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The highest stages of the visual ventral pathway are commonly assumed to provide robust representation of object identity by disregard-
ing confounding factors such as object position, size, illumination, and the presence of other objects (clutter). However, whereas neuronal
responses in monkey inferotemporal cortex (IT) can show robust tolerance to position and size changes, previous work shows that
responses to preferred objects are usually reduced by the presence of nonpreferred objects. More broadly, we do not yet understand
multiple object representation in IT. In this study, we systematically examined IT responses to pairs and triplets of objects in three
passively viewing monkeys across a broad range of object effectiveness. We found that, at least under these limited clutter conditions, a
large fraction of the response of each IT neuron to multiple objects is reliably predicted as the average of its responses to the constituent
objects in isolation. That is, multiple object responses depend primarily on the relative effectiveness of the constituent objects, regardless
of object identity. This average effect becomes virtually perfect when populations of IT neurons are pooled. Furthermore, the average
effect cannot simply be explained by attentional shifts but behaves as a primarily feedforward response property. Together, our obser-
vations are most consistent with mechanistic models in which IT neuronal outputs are normalized by summed synaptic drive into IT or
spiking activity within IT and suggest that normalization mechanisms previously revealed at earlier visual areas are operating through-
out the ventral visual stream.

Key words: inferotemporal cortex; monkey; object recognition; multiple objects; normalization; clutter tolerance

Introduction
Visual object recognition in cluttered scenes is extremely difficult
for artificial vision systems yet is accomplished effortlessly by the
brain. In primates, it is believed that object identity is extracted
through processing along the ventral visual stream and is repre-
sented in patterns of neuronal activity in the highest stages of that
stream: the anterior inferotemporal cortex (IT). Electrophysio-
logical studies show that IT neurons can be selective for complex
objects while also being tolerant to some transformations (object
position, scale, and pose) (for review, see Logothetis and Shein-
berg, 1996; Tanaka, 1996). In this context, some have suggested
that IT neurons should ideally be tolerant to visual clutter, i.e.,
their response to an effective object should be essentially unaf-

fected by the presence of other, less-effective objects (Rousselet et
al., 2003, 2004).

However, this idealized notion of IT is inconsistent with avail-
able data showing that IT responses are altered in cluttered scenes
(Sheinberg and Logothetis, 2001; Rolls et al., 2003), and re-
sponses to object pairs are typically weaker than responses to
isolated, preferred objects (Sato, 1989; Miller et al., 1993; Rolls
and Tovee, 1995; Chelazzi et al., 1998; Missal et al., 1999). More-
over, although some contemporary models of the ventral stream
use MAX operations (Riesenhuber and Poggio, 1999a), even
these models do not predict complete clutter tolerance in IT
(Riesenhuber and Poggio, 1999b).

At present, we lack a systematic understanding of IT clutter
tolerance, even in simple clutter conditions (e.g., two objects).
Because recognition performance shows remarkable clutter tol-
erance even for brief presentation conditions (e.g., �100 ms)
without explicit attentional instruction (Potter, 1976; Intraub,
1980; Rubin and Turano, 1992), this suggests that top-down at-
tention is not strictly required for robust recognition in clutter
but that powerful, primarily feedforward processing mechanisms
are also at work. Thus, although previous studies have investi-
gated how attention modulates processing of targets in the pres-
ence of distracters (Moran and Desimone, 1985; Maunsell, 1995;
Connor et al., 1997; Chelazzi et al., 1998), here we seek to under-
stand the “core” feedforward processing of multiple objects.

Although some progress on understanding such processing
has been made in area V4 (Reynolds et al., 1999; Gawne and
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Martin, 2002; Reynolds and Desimone, 2003), IT remains poorly
understood. In particular, although several IT studies have
touched on the issue of IT responses in clutter (Miller et al., 1993;
Rolls and Tovee, 1995; Chelazzi et al., 1998; Missal et al., 1999;
Sheinberg and Logothetis, 2001; Rolls et al., 2003), no study has
systematically tested the relationship between responses to object
pairs and responses to constituent objects (but see Missal et al.,
1999), and there has been no attempt to understand how IT
responses to multiple objects depend on object shape similarity.

In this study, we systematically examined IT neuronal re-
sponses to brief presentations of two or three objects in three
passively viewing monkeys. Our results show that, at least under
these conditions, IT neuronal responses to multiple objects are
well predicted by the average of their responses to the constituent
objects. This finding suggests that divisive normalization mech-
anisms analogous to those proposed to explain response rescaling
in early visual stages (Heeger, 1992; Desimone and Duncan, 1995;
Heeger et al., 1996; Carandini et al., 1997; Reynolds et al., 1999)
and area MT (Recanzone et al., 1997; Britten and Heuer, 1999)
may be at work in IT.

Materials and Methods
Animals and surgery
Experiments were performed on three male rhesus monkeys (Macaca
mulatta) weighing �8, 9.5, and 10 kg. Before behavioral training, aseptic
surgery was performed to attach a head post to the skull of each monkey
and to implant a scleral search coil in the right eye of monkeys 1 and 2.
After 2–5 months of behavioral training (below), a second surgery was
performed to place a recording chamber (18 mm diameter) to reach the
anterior half of the left temporal lobe (chamber Horsley-Clark center, 15
mm anterior). All animal procedures were performed in accord with
National Institute of Health guidelines and the Massachusetts Institute of
Technology Committee on Animal Care.

Eye position monitoring
Horizontal and vertical eye positions were monitored using the scleral
search coil (monkeys 1 and 2) or a 250 Hz camera-based system (monkey
3; EyeLink II; SR Research, Osgode, Ontario, Canada). Each channel was
digitally sampled at 1 kHz. Methods for detecting saccades and calibrat-
ing retinal locations with monitor locations are described in detail pre-
viously (DiCarlo and Maunsell, 2000).

Visual stimuli
Stimuli were presented on a video monitor (43.2 � 30.5 cm; 75 Hz frame
rate; 1920 � 1200 pixels) positioned at 81 cm from the monkeys so that
the display subtended approximately �15° (horizontally) and �10° (ver-
tically) of visual angle. Different visual objects were used in each experi-
ment (see Fig. 1 and below).

Experiment 1. Monkeys 1 and 2 were tested with three simple, solid
geometric forms (see Fig. 1 A, left, a star, a cross, and a triangle), pre-
sented at full luminance (57 cd/m 2) on a gray background (27 cd/m 2).
Each object was 2° in size (diameter of a bounding circle).

Experiment 2. Monkey 3 was tested using objects drawn from three
object sets with parametrically controllable shape similarity within each
set (see Fig. 1 A, right). To ensure generality of results, three different
spaces of morphed shapes were generated: (1) a car space; (2) a face space;
and (3) a NURBS space (nonuniform rational B-spline generated two-
dimensional silhouettes). Each space was generated from a set of 15
initial shapes: (1) 15 three-dimensional models of car brand prototypes;
(2) 14 three-dimensional models of human heads plus their average; and
(3) 15 randomly generated NURBS (44 free parameters, see below). For
each space, one of these initial shapes was chosen as “center” of the space,
and 14 sets of morphed shapes were built as blends (see below) of the
center shape and each of the other 14 prototype shapes, thus resulting in
14 morph lines per space (see examples in Fig. 1 A, right). In each of the
three object spaces, the distance (d) between the center shape and each of
the 14 prototype shapes was defined to have value 1. As shown for the
three exemplar morph lines of Figure 1 A, morphed shapes were gener-

ated not only between the center and each of the 14 prototypes (see Fig.
1 A, right, the five middle shapes in each row) but also by extrapolating
beyond the initial prototypes (see Fig. 1 A, right, first and last shapes in
each row), thus resulting in shape distances d � 1 and d � 0.

Slightly different morphing methods were used to generate the objects
in each of the three shape spaces. Cars were built using an algorithm
(Shelton, 2000) that found corresponding points in each pair of three-
dimensional car prototypes and represented each car prototype as a vec-
tor of point coordinates. Faces were built using a face-morphing algo-
rithm (Blanz and Vetter, 1999), in which point correspondences between
pairs of face prototypes were established based on the three-dimensional
structure of the head models. Car and face morphs were then created as
linear combinations of the correspondence points and rendered as gray-
scale two-dimensional images (with fixed viewpoint, illumination, and
size; see Fig. 1 A, right, first and second row). The center shape of the face
space was the average face (see Fig. 1 A, right, second stimulus in the
second row). NURBS objects were filled shapes defined by closed third-
order NURBS curves with 22 equally weighted control vertices (Rogers,
2000). NURBS morphs were generated using weighted averages of con-
trol vertices of pairs of prototypes, and all NURBS curves were filled at
full luminance (72 cd/m 2) (see Fig. 1 A, right, third row). All objects were
presented at 2° in size (bounding circle diameter) on a gray background
(12 cd/m 2).

Behavioral task and training
All three monkeys were trained to fixate a central point (0.2 � 0.2°) for
several seconds while a series of visual stimuli were presented in rapid
succession (rapid, passive viewing paradigm). In particular, stimulus
conditions were presented in a random sequence in which each stimulus
condition was on for 100 ms, followed by 100 ms of a gray screen (no
stimulus), followed by another stimulus conditions for 100 ms, etc. (see
Fig. 1 E). That is, stimulus conditions were presented at a rate of five per
second. At this presentation rate, IT neurons show robust object selec-
tivity (Keysers et al., 2001), and this rate is consistent with that produced
spontaneously by free-viewing monkey (DiCarlo and Maunsell, 2000).
Single, pair, and triplet object conditions were pseudorandomly inter-
leaved (see schematic in Fig. 1 E). The screen background was always kept
at a constant gray. The total number of stimulus conditions presented on
each fixation trial ranged from 3 to 20, and the monkey was rewarded for
maintaining fixation throughout the trial (�0.5° fixation window in
monkeys 1 and 2; �1.5° fixation window in monkey 3). Failures to main-
tain fixation throughout the trial resulted in the trial being aborted, and
all stimulus conditions in that trial were re-presented.

