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Abstract

We show that the nodal mimetic finite difference method for the discretization of diffusion problems on unstructured
polygonal meshes can be recast in a generalised finite element framework herein denoted Virtual Element Method.
First, we introduce a family of low-order virtual element spaces, i.e. finite element spaces that contain the linear
polynomials plus other basis functions that are never defined explicitly; then, we show that each particular choice
of the virtual basis functions yields an instance of the mimetic finite difference method. The case of quadrilateral
meshes is analysed in details and some numerical examples are given.
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1. Introduction

Mimetic discretizations incorporate important physical and mathematical properties of models based
upon partial differential equations into the discrete framework. The list of investigated properties includes
conservation laws, solution symmetries, positivity and monotonicity. The mimetic approach is in many ways
a development of the pioneering work on the numerical treatment of diffusion problem with heterogeneous
permeabilities on meshes with highly distorted cells carried out in [15, 21, 22]. Among the most recent
developments, the Mimetic Finite Difference (MFD) method for elliptic problems in mixed [3, 5, 6, 8, 10, 11,
18] and nodal [4, 7] form combines the flexibility of the mesh that characterizes the finite volume methods
with the solid mathematical foundation of the finite element method.

In the MFD method we consider a discrete variational problem that is formulated directly in terms of
the degrees of freedom, while the underlying basis functions that would make a finite element interpretation
possible are not specified explicitly. This approach allows us to use general polygonal and polyhedral meshes,
even with non-matching and non-convex elements. The nodal MFD method was proved to be convergent and
first-order accurate in a mesh-dependent energy-like norm in [7]. Here, we complete the analysis of the nodal
MFD method by establishing a finite element type interpretation. First, we introduce a virtual element space,
i.e. a finite element space whose basis functions are never defined explicitly but such that it contains the
linear polynomials; then, we interpret the mimetic method as a Virtual Element Method with a particular



choice of the basis functions. This approach constitutes a new framework for the generalisation of conforming
linear elements from triangular to polygonal meshes; see also [1] where an arbitrary order Virtual Element
Method is introduced. Analogous extensions of the finite element method to general meshes of polygons and
polyhedra can be found in [19, 23–25], while connections between the MFD method and other schemes such
as, e.g., the finite volume methods are established in [2, 13].

The paper is organized as follows. In Section 2 we introduce the model problem, and in Section 3 we briefly
present the family of nodal MFD methods. In Section 4 we define the virtual element space and we introduce
the finite element interpretation of the MFD method, while in Section 5 we analyze the inverse problem,
i.e. to give conditions under which we can reproduce a given MFD method with a virtual element space. In
Section 6 we show that the relationship between the two approaches is independent of the particular matrix
representation used to analyse them. In Section 7 we discuss the particular but very important case of
quadrilateral cells. In Section 8, we assess the robustness of the MFD method by studying how the accuracy
of the numerical solution depends on the mimetic stabilization parameters. In Section 9, we offer our final
remarks, perspectives for future developments, and conclusions.

2. Model problem

Let Ω ⊂ R2 be a polygonal domain and Γ = ∂Ω its boundary. The diffusion of the scalar variable u in Ω
is governed by the Poisson problem

−div(K∇u) = f in Ω, (1)

u = g on Γ, (2)

where K is the diffusion tensor, f is the source term, and g is the Dirichlet boundary data. We assume
that f ∈ L2(Ω) and g ∈ H1/2(Γ) ∩ C0(Γ). We also assume that K is a uniformly elliptic symmetric positive

definite tensor in
(
W 1,∞(Ω)

)2×2
. From this assumption it follows immediately that K(x) is a non-singular

matrix for every x ∈ Ω, and that K−1(x) is also a symmetric and positive definite matrix for every x ∈ Ω.
We consider the affine subspace of H1(Ω)

Vg =
{
v ∈ H1(Ω) | v|Γ = g

}
,

and the linear subspace V0 for g = 0. The variational form of problem (1)–(2) reads

find u ∈ Vg such that ∫
Ω

K∇u·∇v dV =

∫
Ω

fv dV ∀v ∈ V0(Ω). (3)

The existence and uniqueness of the weak solution follows by proving that the bilinear form in (3) is
continuous and coercive, see, for instance, [16].

3. The family of nodal MFD schemes

3.1. Notation and technicalities

A mesh, denoted by Ωh, will be a polygonal partition of Ω in R2. Note that the polygons in Ωh are not
necessarily convex. A mesh is labeled by its diameter h, which is defined by h = maxP∈Ωh

{hP}, where hP
is the diameter of the polygon P. We denote a generic mesh vertex by v and its positional vector by xv; a
generic cell interface or boundary edge by e and its length by |e|; the area of the polygonal cell P by |P|,
its center of gravity by xcP and its boundary by ∂P. We further denote by mP the number of vertices (end
edges) of P and, for any edge e ⊂ ∂P, we denote by nP,e the unit normal vector pointing out of P along e.

Subscripts referring to local numberings will be omitted: the vertices and edges of a given P ∈ Ωh will be
respectively denoted by vi and ei, for i = 1, . . . ,mP, with the edge ei connecting the vertices vi and vi+1.
Further, we assume that items indexed by j + mP and j coincide for all j. We also denote the positional
vector of vi by xi, instead of xvi . The local indexed notation is shown in Figure 1.
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Fig. 1. Polygonal cell notation. The degrees of freedom are associated with the vertices (circles).

We generally denote the restrictions of a set of mesh items, e.g., vertices or edges, to a given geometrical
object Q by the subscript ( · )Q.

3.2. Mesh regularity

We assume that each mesh in the mesh family {Ωh}h is conformal, i.e., the intersection of any two distinct
polygons P1 and P2 of a given mesh Ωh is either empty, or the union of mesh points, or the union of mesh
edges (two adjacent polygons may share more than one edge). Furthermore, we assume that for each mesh
Ωh there exists a sub-partition obtained by decomposing each polygon in a uniformly bounded number
of triangles, whose union is a conformal and regular mesh in the sense of Ciarlet [12]. Mesh regularity
assumptions are derived as a restriction to the two-dimensional case of the three-dimensional assumptions
considered in [7] and formally stated below.

Assumption 3.1 (HG - Shape-regularity) There exist two positive real numbers N s and ρs such that
every mesh Ωh admits a sub-partition Sh into shape-regular triangles such that

– (HG1) every polygonal cell P ∈ Ωh admits a decomposition Sh|P made of less than N s triangles;

– (HG2) the shape-regularity of the triangles T ∈ Sh is defined as follows: the ratio between the radius rT
of the inscribed circle and the diameter hT is bounded from below by the constant ρs:

rT
hT
≥ ρs > 0. (4)

These minimal assumptions imply some restrictions on the elemental shape in order to avoid some patho-
logical situations as h→ 0. Nonetheless, the meshes of {Ωh}h may contain very general elements including
non-convex or “singular” elements, as the ones that may occur in adaptive mesh refinement strategies [20].

3.3. Degrees of freedom and mimetic discretization

Let Vh be the linear space of the nodal grid functions vh = {vv} that associate one real number vv with each
mesh vertex v. These numbers are the degrees of freedom of the numerical method and thus the dimension
of the linear space Vh equals the number of mesh vertices. The restriction of the nodal function vh to the
cell P, i.e. vh,P := vh|P, belongs to the local set Vh,P := Vh|P with dimension equal to the number of vertices
of P. To ease the notation, the subscript (·)P will be dropped whenever possible. Figure 1 illustrates the
degrees of freedom of a pentagonal cell.

We use the grid functions space Vh to represent scalar fields. More precisely, given v ∈ H1(Ω) ∩ C0(Ω),
we denote by vI ∈ Vh the grid function obtained evaluating v at the grid nodes, that is

vIv = vI|v := v(xv) ∀v ∈ Ωh. (5)

Further, the restriction of vI on P ∈ Ωh is denoted by vIP, thus vIP = vI|P = {vIv}v∈∂P ∈ Vh,P.
The idea of the nodal mimetic methods is to approximate the left-hand side of (3) by a discrete bilinear

form Ah : Vh × Vh → R such that
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Ah
(
uI, vI

)
≈
∫

Ω

K∇u·∇v dV,

and the right-hand side of (3) by a linear functional Lh : Vh → R such that

Lh(vI) ≈
∫

Ω

fv dV.

The construction of the bilinear form Ah and the linear functional Lh is fully detailed in the next subsections.
We treat the Dirichlet boundary conditions of non-homogeneous type by seeking the mimetic solution uh

in Vh,g ⊂ Vh, the subset of the discrete fields vh such that:

vv = g(xv) ∀v ∈ ΓD.

