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1 Introduction

In modern finance, assets such as stocks, bonds and commodities are often not traded
directly, but used as a basis to define more complex financial products known as derivatives.
In the last decades derivatives have become increasingly important in all branches of finance
theory and practice, and consequently the problem of pricing them. A derivative can be
defined as a financial product whose value depends on the values of other simpler underlying
variables, very often the price of other traded assets.

Options, in their plain vanilla form, are one of the simplest forms of derivatives. Option
pricing has been studied, in some form, ever since the end of the Nineteenth century [9]. In
1973 Fisher Black and Myron Scholes [4] provided a mathematical model for the evolution
of the price of a vanilla option as a pure diffusion process, which enabled to price option
with an analytical formula. Since then much work has been done in the field of option
pricing, and more complex options have been developed.

In this paper we focus on a particular type of option, depending on a basket of two
underlying assets, but whose value becomes zero if the price of the assets ever crosses some
barrier values; for this reason this kind of options are called barrier options. The problem
of double-barrier has been solved in analytical form by Kunitomo and Ikeda [8] for options
written on one asset; the problem for basket options is still open, and therefore numerical
methods are the only feasible way to price this kind of options.

Since the domain for the our pricing problem in not rectangular, we opted for the finite
elements method (FEM), instead of a simpler finite difference scheme, in order to have
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more flexibility with the discretization of the geometry.
The structure of the paper is the following. In section 2 of this paper we will introduce

options in an exclusively financial framework, giving also examples of their use in finan-
cial engineering. Section 3 is devoted to developing the basic mathematical modelling of
options, which is then expanded and adapted to our model problem of a two-asset double
barrier option in section 4. Section 4 also contains the abstract part of the approximation
procedure, which is specified to the finite element method in section 5; along with the
formal description of FEM, some implementation aspects are also discussed. Finally in
section 6 some numerical results obtained with our implementation are discussed. Unfor-
tunately, since a closed-for solution of the problem does not exists and not much data was
found in general literature, we are not able to benchmark our codes. All the computa-
tional work was carried out in MATLAB and codes are available in the following repository:
https://github.com/arielsboiardi/FEM-BBoption.

2 What is an option and what is it for?

An option is a contract which allows to its holder at a prescribed time in the future, known
as expiry or maturity, to buy (in the case of a call option) or sell (put option) a prescribed
underlying asset for a prescribed price, called strike price. In the nature of the contract
is that the holder has the right but no obligation, to exercise the his option; on the other
hand, there must be another party in the contract, called the writer, who does have the
potential obligation to sell (call) or buy (put) the asset at the strike price, even if the
trade is not favourable. The option must therefore have some value as it grants a potential
gain to the holder with no obligation; on the other hand, the writer must be compensated
for the potential liability he has assumes. The theory of option pricing is concerned with
computing the value options, that is the price a rational investor would be willing to pay
in order to have the right granted by an option (and a rational writer would ask to assume
the obligation connected to said right).

2.1 The value of an option

In the following the value of an option will be denoted by V . It of course depends on the
price of the underlying, denoted by S. The value of the option also takes into account how
much time is left before expiry, or time to maturity which is denoted by T − t, where T is
the expiry time and t < T is the present time. This dependence is explicit and is denoted
as V = V (S, t). Many other financial parameters influence the value of the option through
the value of the underlying asset, but these are not considered explicitly.

The payoff function At maturity, when t = T , the holder of an option can check the
current price S of the asset and decide weather to exercise the option or not. In the case of
a call option, for example, if the current price is higher that the strike price K, the decision
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is easy: the holder can buy the asset at the strike price and make a profit selling it on the
market at current price. Contrarily if the current price is lower than the strike price the
option is worthless. The value of the option at maturity is called payoff and is expressed,
for a call option as

V call(S, T ) = max {S −K, 0} .

Similarly one can find that in the case of a put option the payoff is

V put(S, T ) = max {K − S, 0} .

2.2 Uses of options

Options have two primary uses: speculation and hedging. If an investor thinks that the
value a given asset is going to raise, he can purchase 100e worth of said asset; in this way
also takes the risk of any fluctuation that the asset value might encounter: if the asset
loses 10% of its value, the investor loses 10% of the investment, similarly if the asset value
raises. Let us now assume that the investor buys instead call options on the same asset
for 10e with a strike price of 110e: now if the price stays below 110e he loses 100% of the
initial investment, while if the asset value gets to (or above) 110e the gains again 100% of
the initial investment. This phenomenon is called gearing and shows how options can be
used to expose a portfolio to a greater amount of risk1

If on the other hand the investor owns an asset, he can insure against temporary falls of
the asset value buying a put option, without the need to liquidate the asset, which might
raise again in the future. This is practice is called hedging and plays a key role in modern
financial engineering.

2.3 Other kinds of options

So far we have discussed only one of the many kind of financial options, that is European
option, which are the simplest example, and for this reason are called vanilla options.
American option are very similar but the option can be exercised at any time within
expiry.

Path-dependent options Other more exotic kinds of options are barrier options and
Asian options, whose value is path-dependent, in which it does not just depend on the price
of the asset at maturity, but on its history from writing to expiry.