The data presented in the current study were all acquired during this
rapid, passive viewing paradigm. However, all three monkeys are also
involved in ongoing studies that require behavioral training with the
stimuli used in this study. Monkeys 1 and 2 were trained to perform an
object identification task with single geometrical shapes presented either
at the center of gaze, 2° above, or 2° below fixation. Monkeys were re-
quired to saccade to a different, fixed peripheral target for each object.
Monkey 3 was trained to perform a sequential object recognition task
that required the detection of a fixed target shape (the center object in
each object set) embedded in a temporal sequence of shapes drawn from
the same object set (blocked trials).

Recording and data collection
For each recording, a guide tube (26 gauge) was used to reach IT using a
dorsal to ventral approach. Recordings were made using glass-coated
platinum/iridium electrodes (0.5–1.5 M� at 1 kHz), and spikes from
individual neurons were amplified, filtered, and isolated using conven-
tional equipment. The superior temporal sulcus (STS) and the ventral
surface were identified by comparing gray and white matter transitions
and the depth of the skull base with structural magnetic resonance images
from the same monkeys. Penetrations were made over a �10 � 10 area of
the ventral STS and ventral surface (Horsley-Clark coordinates: antero-
posterior, 10 –20 mm; mediolateral, 14 –24 mm) of the left hemisphere of
each animal. All recordings were lateral of the anterior middle temporal
sulcus. Thus, the recorded regions included anterior and central infero-
temporal cortex (Felleman and Van Essen, 1991). In all three animals, the
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penetrations were concentrated near the center of this region, in which
form-selective neurons were more reliably found. The animals cycled
through behavioral blocks as the electrode was advanced into IT. Re-
sponses from every isolated neuron were assessed with an audio monitor
and online histograms, and data were collected according to specific
criteria for experiments 1 and 2.

Experiment 1. As the electrode was advanced into IT, monkeys 1 and 2
performed the object identification task described above. Neurons that
responded to any of the geometric objects at any of the three positions
were further probed while the animal passively viewed the same objects
(described above) (see Fig. 1 E). Neurons that responded with a mean
firing rate significantly higher than background rate to any shape at any
position (t test, p � 0.05) were studied further. The main experimental
conditions included the following: (1) each of the three shapes presented
in isolation in each of three positions (Fig. 1 B, left; 3 shapes � 3 posi-
tions � 9 stimulus conditions); (2) pairs of objects in all possible arrange-
ments that did not include object duplicates (see Fig. 1C, left; 18 stimulus
conditions); and (3) triplets of objects in all possible arrangements that
did not include object duplicates (see Fig. 1 D, left; 6 conditions). Object
size (2°) and positions (fixation, 2° above fixation, and 2° below fixation)
were chosen before data collection so that the objects did not touch or
overlap but that objects were close enough to likely activate IT neurons in
one or more positions. In this experiment, no attempt was made to
optimize the objects or positions for the neuron under study. Instead, the
exact same 33 stimulus conditions were tested for each neuron. These
conditions were pseudorandomly interleaved and presented using the
rapid, passive viewing paradigm described above. All neurons in which
these conditions were tested were considered in Results if 10 –30 presen-
tations of each condition were completed during the time that the neu-
ron was isolated.

Experiment 2. As the electrode was advanced into IT, monkey 3 was
either engaged in the rapid, passive viewing paradigm or engaged in a
recognition task similar to the behavioral task described above (except
that the target object was a red triangle). To try to optimize the objects for
each collected neuron in this experiment, each isolated neuron was tested
with a sequence of screening procedures that always included at least 10
repetitions of each stimulus condition (pseudorandomly interleaved).
During the first screening, 15 objects from each morphed space (a total of
45 objects) were presented at the center of gaze. These 15 objects were the
center shape (see above) plus one stimulus randomly sampled (at a dis-
tance of 0.5 or 1.0 from the center object) from each of the 14 morph
lines. Neurons that responded to one of these stimuli with a mean firing
rate significantly higher than background rate (t test, p � 0.005) were
further tested using objects within the space to which the most effective
stimulus belonged (all tested during the rapid, passive viewing paradigm
described above). In particular, the center object and four objects sam-
pled (at distances d � 0.25, 0.5, 0.75, and 1 from the center object) from
each of the 14 morph lines were presented in isolation at the center of
gaze. A neuron was considered to be selective if the mean firing rates
elicited by the set of five objects belonging to at least one of the morph
lines were significantly different (ANOVA, p � 0.05). If so, the object
along this morph line that was most effective in driving the cell was taken
to be the “preferred object” of the neuron, and more tests of object
selectivity were done using objects drawn from this morph line.

The main experimental conditions in experiment 2 included the fol-
lowing two primary conditions. (1) The first included 8 –12 isolated ob-
jects from the most selective morph line (morphing step distance dstep

ranging from 0.1 to 0.5). For most neurons, this set of objects included
shapes generated by moving beyond the limits of the initial morph line, as
well as one randomly chosen object from one of the two other object sets.
Each object was presented at each of two, fixed positions (1.25° above the
center of gaze and 1.25° below the center of gaze; see Fig. 1 B, right). Thus,
a total of 16 –24 isolated object conditions were tested for each neuron.
As in experiment 1, object size (2°) and positions were chosen and fixed
before data collection so that the objects did not touch or overlap but that
objects were close enough to likely activate IT neurons in one or more
positions. However, unlike experiment 1, the tested range of objects was
both parameterized (morph line) and chosen to obtain maximal selec-
tivity from each neuron. (2) Pairs of objects were presented to all neurons

to systematically test the ability of each neuron to tolerate the presence of
a second object given the presence of a preferred object. In particular, the
preferred object of the neuron (resulting from the previous screening at
fovea) was presented at one position in combination with each of the
objects tested in isolation (see above), including the preferred object itself
(8 –12 conditions) (see Fig. 1C, right). This was also done with the pre-
ferred object in the other position (see Fig. 1C, right). In summary, a total
of 16 –24 isolated object conditions and 16 –24 paired object conditions
were tested for each neuron. Fifteen to 30 repetitions of each stimulus
condition were recorded for each neuron (pseudorandomly interleaved)
using the rapid, passive viewing paradigm described above.

Analysis
Only neuronal responses collected during correctly completed behav-
ioral trials were included in the analysis. The background firing rate of
each neuron was estimated as the mean rate of firing over all trials in a 100
ms duration window that directly preceded the onset of the first stimulus
in each trial. For all of the data recorded from the three monkeys, we
quantified the response of each neuron to each of the stimulus conditions
as the mean firing rate in a 100 ms window that began 100 ms after
stimulus onset. The statistical tests used to assess neuronal responsive-
ness and selectivity to the different stimulus conditions are explained in
Results, as well as the criteria to include subsets of recorded neurons in
each analysis. In the following, details about some of the analysis per-
formed in Results are provided.

Goodness-of-fit analysis (see Fig. 4). To assess, for each neuron, how
much of the variance of the responses to objects pairs could be accounted
for by considering responses to the constituent objects presented in iso-
lation, a goodness-of-fit (GOF) index was computed. The GOF index
provides an unbiased estimate of the percentage of true data variance
explained by a given model, by removing the fraction of data variance
that is merely attributable to noise (i.e., the trial-by-trial variability of the
neuronal response). The GOF index calculation is based on well known
mathematical relationships that are at the base of ANOVA statistics.
Following the convention used by Rice (1995), let us assume we recorded
J neuronal responses to each of I different stimulus pairs (I and J are,
respectively, the number of groups and trials in ANOVA statistics). Let
� 2

expl be the true (or “explainable”) variance of the mean recorded re-
sponses to the stimulus pairs. Let � 2

noise be the variance of the noise that
contaminates neuronal responses. Let SSB and SSW be the sum of squares,
respectively, between groups and within groups of the ANOVA statistics
for the recorded responses. The following relationship holds for the ex-
pectation of SSB: E[SSB] � J(I � 1) � 2

expl 	 (I � 1) � 2
noise (Rice, 1995).

Because the noise variance can be estimated as � 2
noise � SSW/[I(J � 1)],

the explainable variance can be estimated as: � 2
expl � SSB/[J(I � 1)] �

SSW/[IJ(J � 1)].
Given a model providing a prediction for the mean response to each

object pair, the deviations from the model predictions can be computed
for each trial J and each group (stimulus pair) I, so as to obtain trial-by-
trial residual responses to each stimulus pair. Again, the variance of the
mean residual responses to the stimulus pairs is composed of two terms:
the noise variance � 2

noise and the variance � 2
res of the true deviations

from the tested model. Therefore, � 2
res can be estimated by the same

equation that gives � 2
expl, but with SSB and SSW obtained for the

ANOVA statistics of the residual responses.
Once � 2

res and � 2
expl are estimated from the data, the GOF index can

be computed as follows: GOF � 100 (1 � � 2
res/�

2
expl). We verified that

this method provides an unbiased estimate of the percentage of explain-
able variance explained by a model by running simulations in which data
points were generated according to a linear model contaminated by dif-
ferent amounts of noise.

The SE of the GOF index was estimated by bootstrap resampling. For
each of the I stimulus pair conditions, J responses were resampled with
replacement 200 times from the J responses obtained during recordings.
The GOF index was computed for each of these redrawing of the re-
sponse matrix, and the SD of the resulting 200 bootstrapped GOF in-
dexes was taken to be the SE of the GOF (Efron and Tibshirani, 1998).