The subspace Vh,0 is defined by setting g = 0 in the definition of Vh,g. The mimetic finite difference method
for the approximation of the variational problem (3) reads as:

Find uh ∈ Vh,g such that:
Ah
(
uh, vh

)
= Lh(vh) ∀vh ∈ Vh,0. (6)

3.4. The mimetic bilinear form Ah

Let vh,P ∈ Vh,P be the degrees of freedom of the nodal grid function vh ∈ Vh restricted to the polygonal
cell P. The mimetic bilinear form Ah assembles the local bilinear forms Ah,P : Vh,P×Vh,P → R defined for
each mesh cell P, which acts on the local degrees of freedom:

Ah
(
uh, vh

)
=
∑
P∈Ωh

Ah,P
(
uh,P, vh,P

)
∀uh, vh ∈ Vh. (7)

The bilinear form Ah,P is required to satisfy a stability and a linear consistency condition. In view of
defining the stability condition we endow the space Vh,0 with the H1

0 -like mesh-dependent norm

||vh||21,h =
∑
P∈Ωh

||vh||21,h,P, (8)

where the local norm is given by

||vh||21,h,P = |P|
∑

e=(v,v′)⊂∂P

∣∣vv′ − vv∣∣2
|e|2

. (9)

Here, e = (v, v′) is the edge that connects the vertices v and v′. The two above mentioned conditions read:
(S1) stability : there exists two positive constants σ∗ and σ∗ independent of P such that for every vh,P ∈ Vh,P
there holds:

σ∗||vh,P||21,h,P ≤ Ah,P
(
vh,P, vh,P

)
≤ σ∗||vh,P||21,h,P;

(S2) linear consistency : for every p ∈ P1(P) and every vh ∈ Vh there holds:

Ah,P
(
vh,P, p

I
)

= KP∇p ·
∑

e=(v,v′)⊂∂P

nP,e
|e|
2

(
vv + vv′

)
,

where KP is a suitable constant approximation of K within P.

The constant tensor KP appearing in (S2) can be obtained by averaging K over P. Since the diffusion
tensor K is uniformly elliptic, KP is symmetric and positive definite and this is sufficient to ensure the well-
posedness of the numerical formulation. The regularity assumption on K stated in Section 2 ensures the
following property:

max
i,j=1,2

sup
x∈P
|(KP)ij − Kij(x)| ≤ C∗KhP, (10)

where C∗K is a non-negative constant independent of hP and P. Inequality (10) is used to prove the convergence
of the method, see [7]. Another possibility is to take KP = K(xcP) where xcP is the centroid of P.
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Remark 3.1 To explain condition (S2) we note that, for any p ∈ P1(P) and v ∈ H1(P), an integration by
parts yields ∫

P

KP∇p · ∇v dV =

∫
∂P

KP∇p · nP v dS = KP∇p ·
∑
e⊂∂P

nP,e

∫
e

v dS. (11)

If we approximate the right-hand side integral on the edge e in (11) by the trapezoidal rule, which uses only
the values of v at the end points of the edge e, we obtain the right-hand side of (S2). Thus, the bilinear form
Ah,P is an approximation of the bilinear form associated with the continuous problem.

The construction of bilinear forms satisfying assumptions (S1)-(S2) is detailed in Subsection 3.7.

3.5. Discretization of the load term

According to [7], the discretization of the load term Lh is based on an integration rule that is exact on
constants. Let {ωP,v}v∈∂P be a set of non-negative weights, associated with the vertices of P ∈ Ωh, such that∑

v∈∂P

ωP,v = |P| . (12)

Let f̄P be either the cell average of f on P, or, when f is sufficiently regular, the pointwise value f(xcP).
Using the weights ωP,v, we approximate the forcing term by using the linear functional Lh : Vh → R defined
by

Lh(vh) =
∑
P∈Ωh

[
f, vh

]
P

where
[
f, vh

]
P

= f̄P
∑
v∈∂P

vvωP,v. (13)

3.6. Convergence theorem

For completeness, we recall the convergence result in the mesh-dependent norm defined by (8)-(9) in the
theorem below. The proof is found in [7].

Theorem 3.2 Let u ∈ H2(Ω) ∩H1
0 (Ω) be the solution of problem (1)-(2) (with g = 0) in variational form

and uI = (u(xv))v∈V the restriction of u to the mesh vertices in Ωh. Let uh be the numerical solution
provided by (6) where Ah is built in accordance with (S1)-(S2) and Lh is provided by (13). Let h be the mesh
size parameter and assume that the mesh family {Ωh} satisfies (HG1)-(HG2). Then, there exists a positive
constant C independent of h such that

||uh − uI||1,h ≤ Ch
(
|u|H2(Ω) + ||f ||L2(Ω)

)
.

3.7. Construction of the local stiffness matrix

Let P be a polygon in Ωh. As it is standard in the presentation of the MFD methods, we define the two
mP × 3 matrices N and R which are used to give an explicit formula of the local mimetic stiffness matrix
Mm associated to P.

We recall that xi, for i = 1, . . . ,mP, is the coordinate vector of the i-th vertex of cell P, ei is the i-th edge
connecting xi and xi+1, |ei| is its length and ni is its unit normal vector pointing out of P. The mP × 3
matrices N and R are given by

N =
[
1 N̂

]
and R =

[
0 R̂
]
, (14)

where 1 = [1 1 . . . 1]T and N̂ and R̂ are the two mP × 2 submatrices defined as:
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N̂ =



xT1

xT2

...

xTmP


and R̂ =

1

2



|emP
|nTmP

+ |e1|nT1

|e1|nT1 + |e2|nT2
...

|emP−1|nTmP−1 + |emP
|nTmP


KP. (15)

The following algebraic identities hold (see [7]):

RTN =

0 0

0 R̂T N̂

 =

0 0

0 |P|KP

 . (16)

It is shown in [7, 17] that assumption (S2) is equivalent to the algebraic condition MmN = R. Matrix Mm

can be decomposed as

Mm = Mm
0 + Mm

1 (17)

where the matrices Mm
0 and Mm

1 are defined as follows. Matrix Mm
0 is given by

Mm
0 = R̂

K−1
P

|P|
R̂T , (18)

and is such that Mm
0 N = R thanks to (16). Matrix Mm

0 satisfies (S2) but has clearly rank 2 so that (except
possibly for triangles) cannot satisfy (S1), since (S1) implies that the rank of Mm is mP − 1. Hence, Mm

0 has
to be corrected with an appropriate matrix Mm

1 that must satisfy the condition Mm
1 N = 0. The role of this

matrix in the splitting of (17) is, thus, to guarantee that the stability property (S1) of the mimetic scheme
is satisfied. For this reason, we will refer to such term as the mimetic stabilization term. A stability analysis
of the MFD method is beyond the scope of this paper, which is focused on establishing the relation between
the mimetic and the virtual discretizations. More details are found in [7].

The choice of Mm
1 is not unique. As discussed in [9], the family of matrices Mm

1 with the right rank in view
of (S1) and such that Mm

1 N = 0 can be constructed as

Mm
1 = DUDT , (19)

where D is an mP × (mP − 3) matrix such that NTD = 0 and the columns of N and D span RmP , i.e.,
span{N,D} = R

mP ; U is any (mP − 3)× (mP − 3) symmetric and positive definite matrix of parameters.
A popular choice that leads to a single parameter family of schemes is given by

U = µImP−3, (20)

where µ is a real positive parameter.
Alternatively, we can set

U = ν(DTD)−1,

where ν is a real positive parameter, and we obtain Mm
1 = νD(DTD)−1DT . Now, we observe that

D(DTD)−1DT + N(NTN)−1NT = ImP
, (21)

since span{N,D} = R
mP by construction, and D is orthogonal to the columns of N. Thus, in this case

Mm
1 = ν

(
ImP
− N(NTN)−1NT

)
. (22)

The matrices D and U, and, consequently, the parameters µ and ν depend on P and have to be chosen in
such a way that assumption (S1) is satisfied.
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4. Virtual element setting

We now introduce a finite element framework, herein named virtual element method, for the family of
MFD methods described in the previous section. We show in this section that to each virtual element space
there corresponds a MFD method, while in the next section we analyze the inverse problem, i.e. given an
MFD method, find the associated virtual element space.

4.1. The virtual element space

Let us consider a set of functions {χi}i=1,...,mP
belonging to H1(P) and such that:

(P1χ) χi|e, the restriction of χi to e ⊂ ∂P, is a linear polynomial on each edge e;
(P2χ) χi(xj) = δij ;
(P3χ) the monomials 1, x, y belong to span

{
χ1, χ2, . . . , χmP

}
.