The different types of barrier options Barrier options are options whose existence is
subject to the crossing of a barrier value B by the price of the underlying asset. There are
essentially four types of barrier options: up-and-in, up-and-out, down-and-in, down-and-
out. These all have the property that the right to exercise the option either appears (in

1To better understand thinks what would happen if the investor bought 100e worth of the same options.
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the case of in barrier) or disappear (out) when S reaches some value above (up) or below
(down) the current price. For each barrier we can of course have call or put options, with
strike price below or above the barrier.

Basket options A common way to hedge or risk exposure in options portfolios is to write
options on various assets or various times: these are called basket options. In this case the
value of the option at maturity is a prescribed function of the prices of the underlying
assets.

3 Basic theory of option pricing: the Black-Scholes model

The most common model for option pricing is due to Fischer Black and Myron Scholes [4],
which is based on some substantial assumptions. We will will simply suppose that the asset
price follows a geometric Brownian motion and that the market is efficient and frictionless,
but a more thorough discussion of all hypotheses to the Black-Scholes model can be found
in [12].

3.1 The random nature of market

Τύχη first gained her place in financial theory when Bachelier, in his doctoral thesis [2],
modelled unit variations in the prices of assets traded in Bourse of Paris as steps of a coin
tossing game. Bachelier’s work was remarkably original, an anticipation of modern econo-
physics, but was not much appreciated by his contemporaries and was hugely neglected for
decades [9]. The same idea of a fair game underlying all finBoth when used for gearing
and for hedging, options are ancial trades recursed in many isolated instances throughout
the years, and today sturdily sits at the very core of orthodox financial theory [9].

In this view we suppose that asset prices follow a geometric Brownian motion, that is
S satisfies the following stochastic differential equation

dS = rSdt︸︷︷︸
Deterinistic

+ σSdW︸ ︷︷ ︸
Stochastic

. (1)

The first contribution to the variation of the asset price is predictable and expresses the
return of money invested in a risk free portfolio: r is the risk-free interest rate (the financial
matter here gets think, we suggest to see [7] for a thorough discussion). The second
contribution comes from all unpredictable fluctuations of the market, such as the response
to unexpected news. It is represented by a random sample drawn from a normal distribution
of mean zero and variance equal to the time step length dt; σ is the variance, or volatility
of the price variation per time step.
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3.2 From randomness to determinicity

Using some classical machinery of stochastic calculus, namely Itô’s lemma and some ex-
pansions, we can transform the random contribution in (1) into a deterministic diffusion
process, getting to the Black-Scholes equation for option value V (S, t):

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (BS)

for t ∈ [0, T ] and S ∈ [0,∞).
As already noted by Bachelier [2], the evolution of options prices is somehow not dis-

similar from a heat diffusion process, and eq. (BS) can be transformed into the classical
heat equation by means of a change of variables. It is therefore possible, with classical
theory of parabolic PDEs, to derive an analytic solution for the Black-Scholes model (BS),
which can be found in [12]. The existence of an analytic solution, nonetheless, does not
make numerical methods useless, as the evaluation of said solution is, by itself, a non trivial
task.

Boundary and final conditions Since the value of the option is known at maturity,
final conditions are simply given by the payoff functions discussed in section 2.1. Boundary
conditions are instead derived from the put-call parity, and can be found in [12], but are
not needed in the rest of this paper.

4 Two-asset double-barrier options under the Black-Scholes
model

The Black-Scholes model can be generalised to basket options using the multidimensional
Itô’s lemma. For the value of an option on two underlying assets S1, S2 ∈ Ω with maturity
T the Black-Scholes equation is

∂V

∂t
+

1

2

2∑
i,j=1

ρijσiσjSiSj
∂2S

∂Si ∂Sj
+

2∑
j=1

rSj
∂V

∂Sj
− rV = 0, (BBS)

for
S = (S1, S2) ∈ Ω, t ∈ [0, T ],

where ρijσiσj are the entries of the covariance matrix [11]: σi is the volatility of Si, ρij is
the covariance of Si with Sj (of course ρii = 1), for i, j = 1, 2.

We consider a call option on a basket of two assets with two knock-out barriers. The
barriers are down-and-out at B1 and up-and-out at B2, that is V (S1, S2, t) = 0 for {S1 +
S2 ≤ B1} ∪ {S1 + S2 ≥ B2}. The domain is therefore delimited by the lines S1 + S2 = B1

and S1 + S2 = B2, and of course by S1 = 0 and S2 = 0, as represented in fig. 1.
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B1

B2

B1 B2

S1 + S2 = B1

S1 + S2 = B2

Ω

(0, 0)

Figure 1 – Domain of the two-assets douele barrier option problem

Boundary and final conditions for the double-barrier option Conditions on two
segments of the boundary are imposed by the barriers of the options

V (S1, S2, t) = 0 on {S1 + S2 = B1} ∪ {S1 + S2 = B2} .

The values for S1 = 0 and S2 = 0 are known by the one-dimensional Black-Scholes equation
for an option with two barriers, obtained by simply letting S1, S2 → 0 in (BBS). The value
of the single asset double-barrier option is known in closed form [6], even if, again, the
numerical evaluation is not trivial. We will denote V̄ = V |∂Ω.

