -0.19 ± 0.15 (32) -0.6** ± 0.16 (23) -0.52***± 0.12 (35) -0.36*± 0.12 (38) 
         

Spike count window = [100, 250] ms 
         

10 -0.18 ± 0.13 (38) -0.56** ± 0.18 (24) -0.61***± 0.09 (43) -0.41**± 0.1 (44) 
20 -0.3*± 0.11 (34) -0.54** ± 0.21 (22) -0.61***± 0.11 (38) -0.37**± 0.11 (39) 
         

Spike count window = [75, 250] ms 
         

10 -0.21 ± 0.12 (39) -0.53** ± 0.17 (25) -0.64***± 0.08 (44) -0.45***± 0.1 (43) 
15 -0.26 ± 0.11 (32) -0.52* ± 0.19 (22) -0.63***± 0.1 (37) -0.43**± 0.1 (36) 
         
         

 
 

Supplemental Table 2. Correlation between selectivity (morph tuning) and tolerance properties for different choices of 
the parameters used to compute the sparseness and tolerance metrics. Same conventions as in Supp. Table 1. All 
correlation coefficients are negative and, in most cases, highly significant. 

 
 
 
 



Supp. Table 3 
 

Correlation between different selectivity measures over the fixed stimulus set and tolerance properties 
 

Th 
(spikes/s) 

Position 
tolerance (n) Size 

tolerance (n) Contrast 
tolerance (n) Clutter 

tolerance (n) 

         
Sparseness (raw rates; same as first two rows of Fig. 4C) 

         
10 -0.39***± 0.08 (77) -0.33**± 0.13 (52) -0.32**± 0.1 (85) -0.35***± 0.09 (88) 
30 -0.36**± 0.11 (56) -0.36**± 0.17 (42) -0.3*± 0.11 (60) -0.46***± 0.08 (63) 
         

Sparseness (after subtraction of minimal rates) 
         

10 -0.37***± 0.09 (77) -0.33**± 0.13 (52) -0.29**± 0.1 (85) -0.32**± 0.09 (88) 
30 -0.33**± 0.11 (56) -0.37** ± 0.17 (42) -0.27*± 0.11 (60) -0.42***± 0.08 (63) 
         

Sparseness (absolute driven rates) 
         

10 -0.37**± 0.1 (77) -0.21 ± 0.12 (52) -0.22*± 0.1 (85) -0.32**± 0.1 (88) 
30 -0.28*± 0.13 (56) -0.19 ± 0.15 (42) -0.2 ± 0.12 (60) -0.46***± 0.08 (63) 
         

Fraction of responses NOT significantly different from background rate (p = 0.1, t-test) 
         

10 -0.4***± 0.09 (77) -0.24* ± 0.12 (52) -0.17± 0.11 (85) -0.27**± 0.12 (88) 
30 -0.34**± 0.11 (56) -0.21 ± 0.12 (42) -0.24 ± 0.16 (60) -0.4**± 0.11 (63) 
         

Average absolute difference between responses to twin objects 
         

10 -0.36***± 0.09 (77) -0.22 ± 0.12 (52) -0.25*± 0.09 (85) -0.26**± 0.09 (88) 
25 -0.34**± 0.11 (56) -0.25 ± 0.14 (42) -0.3*± 0.09 (60) -0.38**± 0.09 (63) 
         
         

 
 

Supplemental Table 3. Correlation between different selectivity metrics and tolerance properties. In this study, we 
quantified neuronal selectivity across the fixed object set (see Supp. Fig. 1) using a well-established metric: the 
sparseness of the raw neuronal responses (first two rows). Here we show that the tradeoff between selectivity and 
tolerance properties is also observed when other selectivity metrics are computed (using the responses across the fixed 
object set). i) Sparseness after subtracting from each response the minimal response across the stimulus set. ii) 
Sparseness after subtracting the background rate and taking the absolute value of the resulting responses (note: that the 
sparseness is ill defined if some of the responses are negative). iii) The fraction of stimuli that did not produce a response 
significantly different from background rate according to a t-test (p = 0.1); iv) The average absolute difference between the 
responses to two objects belonging to the same object category (“twin” objects). The last metric was based on the fact 
that the fixed stimulus set consisted of 94 object categories, each containing two exemplars/twins (e.g., two hats, two 
monkey faces, etc…). To compute this metric, we selected all the objects that evoked a response that was at least 50% of 
the response to most effective object. For each of these objects, we found its twin and we computed the absolute 
difference between the firing rates evoked by the two objects. Finally, we averaged the firing differences obtained for all 
these pairs of twin objects. Overall, a negative correlation was always found between each of these selectivity metrics and 
the tolerance metrics, and most of these correlations were significant, showing that the trade-off between selectivity and 
tolerance does not fundamentally depend on the choice of metric. 



