Quench analysis of the Ising model

Final work for the course of Complex Systems
Prof. Alessandro Vezzani

Ariel S. Boiardi
May 13, 2021

Dipartimento di Scienze Matematiche, Fisiche e Informatiche
Universita degli Studi di Parma



The Ising model
Simulation
Dynamics
Quench

Anisotropic lattices and disorder



The Ising model



The Ising model / introduction

e Introduced by E. Ising in his 1924 doctoral thesis [2] under advise by W.
Lenz



The Ising model / introduction

e Introduced by E. Ising in his 1924 doctoral thesis [2] under advise by W.
Lenz

» The magnetic material is reduced to a collection of elementary
magnets



The Ising model / introduction

e Introduced by E. Ising in his 1924 doctoral thesis [2] under advise by W.
Lenz
» The magnetic material is reduced to a collection of elementary
magnets
» The global behaviour of the magnet is reconstructed from the
collective emergent behaviour of the elementary magnets (alternative
to the explanation proposed by P. Wiess)



The Ising model / introduction

e Introduced by E. Ising in his 1924 doctoral thesis [2] under advise by W.
Lenz

» The magnetic material is reduced to a collection of elementary
magnets

» The global behaviour of the magnet is reconstructed from the
collective emergent behaviour of the elementary magnets (alternative
to the explanation proposed by P. Wiess)

» Ising correclty proved that the 1D model does not present phase
transitions but incorrectly extended the result to 3D



The Ising model / introduction

e Introduced by E. Ising in his 1924 doctoral thesis [2] under advise by W.
Lenz

» The magnetic material is reduced to a collection of elementary
magnets

» The global behaviour of the magnet is reconstructed from the
collective emergent behaviour of the elementary magnets (alternative
to the explanation proposed by P. Wiess)

» Ising correclty proved that the 1D model does not present phase
transitions but incorrectly extended the result to 3D

e The main advances in study of the model were made in 1944 by L.

Onsager [5]



The Ising model / introduction

e Introduced by E. Ising in his 1924 doctoral thesis [2] under advise by W.
Lenz

» The magnetic material is reduced to a collection of elementary
magnets

» The global behaviour of the magnet is reconstructed from the
collective emergent behaviour of the elementary magnets (alternative
to the explanation proposed by P. Wiess)

» Ising correclty proved that the 1D model does not present phase
transitions but incorrectly extended the result to 3D

e The main advances in study of the model were made in 1944 by L.
Onsager [5]
» Found explicit formulas of the partition function and free energy for
the 2D model = all thermodynamic quantities
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e Introduced by E. Ising in his 1924 doctoral thesis [2] under advise by W.
Lenz

» The magnetic material is reduced to a collection of elementary
magnets

» The global behaviour of the magnet is reconstructed from the
collective emergent behaviour of the elementary magnets (alternative
to the explanation proposed by P. Wiess)

» Ising correclty proved that the 1D model does not present phase
transitions but incorrectly extended the result to 3D

e The main advances in study of the model were made in 1944 by L.
Onsager [5]
» Found explicit formulas of the partition function and free energy for
the 2D model = all thermodynamic quantities
» A rigorous proof of the existence of a phase transition was later given
by Lee and Young [4, 3]
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Magnetization per site
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The Ising model / macroscopic quantities

Magnetization per site
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Simulation / Transition probability

Metropolis

W(s —s)= )
( ) e P if 6H > 0. (



Simulation / Equilibrium phase transition

Figure 1: Cumulated magnetization Figure 2: Magnetic susceptibility
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Figure 3: Binder's cumulant for three system sizes.
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Dynamic Ising model




Dynamics / Dynamical simulation

Figure 4: Critical dynamic of the Ising model
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Quench / Supercritical

(a) Supercritical dynamic at kT = 4 (a) Supercritical dynamic at kT = 2.5
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(a) Supercritical dynamic at kT = 4 (a) Supercritical dynamic at kT = 2.5
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Quench / Supercritical

(a) Supercritical dynamic at kT = 4 (a) Supercritical dynamic at kT = 2.5
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Quench / Time displaced autocorrelation

Time displaced autocorrelation
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Time displaced autocorrelation
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Figure 7: Time delayed autocorrelation function with respect to states at tyy. The
random initial configuration is quenched at T = 2.5
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Quench / Critical

(a) Critical dynamic at kT = 2.27

12



Quench / Critical

500 1000 1500 2000 2500 3000 3500 4000 4500
t

(b) Magnetization

(a) Critical dynamic at kT = 2.27

12



Quench / Critical
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Figure 9: Time delayed autocorrelation function with respect to states at ty/. The
random initial configuration is quenched at T = T¢. System linear size L = 128.
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Quench / Subcritical

(a) Subcritical dynamic at kT = 2.5 (a) Subcritical dynamic at kT =1
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(a) Subcritical dynamic at kT =1
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Quench / Subcritical

(a) Subcritical dynamic at kT =1
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Anisotropic lattices and disorder




Anisotropic lattices and disorder / Breaking regularity

Figure 12: Disordered lattice, kT = 1. 5



Anisotropic lattices and disorder / Breaking regularity

Figure 13: Disordered lattice, kT = 1. 6



Anisotropic lattices and disorder / Activated processes

Figure 14: Process activated by thermal Figure 15: Process activated by external
energy kT = 2.26. magnetic field h = —0.5.
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Anisotropic lattices and disorder / Nucleation

Figure 16: Nucleation at kT = 1, the system is prepared at a magnetization and
evolved under a field in the opposite direction with |h| = 0.5, then the filed is flipped...
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Anisotropic lattices and disorder / Persistence of information

Figure 17: Split system at subcritical Figure 18: Split system at critical
temperature kT =1 temperature
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