Selectivity and monotonicity criteria for the tuning curves included in the
population averages (see Fig. 5). Neurons recorded in experiment 2 were
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tested with parametric objects sampled from morphed object spaces (see
above). Therefore, tuning curves of neuronal responses to objects along
continuous, parameterized changes in object shape (i.e., along a morph
line) were obtained. The range of shape distances spanned by each morph
line during the probing phase of the recordings in the parafoveal posi-
tions varied from neuron to neuron. However, each morph line spanned
at least a unit shape distance (Fig. 1 A, right, horizontal line) and included
the preferred stimulus of the neuron obtained from the screening phase
of the recordings, whose shape distance was defined as d � 0 (see above).
To get a meaningful population average of the neuronal tuning proper-
ties, the following criteria were used to include each tuning curve in the
average curve shown in Figure 5. (1) Responses across all tested single
object conditions (i.e., both top and bottom positions) were highly se-
lective (ANOVA, p � 0.001). (2) The tuning curve in the tested position
was significantly selective in a shape range spanning the unit distance
[i.e., in d � (0, 1); ANOVA, p � 0.05]. (3) The tuning curve was approx-
imately monotonic in d �[0, 1], with peak at or near the preferred stim-
ulus (i.e., at d � 0.25).

Simulated neuronal responses for the average and complete clutter invari-

ance models (see Fig. 6). One goal of this study
was to understand whether neuronal responses
to pairs of objects could be more reliably mod-
eled as (1) the average of the responses to the
constituent objects presented in isolation (aver-
age model), or (2) the maximum of the re-
sponses to the constituent objects presented in
isolation [complete clutter invariance (CCI)
model]. To understand how well measures of
explained variance or transformations of the
data were suitable for comparing these two
models, we simulated neuronal responses to
object pairs that followed either the average
model or the CCI model (see Fig. 6 B). The re-
sponse of each model neuron to single objects
was assumed to have some tuning across a hy-
pothetical continuous shape dimension (a
Gaussian tuning was assumed, but any arbitrary
tuning function could be used). Then, the re-
sponse RAB to each pair of stimuli A and B sam-
pled from the same shape dimension was mod-
eled as (1) the average of individual responses,
i.e., RAB � (RA 	 RB)/2, or (2) the maximum of
individual responses, i.e., RAB � MAX(RA, RB).
Random fluctuations (zero mean) were added
to the responses of the model neurons to the
pairs to simulate more realistic neuronal
responses.

Pair response distributions under alternative
hypotheses (see Fig. 9). In Results, we directly
compare the distribution of the observed re-
sponses to object pairs with the distributions
predicted by two alternative hypotheses: (1) the
normalization hypothesis and (2) the attention
hypothesis. For each included object pair con-
dition (see Results), we obtained the distribu-
tions of the spike counts resulting from each
presentation of the pair and its constituent ob-
jects (10 –30 presentations per pair, see above;
standard 100 ms analysis window, see above).
Then, we computed the distributions predicted
by the two alternative hypotheses, i.e., (1) by
combining the observed spike count distribu-
tions of the constituent objects (attention hy-
pothesis) or (2) by sampling 200 – 600 re-
sponses (spike counts) from a Poisson
distribution with average count equal to the av-
erage response to the pair (normalization hy-
pothesis). An example of these distributions for
one pair condition is shown in Figure 9B. For
each neuron and each tested object pair condi-

tion (see Results), we normalized each of the observed and simulated pair
response distributions by the average response to that pair. Finally, we
combined the distributions obtained across all neurons and all pair con-
ditions to obtain three normalized population distributions: (1) pre-
dicted by the attention hypothesis, (2) predicted by the normalization
hypothesis, and (3) observed. These distributions were compared as de-
scribed in Results.

Results
Complete recordings using our battery of visual conditions were
obtained from 104 well isolated single IT neurons of three mon-
keys (35 from monkey 1; 33 from monkey 2; and 36 from monkey
3). During recordings, all neurons were tested with both single
and multiple objects using rapid visual presentation according to
one of the two experimental paradigms (Fig. 1) (see Materials and
Methods). Each recorded neuron was tested for responsiveness to
single objects, and neurons that responded significantly to at least

Figure 1. Stimulus conditions during recordings. A, Left, The three geometrical shapes used in experiment 1. Right, An
example morph line (i.e., set of parametric shapes) from each of the three shape spaces (i.e., cars, faces, and 2-dimensional
silhouettes) used in experiment 2. The horizontal line indicates the unit shape distance within a morph line. This is the distance
between the object prototypes used to generate the morph line (i.e., the 2nd and 6th stimulus in each row). B, Single object
conditions. Left, All nine single object arrangements of experiment 1 (3 shapes in each of 3 visual field locations; at center of gaze
and 2° above and below center of gaze). Right, Single objects sampled from the most selective morph line (in the example,
2-dimensional silhouettes) were presented in two visual field locations: 1.25° above center of gaze (top) and 1.25° below center
of gaze (bottom) in experiment 2. C, Object pair conditions. Left, A subset of the 18 object pairs used in experiment 1 (3 objects in
2 of 3 positions without duplicate objects). Right, Examples of object pairs used in experiment 2. In each pair, the preferred object
(indicated by the asterisk) of each neuron is presented in either the top or bottom position and is paired to a second object drawn
from a range of shapes along the morph line containing the preferred object. D, Object triplet conditions. Left, All six object triplet
arrangements used in experiment 1 (the 3 objects in the 3 positions without duplicate objects). Right, No object triplets were
tested in experiment 2. E, Rapid visual presentation. Each panel is a schematic of the visual display (not to scale). The monkey was
required to hold fixation on a central point while stimulus conditions were randomly interleaved and presented at a rate of five per
second (see Materials and Methods).
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one of the presented single objects (relative
to background rate) were included in the
analyses described through the paper (t
test on each single object condition, p �
0.05; 79 of 104 neurons; 29 of 35 cells in
monkey 1, 19 of 33 neurons in monkey 2,
and 31 of 36 neurons in monkey 3). This
weak inclusion criterion without correc-
tion for multiple tests was done to mini-
mize sampling bias in that all IT neurons
with even weak responsivity were
considered.

Responses to object pairs and triplets
In experiment 1, the same three objects
(Fig. 1A, left) were presented in each of
three fixed positions to each neuron (cen-
ter of gaze and 2° above and below the cen-
ter of gaze). Using those same objects and
retinal positions, all pairwise and triple-
wise combinations were also tested (see
Materials and Methods) (Fig. 1B–D, left).
That is, a total of 33 stimulus conditions
were tested for all isolated neurons (9 sin-
gle object conditions, 18 object pair condi-
tions, and 6 triple object conditions). Fig-
ure 2, A and B, shows the response of a
typical IT neuron to some of these condi-
tions. For this neuron, the single object
that produced the strongest response was
the cross located at the center of the gaze
(Fig. 2A, middle panel). When the cross
was flanked by a nonpreferred object lo-
cated in one of the eccentric positions (2° above or below fixa-
tion) (Fig. 2B, first and third panel), the response to the resulting
object pair was intermediate between the responses to the indi-
vidual constituent shapes. Similar intermediate responses were
observed when the cross was flanked by two nonpreferred objects
(Fig. 2B, last panel).

Intermediate responses to multiple objects (relative to the re-
sponses to single objects) were also obtained in experiment 2
using sets of objects with parametrically defined shape similarity
(see examples in Fig. 1A, right) that were presented in isolation or
in pairs at two fixed retinal positions (see Materials and Methods)
(Fig. 1B,C, right). Like experiment 1, the same retinal positions
were tested for all neurons, but, in contrast to experiment 1, the
presented objects were optimized for each neuron. Specifically,
neurons were screened to have selectivity within at least one of
three object spaces, a large range of objects was tested in each
object space, and the set of objects (morph line) that yielded the
most reliable selectivity was studied in detail (see Materials and
Methods) (Fig. 1A, right). Figure 2C–E show a typical activation
pattern of an IT neuron recorded in experiment 2. The response
of this neuron to individual objects was significantly selective
(ANOVA, p � 0.01) across a set of 11 objects sampled at consec-
utive distances along one of the morph lines of the NURBS space
(responses to 6 of the 11 stimuli are shown in Fig. 2D). The
selectivity pattern was unchanged and significant in all three
tested locations [center of the gaze, 1.25° above the center of gaze
(top) and 1.25° below the center of gaze (bottom); data not
shown]. The neuron responded maximally to objects at one ex-
treme of the shape space (the preferred shape) (Fig. 2, C and first
histogram in D), whereas the response to the other extreme was

not significantly higher than background (Fig. 2D, last histo-
gram) (t test, p � 0.05). Responses between these two extremes of
object shape showed an approximately monotonic decrease from
maximal response as the object was made more dissimilar to the
preferred shape (Fig. 2D). The response of the neuron to pairs of
objects was tested by presenting the preferred object (bottom
position) together with a nonpreferred object (top position) sam-
pled across the whole morph line. The resulting activation pat-
tern is shown in Figure 2E. For each stimulus pair, the response of
the neuron was intermediate between its responses to the indi-
vidual constituent objects of the pair (Fig. 2, compare D, E). A
nearly identical response pattern was obtained when the identity
of the object in the bottom position was varied while the pre-
ferred object was presented in the top position (data not shown).

To determine whether a systematic relationship existed be-
tween responses to individual objects and multiple objects, we
first plotted the response to each object pair against the sum of the
responses to the constituent objects of the pair. Figure 3, A and B
(first panel), shows the resulting scatter plots for the two neurons
just described, respectively, in the left and right side of Figure 2.
As expected from previous studies, responses to object pairs were
smaller than the simple sum of individual responses (i.e., well
below the diagonal dashed lines in Fig. 3). However, the re-
sponses to each object pair condition (18 conditions and 22 con-
ditions in these two cases) did not fall haphazardly on the scatter
plot but clustered along a line of slope 0.5 (solid line). That is, the
response of these neurons to pairs of objects was in good agree-
ment with the average of the responses to the constituent objects
presented in isolation. Most of the neurons recorded in the three
monkeys showed a very similar response pattern: object pair re-

Figure 2. Examples of IT neuronal responses to single and multiple objects. A, The black histograms are the average firing rates
(computed in time bins of 25 ms) of a neuron recorded in experiment 1, after presentation of some of the single object conditions
(stimuli are shown below the histograms). Objects were presented at time 0. The average neuronal response to each object was
computed between 100 and 200 ms (gray patch), and its value (spikes per second) is reported above each histogram. B, Examples
of responses of the same neuron to object pairs and triplets. C, Response of a neuron recorded in experiment 2 to its preferred
object presented in the bottom position. D, Responses of the same neuron to a range of objects sampled from the morph line
containing the preferred object and presented in the top location. The response of the neuron decays as the second object is made
more dissimilar to the preferred object (indicated by the asterisk). E, Responses of the same neuron to stimulus pairs composed by
the preferred object (asterisk; bottom position) and the range of shapes shown previously in D (top position). In both B and E,
responses to the object pairs are intermediate between responses to the constituent objects of the pairs.
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sponses were normalized in that they were approximately the
average of the constituent objects responses. Figure 3 also shows
data from two additional example neurons.

