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We derive a posteriori error bounds for the residual{free bubble (RFB)method for the solution of onvetion{dominated di�usion equations. Bothlinear funtional error ontrol and energy norm error ontrol are onsid-ered. The implementation of a reliable and eÆient h{adaptive algorithmis disussed. Finally, we propose an hb{adaptive algorithm in whih the lo-al bubble stabilisation is automatially turned o� (b{dere�nement) in largeparts of the omputational domain during the h{re�nement proess, withoutompromising the auray of the method.
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31 IntrodutionThe residual{free bubble (RFB) method is a two{level �nite element method originallyintrodued by Brezzi and Russo [4℄ and Frana and Russo [14℄ for the stable and aurateomputation of numerial solutions of onvetion{dominated di�usion problems.Later on, the RFB method has been employed on a wide range of equations, suh asthe di�usion equation with rough oeÆients [23℄, the Stokes equation [13℄, the inom-pressible Navier{Stokes equation [6℄ and the Helmoltz equation [12℄, showing that themethod is quite general.The RFB method onsists of enrihing a lassial �nite element (FE) spae of piee-wise polynomial funtions with the rihest possible spae of bubble funtions with respetto the given triangulation, i.e. the spae of all H1 funtions with support ontained inthe elements of the triangulation. Stati ondensation of the bubble leads to a modi-�ed (generalised Galerkin) formulation in terms of the original FE spae. In the aseof onvetion{di�usion problems, this takes the form of a stabilised FE formulation inwhih the stabilising term depends on the bubble part of the numerial solution. Thisreport is dediated to the a posteriori error analysis of suh RFB formulation.In many sienti� and engineering appliations, the objetive is to ompute a fewoutput funtional with a presribed auray. For this reason, the a posteriori analysisin terms of a given linear funtional of the solution and its appliation in a reliable ande�etive adaptive mesh re�nement algorithm, is the main onern of this paper. Thealgorithm proposed here is driven by a residual{based a posteriori error bound dependingexpliitly on the solution of a dual problem the data of whih is the quantity of interest.See the Type I error bounds desribed by Giles and S�uli in [15℄ and introdued by Bekerand Rannaher in [1℄.The a posteriori analysis of the energy{norm error of the RFB method has beenonsidered previously by Russo [21℄ and Sangalli [22℄. The advantage of our approahis that the error analysis is in terms of the pieewise polynomial part of the solution,rather than in terms of the omponent of the RFB solution from an ad ho and problem{dependent funtion spae as, for instane, in [22℄.The a posteriori error bound is omposed of three terms: the two lassial residual{based terms of the Galerkin formulation (internal residual and boundary jump of thegradient), and a third term due to stati ondensation of the bubbles. We partiularlyemphasize the relevane of the bubble term in our error estimator, extending the resultdisussed in [21℄, onerning the equivalene of the L2{norm of the bubble with theelemental L2{norm of the residual, to non{onstant oeÆient problems.In Setion 5 we propose to use the relative magnitude of the terms in the error boundto explore whether the bubble (stabilisation) an be turned o� loally. This idea leads toa new hb{adaptive algorithm in whih the bubble stabilisation is automatially phasedout loally (b{dere�nement) while the mesh is re�ned (h{re�nement). We investigatethe robustness of the algorithm through numerial examples.The paper is organized as follows. In Setion 2 we present the a posteriori dual{weighted error analysis in terms of linear funtional evaluation. Setion 3 is dediatedto the implementation of an adaptive mesh re�nement algorithm and to some numerial