The final condition, which is the payoff of the option, depends on the specific contract;
we will generally denote the final condition as V (S1, S2, T ) = VT (S1, S2). A sensible payoff
function is VT (S1, S2) = max{S1 + S2 −K, 0}, where K is the strike price.

4.1 Weak formulation of (BBS)

Consider the following second order partial differential operator

L =
1

2

2∑
i,j=1

ρijσiσj
∂2

∂Si ∂Sj
+

2∑
j=1

rSj
∂

∂Sj
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which can be recognised to be a part of the Black-Scholes operator in (BBS). We write L
in divergence form as

L =
2∑
i=1

∂

∂Si

1

2

2∑
j=1

ρijσiσjSiSj
∂

∂Sj

− 2∑
i=j=1

ρjj︸︷︷︸
1

σ2
jSj

∂

∂Sj

−1

2

2∑
i,j=1
i 6=j

ρijσiσjSj
∂

∂Sj
+

2∑
j=1

rSj
∂

∂Sj
;

and with a more compact matrix notation

L = ∇ · D∇+ b · ∇

where

[D]i,j =
1

2
ρijσiσjSiSj , [b]j = Sj

r − σ2
j −

1

2

2∑
i=1
i 6=j

ρijσiσj

 , i, j = 1, 2.

Therefore eq. (BBS) is written in divergence form as

∂V

∂t
+∇ · D∇V + b · ∇V − rV = 0 (2)

Let us now consider a suitable test function ψ and integrate (2) against it over the domain
Ω: ∫

Ω

∂V

∂t
ψdS +

∫
Ω
∇ · D∇V ψdS +

∫
Ω
b · ∇V ψdS−

∫
Ω
rV ψdS = 0

taking ψ compactly supported in Ω, the divergence theorem gives the weak form of (2)∫
Ω

∂V

∂t
ψdS−

∫
Ω
D∇V · ∇ψdS +

∫
Ω
b · ∇V ψdS−

∫
Ω
rV ψdS = 0. (3)

In order for the above equations to be meaningful we take V (S1, S1, ·) and ψ(S1, S2) in
the space

H(Ω) =

{
v : v ∈ L2(Ω), Si

∂v

∂Si
∈ L2(Ω), i = 1, 2

}
. (4)

which is a Hilbert space (as suggested in [1]) with the following induced norm

‖u‖H(Ω) =

(
‖u‖2L2(Ω) +

2∑
i=1

∥∥∥∥Si ∂u∂Si
∥∥∥∥2

L2(Ω)

) 1
2

. (5)
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In particular the test function ψ is taken in the closure H0(Ω) of the space of smooth
functions with compact support in Ω with respect to the topology of H(Ω).

Defining now the bilinear form on H(Ω)

a (u, v) =

∫
Ω
D∇u · ∇vdS−

∫
Ω
b · ∇uvdS +

∫
Ω
ruvdS (6)

changing sings in (3), the weak form of the Black-Scholes pricing problem (BBS) is

Find V ∈ H(Ω) : −
∫

Ω

∂V

∂t
ψdS + a (V, ψ) = 0 ∀ψ ∈ H0(Ω) (WBBS)

such that

V (S1, S2, T ) = VT (S1, S2) (S1, S2) ∈ Ω

V (S1, S2, t) = V̄ (S1, S2, t) (S1, S2) ∈ ∂Ω, t ∈ [0, T ].

Proposition 1. The weak problem (WBBS) admits a unique solution.

Proof. We verify continuity and weak coercivity of the bilinear form a (·, ·). Existence and
uniqueness follow from the Lions-Magenes theorem, being H a Hilbert space [1].

Let u, v ∈ H(Ω)

|a (u, v)| ≤
∣∣∣∣∫

Ω
D∇u · ∇vdS

∣∣∣∣+

∣∣∣∣∫
Ω
b · ∇uvdS

∣∣∣∣+

∣∣∣∣∫
Ω
ruvdS

∣∣∣∣
≤
∫

Ω

2∑
j=1

2∑
i=1

|ρijσiσj |
∣∣∣∣Sj ∂u∂Sj

∣∣∣∣ ∣∣∣∣Si ∂v∂Si
∣∣∣∣ dS

+

∫
Ω

2∑
j=1

∣∣∣∣∣∣∣r − σ2
j −

1

2

∑
i=1
i 6=j

ρijσiσj

∣∣∣∣∣∣∣
∣∣∣∣Sj ∂u∂Sj

∣∣∣∣ |v| dS

+

∫
Ω
r |u| |v| dS

≤ r ‖u‖L2(Ω) ‖v‖L2(Ω) + λ

2∑
i,j=1

∥∥∥∥Sj ∂u∂Sj
∥∥∥∥
L2(Ω)

∥∥∥∥Si ∂v∂Si
∥∥∥∥
L2(Ω)

≤M ‖u‖H(Ω) ‖v‖H(Ω)

which proves continuity.
Let us now consider∫

Ω
D∇u · ∇udS +

∫
Ω
ru2dS =

2∑
i,j=1

∫
Ω
ρijσiσjSj

∂u

∂Sj
Si
∂u

∂Si
dS + r ‖u‖2L2(Ω) ,
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since the covariance matrix ρijσiσj is positive semi-definite there exist a constant λ ≥ 0
such that∫

