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The Ising model



The Ising model / introduction

• Introduced by E. Ising in his 1924 doctoral thesis [2] under advise by W.

Lenz

I The magnetic material is reduced to a collection of elementary

magnets

I The global behaviour of the magnet is reconstructed from the

collective emergent behaviour of the elementary magnets (alternative

to the explanation proposed by P. Wiess)

I Ising correclty proved that the 1D model does not present phase

transitions but incorrectly extended the result to 3D

• The main advances in study of the model were made in 1944 by L.

Onsager [5]

I Found explicit formulas of the partition function and free energy for

the 2D model ⇒ all thermodynamic quantities

I A rigorous proof of the existence of a phase transition was later given

by Lee and Young [4, 3]
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The Ising model / 2D lattice

H = −J
∑
〈ij〉

si sj − h
∑
j

sj . (1)

p(s) =
e−βH(s)

Z(β, h)
(2)

Z(β, h) =
∑
s∈U

e−βH(s) (3)
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The Ising model / macroscopic quantities

Magnetization per site

MΛ(s)

=
1

N

N∑
j=1

sj (4)

M = 〈MΛ(s)〉 =
1

Z

∑
s∈U

MΛ(s)e
−βH(s) (5)

Susceptibility

χ =
∂M

∂h
= N

[〈
M2

Λ

〉
− 〈MΛ〉2

]
(6)
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Simulation of the Ising model



Simulation / Transition probability

s

s′

W (s→ s′)

Metropolis

W (s→ s′) =

1 if δH ≤ 0

e−βδH if δH > 0.
(7)

6



Simulation / Transition probability

s s′

W (s→ s′)

Metropolis

W (s→ s′) =

1 if δH ≤ 0

e−βδH if δH > 0.
(7)

6



Simulation / Transition probability

s s′

W (s→ s′)

Metropolis

W (s→ s′) =

1 if δH ≤ 0

e−βδH if δH > 0.
(7)

6



Simulation / Transition probability

s s′

W (s→ s′)

Metropolis

W (s→ s′) =

1 if δH ≤ 0

e−βδH if δH > 0.
(7)

6



Simulation / Equilibrium phase transition

Figure 1: Cumulated magnetization Figure 2: Magnetic susceptibility
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Simulation / Numerical determination of the critical point

UL =
1

2

(
3−

〈
M4
〉

〈M2〉2

)

TC ≈ 2.275± 0.01

Figure 3: Binder’s cumulant for three system sizes.
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Dynamic Ising model



Dynamics / Dynamical simulation

Figure 4: Critical dynamic of the Ising model
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Quench



Quench / Supercritical

(a) Supercritical dynamic at kT = 4

0 200 400 600 800 1000 1200 1400 1600

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) Magnetization

(a) Supercritical dynamic at kT = 2.5

0 500 1000 1500

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) Magnetization

10



Quench / Supercritical

(a) Supercritical dynamic at kT = 4

0 200 400 600 800 1000 1200 1400 1600

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) Magnetization

(a) Supercritical dynamic at kT = 2.5

0 500 1000 1500

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) Magnetization

10



Quench / Supercritical

(a) Supercritical dynamic at kT = 4

0 200 400 600 800 1000 1200 1400 1600

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) Magnetization

(a) Supercritical dynamic at kT = 2.5

0 500 1000 1500

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) Magnetization

10



Quench / Time displaced autocorrelation

Time displaced autocorrelation

〈s(tW )s(t)〉 =

〈
1

N

N∑
j=1

sj(tW )sj(t)

〉
(8)
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Figure 7: Time delayed autocorrelation function with respect to states at tW . The

random initial configuration is quenched at T = 2.5
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Quench / Critical

(a) Critical dynamic at kT = 2.27
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Quench / Critical
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Figure 9: Time delayed autocorrelation function with respect to states at tW . The

random initial configuration is quenched at T = TC . System linear size L = 128.
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Quench / Subcritical

(a) Subcritical dynamic at kT = 2.5
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Anisotropic lattices and disorder



Anisotropic lattices and disorder / Breaking regularity

Figure 12: Disordered lattice, kT = 1.
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Anisotropic lattices and disorder / Breaking regularity

Figure 13: Disordered lattice, kT = 1.
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Anisotropic lattices and disorder / Activated processes

Figure 14: Process activated by thermal

energy kT = 2.26.

Figure 15: Process activated by external

magnetic field h = −0.5.
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Anisotropic lattices and disorder / Nucleation

Figure 16: Nucleation at kT = 1, the system is prepared at a magnetization and

evolved under a field in the opposite direction with |h| = 0.5, then the filed is flipped...
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Anisotropic lattices and disorder / Persistence of information

Figure 17: Split system at subcritical

temperature kT = 1

Figure 18: Split system at critical

temperature
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Thank you for your attention
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