We denote the local space generated by the linear combinations of these functions by Vh,P, i.e., Vh,P =
span

{
χ1, χ2, . . . , χmP

}
. The spaces Vh,P can be joined together to yield a conforming finite element space

Vh ⊂ H1(Ω). Note that, since any element of Vh can be identified with its nodal values, the dimension of Vh
equals the dimension of the discrete space Vh introduced in Section 3.
Remark 4.1 The functions χi that satisfy conditions (P1)-(P3) are also known as barycentric coordinates
and are a possible basis for the polygonal finite element method, see, for instance, [24].

As the construction and properties of Vh are local, we shall concentrate on a single cell P and consider
the local space Vh,P.

Our goal is to investigate the relation between the mimetic matrix Mm and the local stiffness matrix Mχ

associated with the functions χi, whose ij-th component is(
Mχ
)
ij

=

∫
P

KP∇χi · ∇χj dV. (23)

To this end, let us first investigate the properties of such functions.

A straightforward consequence of (P2χ) is that
(
χi
)I

is the i-th vector of the canonical basis of RmP . This

fact implies that the functions {χi}i=1,...,mP
are linearly independent and thus dim

(
Vh,P

)
= mP. Moreover,

every function v of Vh,P has the representation:

v(x) =

mP∑
i=1

v(xi)χi(x) a.e. x ∈ P. (24)

In particular, by taking v = 1, v = x, and v = y in (24) we obtain the decompositions:
mP∑
i=1

χi = 1,

mP∑
i=1

xiχi = x, and

mP∑
i=1

yiχi = y, with xi = (xi, yi), i = 1, . . . ,mP. (25)

The first identity in (25) is the partition of unity and together with the other identities expresses the linear
completeness of Vh,P, cf. (P3χ).

If P is a triangle, we actually have that Vh,P coincides with P1(P). Otherwise, properties (P1χ)-(P3χ) do
not determine uniquely the space Vh,P. Indeed, (P1χ)–(P2χ) determine the behaviour of the trace of each
function χi on each cell edge of ∂P, while the behaviour inside P depends on the specific set of functions.
However, these functions exist and a very special and important case is provided by the solutions of the
harmonic problem on P where the boundary conditions on ∂P are determined by (P1χ)-(P2χ), cf. [1].

Since any v ∈ Vh,P is linear along any edge of P, its integral there is completely determined by the end
points values. It follows that the integral of ∇v over P only depends on the value of v at the vertices of P.
Indeed, introducing the vector gi defined as the cell average of ∇χi, we get

gi =
1

|P|

∫
P

∇χi dV =
1

|P|

∫
∂P

nPχi dS =
1

|P|

mP∑
j=1

nj

∫
ej

χi dS =
1

2 |P|
(
ni−1 |ei−1|+ ni |ei|

)
, (26)
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as the trace of χi along the cell boundary ∂P is different from zero only along the edges ei and ei−1. The
average gradient of any v ∈ Vh,P can now be obtained by linearity.

By comparison with (14)-(15), it follows that

R̂T = |P|KP

[
g1 g2 . . . gmP

]
. (27)

It also holds that R̂T1 = 0; indeed, using equations (26) and (27), rearranging the argument of the summation
and the integral, and using the partition of unity (25) yield:

R̂T1 = |P|KP

mP∑
i=1

gi = KP

mP∑
i=1

∫
P

∇χi dV = KP

∫
P

∇
( mP∑
i=1

χi

)
dV = KP

∫
P

∇(1) dV = 0. (28)

Now, we can easily prove the following lemma.
Lemma 4.1 Let R̂ be the matrix defined by (15), or, equivalently, by (27). For every function v ∈ Vh,P it
holds that

R̂T vI =

∫
P

KP∇v dV. (29)

Proof. The representation of v given in (24) implies that∫
P

KP∇v dV =

mP∑
i=1

v(xi)

∫
P

KP∇χi dV.

To complete the proof, we note that KP is constant on P and we express the integral of ∇χi using the
formula for matrix R̂ provided by (27):∫

P

KP∇χi dV = KP

∫
P

∇χi dV = KP gi |P| = i-th column of R̂T for i = 1, . . . ,mP. (30)

Now, it is convenient to introduce another set of basis functions that also generate the functional space
Vh,P. This basis is provided by mP linearly independent functions φ1, φ2, . . . , φmP

defined on P as follows:

(P1φ) φ1 = 1, φ2 = x, φ3 = y,
(P2φ) φi for i = 4, . . . ,mP are linearly independent combinations of the functions χi such that∫

P

KP∇φi · ∇φj dV = 0 i = 1, . . . , 3 and j = 4, . . . ,mP. (31)

The advantage offered by the set of basis functions {φi}i=1,...,mP
is that they permit to separate the part

of the stiffness matrix that reflects the inclusion of the linear polynomials in Vh,P from the part that depends
on the other functions generating Vh,P. Both properties (P1φ) and (P2φ) are crucial to this purpose as they
provide a structured form of the stiffness matrix of the functions φi, here denoted by Mφ. This topic will be
the subject of the next section.

The existence of the functions φj , j = 4, . . . ,mP, satisfying (P2φ) can be proved as follows. Let us first
decompose Vh,P as:

Vh,P = span
{

1
}
⊕ span

{
x, y
}
⊕ S. (32)

Then, we note that the bilinear form

u, v 7→
∫
P

KP∇u · ∇v dV (33)

is a scalar product on span
{
x, y
}
⊕ S. Hence, we choose the subspace S′ as the orthogonal complement of

span
{
x, y
}

in span
{
x, y
}
⊕ S with respect to such scalar product. Moreover, since there must hold that

Vh,P = span
{

1
}
⊕ span

{
x, y
}
⊕ S′, (34)
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we have that dim
(
S′
)

= dim
(
Vh,P

)
− dim

(
span

{
1
})
− dim

(
span

{
x, y
})

= mP − 3, and every basis of the
subspace S′ is a proper choice for the mP − 3 functions φj , j = 4, . . . ,mP.

Arguing as in Remark 3.1, we note that the integral in (P2φ) depends only on the degrees of freedom of
the functions φ4,. . . ,φmP

and, in particular, is independent of their internal values. This fact allows us to
determine the stiffness matrix transformation between the basis {φi}i=1,...,mP

and {χi}i=1,...,mP
.

Let A = (aij) and B = (bij) be the matrices transforming the basis {χi}i=1,...,mP
into {φi}i=1,...,mP

and
viceversa so that

φi =

mP∑
j=1

aijχj and χi =

mP∑
j=1

bijφj . (35)

By definition, the matrices A and B are non-singular and such that A = B−1. Moreover, the stiffness
matrices associated with the functions {χi}i=1,...,mP

and {φi}i=1,...,mP
are transformed in accordance with

the formulas:

Mφ = AMχAT and Mχ = BMφBT . (36)

By setting v = φi in (24) and comparing with the left-most expression in (35) we obtain that aij = φi(xj).
Then, we reformulate the relations in (25) as

φ1 =

mP∑
i=1

χi, φ2 =

mP∑
i=1

xiχi, φ3 =

mP∑
i=1

yiχi, (37)

and we note that the first three rows of the transformation matrix A coincide with the matrix NT defined
in (14). The remaining rows of A contain the coefficients of φj for j = 4, . . . ,mP with respect to the basis
functions {χi}i=1,...,mP

and are denoted by aTi for i = 4, . . . ,mP. Thus, collecting the latters into the matrix

Â =
[
a4 . . . amP

]
, the matrix A can be written as

A =



1 1 . . . 1

x1 x2 . . . xmP

y1 y2 . . . ymP

a41 a42 . . . a4mP

...
...

...

amP1 amP2 . . . amPmP


=


NT

aT4

. . .

aTmP

 =

NT

ÂT

 . (38)

Lemma 4.2 The orthogonality condition (P2φ) is equivalent to R̂T Â = 0.
Proof. As noted before, each vector aj collects the degrees of freedom of the corresponding function φj .
As φ2 = x and φ3 = y, we have that ∇φ2 = [1 0]T and ∇φ3 = [0 1]T . Now, Lemma 4.1 implies that

0 =

∫
P

KP∇φ2 · ∇φj dV =

1

0

 · ∫
P

KP∇φj dV =

1

0

 · R̂Taj
and similarly for φ3. The orthogonality condition R̂T Â = 0 follows by considering all such relations for
j = 4, . . . ,mP.

Remark 4.2 Conditions (P1φ)-(P2φ) do not determine uniquely the set of functions {φi}i=1,...,mP
. In fact,

a unique set of “φ” functions is determined as linear combinations of the “χ” functions once a couple of
non-singular matrices A and B = A−1 are fixed provided that A has the structure shown in (38) and its

submatrix Â satisfies the orthogonality condition of Lemma 4.2.
The basis transformation given by the matrices A and B is fully characterized by the following lemma.

This lemma also shows that the matrix Dφ introduced in the lemma to define B has the same properties of
the matrix D used in (19) for the mimetic stabilization term.
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Lemma 4.3 Let N and R be the matrices defined in (14) with submatrices N̂ and R̂ such that (16) holds.