Because previous work in other visual areas showed that re-
sponse normalization for multiple stimuli does not always hold
when one stimulus is poorly effective (e.g., low contrast) (Britten
and Heuer, 1999; Heuer and Britten, 2002), we specifically con-
sidered object pair conditions in which each of the two constitu-
ent objects drove the neuron significantly above background
when presented alone (Fig. 3, red dots) and conditions in which
only one of the two objects did (Fig. 3, blue dots). This did not
reveal any obvious difference between such conditions in that
both sets of points cluster along the same average line (Fig. 3).
Moreover, the fact that the blue points are well below the diago-
nal shows that objects that have no significant effect on IT neu-
ronal responses when presented alone can strongly impact re-
sponses to more preferred objects.

As a first look at our entire population of IT neurons in the
three monkeys, we pooled the data from all 79 responsive neu-
rons in a scatter plot using the same axes shown for the example
neurons (Fig. 3C). Like the individual examples, responses to
pairs of objects were highly correlated with the sum of responses

to the constituent objects (r � 0.92), and
the slope of the best linear fit to the data
was 0.55. This value is very close to the 0.5
slope expected if the responses to object
pairs were the average of the responses to
individual objects (solid line, referred to as
the average model). Like the single neuron
examples (Fig. 3A,B), this relationship
was independent of the effectiveness of the
less optimal object of each pair (red and
blue dots are as in Fig. 3A,B). Neurons
recorded in experiment 1 were also tested
with triplets of simultaneously presented
objects (Figs. 1D, 2B). Figure 3D shows
that responses to triplets were also highly
correlated with the sum of the responses to
the constituent objects of the triplets (r �
0.91), and the slope of the best linear fit to
the data was 0.37. This value is very close to
0.33, i.e., the slope expected if responses to
the object triplets were the average of the
responses to individual objects (solid line).

To remove variance in the responses to
the pairs (Fig. 3C) and triplets (Fig. 3D)
attributable to differences in the range of
firing rates over the population of neu-
rons, these same analyses were repeated af-
ter normalizing by the response of each
neuron to its most effective stimulus. Nor-
malized responses to pairs and triplets of
objects were still well correlated with the
sum of normalized responses to the con-
stituent objects (r � 0.58 and r � 0.43,
respectively, for pairs and triplets), and the
slope of the best linear fit to the data were
very close to the slope predicted by the av-
erage model (i.e., slope of 0.44 and 0.27,
respectively, for pairs and triplets).

Assessment of goodness-of-fit of the
average model for individual IT neurons

Because these previous analyses suggested that a simple average
model might explain a great deal of the IT response to multiple
objects, we sought to assess, for each recorded neuron, how well
responses to object pairs could be accounted for by the average
model. To do that, we determined the GOF of the average model
for each neuron (see Materials and Methods). The advantages of
the GOF measure are that it provides an unbiased estimate of the
percentage of data variance not attributable to noise (explainable
variance) that is explained by the model, and it follows directly
from well established statistical methods (see Materials and
Methods). In this case, the data variance to explain for each neu-
ron is the variance of the mean response across all of the tested
object pair conditions. However, the advantages conferred by
quantitative fit measures (like the GOF) come at the price of
requiring sufficient neuronal response variance to support a re-
liable measure. To concentrate on cases for which reliable GOF
estimates could be obtained without biasing our dataset for or
against the model under scrutiny (the average model), we focused
on neurons that showed the most reliable response modulation
across the single object conditions: that is, the most selective
neurons (ANOVA, p � 0.001). These neurons were 34 of the
original 79 responsive neurons (15 of 48 for experiment 1 and 19

Figure 3. Responses to multiple objects as a function of the sum of responses to single objects. In each scatter plot, responses
to object pairs (A–C) or object triplets (D) are plotted against the sum of the responses to the constituent objects presented alone.
The dashed and solid straight lines indicate, respectively, the sum and the average of the responses to single objects. The slope of
the solid line is one-half in A–C and one-third in D. A, Example data from two individual neurons recorded in experiment 1. Data
in the left panel are from the same neuron shown in Figure 2, A and B. Red and blue dots refer to pairs in which, respectively, both
or only one of the objects in the pair produced a response significantly higher than background rate (t test; p � 0.05). B, Examples
of scatter plots for two individual neurons recorded in experiment 2. Data in the left panel are from the same neuron shown in
Figure 2C–E. Color code as in A. C, Scatter plot including responses to object pairs for the whole population of 79 responsive
neurons recorded in the three monkeys. Color code as in A. D, Scatter plot including responses to object triplets for the whole
population of 48 responsive neurons recorded in experiment 1. Red, blue, and green dots refer to triplets in which, respectively,
three, two, or only one of the constituent stimuli evoked a response significantly higher than background rate. In both the
individual examples and the population data, responses to multiple objects are normalized in that they were approximately the
average of the responses to the constituent objects presented alone.
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of 31 for experiment 2). For each of these
neurons, the response RAB to a pair of si-
multaneously presented stimuli A and B
was modeled as a linear function of the
sum of the responses RA and RB to the con-
stituent stimuli presented in isolation, i.e.,
RAB � p 	 m (RA 	 RB). Two linear mod-
els were tested: (1) the average model, with
p � 0 and m � 0.5 fixed for each neuron
(i.e., the average of the individual respons-
es); and (2) the best linear fit to the data
(with intercept p and slope m being free
parameters of a least squares fit for each
neuron). For both models, the GOF and its
bootstrap SE were computed (for details,
see Materials and Methods). The median
GOF across the 34 tested neurons was 63
and 67% for the average and best linear
model, respectively (median SE of 16%).
Figure 4 shows the distribution of the GOF values obtained for
the two models. Figure 4B (last panel) also shows the distribution
of the slopes m obtained by the best linear fits to the data. The
median of this distribution was 0.45, which is very close to the 0.5
slope expected for the average model. The distribution of GOF
values was not significantly different in experiment 1 and exper-
iment 2 (Kolmogorov–Smirnov tests, p � 0.05). Overall, these
analyses showed that responses to object pairs are very well pre-
dicted by the average of the responses to the constituent objects of
each pair. Indeed, the median GOF value (63%) corresponds to a
correlation coefficient of �0.8 (similar to the correlation coeffi-
cient of the data plotted in Fig. 3B, right panel). Because the
average model was nearly as good as the general linear model
(above; only 4% difference in explained variance) but required
no free parameters, all other figures and analyses in this manu-
script refer only to the average model.

Although the very high level of fit for the average model at the
level of single IT neurons was only confirmed for neurons in
which sufficient data were available to obtain a reliable GOF mea-
sure (i.e., neuron with good selectivity for our test objects), this
set is a priori unbiased with respect to the average model. More-
over, this does not imply that less selective neurons do or do not
follow an average model but only that, for such neurons, the data
did not allow this very quantitative assessment of model fit. Like-
wise, reliable GOF could not be obtained for the responses to
object triplets because time allowed only six triplet configura-
tions to be tested in experiment 1 (Fig. 1D), and, as a result, the
amount of explainable variance in the triplet responses was, on
average, only �10% of the explainable variance in the pair re-
sponses. In summary, although our data indicate that the average
model also holds for weakly selective neurons (Fig. 3C) and triple
object conditions at the level of the IT population (Fig. 3D), in
these cases, the data do not have sufficient power to reliably assess
the average model or any other model at the level of individual
neurons.

Responses to single objects and pairs of objects across
continuous shape dimensions
One advantage of experiment 2 is that it allowed us to closely
examine the response of each neuron to pairs of objects over a
continuous shape space with very similar objects (Figs. 1A, right,
2C–E). That is, we were able to find neurons that were sensitive to
one of these continuous shape dimensions and measure their
responses along that parametric shape dimension. This, in turn,

allowed us to place the preferred object of each neuron in the
receptive field (RF) and then determine the effect of adding a
second object of decreasing effectiveness (when presented alone).
The methods used to generate the parametric objects and to op-
timize the examined shape dimension for each neuron are de-
scribed in detail in Materials and Methods. These methods al-
lowed us to build a tuning curve across a very selective shape
dimension optimized for each of the recorded neurons (Fig. 5).
The origin of each such tuning curve plot was set to be the pre-
ferred shape of the neuron (Fig. 2, C and first plot in D) obtained
during initial screening at the center of gaze. Examples of such
tuning curves are shown as red lines (open circles) in Figure 5, A
and B, and thin black lines in the inset of Figure 5C. Besides
obtaining tuning curves for single objects, we also presented ob-
ject pair conditions containing both the preferred object of the
neuron (defined as shape distance d � 0) and a second object
drawn from along the tuned shape dimension (and, in some
cases, drawn from another shape space; see Materials and Meth-
ods) (Fig. 2E).