4examples. In Setion 4 we present the a posteriori energy{norm error analysis and showthat the L2{norm of the bubble is bounded by the L2{norm of the internal residual.Finally, in Setion 5 we de�ne the hb{adaptive algorithm and test it on two numerialexamples haraterized by a boundary layer and an internal layer, respetively.2 A posteriori dual{weighted error boundsOur aim is to ombine the use of the RFB method for the numerial solution of bound-ary value problems for onvetion{dominated onvetion{di�usion equations with meshadaptation tehniques.Let us onsider the onvetion{di�usion operatorLu := �"�u+ a � ru;where " is a positive onstant and the veloity �eld a 2 L1(
)2 is divergene-free in anopen polygonal domain 
 � R2 . Given a funtion f 2 L2(
), we onsider the assoiatedhomogeneous boundary{value problem in variational form( �nd u 2 V suh thatL(u; v) = (f; v) 8v 2 V; (2.1)where V = H10 (
), (�; �) denotes the inner produt in L2(
) and the bilinear form L(�; �)is de�ned on V � V asL(w; v) = " Z
rw � rv dx+ Z
 (a � rw) v dx:It is often the ase that the quantity of interest is not the solution u itself but alinear funtional u! J(u) of the solution (e.g. a point value, a ux, an average, et.).A posteriori bounds on the error J(u)� J(uh), where uh is the omputed solution, anbe obtained through duality arguments. Here we assume thatJ(u) = (u; g); g 2 L2(!);leaving the treatment of other linear funtionals suh as uxes through a Neumannboundary to a later example.We de�ne the following dual problem:( �nd z 2 V suh thatL(w; z) = J(w) 8w 2 V: (2.2)The (adjoint) di�erential operator L� involved in (2.2) an be reovered from (2.2)through integration by parts; for the partial di�erential operator L under onsideration,it will be found to be de�ned byL�z := �"�z � a � rz z 2 V:



5We shall perform suh an a posteriori error analysis for the RFB method seen as ageneralised Galerkin approximation for the polynomial part of the RFB solution. Thatis, we assume that stati ondensation of the bubble part of the solution has beenperformed resulting in a stabilised �nite element approximation on the given pieewisepolynomial spae Vh and triangulation Th; i.e., a formulation whih we an write as8><>: �nd uh 2 Vh suh thatL(uh; vh) + XT2Th(ub; L�vh)T = (f; vh) 8vh 2 Vh; (2.3)where ub is de�ned element{wise as the unique solution in H10(T ) ofLTubjT = (f � Luh)jT :Here, LT : H10(T ) ! H�1(T ) denotes the restrition of the operator L to T . See, e.g.,[3℄ for details. Regarding the issue of the omputation of the bubble ub, see Setion 3where the implementation of the method is disussed.The family of triangulations Th, h > 0, is admissible (regular) if any two triangles inTh either have a ommon edge or ommon vertex, or they do not interset at all.In the sequel, we denote by nT the unit outward normal vetor to �T de�ned onthe edges of any element T . Further, we denote by nT � [ruh℄ the jump of the normalderivative of uh aross the given edge.We haveJ(u)� J(uh) = J(u� uh)= L(u� uh; z)= L(u� uh; z � zh) + XT2Th(ub; L�zh)T= XT2Th ((f � Luh; z � zh)T � ("nT � ruh; z � zh)�T\
) + XT2Th(ub; L�zh)T= XT2Th�(RT (uh); z � zh)T � 12("nT � [ruh℄; z � zh)�T\
 + (ub; L�zh)T�= XT2Th ���1T ; !1T �T + ��2T ; !2T ��T\
 + ��3T ; !3T�T � ; (2.4)having denoted the elemental residual terms by�1T = RT (uh); �2T = �12"nT � [ruh℄; �3T = ub;and de�ned the weights !1T = !2T = z � zh; !3T = L�zh:Thus, the error representation formula (2.4) is a sum of three terms: the two lassi-al residual{based terms and a third one due to the stabilisation term in (2.3). This