Let Â be a full rank (mP− 3)×mP matrix, whose columns are linearly independent of the columns of N and

satisfying the orthogonality condition R̂T Â = 0. Let A be the matrix defined in (38) and B = A−1. Then, the
matrix B can be written in the following way:

B =
[
b1, B̂,D

φ
]

(39)

with

B̂ = R̂
K−1
P

|P|
, Dφ =

(
ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)

Â
(
ÂT Â

)−1

. (40)

Furthermore, Dφ is an mP × (mP − 3) matrix such that NTDφ = 0 and the columns of N and Dφ together
are a basis of RmP .
Proof. We derive the formulas in (40) by writing explicitly that B is the inverse of A:

BA = b11
T + B̂N̂T + DφÂT = ImP

. (41)

To derive the expression for matrix B̂, let us multiply (41) from the right by R̂:

b1 1
T R̂ + B̂ N̂T R̂ + Dφ ÂT R̂ = R̂

As 1T R̂ = 0, N̂T R̂ = KP |P|, and ÂT R̂ = 0, we obtain that

B̂ KP |P| = R̂,

from which the expression for B̂ follows. To derive the expression for matrix Dφ, we substitute B̂ into (41)

and multiply the resulting equation from the right by Â:

b1 1
T Â + R̂

K−1
P

|P|
N̂T Â + Dφ ÂT Â = Â. (42)

As Â is full rank, so is matrix ÂT Â, which is, thus, nonsingular. We multiply (42) from the left by the inverse

matrix
(
ÂT Â

)−1
and rearrange the terms to obtain the expression for Dφ stated in (40).

To prove the last part of the lemma, we use the relation AB = ImP
. A straightforward calculation yields

AB =


1
T

N̂T

ÂT

 [b1, B̂,D
φ
]

=


1
Tb1 1

T B̂ 1
TDφ

N̂Tb1 N̂T B̂ N̂TDφ

ÂTb1 ÂT B̂ ÂTDφ

 =


1 0 0

0 I2 0

0 0 ImP−3

 = ImP
, (43)

from which we have that NTDφ = (1T , N̂T )Dφ = 0. Therefore, the three columns of N and the (mP − 3)
columns of Dφ generate two linearly independent and orthogonal subspaces of RmP and are such that
span

{
N
}
⊕ span

{
Dφ
}

= R
mP .

We complete the characterization of the inverse of matrix A by providing an explicit formula for vector
b1. Let us multiply equation (41) from the right by 1:

b1 1
T
1+ B̂ N̂T1+ Dφ ÂT1 = 1. (44)

Using the expressions of matrices B̂ and Dφ in (40) yield

b11
T
1+ R̂

K−1
P

|P|
N̂T +

(
ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)

Â
(
ÂT Â

)−1

ÂT1 = 1. (45)

Then, we rearrange the terms and we get

b1

(
1
T
1− 1T ÂT (ÂT Â)−1ÂT1

)
+

(
ImP
− R̂

K−1
P

|P|
N̂

)
ÂT (ÂT Â)−1ÂT = 1− R̂

K−1
P

|P|
N̂T , (46)
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from which we readily obtain

b1 =
1

1T
(
ImP
− Â(ÂT Â)−1ÂT

)
1

(
ImP
− R̂

K−1
P

|P|
N̂T
) (

ImP
− Â(ÂT Â)−1ÂT

)
1. (47)

Substituting (47) in the formula of Dφ in (40) gives an explicit expression for Dφ:

Dφ =

(
ImP
− R̂

K−1
P

|P|
N̂T
)ImP

− 1

1T
(
ImP
− Â(ÂT Â)−1ÂT

)
1

(
ImP
− Â(ÂT Â)−1ÂT

)
11

T

 Â(ÂT Â)−1. (48)

4.2. Stiffness matrices

Since φ1 = 1, φ2 = x, and φ3 = y, from condition (P1φ) and due to the orthogonality condition (P2φ),
the stiffness matrix associated with the functions φi has the form:

Mφ =


0 0 0

0 |P|KP 0

0 0 M̂φ

 with
(
M̂φ)i−3,j−3 =

∫
P

KP∇φi · ∇φj dV, i, j = 4 . . . ,mP. (49)

Proposition 4.1 The matrix block M̂φ in (49) is a symmetric and positive definite matrix and can be
reformulated as

M̂φ = ÂTMχÂ. (50)

Proof. The matrix formulation (50) is a consequence of (36) and the matrix partitioning of A introduced

in (38). Matrix M̂φ is symmetric and non-negative definite by (49); furthermore, it is nonsingular because
the functions φ4, . . . , φmP

are linearly independent of φ1 = 1, which spans its null space.

Now, we split the matrix Mφ in (49) as

Mφ =


0 0 0

0 |P|KP 0

0 0 0

+


0 0 0

0 0 0

0 0 M̂φ

 = Mφ
0 + Mφ

1 (51)

and use the basis transformation (36) to define the matrices

Mχ
0 = BMφ

0B
T and Mχ

1 = BMφ
1B

T . (52)

With the following proposition, we show that Mχ
0 coincides with the mimetic matrix Mm

0 defined in (18)
and that Mχ

1 is an admissible mimetic stabilization matrix, i.e, it can be taken as matrix Mm
1 in (17), cf.

Subsection 3.7.

Proposition 4.2 The identity Mχ
0 = Mm

0 holds. Moreover, Mχ
1 = DφMφ

1

(
Dφ
)T

and this matrix is an admis-
sible mimetic stabilization term.
Proof. We use the expression of matrix B given in (39) with the definition of B̂ in (40) and we exploit the

structural pattern of matrix Mφ
0 to see that

Mχ
0 = BMφ

0B
T = B̂KP |P| B̂T = R̂

K−1
P

|P|
KP |P|

K−1
P

|P|
R̂T = R̂

K−1
P

|P|
R̂T = Mm

0 ,

where the last step follows from (18).

We show that Mχ
1 = BMφ

1B
T is an admissible mimetic stabilization term by considering the block parti-

tioning B =
[
b1 B̂ Dφ

]
of Lemma 4.3. The particular sparsity pattern of matrix Mφ

1 implies that:

Mχ
1 = BMφ

1B
T = DφM̂φ

(
Dφ
)T
, (53)
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which has the same structure of (19). Indeed, the matrix Dφ provided by Lemma 4.3 has the properties

required by the formulation of Mm
1 in (19). Moreover, M̂φ is a symmetric and positive definite matrix of

dimension (mP − 3) × (mP − 3) in view of Proposition 4.1, and, thus, can play the role of the matrix of
parameters U in (19).

Remark 4.3 The matrix Mχ
0 = Mm

0 can be expressed in terms of the vectors gi as follows:(
Mχ

0

)
ij

=
(
Mm

0

)
ij

=

(
R̂
K−1
P

|P|
R̂T
)
ij

= (|P|KPgi)
T K−1

P

|P|
|P|KPgj = gTi KPgj |P| .

Moreover, matrix Mm
0 approximates the stiffness matrix of the “χ” functions by taking the cell average of

their gradients:(
Mm

0

)
ij

= gTi KPgj |P| =
∫
P

KP

( 1

|P|

∫
P

∇χi dV
)
·
( 1

|P|

∫
P

∇χj dV
)
dV ≈

∫
P

KP∇χi · ∇χj dV.

5. The reconstruction problem

In this section we study if we can reproduce a given MFD scheme with a virtual element space. More
precisely, given a full rank mP × (mP − 3)-sized matrix D such that NTD = 0 and span(N,D) = R

mP , and
a (mP − 3)× (mP − 3)-sized symmetric and positive matrix U we study if there exists a set of functions χi
satisfying properties (P1χ)–(P3χ) such that the local stiffness matrix Mχ is equal to Mχ

0 +DUDT , where Mχ
0

is defined in (52). If this is the case, since by Proposition 4.2 we have Mχ
0 = Mm

0 , the two methods coincide.
We will see that the answer is positive if U is “not too small”.