Ω
D∇u · ∇udS +

∫
Ω
ru2dS ≥ λ

2∑
i,j=1

∥∥∥∥Sj ∂u∂Sj
∥∥∥∥
L2(Ω)

∥∥∥∥Si ∂u∂Si
∥∥∥∥
L2(Ω)

+ r ‖u‖2L2(Ω) ≥ α ‖u‖
2
H(Ω)

On the other hand we have that using Green’s formulas∫
Ω
b · ∇uudS =

1

2

∫
Ω
b · ∇

(
u2
)

dS

=
1

2

(∫
∂Ω
u2b · ndS−

∫
Ω
u2∇ · bdS

)
,

where n is the unit vector normal to the boundary of Ω; therefore∣∣∣∣∫
Ω
b · ∇uudS

∣∣∣∣ ≤ 1

2

∫
∂Ω
u2 ‖b‖ ‖n‖︸︷︷︸

1

dS +
1

2

∫
Ω
u2 ‖∇ · b‖ dS

and since b is smooth enough on Ω and its boundary, by trace theorem (see [5]), there exist
a positive constant γ such that∣∣∣∣∫

Ω
b · ∇uudS

∣∣∣∣ ≤ γ ‖u‖2L2(Ω) ≤ γ ‖u‖H(Ω)

and therefore
a(u, u) ≥ α ‖u‖2H(Ω) − γ ‖u‖

2
H(Ω) ,

which proves weak coercivity of a (·, ·).

4.2 Galerkin spatial approximation

Let us consider a family Wh of subspaces of H(Ω), depending on a spatial discretization
parameter h, such that

∀u ∈ H, inf
wh∈Wh

‖v − wh‖H(Ω) → 0.

We can approximate the weak problem (WBBS) in Wh and get the following Galerkin
problem

Find Vh ∈Wh : −
∫

Ω

∂V

∂t
ψdS + a (V, ψ) = 0 ∀ψ ∈Wh ∩H0(Ω). (GBBS)

Since continuity and weak coercivity of the bilinear form have been proved, in theory, the
approximation Vh ∈Wh converges to the exact solution V ∈ H(Ω) of (WBBS).
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Let {φj}j∈I be a basis for Wh, with this notation the approximated solution is expressed
as

Vh(S1, S2, t) =
∑
j∈I

ωj(t)φj(S1, S2) (7)

where the weights ωj(t) are to be determined. The index set I can be partitioned into two
subsets I = Dir ∪ Ind, where function indexed by Dir are those whose support touches the
boundary, and therefore their weight in Vh can be determined by the Dirichlet boundary
condition. Functions indexed by Ind are instead compactly supported in Ω, so they span
Wh ∩H(Ω), and their weights are to be determined.

The Galerkin problem (GBBS) is then written with respect to this basis as

−
∑

j∈Ind∪Dir

ω̇j(t)

∫
Ω
φjφidS +

∑
j∈Ind∪Dir

ωj(t)a (φj , φi) = 0, ∀i ∈ Ind. (8)

The matrices

[M ]ij =

∫
Ω
φjφidS, [A]ij = a (φj , φi) , i ∈ Ind, j ∈ Ind ∪ Dir (9)

are respectively called mass and stiffness matrix. Equation (8) is then written with compact
matrix notation

−M ω̇(t) +Aω(t) = 0, (10)

where [ω(t)]j = ωj(t) for j ∈ Ind ∪ Dir.

4.3 Time discretization by θ-method

In order to get from problem (WBBS) to (10) a spatial discretization was performed, as
the approximation spaces Wh are immersed in H(Ω) which only takes into account spatial
variables S1, S2. Since all the formulations of the discrete problem still contain a time
derivative, we perform a time discretization using a θ-method.

Let ∆t be a fixed time step, which is the time discretization parameter, we can then
approximate the time derivative by an incremental ratio

ω̇(t) ≈ ω(t+ ∆t)− ω(t)

∆t

and we write (10) as

−M
[
ω(t+ ∆t)− ω(t)

∆t

]
+A [θω(t+ ∆t) + (1− θ)ω(t)] = 0,

from which the following discrete evolution equation is derived(
M

∆t
+ (1− θ)A

)
ω(t) =

(
M

∆t
− θA

)
ω(t+ ∆t), (11)
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which expresses the value of the option at time t given the value at a successive time step.
Since the final condition V (S1, S2, T ) = VT (S1, S2) is known, the above equation can be
used as an iterative procedure to actualize the final value of the option at t = T to the
present time t = 0 through a sequence of time steps. It is worth noticing that since the
problem is in backward form, the method is unstable for θ > 1

2 .
Since weights indexed by Dir, denoted by the sub-vector ωDir, are known from the

boundary conditions, we should find a system for only the independent weights ωInd. Let
us expand the matrix product in (11)∑

j∈Ind∪Dir

(
Mij

∆t
+ (1− θ)Aij

)
ωj(t) =

∑
j∈Ind∪Dir

(
Mij

∆t
+ θAij

)
ωj(t+ ∆t)

and splitting the sum over the two index sets we get∑
j∈Ind

(
Mij

∆t
+ (1− θ)Aij

)
ωj(t) =

∑
j∈Ind∪Dir

(
Mij

∆t
+ θAij

)
ωj(t+ ∆t)

−
∑
j∈Dir

(
Mij

∆t
+ (1− θ)Aij

)
ωj(t).