Supp. Table 4 
 

Correlation between selectivity and tolerance properties after subtraction of minimal rates 
 

Th 
(spikes/s) 

Position 
tolerance (n) Size 

tolerance (n) Contrast 
tolerance (n) Clutter 

tolerance (n) 

         
Correlation between sparseness and tolerance properties (after subtraction of minimal rates) 

         
10 -0.39***± 0.08 (81) -0.29*± 0.14 (52) -0.19*± 0.1 (85) -0.32**± 0.09 (88) 
30 -0.35**± 0.11 (58) -0.32*± 0.16 (42) -0.16 ± 0.12 (60) -0.42***± 0.08 (63) 
         

Correlation between morph tuning and tolerance properties (after subtraction of minimal rates) 
         

10 -0.22 ± 0.11 (42) -0.5**± 0.15 (26) -0.47***± 0.11 (48) -0.31*± 0.09 (48) 
20 -0.25 ± 0.11 (39) -0.47**± 0.15 (25) -0.48***± 0.12 (45) -0.26*± 0.11 (45) 
         
         

 
 

Supplemental Table 4. Correlation between different selectivity metrics and tolerance properties after subtraction of 
minimal rates. For each neuron, sparseness, morph tuning and each of the tolerance metrics were computed using firing 
rates that were corrected by subtracting the minimal neuronal response across the fixed set of 213 stimuli (see Supp. Fig. 
1). The first column (Th) shows the minimal spike rate each neuron had to fire to the reference object in order to be 
included in the analysis. Overall, a negative correlation was always found between each of the selectivity and tolerance 
metrics, and most of these correlations were significant (* p ≤ 0.05; ** p ≤ 0.01; ***p ≤ 0.001; one-tailed permutation test; 
SE computed by bootstrap) and similar to what obtained using raw rates (Fig. 4C). 

 

 



Supp. Table 5 
 

Correlation between different tolerance properties (Th ≥  10 spikes/s) 
 
A 

 
 Size tolerance (n) Contrast tolerance (n) Clutter tolerance (n) 

        
 Position tolerance 0.15 ± 0.16 (48) 0.4***± 0.12 (72) 0.06± 0.1 (75) 
        
 Size tolerance   0.15 ± 0.13 (47) 0.29*± 0.11 (52) 
        
 Contrast tolerance     0.13 ± 0.09 (83) 
        

 
 
 
Correlation between different tolerance properties (Th ≥  30 spikes/s) 
 
B 

 
 Size tolerance (n) Contrast tolerance (n) Clutter tolerance (n) 

        
 Position tolerance 0.29* ± 0.14 (39) 0.37**± 0.14 (52) 0.13 ± 0.12 (55) 
        
 Size tolerance   0.14 ± 0.13 (38) 0.22 ± 0.14 (42) 
        
 Contrast tolerance     0.1 ± 0.11 (59) 
        

 
 
Supplemental Table 5. Correlation between different tolerance properties. The minimal spike rate each neuron had to fire 
to the reference object in order to be included in the analysis was selected to be either 10 spikes/s (A) or 30 spikes/s (B). 
The asterisks indicate the significance level (* p ≤ 0.05; ** p ≤ 0.01; one-tailed permutation test; SE computed by 
bootstrap). 



Supp. Table 6 
 

A.  Correlation between sparseness and different temporal properties of the response 
 

Th (spikes/s) (n) Latency of 
response onset 

Latency of 
response peak Response duration 

     
Background corrected response is at least 10% of its peak value 

     
10 (91) 0.19*± 0.11 0.09 ± 0.11 0.23*± 0.09 
30 (64) 0.27*± 0.12 0.15 ± 0.12 0.13± 0.1 
     

Background corrected response is at least 20% of its peak value 
     

10 (91) 0.28**± 0.1 above 0.21*± 0.1 
30 (64) 0.32**± 0.11 above 0.15 ± 0.11 
     

 
 

B.  Average values of the temporal properties of the response for the populations of weakly and highly selective 
cells 

 

Th 
(spikes/s) 

 
(n) 

 
weak sel. / high sel. 

Latency of 
response onset (ms) 

 
weak sel. / high sel. 

Latency of 
response peak (ms) 

 
weak sel. / high sel 

 
Response duration (ms) 

 
weak sel. / high sel 

     
Background corrected response is at least 10% of its peak value 

     
10 (38 / 17) 95±3 / 104±5 137±4 / 141±6 124±7 / 155±10 (**) 
30 (25 / 11) 93±4 / 108±6 (*) 135±4 / 147±6 122±8 / 140±12 
     

Background corrected response is at least 20% of its peak value 
     

10 (38 / 17) 97±3 / 108±5 (*) above 122±7 / 151±11 (*) 
30 (25 / 11) 98±3.5 / 112±5 (*) above 118±8 / 136±12 
     

 
 

Supplementary Table 6. Relationship between object selectivity and time properties of the neuronal responses. A, 
Correlation coefficients (± SE) between sparseness and: i) latency of the onset of the response; ii) latency of the peak of 
the response; and iii) duration of the response (* p ≤ 0.05; ** p ≤ 0.01; one-tailed permutation test; SE computed by 
bootstrap). B, Average values (± SE) of response onset latency, response peak latency and response duration for the two 
populations of weakly and highly selective neurons (as defined in Fig. 5). Onset and offset of neuronal responses were 
computed using the algorithm described in Methods and Supp. Material 1.A., i.e., by considering epochs in which the 
background corrected response was at least either 10% or 20% of its peak value. Asterisks indicate that a significant 
difference was observed between weakly and highly selective neurons (* p ≤ 0.05; ** p ≤ 0.01; one-tailed t-test). The first 
column (Th) in A and B shows the minimal spike rate each neuron had to fire to the reference object in order to be 
included in the analysis. 