6identity is analogous to the error representation formulas for stabilised �nite element ap-proximations of �rst{order hyperboli problems presented by Houston et al. in [16℄. Inpartiular, we will see later that, when the RFB method is equivalent to the stabilised�nite element method onsidered by the authors of [16℄ in the ontext of �rst{orderhyperboli PDEs, then the identity (2.4) orresponds to their �rst error representationformula for funtionals.We now disuss a mesh adaptation algorithm based on the a posteriori error repre-sentation (2.4).Given a positive tolerane TOL, the goal is the omputation of uh 2 Vh suh thatjJ(u)� J(uh)j � TOL: (2.5)From (2.4) we have thatjJ(u)� J(uh)j = ����� XT2Th ���1T ; !1T �T + ��2T ; !2T��T\
 + ��3T ; !3T �T � ����� =: E1(uh): (2.6)Thus, the onstraint (2.5) is satis�ed as soon asE1(uh) � TOL:This will be our stopping riterion.We now need to hoose a re�nement riterion, i.e. a marking strategy for the re�ne-ment of the elements in the mesh, and establish a way to atually ompute the errorrepresentation formula (2.6).The design of a re�nement riterion is based on the loalization of E1(uh). Puttingthe absolute value sign under the summation sign, we getjJ(u)� J(uh)j � XT2Th ����1T ; !1T�T + ��2T ; !2T ��T\
 + ��3T ; !3T�T �� =: XT2Th �T =: E2(uh);and a deision as to whih elements to re�ne an now be taken depending on the mag-nitude of the loal error indiator �T .There are many possible re�nement riterions; see [1℄ for a review. An optimalstrategy, known as error per ell strategy, would be to equilibrate the loal error indiator�T by re�ning or oarsening aording to the riterion�T � TOLNel ;where Nel is the number of elements in the subdivision.A riterion that may be more suitable if oarsening is not onsidered, is the �xedfration strategy in whih the elements are ordered aording to the size of �T andthen some portion of those with largest �T is re�ned. We have hosen to use the �xedfration strategy proposed by Papastavrou and Verf�urth in their artile dediated to the



7omparison of a posteriori error estimators for onvetion{di�usion problems [19℄. Theauthors of [19℄ suggest to re�ne those elements for whih�T � ref ��;for some user{seleted threshold parameter ref 2 (0; 1); the referene value �� is takento be the maximum of �T after utting the upper 10% or 5% of the values (in orderto prelude runaway values). That is, a seond parameter pref, usually �xed to 0:1 or0:05, is de�ned and �� is obtained as the maximum of �T after disarding the bprefNelelements with the largest �T .Regarding the omputation of (2.6), the diÆulty is in the evaluation of the dualsolution. Here the dual solution z is omputed using a new mesh TH , di�erent from Th.Given the �nite element spae VH orresponding to TH and the RFB solution zH 2 VH ofthe dual problem (2.2), the approximation zh is taken as the projetion or the interpolantof the omputed zH from the primal �nite element spae.We reonsider the error representation formula (2.6). By deomposing!1T = (z � zh)jT = (zH � zh)jT + (z � zH)jT = e!T + �!T ;we get jJ(u)� J(uh)j � ����� XT2Th ���1T ; e!T�T + ��2T ; e!T��T\
 + ��3T ; !3T �T � �����+ ����� XT2Th ���1T ; �!T�T + ��2T ; �!T��T\
� �����= eE1(uh) + �E1(uh): (2.7)In this way we have isolated in �E1(uh) the unomputable terms of the error bound.2.1 Adaptive algorithmLet us assume for a moment that �E1(uh), i.e. the term depending on the di�erenez � zH , is suh that �E1(uh) � eE1(uh). The validity of this hypothesis will be disussedin Setion 3 below. We then de�ne the new loal re�nement indiatore�T = ��(�1T ; e!T )T + (�2T ; e!T )�T\
 + (�3T ; !3T )T �� 8T 2 Th; (2.8)and rede�ne �� aordingly. Further, we de�ne the new stopping riterioneE1(uh) � TOLC ; (2.9)for some onstant 1 < C < 2.We may then onsider the following adaptive algorithm:



8 1. De�ne an initial mesh;2. Calulate uh and the dual solutions zH and zh on the urrent meshes;3. Chek the stopping riterion: IF eE1(uh) � TOL=C then STOP;4. Apply the re�nement riterion: re�ne those elements T whose loal error indiator�T exeeds ref�� and GOTO 2.2.2 Approximation of the dual solutionTo ensure that the stopping riterion (2.9) is reliable, i.e. that the approximation error isbelow the given tolerane, we need to ontrol the size of �E1(uh). To this end, we observethat the global{residual R(uh) : v �! (f; v)� L(uh; v);is a bounded linear funtional in V . Hene, returning to (2.4), we see that we an writethe term �E1(uh) asL(u� uh; z � zH) = L(u; z � zH)� L(uh; z � zH)= (f; z � zH)
 � L(uh; z � zH)= hR(uh); z � zHi; (2.10)where h�; �i is the duality pairing between V and its dual spae V 0. We now notie thatthe right{hand side in (2.10) de�nes a new linear funtionalN(v) = hR(uh); vi:Thus, we an estimate the error terms in �E1(uh) by performing an a posteriori analysisof the error N(z)�N(zH); for this purpose we onsider the dual of the dual problem( �nd t 2 V suh thatL(t; v) = N(v) 8v 2 V: (2.11)Let tH 2 VH be some approximation of t. We haveN(z)�N(zH) = N(z � zH)= L(t; z � zH)= L(t� tH ; z � zH) + XK2TH (LtH ; zb)K= XK2TH � (t� tH ; RK(zH))K � 12" (t� tH ;nK � [rzH ℄)�K\
 + (LtH ; zb)K �where, as before, the elemental{residual is de�ned as RK(zH) = (g � L�zH)jK. Finally,zb represents the bubble part of the RFB solution to the dual problem.



9The new error representation just obtained is in terms of t � tH whih is just asunomputable as z� zH . To avoid a possibly in�nite sequene of duality arguments, webound t� tH in terms of a stability onstant. The bound obtained in this way need notbe sharper then the one we would obtain if instead we were to bound z� zH diretly aswas done by Eriksson et al. in [10℄ and [11℄. From the pratial point of view, though,the rudeness of the bound of �E1(uh) is not of partiular onern sine all we need �E1(uh)for is to generate an adequate sequene of �nite element approximations zH whih wean use to ompute eE1(uh).From now on, we assume that linear �nite elements are used, soVH = �' 2 C(�
) : 'jK 2 P1 8K 2 TH	 ;and assume that for any triangulation TH and any element T 2 TH the number ofneighbors of T is bounded.We hoose tH = PHt, where PH is the modi�ation of the quasi{interpolation oper-ator of Cl�emant [9℄ analysed by Verf�urth [25℄. With this hoie we an take advantageof expliit interpolation error bounds in terms of the H1{seminorm.The de�nition of the modi�ed Cl�emant's quasi{interpolant requires the introdutionof the following notational onventions. Let EH and NH be the sets of all the edges andall the verties in TH , respetively. Further, letEH = EH;
 [ EH;D; NH = NH;
 [ NH;D;be the deompositions of EH and NH into the subsets of internal and boundary edgesand verties, respetively. For any S 2 TH [ EH , let N (S) be the set of its verties; andfor any K 2 TH , let E(K) be the set of all faes of K whih are internal to 
. Finally,for any vertex x 2 NH , denote by !x the union of all triangles whih have x as a vertex.The following de�nition and bounds an be extended to H1�D(
) for any �D � �
,essentially by interpreting the nodes sitting on the Neumann boundary �
 n �D asinternal.Given a funtion u 2 L2(!x) we assoiate to any x 2 NH the value�xu = 1j!xj Z!x u:The quasi{interpolation operator PH : V ! VH is de�ned as follows:PHu = Xx2NH;
(�xu)'x;where 'x 2 VH is the �nite element basis funtion assoiated with x. Notie that PH isnot a projetion operator.Lemma 2.1 For all v 2 V , all K 2 TH and all E 2 EH we havekv � PHvk0;K � Xx2N (K)CK;xHxjvj1;!x; (2.12)kv � PHvk0;E � Xx2N (E)CE;xH1=2x jvj1;!x; (2.13)