In order to write in matrix form the previous equation we denote

MInd = [Mij ]i∈Ind
j∈Ind

, AInd = [Aij ]i∈Ind
j∈Ind

the square sub-matrices of M and A respectively formed by only the columns indexed in
Ind and

MDir = [Mij ]i∈Ind
j∈Dir

, ADir = [Aij ]i∈Ind
j∈Dir

.

With this notation we finally get to the discrete evolution equation(
MInd

∆t
+ (1− θ)AInd

)
ωInd(t) =

(
M

∆t
− θA

)
ω(t+ ∆t)

−
(
MInd

∆t
+ (1− θ)AInd

)
ωDir(t)

(12)

which allows to only compute independent weights.

5 Finite element approximation of the weak Black-Scholes
problem

In the finite element method the geometry is divided into simple polygons, in our case
triangles, and the approximation space consists of piecewise polynomial functions. Let Th
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Nj

φj

Figure 2 – Representation of a FEM linear basis function.

be a triangulation of the domain Ω, that is a set of non degenerate triangles such that

Ω̄ =
⋃
K∈Th

K.

The triangulation is said to be admissible if the interiors are disjoint and the intersections
of each two triangles only are vertices or edges. The mesh fineness is described by the
discretization parameter h which can be fixed to be h = supK∈Th diamK.

Given an admissible triangulation Th, the approximation in the FEM framework is built
in a piecewise polynomial space

Xr
h =

{
vh ∈ C0

(
Ω̄
)

: vh|K ∈ Pr ∀K ∈ Th
}

(13)

which is a subspace of H. In this paper only linear approximations are used, that is r = 1.
As a basis of X1

h we chose a set of locally supported functions {φi}i∈I , in order to have
less non-zero elements in the stiffness matrix computation; the basis is also chosen to be
lagrangian, that is φj(pj) = δij for all nodes pj of the triangulation, as in fig. 2. With this
choice of the basis, the weights in the linear combination (7) are exactly the values of V in
the nodes of the triangulation:

ωj(t) = V (pj , t).

5.1 Geometry discretization

The first step for the FEM approximation procedure is the discretization of the geometry
of the domain with a triangulation.
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5.1.1 Geometry description

We will assume that the geometry is a convex polygon, as such is our domain in fig. 1, and
variations that we could be interested in. In our implementation the polygon is described
by its vertices written in Cartesian coordinates and two column matrix which contains a
list of the edges of the polygon. Furthermore in order to keep track of boundary conditions,
each edge is assigned a unique identifier. For a concrete view the reader can take a look at
the data structure implemented in the poly_geo class.

5.1.2 Mesh generation and refinement

As a mesh we used a standard non-constrained Delaunay triangulation, built with the
algorithm implemented in the Qhull library [3], which is included in MATLAB . The
triangulation consists of a list of nodes, the vertices of the triangles, and a connectivity
matrix which lists the indices of the vertices of each triangles in positive order following
the right hand rule. Another important datum that we need to keep track of is what edges
of the triangles lie on the boundary of the domain. In our any edge of the triangulation
that lie on a portion of the boundary inherit the same identifier.

A first, rough, triangulation is obtained simply computing the Delaunay triangulation
of the vertices of the geometry. Additional nodes can be added manually to improve the
behaviour of the triangles (peep ahead fig. 5 to see why). To refine the mesh a very
simple splitting technique is used: a node is added at the midpoint of every edge, and
a new Delaunay triangulation is computed. Boundary identifiers for every new node are
kept track of only using geometrical properties. Edges that are on the boundary of the
unrefined mesh are substituted in the list of boundary edges with the two segments in
which the node insertion splits the edge and both segments inherit the same boundary
identifier of the unrefined edge (see the implementation in the midsplitref method of
the @tri_mesh class).

5.2 Lagrangian basis for the approximations space

Now that the triangulation Th has been built, the approximation space X1
h in (13) is

explicitly defined. The basis again is simply given by the tent functions represented in
fig. 2. As again in fig. 2 the basis function φj , which only insists on the node pj , can be
decomposed into a different linear function on every triangle that shares the same node pj .

5.2.1 Local nodal basis

The vertices of any triangle K ∈ Th are denoted by pK1 ,p
K
2 ,p

K
3 . The correspondence

between local indices 1, 2, 3 and the global indices of the three nodes in the triangulation
is found in the connectivity matrix: in the row corresponding to K, the first entry is the
global index of the first vertex, and so on.
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pK2

pK3

NK
1

NK
2

NK
3

Figure 3 – Schematic view of the local nodal basis in K.

We define for each triangle K three local nodal basis functions NK
1 , N

K
2 , N

K
3 such that

NK
i (pK

j ) = δij for all i, j = 1, 2, 3, as in fig. 3.

As already mentioned, for any basis function of X1
h, φj , where the global index j

corresponds to the vertex pKi of K, we have that

φj |K = NK
i .