The role of matrix D will be investigated in Lemma 5.1, where we prove that we can always define a couple
of transformation matrices A and B = A−1 with A satisfying the orthogonality condition of Lemma 4.2 once a
matrix D is properly assigned. The role of matrix U will be clarified by Theorem 5.1, where we investigate the
conditions under which we can find a set of basis functions {φi}i=1,...,mP

that reproduce U as the submatrix

M̂φ.
Lemma 5.1 Let N and R be the matrices defined in (14) with the matrices N̂ and R̂ defined in (15). Let D
be a full rank mP × (mP − 3) matrix such that NTD = 0 and span{N,D} = R

mP . Then, the matrices

A =


1
T

N̂T

ÂT

 and B =
[
b1, B̂,D

]
(54)

are nonsingular and satisfy the conditions AB = BA = ImP
with R̂T Â = 0 if and only if

b1 =
1

mP

(
ImP
− R̂

K−1
P

|P|
N̂T
)
1 + Dγ, (55)

B̂ = R̂
K−1
P

|P|
, (56)

ÂT =
(
DTD

)−1
DT

(
ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)

(57)

where γ is an arbitrary vector in RmP−3.
Proof. The proof will be organized as follows. First we show the “if” part, i.e. we show that if b1, B̂, and
Â have the expression above, then AB = I. Then we show the “only if” part, i.e. we show that if AB = I,
then b1, B̂, and Â must have the expression above.

“if” part.
We assume that b1, B̂, and Â have the expressions above, and we check that BA = I. This is equivalent to
prove, after rearranging the terms in (41), that
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0 = ImP
− b11

T − B̂N̂T − DÂT

= ImP
− b11

T − R̂
K−1
P

|P|
N̂T − D

(
DTD

)−1
DT

(
ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)

=
(
ImP
− D

(
DTD

)−1
DT
)(

ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)
. (58)

By hypothesis, the columns of N and the columns of D span all RmP and the latters are orthogonal to the
formers. In terms of the orthogonal projectors, as we have already observed in (21), we have:

D(DTD)−1DT + N(NTN)−1NT = I. (59)

Using (59) in (58) we obtain the condition

N
(
NTN

)−1
NT
(
ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)

= 0,

which is satisfied because it holds that

NT
(
ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)

= 0. (60)

To prove (60), we recall that NT = [1T , N̂T ], cf. (14), and we preliminarly check that 1Tb1 = 1 and N̂Tb1 = 0.

Indeed, since 1T R̂ = 0 and NTD = 0 implies that 1TD = 0, we multiply the expression of b1 provided by (55)
from the left by 1T and we find that

1
Tb1 =

1

mP

(
1
T − 1T R̂

K−1
P

|P|
N̂T
)
1 + 1

TDγ =
1

mP
1
T
1 = 1. (61)

Similarly, since N̂T R̂ = KP |P| and NTD = 0 implies that N̂TD = 0, we multiply the expression of b1 provided

by (55) from the left by N̂T and we find that

N̂Tb1 =
1

mP

(
N̂T − N̂T R̂

K−1
P

|P|
N̂T
)
1 + N̂TDγ =

1

mP

(
N̂T − N̂T

)
1 = 0. (62)

Now, we split (60) in two independent identities according to the splitting of matrix N, i.e., N = [1, N̂],

cf. (14). Using (61) and 1T R̂ = 0 in the first row of (60) imply that

1
T

(
ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)

= 1
T − 1Tb11

T − 1T R̂
K−1
P

|P|
N̂T = 1

T − 1T = 0. (63)

Likewise, using (62) and N̂T R̂ = KP |P| in the remaining rows of (60) imply that

N̂T
(
ImP
− b11

T − R̂
K−1
P

|P|
N̂T
)

= N̂T − N̂Tb11
T − N̂T R̂

K−1
P

|P|
N̂T = N̂T − N̂T = 0. (64)

Relations (63) and (64) yield (60).

“only if” part.
In this part of the proof, we assume that b1, B̂, and Â exist such that AB = I and we derive their expressions.
As in the proof of Lemma 4.3, we consider the matrix formula for BA in (41). To start with, formula (56) is

obtained by the same argument used in the proof of Lemma 4.3. To derive the expression for matrix Â, we
substitute B̂ into (41) and we multiply the resulting equation from the left by DT :

DTb1 1
T + DT R̂

K−1
P

|P|
N̂T + DTDÂT = DT . (65)

As D is full rank, so is matrix DTD, which is, thus, nonsingular. We invert DTD and we obtain the character-
ization in (57) of the matrix Â. A straightforward calculation allows us to verify the orthogonality condition
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ÂT R̂ = 0. In fact, we multiply (57) from the right by R̂, we use the fact that 1T R̂ = 0 and N̂T R̂ = KP |P|
and we obtain that

ÂT R̂ =
(
DTD

)−1
DT

(
R̂− b11

T R̂− R̂
K−1
P

|P|
N̂T R̂

)
=
(
DTD

)−1
DT

(
R̂− R̂

)
= 0. (66)

In order to derive (55) for b1, we first note that 1, the two vectors forming the columns of matrix R̂, and
the mP − 3 columns of matrix D are linearly independent. Indeed, let

1α+ R̂β + Dγ = 0 (67)

where α ∈ R, β ∈ R2, and γ ∈ RmP−3. We multiply (67) from the left by 1T and we obtain:

0 = 1
T
1α+ 1

T R̂β + 1
TDγ = mPα+ 0 + 0; (68)

hence α = 0. Then, we multiply (67) from the left by N̂T and we obtain

0 = N̂T R̂β + N̂TDγ = KP |P|β + 0; (69)

hence β = 0, and also γ = 0 because D is a full rank matrix. Therefore, these vectors are a basis for RmP

and allow us to decompose b1 as

b1 = α1+ R̂β + Dγ, (70)

where α, β and γ are a set of (scalar and vector) coefficients to be determined. Since we also require that

AB = ImP
, see equation (43), vector b1 must satisfy the conditions 1Tb1 = 1 and N̂Tb1 = 0. To derive α we

multiply (70) from the left by 1T :

1
Tb1 = 1

T
1α+ 1

T R̂β + 1
TDγ = mPα+ 0 + 0.

As 1Tb1 = 1 we immediately obtain that α = 1/mP. To derive β, we multiply (70) from the left by N̂T , we
substitute α = 1/mP, and we obtain

N̂Tb1 =
1

mP
N̂T1+ N̂T R̂β + N̂TDγ =

1

mP
N̂T1+ KP |P|β + 0,

from which we have that

β = −
K−1
P

|P|

( 1

mP
N̂T1

)
since N̂Tb1 = 0. Substituting these formulas for α and β in (70) and leaving γ as a free vector we obtain (55).

Remark 5.1 As 1Tb1 = 1, cf. (61), and N̂Tb1 = 0, cf. (62), we multiply b1 from the left by the expression

of ÂT given in (57) and we find that

ÂTb1 = (DTD)−1DT
(
b1 − b11

Tb1 − B̂N̂Tb1

)
= (DTD)−1DT (b1 − b1) = 0. (71)

Relations (61), (62), and (71) together prove that b1 is the first column of the inverse of A.

Remark 5.2 By substituting the formula for b1 in Â, we obtain:

ÂT =
(
DTD

)−1
DT

(
ImP
− R̂

K−1
P

|P|
N̂T
)(

ImP
− 1

mP
11

T

)
− γ1T , γ ∈ RmP−3. (72)

Thus, the i-th row of Â is defined up to a constant factor (the i-th component of vector γ) times the row
vector 1T .

We now come back to the question posed at the beginning of the present section, namely the reconstruction
problem of finding the conditions under which a local mimetic matrix is the stiffness matrix associated with
a virtual element space. Let D and U be given and defining the local mimetic matrix Mm through (17), (18),
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and (19). We seek a set of basis functions {χi}i=1,...,mP
obeying (P1χ)-(P3χ) and such that the associated

stiffness matrix is given by Mm.
As D is set, let A,B be the transformation matrices given by Lemma 5.1. It easily follows that

AMmAT =


0 0 0

0 |P|KP 0

0 0 U

 . (73)

If we can find a basis {φi}i=1,...,mP
obeying (P1φ)-(P2φ) and such that Mφ is given by (73), then transforming

back this basis we find the required basis {χi}i=1,...,mP
. Thus, the reconstruction problem stated above is

equivalent to find a set of functions {φi}i=1,...,mP
, such that

(i) they are linear on the boundary of P;
(ii) their values φi(xj) at the vertices of P coincide with the coefficients aij of the last mP − 3 rows of

matrix A defined in Lemma 5.1, i.e., the entries of the matrix Â defined in (57);
(iii) it holds that (

U
)
i−3,j−3

=

∫
P

KP∇φi · ∇φj dV for i, j = 4, . . . ,mP. (74)

Remark 5.3 As each row of matrix Â contains the degrees of freedom of one of the function φi, for i =
4, . . . ,mP, Remark 5.2 implies that all such functions are defined up to an additive constant. However, this
fact is irrelevant here since the quantity

∫
P
KP∇φi · ∇φj dV remains unchanged.