Figure 5A shows the data obtained from the neuron already
described in Figures 2C–E and 3B (left). The red line (open cir-
cles) shows the response of the neuron to 11 different objects
sampled at increasing distances from the preferred object (d � 0)
along the most selective shape dimension of the neuron (all pre-
sented at 1.25° above the center of gaze) (Fig. 2D). The black line
shows the response of the neuron to 11 object pair conditions in
which the preferred object of the neuron (1.25° below fixation)
was presented along with a second object (whose identity is indi-
cated by the abscissa) at 1.25° above fixation (Fig. 2E). The addi-
tion of the second object clearly causes the response of the neuron
to drop below the response to the preferred object presented
alone (i.e., the black line falls below the horizontal dashed line).
In fact, the response to each object pair (black line) is always in
between the response to each of the constituents of the pair, i.e.,
between the dashed line and the red line (open circles). At a more
quantitative level, the green line shows the average of the re-
sponses to the constituent objects in each pair, i.e., the average of
the dashed line and the red line (open circles). The green and
black lines are almost exactly superimposed, indicating that the
responses to object pairs are well predicted by the average model,
regardless of the similarity of the two objects.

Figure 5B shows neuronal tuning curves of another neuron
(same cell analyzed in Fig. 3B, right) along its most selective shape
dimension. Like the neuron described above, the responses to

Figure 4. GOF of the responses to pairs. A, GOF distribution for the average model (see Results). The GOF was computed for each
of 34 highly selective neurons (see Result). Twenty-nine of those 34 neurons with GOF bootstrap SE �40% are shown in the plot.
B, GOF distribution for the best linear fit to the data (left) and distribution of the slopes resulting from that fit (right). Same
neuronal population as in A. Both models explain a very large fraction of the response variance, and the best linear model yields a
slope distribution centered around 0.5.
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object pairs (black line) that include the preferred object were
very close to the average of the responses to the constituent ob-
jects presented in isolation (green line, see above). In addition,
this neuron was also tested with objects sampled beyond the
range of the morph-line unit distance (beyond the gray patch in
Fig. 5B) and the response to pairs continued to primarily track the
average. Moreover, an object belonging to a different shape space
(a car) was also tested both in isolation (last open red circle on
right) and paired with the preferred shape (last black point on
right). Even for this very dissimilar object drawn from a com-
pletely different set of shapes, the response to an object pair con-
taining this object and the preferred object of the neuron was very
close to the average of the response to each object presented in
isolation (last green point on right).

Building tuning curves of the responses to single and paired

object conditions (Fig. 5A,B) allowed us
to test, for the neuronal population re-
corded in experiment 2, whether there
were any consistent deviations from the
average model that depended on the de-
gree of shape similarity between the ob-
jects in the pairs. To obtain a population
measure of the dependence of pair re-
sponses from shape similarity, we consid-
ered the 19 most selective neurons re-
corded in experiment 2 that were included
in the GOF analysis (Fig. 4) and built tun-
ing curves for single object responses in
top and bottom positions for each of these
neurons, thus obtaining a total of 38 tun-
ing curves. The tuning curves were aligned
on a single shape axis (Fig. 5C, abscissa) by
choosing the origin to be the preferred ob-
ject of each neuron obtained during the
screening procedure (see Materials and
Methods). This preferred object was al-
ways used as one of the two objects in each
object pair tested during later recordings.
To get a meaningful average neuronal tun-
ing curve, the 38 single tuning curves were
screened to be both selective and essen-
tially monotonic in the unit shape distance
range, i.e., within the gray patch of Figure
5C (see Materials and Methods). This re-
sulted in a subset of 26 tuning curves re-
corded in 15 neurons (11 neurons contrib-
uted two tuning curves, and four neurons
contributed one tuning curve). These tun-
ing curves were then averaged after sub-
tracting background firing rates and nor-
malizing by the response to the preferred
object (d � 0). These 26 normalized tun-
ing curves are shown individually in the
inset of Figure 5C, and the resulting popu-
lation average tuning curve is shown as the
red line (open circles) in Figure 5C and
inset. By construction, this population av-
erage falls along the abscissa as the distance
from the preferred object is increased (d �
0). Note that the response typically falls to
near background firing rates (ordinate �
0; dotted line) for “distant” objects sam-
pled both within the same shape space

(e.g., d � 1) and from other shape spaces (last open red circle on
right). Note also that, although the preferred object (d � 0) was
defined during initial screening, later tests sometimes included
objects sampled to the “left” of the preferred object (d � 0), and
these tests often revealed that the response to single objects con-
tinues to increase even beyond what was taken to be the preferred
object (i.e., red line, open circles, continues to rise on the left side
of Fig. 5C).

The black line in Figure 5C shows the population average of
the normalized tuning curves obtained for pairs of simulta-
neously presented objects, in which the identity of one object of
the pair was fixed at d � 0, whereas the identity of the second
object spanned the tested range of shapes. Like the individual
examples (Fig. 5A,B), the population average response to object
pairs (black line) was intermediate between the average response

Figure 5. Response normalization for object pairs along continuous shape dimensions. A, B, Individual examples of tuning
curves obtained for two neurons recorded in experiment 2 (A, same neuron as in Figs. 2C–E and 3B, left; B, same neuron as in Fig.
3B, right). The abscissa is the shape distance (i.e., shape dissimilarity) within the tested morph line (shapes corresponding to some
of the tested distances are shown below each shape axis). The origin of the shape axis is the preferred shape of the neuron obtained
from the recording screening procedure (see Materials and Methods). The gray patch shows the region of shape space initially
tested to obtain the preferred shape (unit shape distance; see Materials and Methods). The horizontal dotted line indicates the
background rate of the neuron. Morphed shapes were sampled within either the unit distance (A) or a larger shape range (B) that
included a stimulus drawn from a different shape space (data points at the far right in B). For both neurons, responses to the object
pairs (black line) are very close to the average (green line) of the responses to the constituent objects of the pairs presented in
isolation, i.e., to the average of the horizontal dashed line and the red line (open circles). Error bars are SE of the mean firing rate.
C, Population average of 26 tuning curves obtained from the 15 most selective neurons recorded in experiment 2 for single and pair
object conditions (see Results). These tuning curves were background subtracted, aligned to the preferred object (0 on the
abscissa), and normalized by the response to the preferred object. The inset shows these 26 normalized tuning curves for re-
sponses to single objects (thin gray lines) and their average (thick red line). The red line (open circles) in the main panel shows the
population average of the responses to single objects and included single object conditions outside the unit shape distance (gray
patch). The horizontal dashed line shows the population average of the responses to the preferred object of each neuron (i.e., the
shape at value 0 on the abscissa). The black line shows the population average of the responses to object pairs containing both the
preferred object and another object sampled along the abscissa. The green line shows the average model prediction (population
normalized average of average model curves as in A and B). The cyan line shows the prediction of the CCI model (see Results). Error
bars are SE of the population averages. Although different morph lines were tested for different neurons, example shapes are
shown below the abscissa from a representative morph line. The dotted line is the background rate. Only 11 of 15 neurons (for a
total of 18 of 26 responses) were tested outside the unit distance (gray patch) and contribute to the points outside this range. This
plot is nearly identical when constructed from conditions in which the preferred object was either in the best or second best RF
position (top or bottom; data not shown), i.e., forcing every neuron to contribute only one tuning curve to the population average.
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to the fixed object of the pair (horizontal
dashed line) and the average response to
the single objects (red line, open circles).
For each of the tested neurons, the re-
sponse to the object pairs was modeled as
the average of the responses to the constit-
uent objects of each pair to obtain model
prediction curves as shown in Figure 5, A
and B (green lines). These curves were
normalized and averaged to obtain the
population average model prediction
curve shown in Figure 5C (green line). The
fact that the black line and the green line
almost perfectly overlap in Figure 5C sup-
ports two conclusions. First, the average
model holds regardless of the similarity of
the shapes composing the pairs. Second, at
least under the limited clutter conditions
tested in the present work, the agreement
of neuronal data to the average model pre-
diction becomes virtually perfect when re-
sponses of even a small population of IT
neurons are pooled (as done here). This
result was unchanged when all 38 tuning
curves from the 19 most selective neurons
recorded in experiment 2 were included in
the analysis.

Another model of responses to multiple objects
These findings clearly show that the responses of individual IT
neurons are not unaffected by the presence of a second nonpre-
ferred object (i.e., they are not clutter invariant), even when that
second object produces no response on its own (see right side of
plots in Fig. 5A–C). Instead, the response to an effective object is
predictably reduced by the presence of a less effective “clutter”
object and primarily follows an average model. However, given
the relevance of this conclusion for theories of neuronal repre-
sentation of multiple objects (Rousselet et al., 2003, 2004) and the
difference with the some results in area V4 (Gawne and Martin,
2002), we explicitly compared the predictions of the average
model with the predictions of an alternative model: the complete
clutter invariance model. The CCI model predicts that the re-
sponse to a pair of simultaneously presented objects is equal to
the response of the most effective object of the pair, i.e., to the
maximum of the responses to the individual stimuli.

The conditions used in experiment 2 are optimized to distin-
guish among the CCI model and the average model because the
object pairs almost always include at least one condition in which
both a very effective object and a noneffective object are pre-
sented together (discussed further below). Examination of the
example curves in Figure 5, A and B, clearly shows that the CCI
model is not correct. In particular, the addition of a second, less
effective object always causes the response to decrease below that
produced by the effective object presented in isolation (the black
line is well below the dashed line). To examine this for this sub-
population of our data, CCI model prediction curves were built
for each neuron and were normalized and averaged to obtain a
predicted population average CCI curve (Fig. 5C, cyan line). The
CCI model was consistently much poorer than the average model
(green line) in predicting the population response to the stimulus
pairs (black line), especially for object conditions in which a
poorly effective object was part of the pair (e.g., for d � 0.5).
Nevertheless, this is only a subset of our data, and we sought to

fully test the predictions of the CCI model across both experi-
ments for all of the individual IT neurons recorded in the three
monkeys.