10where Hx is the maximum length of an edge having x as an end point. The values of theonstants CK;x and CE;x are given expliitly by Verf�urth [25℄ in terms of the followingmesh{quality related quantities�3;x := maxK1; K2 2 THx 2 N (K1) \ N (K2) jK1jjK2j ; �4;x := maxK 2 TH ; E 2 EHx 2 N (K) \ N (E) jEjHKjKj :Moreover, the following bound holds on the interpolation error in the H1{seminorm:jv � PHvj1;K � Xx2N (K)C 0K;xjvj1;!x; (2.14)with the onstant C 0K;x depending expliitly on �3;x and on the shape{regularity of K,i.e. the ratio �K = HK=�K between the diameter of K and the diameter of the largestirle insribed into K.Proof. The bounds (2.12) and (2.13) are due to Verf�urth, see [25℄. We prove (2.14)by adapting Verf�urth's proof of (2.12). To start with, (2.14) is to be shown for anoperator whih does not need to satisfy the Dirihlet boundary onditions. That is, anew operator �PH , a modi�ation of PH , is de�ned as�PHu = Xx2NH(�xu)'x:Fix an arbitrary K 2 KH . Sine Px2N (K) 'x = 1 on K, we havekr(u� �PHu)k0;K =  Xx2N (K) ((u� �xu)r'x + (ru)'x) 0;K� Xx2N (K) kr'xk1;Kku� �xuk0;K + Xx2N (K) k'xk1;Kkruk0;K� Xx2N (K) �KHK ku� �xuk0;K + Xx2N (K) kruk0;K: (2.15)We have now reahed the point at whih this part of the proof follows that of (2.12)given in [25℄.The following result is Lemma 4.3 in [25℄: for any x 2 NH and u 2 H1(!x) we haveku� �xuk0;!x � CxHxkruk0;!x; (2.16)where Cx is an expliit onstant depending on the ratio�1;x = Hx�x ;and �x is the minimum length of an edge having x as an end point (in partiular, if !xis onvex, then Cx = 2=�).



11Applying (2.16) in (2.15) we obtain the desired result for �PH .The proof is ompleted by bounding the norm of the di�erene between rPHu andr �PHu: kr(PHu� �PHu)k0;K =  Xx2N (K)\NH;D �xur'x0;K� Xx2N (K)\NH;D j�xuj kr'xk0;K� Xx2N (K)\NH;D p12�KHK j�xuj k'xk0;K:We are again within the framework of the proof of (2.12) given in [25℄. This time, theproof is ompleted by using the following result (equation (5.6) in [25℄):j�xuj k'xk0;K � 12 � jKjjKxj�1=2 (ku� �xuk0;Kx +Hxkruk0;Kx) ;(here Kx represents any triangle K with the following properties: x is a vertex of K andK shares an entire edge with �
), and applying again (2.16). 2We are now ready to obtain a omputable bound on jN(z) � N(zH)j. By applyingthe Cauhy{Shwarz inequality and the interpolation error bounds (2.12), (2.13) and(2.14) after noting that LPHt = a � rPHt, we havejN(z)�N(zH)j � XK2TH  kRK(zH)k0;Kkt� PHtk0;K+ XE2E(K) k12"nK � [rzH ℄k0;Ekt� PHtk0;E + kzbk0;Kka � rPHtk0;K!� XK2TH  kRK(zH)k0;K Xx2N (K)CK;xHxjtj1;!x+ XE2E(K)�k12"nK � [rzH ℄k0;E Xx2N (E)CE;xH1=2x jtj1;!x�+kak1;Kkzbk0;K�jtj1;K + Xx2N (K)C 0K;xjtj1;!x�!:The solution tH has now been removed from the bound, but t is still present. We aneliminate t as follows, at the expense of breaking up the sum over the elements of the



12triangulation. Let CK = maxx2N (K)(CK;x�1;x);C�K = maxE2E(K) maxx2N (E)(CE;x�1=21;x );C 0K = 1 + maxx2N (K)C 0K;x:Then, sine the number of neighbors of any T 2 TH is bounded, we getjN(z)�N(zH)j� XK2TH �CKHKkRK(zH)k0;K + 2C�KH1=2K k12"nK � [rzH ℄k0;�K\
� Xx2N (K) jtj1;!x�+C 0Kkak1;Kkzbk0;K Xx2N (K) jtj1;!x!�3 XK2TH �CKHKkRK(zH)k0;K + C�KH1=2K k"nK � [rzH ℄k0;�K\
+C 0Kkak21;Kkzbk20;K�2!1=2jtj1;
:To quantify jtj1;
, we reonsider the problem (2.11) in strong form with foring termR(uh) 2 H�1(
): ( Lt = R(uh) in 
;t = 0 on �
: (2.17)Multiplying the �rst equation in (2.17) by t and integrating by parts over 
, we get"jtj21;
 = hR(th); ti � jtj1;
 supv2V nf0g hR(uh); vijvj1;
 :Hene, we have the stability estimatejtj1;
 � "�1kR(uh)k�1;
;and we onlude thatjN(z) � N(zH)j� 3 XK2TH �CKHKk"�1RK(zH)k0;K + C�KH1=2K knK � [rzH ℄k0;�K\
+"�1C 0Kkak21;Kkzbk20;K�2!1=2kR(uh)k�1;
:= �E2(uh): (2.18)