Let us consider the set of harmonic functions {χHi }i=1,...,mP
that solve the problems

−div
(
KP∇χHi ) = 0 in P, (75)

χHi = δi on ∂P, (76)

where δi, i = 1, . . . ,mP, is the piecewise linear function on ∂P such that δi(xj) = δij . This set of harmonic
functions satisfy (P1χ)-(P3χ). The transformation rule established by matrix A determines a set of harmonic
functions {φHi }i=1,...,mP

satisfying (P1φ)-(P3φ), the requirements (i) and (ii) above, and such that(
UH
)
i−3,j−3

=

∫
P

KP∇φHi · ∇φHj dV =

mP∑
k,l=1

aikajl

∫
P

KP∇χHk · ∇χHl dV, i, j = 4, . . . ,mP. (77)

In Theorem 5.1 that follows below we prove that we can suitably modify the functions φHi so that the new
set of functions satisfy condition (74) if and only if U− UH is a non-negative definite matrix.

The choice of modifying the harmonic functions is a key point in solving the reconstruction problem.
Indeed, the solutions of the harmonic problem (75)-(76) provides a set of functions in H1(P) with the
minimum possible energies among those functions that satisfy the assigned boundary conditions on ∂P. In
this sense, matrix UH is a sort of “minimum energy threshold” below which the reconstruction problem has
no solution. Nonetheless, in the next section we will show that in the special case of a mesh of quadrilateral
cells, it is possible to relax this energy threshold at the price of slightly modifying the definition of the space
Vh,P.

Theorem 5.1 Let U be a symmetric and positive matrix with size (mP−3)×(mP−3) and D be a matrix with
size mP× (mP− 3) such that NTD = 0 and span(N,D) = R

mP , and let Mm be the associated mimetic matrix
given by (17), (18), and (19). Let UH be given by (77) using the coefficients of the transformation matrix
A defined by Lemma 5.1. Then, a set of functions {χi}i=1,...,mP

satisfying (P1χ)-(P3χ) and with stiffness
matrix given by Mm exists if and only if U−UH is a symmetric non-negative definite matrix. Moreover, the
functions χi, i = 1, . . . ,mP, are given by

χi = χHi + vi, (78)

where χHi are the harmonic functions defined by (75), (76) and vi ∈ H1
0 (P).
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Proof. Let the transformation matrices A and B be fixed in accordance with Lemma 5.1, and let {φHi }i=1,...,mP

be the set of functions obtained by applying the transformation matrix A to the set of harmonic functions
{χHi }i=1,...,mP

given by (75) and (76).
We wish to find a set of functions wi ∈ H1

0 (P), i = 1, . . . ,mP such that φi = φHi +wi, i = 1, . . . ,mP satisfy
conditions (P1φ)-(P2φ) and such that (74) holds.

Condition (P1χ) requires that φ1 = 1 = φH1 , φ2 = x = φH2 , φ3 = y = φH3 . It follows that w1 = w2 = w3 = 0
and we are only allowed to modify the basis functions φH4 , . . . , φ

H
mP

by the functions w4, . . . , wmP
.

A straightforward calculation yields:∫
P

KP∇φi · ∇φj dV =

∫
P

KP∇(φHi + wi) · ∇(φHj + wj) dV

=

∫
P

KP∇φHi · ∇φHj dV +

∫
P

KP∇wi · ∇wj dV

+

∫
P

KP∇φHi · ∇wj dV +

∫
P

KP∇φHj · ∇wi dV, (79)

for i, j = 4, . . . ,mP. We integrate by parts the last but one term and we find that∫
P

KP∇φHi · ∇wj dV = −
∫
P

div(KP∇φHi )wj dV +

∫
∂P

nP ·
(
KP∇φHi

)
wj dS = 0, (80)

as φHi is a harmonic function on P and wj |∂P = 0. The last integral of (79) is also zero by the same argument

(just interchange the indices i and j). Hence, relation (79) becomes∫
P

KP∇φi · ∇φj dV =

∫
P

KP∇φHi · ∇φHj dV +

∫
P

KP∇wi · ∇wj dV. (81)

Equation (81) can be expressed in the matrix form

U = UH + W,

where we have introduced the matrix W defined by

(W)i−3,j−3 =

∫
P

KP∇wi · ∇wj dV, i, j = 4, . . . ,mP.

Let Q be the (mP − 3) × (mP − 3) orthogonal matrix that diagonalizes W = U − UH and Λ = diag(λi)
the diagonal matrix of the eigenvalues of W; it holds that W = QΛQT . As we assume that W is nonnegative
definite it holds that λi ≥ 0 for each i = 1, . . . ,mP − 3. Now, let us consider a set of linearly independent
(mP − 3) non zero functions ψi in H1

0 (P), such that∫
P

KP∇ψi · ∇ψj dV = λiδij ,

where δij = 1 for i = j and zero otherwise. The functions ψi are easily found by taking mP − 3 functions
in H1

0 (P) that are orthogonal in the sense of condition (P2φ) and rescaling them with the coefficients
√
λi.

Then, for i = 4, . . . ,mP, we set

wi =

mP∑
j=4

Qi−3,j−3ψj−3.

We claim that the functions wi resulting from this construction are a proper choice that allows us to modify
the functions φHi and obtain the functions φi and, consequently, the functions χi. We first note that wi|∂P = 0
for i = 4, . . . ,mP because each wi is a linear combination of the functions ψi that have zero trace on ∂P.
Furthermore, for i, j = 4, . . . ,mP, it holds that
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∫
P

KP∇wi · ∇wj dV =

mP∑
k,l=4

Qi−3,k−3Qj−3,l−3

∫
P

KP∇ψk−3 · ∇ψl−3 dV

=

mP∑
k,l=4

Qi−3,k−3Qj−3,l−3λk−3δk−3,l−3

=
(
QΛQT )i−3,j−3

= Wi−3,j−3.

We are left to derive an expression for the functions χi. This is quickly done by applying the transformation
matrix B to the functions wi to define[

v1 v2 . . . vmP

]T
= B

[
0 0 0 w4 . . . wmP

]T
, (82)

and then χi can be expressed in the form of equation (78).
It remains to show that the condition in the statement of the theorem is also necessary. This is easily

verified by contradiction. Assume that there exists c =
[
c1, . . . , cmP−3

]T
such that cTWc < 0, where W =

U − UH ; also, assume that a set of functions {φi}i=1,...,mP
with all the required properties exists achieving

U as energy matrix. Then, for φ =
∑mP

i=4 ci−3φi and φH =
∑mP

i=4 ci−3φ
H
i , we have

0 > cTWc = cT (U− UH)c =

∫
P

KP∇φ · ∇φdV −
∫
P

KP∇φH · ∇φH dV. (83)

We notice that the two functions φ and φH have the same boundary values as this is true for each couple
of functions φi and φHi . Thus, equation (83) yields a contradiction as φH is harmonic and hence it must
achieve the minimal energy among all functions with a given trace.

6. Matrix invariance

In this section, we address the problem of the relationship between the mimetic scheme and the mimetic
matrices D and U that are used in its formulation.

There exist an infinite number of pairs (U,D) that provide the same matrix Mm
1 ; nonetheless, we will see

that the reconstruction problem, which we discussed in the previous subsection, only depends on the scheme
and not on its particular matrix representation.

Let (D,U) and (D†,U†) be two couples of mimetic matrices that specify the same mimetic scheme, i.e.,
the same matrix Mm in (17). In view of the matrix representation (19), it must hold that Mm

1 = D†U†D†T =
DUDT . Now, D is a matrix of size (mP − 3)× (mP − 3) such that NTD = 0 and span(N,D) = R

mP . The key
observation is that any other matrix D† with the same properties can be written as D† = DS where S is a
non-singular (mP − 3)× (mP − 3) matrix. Indeed, since the columns of D are a set of linearly independent
vectors forming a basis of the space orthogonal to the columns of N, any other basis of this space can be
expressed as DS. As a consequence, the couple of matrices (D,U) and the couple of matrices (D†,U†) leads
to the same mimetic method provided that U† = S−1US−T . For, the equation D†U†D†T = DUDT implies

(DS)U†(DS)T = DSU†STDT = DUDT (84)

and if we multiply on the left by DT and on the right by D we can simplify at both ends by DTD, which is
nonsingular, and we obtain SU†ST = U, which is equivalent to U† = S−1US−T .

Let us also investigate the relation between the stiffness matrices with respect to the “φ” functions. The
matrix Â† that corresponds to D† is given by equation (72)

Â†T =
(
D†TD†

)−1
D†T

(
ImP
− R̂

K−1
P

|P|
N̂T
)(

ImP
− 1

mP
11

T

)
, (85)

after taking γ = 0 in view of Remark 5.3.
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Since (
D†TD†

)−1
D†T =

(
STDTDS

)−1
STDT = S−1

(
DTD

)−1
S−TSTDT = S−1

(
DTD

)−1
DT (86)

we have
Â†T = S−1ÂT . (87)

The rows of Â†T are the degrees of freedom of a set of (mP − 3) basis functions φ̂† = (φ†4, . . . , φ
†
mP

)T (recall

that φ†i for i = 1, 2, 3 are determined by (P1φ)), and related to the set of basis functions φ̂ = (φ4, . . . , φmP
)T

by the relation
φ̂† = S−1φ̂, (88)

and it follows that
Mφ†

= S−1MφS−T . (89)

We conclude that, if the reconstruction problem can be solved for a couple of matrices (D,U), then it can
be solved for any other couple of matrices (D†,U†) providing the same mimetic scheme, i.e., such that
DUDT = D†U†D†T . This remark will be useful in the next section.