5.2.2 Reference element

In the following steps we need to evaluate the local nodal basis functions, to make thing
cleaner we define the reference element K̂, that is the unitary triangle of R2 represented
to the left in fig. 4, where p̂1 = (0, 0), p̂2 = (1, 0), p̂3 = (0, 1).

Each triangle of Th can be obtained from K̂ by means of a simple linear affine trans-
formation

TK(x, y) = BK

[
x
y

]
+ pK1 , (14)

where the matrix which deforms K̂ into K is written by columns as

BK =
[
pK2 − pK1 ,p

K
3 − pK1

]
.
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pK2
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K

TK

Figure 4 – Correspondence between the reference element K̂ and a triangle K ∈ Th.

5.2.3 Reference nodal basis

Of course a set of nodal Lagrangian basis functions N̂1, N̂2, N̂3 can be defined on the
reference element as well:

N̂1 = 1− x− y,
N̂2 = x,

N̂3 = y,

with (x, y) ∈ K̂. (15)

Of course the nodal functions on K ∈ Th can be recovered from these as

NK
α (s1, s2) = N̂α ◦ T−1

K (s1, s2), α = 1, 2, 3, (16)

where

T−1
K (s1, s2) = BK−1

([
s1

s2

]
− pK1

)
,

[
s1

s2

]
∈ K.

Similarly the gradient of all nodal functions on K can be computed from the gradient of
the reference nodal functions as

∇NK
α (s1, s2) =

[
B−1
K

]T ∇N̂α

(
F−1
K (s1, s2)

)
, i = 1, 2, 3. (17)

On the other hand we notice that

∇N̂1 =

[
−1
−1

]
, ∇N̂2 =

[
1
0

]
, ∇N̂2 =

[
0
1

]
.

We have therefore found a very simple way to implement the evaluation of the local nodal
basis functions and their gradients for any triangle K ∈ Th.
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5.3 Mass and stiffness matrices

5.3.1 Mass matrix assembly

The expression for the mass matrix entries in (9) can be decomposed by linearity:

[M ]ij =

∫
Ω
φjφidS =

∑
K∈Th

∫
K
φjφidS. (18)

On K the integral is non-zero only if both i and j are global indices for one of the vertices
of K, which gives nine combination of non-zero entries in the mass matrix.

Local mass matrix Each basis function φi becomes one of the three local basis functions
when restricted to a triangle

[MK ]αβ =

∫
K
NK
β N

K
α dS, α, β = 1, 2, 3,

which gives a 3× 3 matrix called local mass matrix. We can easily compute these integrals
using the reference element:∫

K
NK
β N

K
α dS =

∫
K̂
N̂βN̂α |detBk| dx = detBk

∫
K̂
N̂βN̂αdx,

which is easily computed by hand:∫
K̂
N̂jN̂idx =

{
1
12 if i = j
1
24 if i 6= j.

Finally, after all local mass matrices are computed, eq. (18) allows to construct the global
mass matrix, using the aforementioned correspondence between local and global indices. A
refined implementation of this procedure can be found in the function assembly/Mass.m
of the code library.

5.3.2 Stiffness matrix assembly

We now consider eqs. (6) and (9) and decompose the integral over Ω in the sum of local
contributions

[A]ij =
∑
K∈Th

∫
K
D∇φj · ∇φidS−

∫
K
b · ∇φjφidS +

∫
K
rφjφidS (19)

As for the mass matrix, the computation is carried out locally, then the global mass matrix
is assembled using the equation above.
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Local stiffness matrix On each triangle the previous, using local indices, we compute
the local stiffness matrix with entries

[AK ]αβ =

∫
K
D∇NK

β · ∇NK
α dS−

∫
K
b · ∇NK

β N
K
α dS +

∫
K
rNK

β N
K
α dS, (20)

for α, β = 1, 2, 3. The last addend is of course just rMK , where the local mass matrix MK

has already been computed.

Quadrature formula In the first two integrals in (19), the change of variable to the
reference element is not useful, since the integrands depend explicitly on S1, S2. Fortunately
both integrands are of total degree two, so we can use a simple midpoint rule to get the
exact value of the integral, being the midpoint rule of the second order. The integral on a
triangle K ∈ Th is computed with the formula∫

K
f(S)dS =

Area(K)

3

3∑
γ=1

f(mγ),

where the area of the triangle can be computed as detBK/2 and Mγ are the midpoints
of the three edges of K. At this point the computation is pretty straight forward, the
implementation is in assembly/Mass_local.m.

5.3.3 Dirichlet nodes

In the computation of the mass and stiffness matrices we have so far considered all nodes,
but since test functions have been chosen to be compactly supported in Ω, eq. (9) shows
that only rows indexed by Ind are to be considered. Similarly eq. (12) requires to separate
columns of M and A indexed by Ind and Dir.

The choice of a Lagrangian basis allows us to identify basis functions with nodes, in
that for each node one and only one basis function in non-zero no it. Therefore, the index
set Dir coincides with the indices of the nodes that lie on the boundary, which are saved
in the mesh data. Of course the weights on these nodes are known form the boundary
conditions

ωj(t) = V̄ (pj , t), j ∈ Dir.