13In this way, we have obtained the following omputable error bound:jJ(u)� J(uh)j � eE1(uh) + �E2(uh) (2.19)Two remarks are in order. First, the number kR(uh)k�1;
 is not diretly omputablefrom uh. We an still ompute it, but at the expense of the solution of an auxiliaryproblem; see the next setion for details. Finally, the derivation of sharp and omputablea posteriori error bounds is a nontrivial task. Our bound is no exeption in this respet:by bounding z � zH we ahieved omputability and reliability of the bound, but weantiipate a loss in terms of sharpness.In the next setion, we investigate the sharpness of the error bound (2.19), and studythe reliability and e�etivity of the alternative error estimator �E1(uh).3 ImplementationWe experiment with the a posteriori error bound desribed in the previous setion byonsidering linear �nite elements on triangles for both the primal and dual omputations.We have hosen to de�ne TH as the triangulation obtained by subdividing every trianglein Th into the four triangles obtained by bisetion of its edges. A survey of other possiblehoies an be found, for example, in [1℄; see also the omments in the review artile byGiles and S�uli [15℄.Let Vh � V = H10 (
) denote the usual spae of linear �nite elementsVh = �' 2 C(
) : 'jT 2 P1 8T 2 Th	 ;and similarly for VH .To implement the RFB formulation (2.3) over Vh we need to alulate the bubblepart of the solution ub. As explained, for example, in [4℄ and [3℄, this is given on everyelement T 2 Th as the solution in H10 (T ) of the bubble equationLTubjT = (f � Luh)jT ;where LT : H10 (T )! H�1(T ) denotes the restrition of the operator L to T .In what follows we assume that, in the evaluation of the bubble term of the RFBformulation (2.3), the veloity �eld a and the foring term f an be treated as pieewiseonstant funtions on Th.As proved in [4℄, these assumptions ensure that the RFB method is equivalent toSDFEM. Indeed, in this ase, the bubble part of the solution of the RFB formulation isgiven by ubjT = (f � a � ruh)jT bT ;where bT is the solution of the loal problem� �"�bT + a � rbT = 1 in T;bT = 0 on �T:



14(In other words, the bubble spae is one{dimensional on every element). Thus, for anyT 2 Th, the stati ondensation of the bubble results in the lassial streamline{di�usionstabilisation term, sine(ub; L�vh)T = �L�1T (f � Luh)jT ; vh�T= �(f � a � ruh)jT (a � rvh)jT ZT bT dx= RT bT dxjT j ZT (a � ruh � f)(a � rvh) dx= �T (a � ruh � f;a � rvh)T ;where the SD{parameter �T is de�ned via the bubble bT as�T = 1jT j ZT bT dx:Moreover, assuming that " � jaj, i.e. that the equation is onvetion{dominated,we an approximate the integral average of the bubble bT by integrating, instead, thesolution ebT of the redued problem:( a � rebT = 1 in T;ebT = 0 on �T�;where �T� denotes the inow boundary of T . Further, let us onsider the approximation�T � e�T := 1jT j ZT ebT dx = ha3jaj ; (3.1)where ha is the length of the longest segment ontained in T in the diretion of a.The third term in the a posteriori error estimator eE1(uh) de�ned in (2.7) an beapproximated in exatly the same way, sine(�3T ; !3T )T = (ub; L�zh)T = �T (f � a � ruh;�a � rzh)T� e�T jT j(a � ruh � f)jT (a � rzh)jT :We notie that the �rst line above oinides with the third term in the �rst error estima-tor for funtionals de�ned in [16℄. That is, in the speial ase in whih the RFB methodoinides with the streamline{di�usion method, our estimator eE1(uh) is idential to thatfor the streamline{di�usion method.Regarding the omputation of kR(uh)k�1;
 in �E2(uh) (see (2.18)), we may proeed asfollows. We de�ne the auxiliary problem� ��� = R(uh) in
;� = 0 on �
: (3.2)