7. The case of a quadrilateral mesh

In this section we exploit the computations of the previous sections in the case of a quadrilateral cell,
setting also for simplicity K = I. We provide a geometrical interpretation of Lemmas 4.3 and 5.1 and we
prove a stronger version of Theorem 5.1.

We consider the quadrilateral cell P, not necessarily convex, with vertices vi = (xi, yi), for i = 1, . . . , 4,
taken counterclockwise. We denote the signed area of the triangle formed by all the vertices of P excluded vi
by T̂i, see, for example, Figure 2 where T̂2 and T̂4 are shown. We can express T̂1, T̂2, T̂3, T̂4 as determinants

!!"# ! !"# !"$ !"% !"& ' '"#

!

!"#

!"$

!"%

!"&

'

v1

v2

v3

v4

T̂2

T̂4

Fig. 2. The quadrilateral P.

T̂1 =
1

2
det


1 1 1

x2 x3 x4

y2 y3 y4

 , T̂2 =
1

2
det


1 1 1

x3 x4 x1

y3 y4 y1

 , T̂3 =
1

2
det


1 1 1

x4 x1 x2

y4 y1 y2

 , T̂4 =
1

2
det


1 1 1

x1 x2 x3

y1 y2 y3

 , (90)

and note the following identity
T̂1 + T̂3 = T̂2 + T̂4 = |P| , (91)

whose geometrical meaning is obvious.

7.1. The transformation matrices A and B

We characterize the transformation matrices A and B defined in (35). For a quadrilateral cell, the matrix

Â consist of a single column vector in R4, and thus the matrix A is to be determined in the form
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A =

NT
ÂT

 =


1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

a1 a2 a3 a4

 (92)

for some a1, . . . , a4 ∈ R.
We first derive an algebraic identity that will be useful later on. Using (90), the Laplace expansion of the

determinant of A by the last row is given by:

det(A) = −a1 2T̂1 + a2 2T̂2 − a3 2T̂3 + a4 2T̂4. (93)

We seek now the conditions on a1, . . . , a4 to ensure that A is a basis transformation matrix. In view of
Lemma 4.2, we know that the orthogonality condition (P2φ) is equivalent to the algebraic relation R̂T Â = 0.
Equation (27) then implies that

a1g1 + a2g2 + a3g3 + a4g4 = 0. (94)

For a quadrilateral cell the vectors gi, which are defined in (26), are such g1 = −g3 and g2 = −g4 and
equation (94) becomes:

(a1 − a3)g1 + (a2 − a4)g2 = 0. (95)

Furthermore, since g1 and g2 for a nondegenerate quadrilateral must be linearly independent vectors, con-
dition (95) implies that a1 = a3 and a2 = a4. In conclusion, the transformation matrix A must be such
that

ÂT =
[
s t s t

]
, with s, t ∈ R and s 6= t, (96)

where the condition s 6= t is to ensure that A is non singular. Note, indeed, that (93) and (91) imply that

det(A) = −s 2T̂1 + t 2T̂2 − s 2T̂3 + t 2T̂4 = 2 (t− s) |P| , (97)

which is different from zero if and only if s 6= t.
The matrix Dφ given by (48) also consists of a single column vector in R4, and, more precisely, is the

fourth column of B = A−1. A direct inversion of matrix A in (92) yields the formula

Dφ =
1

(s− t)


+T̂ ′1

−T̂ ′2
+T̂ ′3

−T̂ ′4

 , (98)

with T̂ ′i = T̂i/ |P|, providing an interpretation of the result of Lemma 4.3 in terms of the geometric adimen-

sional quantities T̂ ′1, T̂ ′2, T̂ ′3, and T̂ ′4.
We recall that φ1 = 1, φ2 = x, φ3 = y. In view of (35) with the coefficients ai provided by (96), we have

the following formula for the fourth basis function:

φ4 = s χ1 + t χ2 + s χ3 + t χ4 = s (χ1 + χ3) + t (χ2 + χ4). (99)

Since χ1 + χ3 = 1− (χ2 + χ4), we can also express φ4 as

φ4 = s− (s− t)(χ2 + χ4) = (s− t)(χ1 + χ3)− t. (100)

For the quadrilateral cell of Figure 2, the harmonic functions χH that solve problem (75)-(76) are displayed
in Figure 3. In Figure 4 we show the function φH4 = (s− t)(χH1 + χH3 )− t corresponding to s = 1, t = −1.

Now, the matrix M̂φ is in this case 1× 1 and its value, herein denoted by the same symbol, is given by

M̂φ =

∫
P

|∇φ4|2 dV = (s− t)2

∫
P

|∇(χ2 + χ4)|2 dV = (s− t)2

∫
P

|∇(χ1 + χ3)|2 dV. (101)
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Fig. 3. The functions χH
1 , χH

2 , χH
3 , and χH

4 (from left to right, top to bottom) that solve the harmonic problem (75)-(76).

Fig. 4. The function φH4 for s = 1 and t = −1.

And, using (101) and (98) we can express the mimetic stabilization term (53) as

Mχ
1 = DφM̂φ

(
Dφ
)T

=

∫
P

|∇(χ1 + χ3)|2 dV


+T̂ ′1

−T̂ ′2
+T̂ ′3

−T̂ ′4


[

+ T̂ ′1 − T̂ ′2 + T̂ ′3 − T̂ ′4
]
. (102)

Note that, when P is a parallelogram, T̂ ′i = 1/2, hence the matrix Mχ
1 is simply given by

(Mχ
1 )ij =

(−1)i+j

4

∫
P

|∇(χ1 + χ3)|2 dV. (103)

7.2. The reconstruction problem for quadrilateral cells

We consider the reconstruction problem of Section 5 for a quadrilateral cell. We show that, in this particular
case, a modification of the virtual finite element space allows the reconstruction problem to be solved
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unconditionally.
Recall that a mimetic matrix is determined by the choices of the matrices D and U, see equation (19), and

the reconstruction problem on a quadrilateral cell consists in finding a local basis {φi}i=1,...,4 that reproduces
this mimetic matrix.

In the present case, the matrix D is a single column vector in R4 and U is a positive scalar. As φ1 = 1,
φ2 = x, and φ3 = y, only one basis function, namely φ4, is at our disposal. Moreover, the vector D must be
orthogonal to the three columns of N (which are equal to the transpose of the first three rows of A) and this
condition is sufficient to determine it up to a constant factor. If we substitute

[
a1 a2 a3 a4

]
with

[
1 1 1 1

]
,[

x1 x2 x3 x4

]
, or

[
y1 y2 y3 y4

]
in equation (93), we must have det(A) = 0, as the matrix A is clearly singular

in these cases. Therefore, all vectors orthogonal to the columns of N must be of the form

D = d


+T̂1

−T̂2

+T̂3

−T̂4

 , with d ∈ R, d 6= 0. (104)

A direct application of equation (72) yields

Â =
1

2 d |P|


+1

−1

+1

−1

− γ


+1

+1

+1

+1

 , γ ∈ R, (105)

which is again of the form
[
s t s t

]T
(notice that s 6= t) in accordance with (96). The one-column matrix

Â determines a function δ defined on ∂P that is linear on each edge and whose values at the four vertices of
P are given by the entries of Â.

The parameter matrix U has size 1 × 1 and is, thus, determined by a single positive scalar factor that
we denote by the same symbol U. To reproduce the mimetic scheme, we need to find a function φ4 that is
equal to δ on the boundary ∂P and whose energy

∫
P
|∇φ4|2 dV is equal to U. Since in view of Remark 5.3

the energy of φ4 is independent of the parameter γ, from now on, we take γ = 0. With such choice of γ, the
integral of δ on each edge is equal to zero.

The harmonic choice φH4 is the solution with boundary trace δ and with the minimum possible energy
UH . Therefore, when U > UH , we can apply the procedure described in the proof of Theorem 5.1 and find
a modified function φ4 with energy U. Instead, when U < UH the reconstruction problem has no solution as
for the more general polygonal case considered in Section 5. In Figure 5 we show, for d = 1, a possible choice
for the function w4 and the modified function φ4 = φH4 + w4 defined in Theorem 5.1, while in Figure 6 we
show the corresponding modified functions χi.