6 Numerical experiments

In this section we use our finite element library to numerically explore the problem of
pricing the two-asset double knock-out European call option introduces in section 4. As a
basic we follow [10] setting parameters as in table 1 and and the barriers B1 = 1, B2 = 2.
Different parameters will be specified time by time.
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Table 1 – Parameters for the basic example

K T σ1 σ2 ρ r

1 1 0.25 0.25 0.7 0.05

Boundary value To compute the value on the boundary we used the following formula
for a single asset double-knock-out European call adapted from [6]:

V (S, t) = Se−rt
+∞∑

n=−∞

{(
Bn

2

Bn
1

)µ
[N(d1)−N(d2)]−

(
Bn+1

1

SBn
2

)µ
[N(d3)−N(d4)]

}

−Ke−rt
+∞∑
n−∞

{(
Bn

2

Bn
1

)µ−2 [
N(d1 − σ

√
t)−N(d2 − σ

√
t)
]

−
(
Bn+1

1

SBn
2

)µ−2 [
N(d3 − σ

√
t)−N(d4 − σ

√
t)
]}

,

where

µ =
2

σ2
+ 1

d1 =
log
(
SB2n

2

KB2n
1

)
+ σ2

2 t

σ
√
t

d2 =
log
(
SB2n−1

2

B2n
1

)
+ σ2

2 t

σ
√
t

d3 =
log
(
B2n+2

1

KSB2n
2

)
+ σ2

2 t

σ
√
t

d4 =
log
(

B2n+2
1

SB22n+1

)
+ σ2

2 t

σ
√
t

,

and t is the time to maturity, S is the value of the underlying asset, r the risk-free inter-
est rate and σ the volatility of the asset. In our implementation, found in the function
doubleOUT_call, the summation has been truncated to the range −5, . . . , 5 as suggested
in [6]. No appreciable differences in the output has be observed with summations up to
the tenth order. On the other hand it has already been proved numerically in [8] that
convergence is fast.

Geometry description and meshing The geometry of the domain is described by the
vertices of the polygons and a matrix of links representing the edges. Ad already mentioned,
fictitious vertices can be added manually to improve the behaviour of the triangulations.
Figure 5 shows two different behaviours in the mesh sequence produces by inserting only
one additional node.

The solutions obtained on the two sets of meshes differ significantly, for example in fig. 6.
One is not necessarily better than the other, but we generally preferred more predictable
structured meshes.
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(a) Unstructured meshes obtained by Delaunay
triangulation of the vertices of the polygonal
domain.
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(b) Structured meshes obtained by adding a fic-
titious vertex at N5 in the geometry.

Figure 5 – Two refinements of two different meshings of the domain. Nodes are labelled
by N indices and triangles are labelled by T. BD indices are the boundary identifiers. The
two barriers S1 + S2 = B1 and S1 + S2 = B2 have the same identifier because they have
the same boundary condition.
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(a) Solution on the unstructured mesh. (b) Solution on the structured mesh

Figure 6 – Solutions for the basic example with parameters in table 1 obtained with 100
steps of the backward Euler method (θ = 0) on a mesh refined 3 times.

(a) 100 time steps (b) 180 time steps

Figure 7 – Stability comparison with θ = 1 on the same mesh with two different time
discretizations.

Time discretization When choosing the time discretization we need to consider the
problem of stability, we know that θ-methods with θ ≤ 1

2 are stable, while stability of
methods with θ > 1

2 depends on the ratio between the time step and the square of the
geometric discretization parameter. Therefore refining the mesh might significantly dete-
riorate the solution, as in fig. 7a. In this case refining the time discretization in necessary
to recover stability, as in fig. 7b. Since they do not offer essentially any advantage, we
generally avoided methods with θ < 1

2 .
We do not have a reference solution and it is therefore not easy to state the quality

of our approximation, but in table 2 we compared our results to those [10]. Frome the
results it seems that the backward Euler method (BEU) is more sensitive to the time
discretization, unfortunately the convergence is not monotone. The Crank-Nicolson (CN,
θ = 0.5) method instead seem to be less dependent on the time discretization; convergence
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Table 2 – Values of Vh(1.25, 0.25, 0) for the basic problems with parameters table 1 ap-
proximated with our solver with different discretization parameters. The reference value
in [10] is V (1.25, 0.25, 0) ≈ 0.2949. NR is the number of mesh refinements, Nt the number
of time steps.

NR θ Nt Vh(1.25, 0.25, 0)
3 0 100 0.2906
4 0 100 0.2945
5 0 100 0.2956
4 0 500 0.2938
5 0 500 0.2949
3 0.5 100 0.2897
4 0.5 100 0.2936
5 0.5 100 0.2947
4 0.5 500 0.2936
5 0.5 500 0.2947

with space discretization strangely seems to be slower, bu monotone. Nonetheless the
significance of the reference value is not known, so these results are to be taken as they
are.

The biggest computational cost is the evaluation of boundary conditions, and since they
need to be computed at every time step, we will prefer CN, which has a better convergence
with fewer time steps. A reference plot for this example is fig. 8.