15By de�nition of the norm of the dual spae V 0, we havekR(uh)k�1;
 = sup 2V (R(uh);  )kr k0;
= sup 2V (���;  )kr k0;
= sup 2V (r�;r )kr k0;
= kr�k0;
:Thus, we have redued the problem of the omputation of kR(uh)k�1;
 to that of theomputation of kr�k0;
, where � is the solution of (3.2). This will be done approxi-mately, by onsidering (3.2) in weak form and solving it by a �nite element method onthe triangulation Th. That is, we will solve the problem( �nd �h 2 Vh suh that(r�h;rvh) = hR(uh); vhi = (f; vh)� L(uh; vh) 8vh 2 Vh; (3.3)and ompute kr�hk0;
.At every iteration of the adaptive algorithm we need to re�ne the triangulation,basing the re�nement on the marking strategy desribed in the previous setion. Inour numerial omputations we utilize the MATLAB pde{toolbox re�nement routinerefinemesh, whih performs red re�nement on the marked elements. That is, everyelement marked for re�nement is subdivided into four triangles (sons) by onneting themid{points of the edges. To avoid the reation of hanging{nodes, and hene to omplywith the onstraint of admissibility of the triangulations given before, the neighbors ofthe marked elements are subjeted to blue re�nement following the longest edge bisetionsheme [20℄, as shown in Figure 1. This tehnique is not ideal, sine it involves re�nementof distant neighbours, but it has the advantage of ensuring the shape{regularity of thetriangulation.Example 1. We onsider the boundary value problem( �"�u+ ux + uy = f in 
 = (0; 1)2;u = 0 in �
; (3.4)with f de�ned in suh a way that the exat solution is given byu(x; y) = 2 sin(x) y2(1� e�(1�x)=")(1� e�(1�y)="):Our aim is the omputation of the mean{ow over 
, i.e.J(u) = Z
 u dx; (3.5)
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Figure 1: Example of red re�nement (dot{dashed edges) and subsequent re�nement ofthe neighbors (dashed edges). The rule for blue re�nement is that the longest edge isalways biseted.with the aim to ensure that the error does not exeed a given tolerane TOL.To start with, we ompare the true error jJ(u) � J(uh)j and the a posteriori errorbound (2.19) on suessively re�ned uniform meshes. We reall that the r.h.s. of (2.19)onsists of two terms: eE1(uh) whih is related to the di�erene zH�zh, and �E2(uh) whihis an upper bound for �E1(uh) whih refers to z � zH .The results for " = 10�2 are shown in Figure 2(a): the log{log plot makes it apparentthat �E2(uh) is over{estimating the true error. On the other hand, the term eE1(uh) aloneagrees remarkably well with the error, see also the e�etivity indies reported in Table 1.In order to onlude that eE1(uh) an be used in an adaptive algorithm as an aposteriori error bound, we still need to asertain its reliability, whih depends on whetheror not �E1(uh), i.e. the omitted term in (2.7), is of higher order.We an ompare eE1(uh) and �E1(uh) for a slightly di�erent problem, in whih thetarget linear funtional is hosen so that the dual solution z is known. This is ahievedby performing the hange of variables (x; y) ! (1 � x; 1 � y) in the primal problem.Thus we de�ne z(x; y) = 2 sin(1� x)(1� y)2(1� e�x=")(1� e�y=");and �x the new target funtional J� onsequently. The results obtained for this newproblem are shown in Figure 2(b). The bound �E2(uh) is still over{estimating the errorin approximately the same way as before, while we observe that (exept on the oarsestgrid) the sharper bound �E1(uh) is indeed of higher order than the true error.We onlude that the adaptive algorithm desribed in Setion 2.1, whih uses eE1(uh)as error estimator, is, for this problem at least, reliable and eÆient.We an further investigate the relative magnitudes of the terms in the a posteriori
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(b)Figure 2: Example 1. The error and the a posteriori error bounds under suessiveuniform re�nements with respet to the funtional J(�) (a) and J�(�) (b), with " = 10�2.