In general, testing whether responses to object pairs are better
predicted by the average model (or any other model that is a
weighted sum of responses to individual objects) or by the CCI
model is not trivial. Although these models sound very different,
the predictions of the average model and of the CCI model can be
nearly identical depending on the object conditions used to test
the neurons. To illustrate this, Figure 6A shows data from our
whole population of 79 responsive neurons (the same data pre-
sented in Fig. 3C) but now with the prediction of the CCI model
on the abscissa. The data primarily fall along the diagonal, and the
correlation coefficient is high (r � 0.91 compared with r � 0.92
for average model) (Fig. 3C). At first glance, this suggests that the
CCI model can explain IT pair responses nearly as well as the
average model. However, plots like that in Figure 6A have limited
power to distinguish among the CCI model, the average model
(Fig. 3C), and other “reasonable” models that forces responses to
pairs of objects to be near the firing rate range of each individual
neuron. Testing the prediction of the CCI model for each indi-
vidual neuron using measures of explained variance (as done for
the average model in Figs. 3A,B, 4) can also produce misleading
results. For example, if, as in experiment 2, the same effective
stimulus is only paired with less effective stimuli, the CCI model
predicts no variance across the responses to pairs and therefore
the GOF is ill defined (the computed median GOF was only 4% in
this case, but this is not a fair test of the CCI model).

In light of these issues, we sought a more powerful compari-
son between CCI and average model for all of the responsive
neurons. To do this, we transformed the data: given a pair of
objects A and B, with responses RA and RB to the individual
objects and response RAB to the pair AB, all three responses were
transformed by dividing them by the maximum of the individual
responses, i.e., MAX(RA, RB). As a consequence of this transfor-
mation, for each pair of objects, the response to one object pre-
sented alone is equal to 1, the response to the other object pre-

Figure 6. Comparison of the average model and the CCI model. A, Responses to each object pair are plotted as a function of the
maximum of the responses produced by each of the constituent objects of the pair (i.e., the CCI model prediction). Data from all 79
responsive neurons are included in the plot. Color code as in Figure 3. B, Simulated normalized responses of two model neurons,
one following the average rule (open circles) and the other following the CCI rule (gray diamonds; see Materials and Methods). In
the first case, the neuronal response to object pairs was modeled as the average of the response to the constituent objects of the
pair and, in the latter case, as the maximum of the constituent responses. Responses to each object pair and the two constituents
of that pair were normalized by the maximum of the latter two. As a consequence, the sum of the normalized single object
responses (in abscissa) ranges from 1 to 2, whereas the normalized responses to pairs cluster around the solid line with slope of 0.5
for the average model-simulated neuron and around the dashed line with slope of 0 for the CCI model-simulated neuron. The gray
patch shows the range in which the predictions of the two models can be most easily discriminated. C, Normalized responses for
the whole population of 79 neurons (i.e., normalized as in B). Color code as in Figure 3. The heavy black curve is the average
response to object pairs as a function of the sum of individual responses. The average is computed in a running window of size 0.1
shifted in consecutive steps of 0.05.
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sented alone is between 0 and 1, and the sum RA 	 RB of the
responses to the objects presented alone is between 1 and 2. After
this transformation, the predictions of the CCI and the average
model are much more distinguishable. This is shown in Figure
6B, in which transformed responses to pairs (RAB) are plotted
against the sum of transformed single responses (RA 	 RB) for
two different simulated neurons (one following a CCI model and
one following an average model; see Materials and Methods). The
scatter plots in Figure 6B show that the average model predicts
that the transformed data should fall along the straight line with
slope 0.5 (open circles), whereas the CCI model predicts that the
transformed data should fall along the line with slope 0 (gray
diamonds).

Data from the entire population of 79 responsive neurons
recorded from the three monkeys were transformed as described
above and then plotted in Figure 6C. Although the transforma-
tion produced data that appeared very noisy (division by a noisy
number), the data points were most consistent with the average
model in that they were scattered around the straight line with
slope 0.5 (solid line). Indeed, a running average of the trans-
formed data were almost exactly superimposed to the slope 0.5
line (heavy black line; for details, see legend). This shows that,
across the entire population, the data are much more consistent
with the average model than the CCI model (for quantitative
assessment of the fit of the average model, see Fig. 4). Because the
average slope in Figure 6C remains at 0.5 across the entire range
of possible abscissa values (1.0 –2.0), this shows that this agree-
ment did not depend on the effectiveness of the individual ob-
jects, confirming the conclusions obtained from the subset of
neurons examined in Figure 5.

As a final comparison of the average model and the CCI
model, we focused on the stimulus conditions under which the
predictions of the average and CCI model are most disparate.
Specifically, as suggested by a previous V4 study (Gawne and
Martin, 2002), we considered only object pair conditions in
which the less effective objects in isolation evoked a response that
was less than half the response evoked by the more effective ob-
ject. In the transformed data described above, this corresponds to
data with abscissa values �1.5, so we computed the median re-
sponse to pairs (RMED) for each neuron across this subset of
conditions [1 � (RA	RB) �1.5] (Fig. 6B, gray patch). If the data
are uniformly distributed across the 1–1.5 interval, then the av-
erage model predicts that the RMED distribution should be cen-
tered around 0.625 (in fact, the data were not uniformly distrib-
uted over this interval, so the average model predicted an RMED

distribution centered around 0.68). Conversely, the CCI model
predicts that the RMED distribution should be centered around
1.0. The observed median RMED across a population of 64 (of 79)
neurons recorded in the three monkeys was 0.7 (mean of 0.7), i.e.,
very close to the prediction of the average model [15 neurons
were excluded from this analysis because they had no points in
the interval 1 � (RA	RB) � 1.5]. Put another way, this shows
that, on average, the response of an IT neuron to an effective
object is reduced by 30% when that effective object is presented
with a “less than half” effective second object. At an individual
neuron level, 43 of the 64 neurons had median responses to these
object pairs that were reduced by at least 20% (relative to the
response to the preferred object presented alone). We also ob-
served that �12% of the neurons (8 of 64) had responses to these
object pairs that were reduced by �5% and might thus be taken
to be consistent with the CCI model. Overall, however, the vast
majority of IT neuron responses to pairs of objects were far from
the CCI model prediction (see Discussion).

Response to objects pairs as a function of RF sensitivity
The present study was not designed to explicitly test the depen-
dence of responses to objects as a function of their RF position in
that the spatial separation of objects in the RF was not systemat-
ically varied and only two or three RF locations close to the center
of gaze were tested. However, because IT neuronal RFs are not all
centered at the same retinal position, have a broad range of sizes
(Op De Beeck and Vogels, 2000), and can often be small relative
to the separation of our objects (Op De Beeck and Vogels, 2000;
DiCarlo and Maunsell, 2003), we used these RF variations to ask
whether there was any relationship between the averaging behav-
ior described above and position in the RF. In particular, we
might not expect the response to a pair of objects to be the average
of the responses to the constituent objects if one of those objects
was presented very far outside the RF (Missal et al., 1999), but we
wondered whether we might detect some breakdown in averag-
ing behavior when one of the objects was near the edge of the RF.

To examine this, we first defined the sensitivity of the RF at
each tested position as the average response to objects that were
effective in at least one position (i.e., eliciting a response signifi-
cantly higher than background; t test, p � 0.05). We then exam-
ined the average model as a function of the relative effectiveness
of the two RF positions. Specifically, for each tested object pair
condition, we computed the response to the object pair as a frac-
tion of the sum of the responses to the constituent objects, i.e., the
ratio RAB/(RA 	 RB). As described above, this value tends toward
0.5 (average model) when all our data are considered together.
Figure 7 shows this ratio as a function of the relative RF effective-
ness of the two positions (the thick black curve is a running
average). Two points can be taken from Figure 7. First, as ex-
pected based on the placement of our objects and the distribution
of IT RF sizes (Op De Beeck and Vogels, 2000), for most neurons,
both objects were well within the RF (relative effectiveness values
are all �0%), but, for some neurons, one of the tested positions
was near the edge of the RF (i.e., 20% RF effectiveness). Second,
over this range of RF sensitivity conditions, we see only a very

Figure 7. Agreement between responses to object pairs and prediction of the average model
as a function of the RF sensitivity. The abscissa shows the RF effectiveness of the less effective
position occupied by one of the two objects. The ordinate is the ratio of the responses to object
pairs to the sum of responses to the constituent objects. Each gray point is one pair condition
from one neuron, and all 79 responsive neurons are included. The solid black curve line is the
average in a running window of size 10% shifted in consecutive steps of size 2.5%. The gray
shaded region is �1 SE of the running average. The horizontal dashed line shows the ratio
predicted by the average model (0.5).
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slight trend away from averaging (and toward no effect of the
second object) as we approach the edge of the RF. This trend is
consistent with the reduction of response suppression produced
by the less effective shape in a pair as a function of its distance
from the more effective shape (Missal et al., 1999).

Dynamics of the response to object pairs
In the previous analyses, we considered IT neuronal responses in
a fixed, 100 ms time interval (i.e., between 100 and 200 ms from
the stimulus onset) (Fig. 2) that is constrained by IT latencies and
behavioral reaction times to be most relevant for recognition
tasks (Fabre-Thorpe et al., 1998; DiCarlo and Maunsell, 2000).
We found that IT responses are normalized in that the mean
response rate to object pairs in this time interval is well predicted
by the average of the responses to the constituent objects. How-
ever, we wondered whether we could detect any deviations from
this average model over this time window that might provide
insight regarding the neuronal mechanisms underlying this nor-
malization. To do this, we considered smaller time bins (25 ms
width) shifted in consecutive time steps of 5 ms. For each neuron
and each time bin, we computed the median ratio between re-
sponses to object pairs and the sum of responses to the constitu-
ent objects of the pair, i.e., RAB/(RA 	 RB), median over all object
pairs tested for each neuron. As described above, this ratio tends
toward 0.5 (average model) when data are considered over our
standard 100 –200 ms poststimulus interval. The resulting time
course of the median ratio is shown for one neuron recorded in
experiment 1 and another in experiment 2 (Fig. 8A). For com-
parison, the time course of the median response of each neuron
to the object pairs is also shown in each panel (light gray back-
ground). Figure 8 shows that, for these two neurons, before the
onset of the response (i.e., up to �100 ms after stimulus onset),
the median ratio fluctuates around 0.5. This is expected because
the background rate during presentation of single objects and
pairs of objects should be approximately the same. Then, at the
beginning of the neuronal response (�100 ms poststimulus on-
set), the median ratio slightly increases above 0.5. The peak ratio
then decreases, reaches a minimum (slightly below 0.5) at �150
ms from the stimulus onset and then reaches a new peak (slightly
above 0.5) at �200 ms from the stimulus onset.