Fig. 5. The function w4 (left plot) and the modified functions φ4 = φH4 + w4 for d = 1 (right plot).
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Fig. 6. The functions χ1, χ2, χ3, and χ4, (from left to right, top to bottom), which are obtained from the functions φ1 = 1,

φ2 = x, φ3 = y and the modified function φ4 shown in Figure 5.

We show now that for a quadrilateral cell we can slightly modify the space Vh,P and take into account all
positive values of the parameter U. To this end, we replace assumption (P1χ) with the weaker assumption:

(P1χ)∗: χi|e, the restriction of χi to e ∈ ∂P, can be integrated exactly on each edge e by the trapezoidal
integration rule.

All the theoretical developments considered so far still hold, but, now, we can use the boundary values of
φH4 to decrease the harmonic energy threshold.

We shall modify the local spaces Vh,P without compromising the conformity of the global finite element
space Vh. Conformity is ensured if the edge values of all local basis functions are completely determined by
the values attained at the edge end points. Hence, as the energy diminishing procedure is dependent on the
nodal values, we need to rescale φH4 first. To do so, we rescale the piecewise linear function δ so that its
nodal values are given by alternating +1 and −1. And, as the nodal values of δ are given by the entries of
Â, we need to consider a modified Â. This can be done using the matrix invariance property of Section 6.

We fix S−1 = 2d|P| so that from (88) and (105) with γ = 0 we get Â† =
[

+ 1 − 1 + 1 − 1
]T

. Consequently,

D† = DS = 1
2|P|
[

+ T̂1 − T̂2 + T̂3 − T̂4

]T
and U† = (2d|P|)2U and, as noted earlier, the reconstruction

procedure will still yield the same mimetic local stiffness matrix as D†U†D†
T

= DUDT .
Now, for each edge e we consider an edge bubble function be belonging to C∞0 (e) and such that∫

e

be dS = 0.

Let v1
e and v2

e be the end points of e. As C∞0 (e) is dense in H
1
2 (e) (see e.g. [16]), the edge bubble be can

be made arbitrary close in H
1
2 (e) to the linear function that takes the values −1 and +1 at v1

e and v2
e ,

respectively, see Figure 7.
Then, we consider the function φH4 that is the solution of the harmonic problem on P with boundary value

on each edge e given by g|e + be if g(v1
e ) = 1 or g|e − be if g(v1

e ) = −1. Since the energy of φH4 satisfies the
relation
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Fig. 7. The modified boundary value g + be of φH4 .(∫
P

∣∣∇φH4 ∣∣2 dV ) 1
2

=
∣∣φH4 ∣∣H1(P)

≤ C||φH4 ||H 1
2 (∂P)

,

we can construct a modified function φH4 with arbitrarily small energy. Further, the same edge bubble
function can be chosen to modify the edge value of the basis function relative to both cells sharing the same
edge, thus ensuring that conformity is maintained.

Now assume that, for each P, the function φH4 has been modified in this way in order to achieve UH ≤ U†.
We can now apply the general procedure to fix a bubble function w4 such that the new basis function
φ4 = UH + w4 has exactly energy U†, thus solving the reconstruction problem.

We end this section by showing how the strategy discussed herein acts on the basis functions χH and
φH . In Figure 8 we show the modified function φH4 . The corresponding modified functions χHi are shown in
Figure 9.

Fig. 8. The harmonic modified functions φH4 for d = 1 in (104).
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Fig. 9. The final harmonic modified functions χH
1 , χH

2 , χH
3 , and χH

4 (from left to right, top to bottom) that generate the space

Vh,P.

8. Numerical Experiments.

We investigate, on a fixed quadrilateral mesh, the effect of the mimetic stabilization term (102) on the
accuracy of the MFD solution by varying the parameter

τP =

∫
P

|∇(χ1 + χ3)|2 dV,

by which we express the energy of φ4, cf. (101).
As discussed in Section 7, on a mesh of quadrilateral cells a relation between a mimetic method and a

corresponding virtual element framework can always be established, that is even below the harmonic thresh-
old parameter, herein denoted by τHP , corresponding to the special case of harmonic basis. Nonetheless, the
choice of τP has a great impact on the accuracy of the solution on a given mesh due to the stability condition
stated in (S1). An accurate numerical solution is provided by such methods only when the parameter τP is
chosen in the range imposed by the stability requirement (S1). For non-quadrilateral meshes, the behavior
is similar.

Errors are measured in the mesh-dependent norm (8)-(9), which mimic the energy norm, and the mesh-
dependent L2 norm defined by the relation:

|||u|||2
0,h

=
∑
P∈Ωh

|P|
∑
v∈∂P

∣∣uv∣∣2, (106)

and the associated relative error by

E0,h(uh) =
|||u− uh|||0,h
|||u|||

0,h

. (107)

We consider the Poisson problem (1)-(2) on Ω = (0, 1)2 with K equal to the identity matrix. We subdivide
Ω into the uniform 21× 21 square mesh and choose the same value for τP in all cells in view of showing that
the instability phenomenon may appear also on very regular meshes. The forcing term and boundary data
are determined in accordance with the exact solution
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Fig. 10. Sketch of the test case (left) and exact solution on the 21× 21 mesh considered for the calculations (right).

u(x, y) =



(
1

π
atan

( x− 1/2

y(1− y)

)
+

1

2

)2

for y(1− y) 6= 0

0 for y(1− y) = 0 and x < 1/2

1 for y(1− y) = 0 and x > 1/2.

At the horizontal boundaries y = 0 and y = 1 the solution is piecewise constant, showing a discontinuity
located at x = 1/2, and its normal derivative is zero for 0 ≤ x < 1/2, cf. Figure 10.

We run two test cases varying the boundary conditions. In the first, we impose Dirichlet conditions
everywhere (labeled by Dirichlet everywhere in the figures), while in the second test case we impose the
homogeneous Neumann condition for 0 ≤ x < 1/2 and y = 0 or y = 1, (labeled by Dirichlet-Neumann in
the figures) and the appropriate Dirichlet condition elsewhere. The reason for these particular choices will
be evident from the discussion below. In Figure 11 we show the approximation errors for the two test cases
in the range τP ∈

[
10−4, 104

]
, while in Figures 12 and 13 we show the numerical solution at mesh vertices

provided by τP = 10−4, τP = τHP = 2/3 (harmonic choice), τP = 2 (a value close to but bigger than τHP ) and
τP = 104. Note that the approximate solution is acceptable for a quite large range of values of τP. However,
when the value of τP is much smaller or much bigger than such acceptable range, the quality of the solution
visibly deteriorates. Let us discuss the solution’s behaviour in these two extreme cases.
– Case τP small. In the current setting, it is easy to show that when τP = 0 the MFD scheme reduces to

the finite element method related to the so-called hourglass instability. Our experiments show that the
hourglass instability is present already for small enough τP and it manifest itself with the presence of
spurious oscillations; when τP = 0, the resulting matrix can even be singular (see, e.g., [14]), depending on
the boundary conditions. Oscillations are not always present; for instance, they appear when the Dirichlet
boundary data have a sharp transition between two values and such transition is not resolved by the mesh
and in the case of mixed Dirichlet-Neumann boundary conditions. We note that, when P is a parallelogram,
the hourglass stabilization term proposed in [14] coincides with Mχ

1 given by (103) for a particular choice
of the parameter τP.

– Case τP large. When τP becomes large, the approximate solution degrades, regardless of the boundary
conditions.

9. Conclusions

We established a finite element characterization of the family of Mimetic Finite Difference methods for
diffusion problems presented in [7]. We provided the condition under which the nodal grid functions and
the bilinear form used in the MFD discretization can be interpreted as the degrees of freedom and the
implementation of a conforming virtual finite element method on polygons. The finite element is never
constructed in practice, but its existence permits us to reinterpret the approximation and stability properties
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Fig. 11. Relative approximation errors (versus τ) E0,h(uh), cf. (107), labeled by L2-error and E1,h(uh), cf. (8), labeled by energy
error for τP ∈ [10−4, 104]. We consider Dirichlet condition everywhere (left plot) and Dirichlet-Neumann condition (right plot).

The values τP = 2/3 (dashed line) and τP = 2 (dotted line) are shown in both plots.

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

τP = 10−4

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

τP = 2/3

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

τP = 2

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

τP = 104

Fig. 12. Profile of the numerical solution at mesh vertices for different values of τP; boundary conditions: Dirichlet everywhere.
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Fig. 13. Profile of the numerical solution at mesh vertices for different values of τP; boundary conditions: Dirichlet-Neumann.

of the MFD method in a Galerkin framework. In addition, we have shown here that in the particular case of
quadrilateral meshes it is possible to drop the condition under which the identification with virtual elements
is possible.
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