6.1 Moving the strike price

In the previous example the down barrier was doing nothing, as it coincided with the strike
price, and therefore the value of the option would have been zero anyway. If the strike price
is lower the the down barrier the setting is the same. Similarly if the strike price is equal
or grater than the up barrier, the value of the option is constantly zero as, whenever it has
any financial value, the barrier deactivates it. The values for the strike price where both
barriers do something are therefore B1 < K < B2. Changing the strike price immediately
alters the payoff function

VT (S1, S2) = max{S1 + S2 −K, 0}

which is plotted in fig. 9 for some values of K.
Actualizing the final values in fig. 9 with the Crank-Nicolson iteration we regularise the

payoff function (fig. 10), the current values are plotted in fig. 7.
Of course we can see that getting further away from the final condition the solution

becomes smoother and the option acquires some value even where the payoff is zero. In
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Figure 8 – Solution to the problem with parameters table 1, solved on a mesh refined 4
times with 100 CN steps.

(a) K = 1 (b) K = 1.3 (c) K = 1.6

Figure 9 – Plots of the payoff functions for three values of K.

(a) K = 1.3 (b) K = 1.6

Figure 10 – Intermediate solution at t = 0.75 or different values of K.

22



(a) K = 1.3 (b) K = 1.6

Figure 11 – Current value (t = 0) for different values of K.

Figure 12 – Payoff (21)

fact with more time from expiry, the probability that the prices of the underlying evolve
positively become greater. Nonetheless when the strike price moves towards the up barrier,
the overall value of the option decreases, because measure of the support of the payoff is
smaller, and therefore the probability of ending the process in that set decreases.

6.2 changing the payoff

The previous example the payoff function was altered by moving the strike price, but in
some contracts the payoff can also be a totally different function of S1, S2, as long as it
links with the boundary conditions.

Buying the highest priced underlying Let un consider the following final condition,
plotted in

VT (S1, S2) = max{max{S1, S2} −K, 0}, (21)

that is, the option allows the holder to buy the asset that is worth the most. Again the
effect of actualizing the final value tends to regularize the final condition (fig. 13), and this
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(a) t = 0.75 (b) t = 0.25

Figure 13 – Intermediate approximations with parameters table 1 with final value (21)
obtained with 100 CN steps.

(a) Solution with decorrelated assets. (b) Solution with anticorrelated assets.

Figure 14 – Effects of decorrelation and anticorrelation.

is expected as the Black-Scholes model is somehow a backward heat equation. ¡

6.3 Different statistical properties of the underlying assets prices

Our previous tests show that the maximum value of the option tend to be well diffused along
a line parallel to the barriers. This phenomenon is due to the high correlation between the
underlying assets. If we decorrelate the assets setting ρ = 0, the maximum tends instead
to be centred in graph as in see fig. 14a. If the assets are anticorrelated the mass is even
more concentrated, fig. 14b,

Keeping the assets decorrelated, if volatilities are different, we can see in fig. 15a that
the hump moves and the value of the option is higher for higher prices of the less volatile
asset. The value of one-asset double barrier option on the S2 = 0 is higher with less
volatility, which marks a difference with plain vanilla options, which are more valuable if
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(a) Decorrelated assets: ρ = 0.
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(b) Correlated assets: ρ = 1.

Figure 15 – Option value when assets have different volatilities σ1 = 0.18, σ2 = 0.25.

the underlying asset is more volatile. The financial reasoning is that with higher volatility
there is an higher probability that the asset price increases (since exercising the option
is not compulsory, a decrease in the asset price is not worrisome); if we add barriers,
higher volatilities increase the probability that the asset price exits the money region and
cancelling the option.

If the same assets are correlated, the hump disappears, and the mass gets linearly
dispersed along the central spine of the plot, as fig. 15b.

6.4 And what if the bank gave me more?

As discussed in section 2.2, options are used in speculation through gearing, which allows
to multiply the amount ov money moved, before an higher risk of loss, and for hedging,
writing options of counter-correlated assets. Both of these purposes are defeated if the
current risk-free interest rate is very high. We can see in fig. 16 that increasing r moves the
maximum values of the options toward the region where the price of the assets is lowest.
On the S1 = 0 and S2 = 0 boundaries the option follows the one-dimensional problem.
Overall the value of the option is again much lower.

The idea is that if the risk-free return of a given investment is very high, one would be
much better off simply investing in there. Only if the price of the option is very low, or if
one can buy the underlying assets for very little money it makes sense to go through the
option.

7 Conclusions and things that are missing in this paper

In this work we have presented some basic notions of financial options and theory of option
pricing. The Black-Scholes model has been discussed and adapted to the problem of pricing
an call option depending on two underlying assets with two out barriers. Since this model
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(a) r = 0.2 (b) r = 0.5

Figure 16 – Solutions with high risk-free interest rate.

does not have a closed for solution we developed a FEM library and discussed some details
on the implementation.

Our FEM-BBoption library showed promising results in the numerical simulations,
but we could not find exact data for a comparison. We then used our library to discuss
some features of the Black-Scholes model applied to our problem.

Our approach is unfortunately very limited since our codes only allow for convex polygo-
nal domains in 2D. It is worth noting that the FEM would not be suitable for more complex
multi-asset financial derivatives anyway, as its complexity grows too fast with the number
of geometric dimension.

In our numerical test we briefly discussed the the effects on different statistical prop-
erties of the underlying assets on the value of the option, but a proper sensitivity analysis
was not performed.
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