This temporal pattern suggests that, at the onset and toward
the offset of the neuronal response, responses to object pairs are
slightly above the average of the individual responses to the con-
stituent stimuli, i.e., in the direction predicted by the sum of the
responses to the constituent stimuli. This pattern was found for
many neurons recorded in experiment 1 and for some neurons
recorded in experiment 2. To examine this across the recorded
neuronal population, we computed the time course of the me-
dian ratio between responses to object pairs and the sum of re-
sponses to the individual objects, median over all object pairs
tested across the whole population of 48 responsive neurons of
experiment 1. The resulting curve (Fig. 8B, solid line) showed
dynamics very close to that observed in many individual neurons
except that the peaks and trough were smaller. Because Figure 8
shows that the deviation from the value predicted by the average
model is small (i.e., bounded between �0.45 and �0.55), the
normalization reported throughout this paper is not highly
dependent on the choice of analysis time interval (this analysis
gave similar results when time bins of 50 and 75 ms were used;
data not shown). However, because Figure 8 shows some con-
sistent temporal modulation in the normalization, this pro-
vides some clues about the mechanisms that underlie response
normalization in IT.

The temporal pattern shown in Figure 8 was less pronounced
in experiment 2, although it was observed (Fig. 8A, second
panel). When the 31 responsive neurons of experiment 2 were
considered (as in Fig. 8B), the resulting curve had a time struc-
ture similar to that shown in Figure 8B (data not shown). How-
ever, the first peak at the time of response onset (�100 ms) was
much less prominent. The absence of a clear peak may have been
attributable to more frequent saturation of neuronal responses in
experiment 2 because, unlike experiment 1, it involved a very
effective object in all pair conditions (Fig. 2E).

Can attention shifts explain the average effect?
Because we did not explicitly control attention, we wondered
whether the average effect described throughout this study could

Figure 8. Dynamics of the response normalization. A, Time course (solid line) of the median
ratio between responses to object pairs and sum of the responses to the constituent objects of
the pairs, for one individual neuron recorded in experiment 1 (left) and one neuron recorded in
experiment 2 (right). Neuronal responses are computed in overlapping time windows of 25 ms
shifted in time steps of 5 ms. The light gray background shows the time course of the median
response to object pairs for each neuron. The heavy bars along the abscissa show timing and
duration of stimulus presentation (see Fig. 1 E), and all calculations are based on single objects
or object pairs presented at time 0. The dashed line is the prediction of the average model
without dynamics. The dotted line is the prediction of a sum model (i.e., a model in which the
response to a pair of objects is the sum of the responses to the constituent objects). B, The solid
line is the median of the ratios between responses to object pairs and the sum of responses to
the individual objects, median over all object pairs tested across the whole population of 48
responsive neurons of experiment 1. The shaded regions are �1 SE of this median (the SE was
computed by bootstrap resampling of the ratios). The light gray background is the running
median over the responses to object pairs across the 48 neurons.
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have resulted from effects of attention. When two objects are
present and a monkey is cued to attend a specific visual field
location (Connor et al., 1997; Reynolds et al., 1999) or a specific
target object (Moran and Desimone, 1985; Treue and Maunsell,
1996; Chelazzi et al., 1998), neuronal responses in the ventral
visual stream (including IT) move toward the response elicited by
the attended object, as if that object were presented alone. Thus, if
one of the two objects in each of our object pairs were attended on
each presentation of the pair, and the choice of the attended
object was random across the 10 –30 trials in which each pair was
tested, the mean response over all presentations could look very
much like the average of the responses to the constituent objects
presented alone. Although our presentation conditions (100 ms
stimulus duration) are likely far too rapid for attention shifts
during a single presentation of a pair, if the animal’s attention
were directed toward one position for approximately half of the
presentations and the other position for the rest, attention shifts
might explain the average effect.

This attention hypothesis explicitly assumes that the distribu-
tion of responses across the 10 –30 presentations of each object
pair is drawn more or less equally from the distributions of re-
sponses to the two constituent objects (thus producing the aver-
age effect in the mean of the distribution). The alternative hy-
pothesis (and the one we have implied throughout this paper) is
that the observed average effect is a true normalization in that it is
obtained for each and every stimulus pair presentation, as if a
single, “average-effective” stimulus had been presented. The at-
tention hypothesis predicts that the distribution of responses to
each pair of objects (i.e., the distribution over all repetitions of
that stimulus condition) should be very broad (and approaching
bimodal), especially for cases in which one object is very effective
and the other is noneffective. In contrast, the normalization hy-
pothesis predicts that distribution of responses should be no dif-
ferent (and thus no broader) than that produced by a single,
average-effective object that produces the same mean firing rate.

To illustrate the predictions of these two hypotheses, Figure

9A (left panel) shows the distribution of
spike counts obtained from a single IT
neuron to repetitions of one example pair
of objects (thick solid curve) and to each of
the constituent objects of the pair (thin
solid and dashed curves). The thin dashed
and solid curves in the right panel of Fig-
ure 9A show, for this object pair condition,
the predictions of the attention hypothesis
and the “normalization hypothesis” (see
Materials and Methods). Note that, for
both hypotheses, the predicted pair re-
sponse distribution has the same mean
(i.e., the average of the responses to the
constituent objects) but different shapes.
The observed pair response distribution
(thick solid curve) is more consistent with
the normalization hypothesis, and this was
qualitatively true for all cases we examined
in which the responses to the two objects
of the pair were different enough so as to
make the hypotheses visually distinguish-
able (as in this example).

To quantitatively test these two hy-
potheses over our entire dataset, we used
two approaches to compare the observed
pair response distributions with the pre-

dictions of the hypotheses. First, we measured the broadness of
the distributions by calculating the Fano factor (i.e., the ratio of
the variance of the average spike count and its mean) for each of
the 79 responsive neurons. We included all of the pair conditions
in which only one of the objects in the pair produced a response
significantly higher than background when presented alone (Figs.
3, 6, blue dots) (see Materials and Methods) because these object
pair conditions should give the broadest distribution of pair re-
sponses under the attention hypothesis and thus have the most
power to distinguish among the two alternatives. We found that
the observed average Fano factor (1.05) was as follows: (1) very
close to the value of 1.0 predicted by Poisson spiking (Softky and
Koch, 1993; Shadlen and Newsome, 1994; Rieke et al., 1997;
Shadlen and Newsome, 1998); (2) markedly different than the
value predicted by the attention hypothesis (1.24; one-tailed
paired t test, p � 0.001) (see Materials and Methods); and (3) not
significantly higher than the value predicted by the normalization
hypothesis (i.e., the Fano factor obtained for single object condi-
tions, 1.13; one-tailed unpaired t test, p � 0.98) but, instead, was
slightly smaller (i.e., in the opposite direction from that predicted
by the attention hypothesis).

As a second approach, we aimed to directly compare the entire
shape of the observed pair response distribution with the distri-
bution predicted by the two hypotheses (i.e., compare the shape
of the thick solid curve in the right panel of Fig. 9A with the shape
of the thin solid and dashed curves). Because the 15–30 trials
recorded for each stimulus conditions did not typically provide
enough statistical power to test this prediction at the level of
individual conditions, we performed a population analysis over
the same conditions described above by normalizing and com-
bining all of the distributions (79 neurons; see Materials and
Methods). Examination of quantile– quantile plots (Fig. 9B)
showed that the observed population distribution was very sim-
ilar to the distribution expected under the normalization hypoth-
esis (no significant difference; Kolmogorov–Smirnov tests, p �
0.17), although, in contrast, it showed strong departure from that

Figure 9. Spike count distributions of observed and predicted responses to object pairs. A, Left, Spike count distributions
obtained from one example IT neuron to repeated presentations of one example pair of objects (thick solid line) and to each of its
constituent objects presented alone (thin solid and dashed lines). Right, The observed pair response distribution (thick solid line)
is compared with the distributions predicted (see Materials and Methods) by the attention hypothesis (dashed line) and the
normalization hypothesis (thin solid line). B, Quantile– quantile plot (Rice, 1995). Each symbol plots the normalized spike count
value (see Materials and Methods) at a particular quantile for the observed distribution of responses to object pairs and for the
distribution predicted by the attention hypothesis (open circles) and by the normalization hypothesis (crosses). For example, the
50% quantile point shows the normalized spike count value in each distribution for which 50% of that distribution is lower than
that value (quantiles 1–98% are shown in the plot). The dashed straight line (slope 1) is the expected relationship if the predicted
distributions were identical to the observed one. Whereas the crosses line up very well along this line, the circles show consider-
able deviations from this linear relationship at both the lower and upper end of the plot, thus showing the supremacy of the
normalization over the attention hypothesis in predicting the distribution of spike counts. All spike counts were taken in the
standard 100 ms analysis window on individual presentations of object pairs and were normalized by the average spike count
elicited by each object pair condition (see Materials and Methods).
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predicted by the attention hypothesis (highly significant differ-
ence; Kolmogorov–Smirnov tests, p � 10�15; experiment 1, p �
10�24; experiment 2, p � 10�8).

In summary, these results indicate that the observed average
effect described throughout this study cannot simply be ex-
plained by attention shifts. This does not rule out all possible
explanations of the average effect that involve attention or imply
that attention plays no role in IT responses to multiple objects [it
can play a role under some conditions (Moran and Desimone,
1985; Chelazzi et al., 1998)]. However, at least under the behav-
ioral conditions tested here (passive fixation), our data are con-
sistent with the hypothesis that object pairs activate IT neurons as
if a single, average-effective object had been presented.

Does the average effect generalize to other stimulus
presentation conditions?
In this study, we presented stimulus conditions for only 100 ms
each and at a rate of five per second (see Materials and Methods)
in an attempt to collect as much data as possible from each re-
corded neuron and to limit attentional shifts that might result
from longer presentations. Although this presentation rate is ar-
guably most physiologically relevant because it is consistent with
that spontaneously produced by the eye movements of free-
viewing monkeys (DiCarlo and Maunsell, 2000), we wondered
whether the average result would have been found if we had used
more “standard” presentation conditions. To test this, we ana-
lyzed only the responses to the first stimulus condition presented
on each trial (comparable with standard conditions in that it
followed a standard fixation period; see Materials and Methods).
For each of the 79 responsive neurons, we computed the ratio
between (first stimulus) responses to the object pairs and the sum
of the (first stimulus) responses to the constituent objects (done
for all available stimulus pair conditions). Across all 79 respon-
sive neurons, the median value of this ratio was 0.51: nearly iden-
tical to the value predicted by the average model (0.5) and the
value computed using all recorded responses (0.52). This shows
that the observed average effect does not result from the fact that
many stimuli were presented in relatively rapid succession on
each trial.

Discussion
The goal of the present study was to systematically examine IT
neuronal responses in limited clutter conditions (i.e., with several
objects present), using two complementary experimental para-
digms. In experiment 1, we tested the exact same visual object
conditions across an unbiased sample of IT neurons. In experiment
2, we optimized stimulus conditions for each neuron to produce
maximal selectivity across a continuous shape dimension.

Our results show that, for both experiments, a large fraction of
the explainable variance in responses to object pairs was ex-
plained by the average of the responses to the constituent objects
(�63%, average model) (Fig. 4A). The average model becomes
virtually perfect when responses of even a small population of
neurons are pooled (Fig. 5C). Thus, at least under the conditions
tested here, IT responses to pairs of objects depend primarily on
the effectiveness of each constituent object in driving the neuron,
and it does not matter much whether that effectiveness is altered
by changing the object identity (Fig. 5) or RF position (Fig. 7).
Moreover, objects that are completely ineffective when presented
alone powerfully reduce the neuronal responses when paired to
very effective objects (at least for the conditions tested, see be-
low). As such, most IT neurons do not have CCI, i.e., their re-

sponses are not independent of the presence of less effective ob-
jects (Figs. 5C, 6).

Previous studies of multiple stimuli in the ventral
visual stream
Consistent with previous investigators (Sato, 1989; Miller et al.,
1993; Rolls and Tovee, 1995; Missal et al., 1997, 1999; Chelazzi et
al., 1998; Sheinberg and Logothetis, 2001), our study found that
IT responses to very effective objects are typically reduced by the
presence of less effective clutter objects. In particular, on average,
IT responses to an effective stimulus were decreased by �30%
when a less than half effective stimulus was also presented, very
close to the suppression reported by Rolls and Tovee (1995) and
Missal et al. (1999) for similar object pairings.

There are hints of an average effect in previous IT studies.
Miller et al. (1993) found a correlation between the amount of
response suppression and the effectiveness of the RF location at
which a second object was presented, implying that the amount
of suppression depends on the neuronal response of the neuron
to the second object presented alone. Conversely, Missal et al.
(1999) did not find correlation between responses to object pairs
and the sum of the responses to the constituent objects. In that
study, however, because a very effective shape was always paired
with a poorly effective or ineffective shape, there was likely little
variance in the sum of the responses (Fig. 6C, abscissa), making it
difficult to reliably detect the average effect. That is, the system-
atic relationship reported here might not have been apparent
without testing a wide range of stimulus conditions.

Previous studies appear to disagree on how response suppres-
sion depends on the identity of the second, less-effective object.
Miller et al. (1993) suggested that the amount of suppression did
not depend on that identity, although Missal et al. (1999) found
the opposite for 50% of neurons. Our results indicate that the
answer depends not on object identity per se but on the activation
produced by each object present alone (with important caveats;
see below). For example, objects that have different identities but
do not produce any response will, on average, produce the same
amount of response suppression (compare with the far right
points of Fig. 5C). Although our data do not rule out shape-
dependent deviations from the average model for all individual
neurons (see example in Fig. 5B), they suggest that any such
deviations would be averaged out by pooling even a small IT
population.

Our results are also in good agreement with previous investi-
gations of earlier visual areas. In particular, Reynolds et al. (1999)
found that V2 and V4 neuronal population responses to stimulus
pairs tended to follow an average model when the monkey’s at-
tention was not directed to either stimulus. Thus, we speculate
that a common set of stimulus interaction mechanisms may op-
erate at each visual stage. However, mechanisms that produce
averaging behavior may not be the only ones mediating stimulus
interactions, because some populations of cat V1 neurons (Lampl
et al., 2004) and monkey V4 neurons (Gawne and Martin, 2002)
have responses that are similar to the response of the best constit-
uent stimulus of each pair (CCI model). Nevertheless, in our IT
recordings, only a small percentage of neurons (�10%) showed
this behavior, even when we specifically examined the response
conditions tested by Gawne and Martin in V4 (see Results).

Possible mechanisms
The average model presented here is purely descriptive and leaves
open the question of underlying mechanisms (although Fig. 8
may provide clues). Reynolds et al. (1999) proposed a mechanis-
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tic implementation of the “biased-competition model” (Desi-
mone and Duncan, 1995) that can explain the weighted average
responses to constituent stimuli of a pair in V2 and V4 (and
possibly IT). That model assumes that each object activates sep-
arate populations of neuronal afferents, and a normalization fac-
tor proportional to the total synaptic input rescales the neuronal
response. The average effect could also arise if the output of each
IT neuron was normalized by the total spiking activity of a broad
population of IT cells, similar to divisive normalization models
proposed to explain nonlinear behavior in early visual areas
(Heeger, 1992; Heeger et al., 1996; Carandini et al., 1997;
Schwartz and Simoncelli, 2001; Cavanaugh et al., 2002) and in
area MT (Recanzone et al., 1997; Britten and Heuer, 1999; Heuer
and Britten, 2002). Finally, other biologically inspired computa-
tional models, such as those using iterated MAX and Gaussian
tuning operations (Riesenhuber and Poggio, 1999a,b), can also
produce average-like effects in simulated IT neurons, although
they were not explicitly designed for that purpose (M. Kouh, D.
Zoccolan, and T. Poggio, unpublished observations).

Generality, limitations, and implications
Although our results are very consistent across three monkeys,
two experimental designs, and a wide range of object pair condi-
tions, we have clearly not explored the entire “operating range” of
the visual system. For one, neuronal responses were assessed us-
ing a relatively rapid stimulus presentation rate. However, be-
cause our presentation rate was similar to that produced by free-
viewing monkeys (Motter and Belky, 1998a,b; DiCarlo and
Maunsell, 2000; Sheinberg and Logothetis, 2001), gives robust
object selectivity in IT (Keysers et al., 2001), and is clearly within
the abilities of human recognition (Potter, 1976; Intraub, 1980;
Rubin and Turano, 1992), our data provide reasonable estimates
of the neuronal responses that underlie fast recognition in clutter.
Furthermore, we also found the same average effect for more
standard presentation conditions (first stimulus) and previous
studies have reported a similar effect in areas V2 and V4 with
longer presentation times (Reynolds et al., 1999).

Similarly, although our results do not speak to effects of ex-
plicit manipulation of visual attention (Treue and Maunsell,
1996; Connor et al., 1997; Chelazzi et al., 1998; Reynolds et al.,
1999), our data are highly relevant to conditions without such
pretrial cuing, and robust recognition in clutter is still observed
under such conditions (Potter, 1976; Intraub, 1980; Rubin and
Turano, 1992). Critically, we have shown that the observed aver-
age effect in IT cannot be explained by simple attentional shifts
but instead behaves as if it were a primarily feedforward property
of the ventral visual stream.

By design, some of the neurons contained in our dataset were
not tested with their true preferred object (especially experiment
1). However, significant efforts were made in experiment 2 to
achieve conditions in which objects were highly preferred. Al-
though current techniques cannot guarantee optimal objects,
most neurons in the experiment 2 dataset had very sharp tuning
(Fig. 5C), with peak firing at the center of gaze �40 spikes/s.
Thus, even for objects that are likely close to the tuning peak of
each neuron, the average model closely describes responses to
object pairs (Fig. 5C).

Although our long-term goal is to understand recognition in
real-world clutter, the reduced goal of this study was to under-
stand IT responses in limited, parameterized clutter conditions,
i.e., pairs or triplets of objects near the fovea. Additional investi-
gations will be required to understand IT response behavior (1)
for larger numbers of objects, (2) over an even broader range of

object identities and RF locations, and (3) for complex real-world
backgrounds such as textures and scenes. For example, although
the average effect clearly cannot hold for all ineffective objects
(e.g., objects presented far outside the RF or with attributes that
do not penetrate the visual system), these departures from the
average effect may provide insight into how objects are repre-
sented in IT.

Finally, it is intriguing to ask whether the average effect has
some useful role in object representation. For example, it has
been shown that normalization mechanisms lead to more effi-
cient forms of representation in early visual areas (Schwartz and
Simoncelli, 2001) and can produce bell-shaped tuning curves
that can support position- and scale-invariant object representa-
tion (Poggio and Bizzi, 2004). Note that the average effect does
not change the preferred objects of IT neurons but rescales their
tuning properties (Fig. 5), consistent with the preservation of IT
selectivity profiles found in studies using natural visual scenes
(Sheinberg and Logothetis, 2001; Rolls et al., 2003). Nevertheless,
the average effect indicates that the presence of a second object
changes the response of each neuron to its preferred object and
thus, at first glance, suggests that such an effect will negatively
impact recognition of the preferred object. However, although no
effect of a second object may seem to be a desirable property of
individual IT neurons (Rousselet et al., 2003, 2004), it may not be
necessary when populations of IT neurons are considered. The
impact of the average effect at the population level and the pos-
sibility that such behavior could allow simultaneous representa-
tion of multiple objects are areas of ongoing research.
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