�E2(uh)eE1(uh)jJ(u)� J(uh)j

h

�E2(uh)eE1(uh)jJ�(u)� J�(uh)j�E1(uh)

h
error bound by onsidering separately the three terms omprising eE1(uh). De�neDres = ��� XT2Th (RT (uh); zH � zh)T ���;Djump = ���12 XT2Th ("n � [ruh℄; zH � zh)T ���;Dbubl = ��� XT2Th (ub; L�zh)T ���:The behavior of these three terms an be appreiated from the numbers in Table 1 andh jJ(u)� J(uh)j eE1(uh) e� Dbubl Dres Djump �E2(uh)1=4 1:09� 10�1 1:15� 10�1 1:05 1:08� 10�1 7:5� 10�3 5:8� 10�4 8:881=8 5:76� 10�2 5:91� 10�2 1:025 5:8� 10�2 1:4� 10�3 2:5� 10�4 4:691=16 2:93� 10�2 2:97� 10�2 1:01 2:95� 10�2 3:1� 10�4 9:0� 10�5 2:1871=32 1:47� 10�2 1:48� 10�2 1:003 1:48� 10�2 7:7� 10�5 2:6� 10�5 0:9171=64 7:39� 10�3 7:4� 10�3 1:001 7:39� 10�3 1:9� 10�5 6:3� 10�6 0:342Table 1: Example 1. Convergene of jJ(u)�J(uh)j and eE1(uh) and its omponents, with" = 10�2.the graphs in Figure 3. We observe that Dres and Djump are of higher order and thetrue error is well approximated by the term Dbubl alone. Given that Dbubl is omputable
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Figure 3: Example 1. The error and the three terms of the a posteriori error estimatoreE1 under suessive uniform re�nements with respet to the funtional (3.5); " = 10�2.

jJ(u)� J(uh)jDbublDresDjump

h
(from ub and zh), this fat suggests to use Dbubl as a orretion term by moving it arossto the left{hand side of the error representation formula (this viewpoint is disussed inGiles & S�uli [15℄). In other words, the quantityJor(uh) = J(uh)� XT2Th (ub; L�zh)T ; (3.6)should give a better approximation to J(u) than J(uh). The error representation formulanow beomes: J(u)� Jor = L(u� uh; z � zh):For this we an rewrite the a posteriori error bound in the following form:jJ(u)� Jorj � Dres +Djump + �E2(uh):We know already that this error bound is not sharp, due to the third term on the right{hand side. But, this time the term �E1(uh) is no longer negligible in omparison withDres + Djump alone. Indeed the quantity Dres + Djump under{estimates the true error,and so it annot be used as an a posteriori error bound in an adaptive algorithm.To show this, we have run the adaptive algorithm desribed in the previous setion,using the following values of the parameters in the adaptive algorithm:ref = :5; pref = :1; TOL = 10�3: (3.7)The results are shown in Table 2, for " = 10�2 and " = 10�6. We observe that:



191. The error estimator eE1(uh) is very e�etive in prediting the error J(u) � J(uh),robustly with respet to ";2. The orreted quantity (3.6) gives, as expeted, a onsiderably better approxima-tion of the target quantity J(u);3. Dres+Djump under{estimates the true error, as indiated by the related e�etivityindex e�or = Dres +DjumpjJ(u)� Jor(uh)j :We onlude that the quantity (3.6) is best used as a more aurate approximation ofJ(u) after the last step in an adaptive algorithm based on the error estimator eE1(uh).Nel jJ(u)� J(uh)j eE1(uh) e� jJ(u)� Jor(uh)j Dres +Djump e�or32 1:095� 10�1 1:15� 10�1 1:05 1:1388� 10�3 8:05� 10�3 0:4369 5:667� 10�2 5:93� 10�2 1:046 2:192� 10�3 1:62� 10�3 0:27155 2:736� 10�2 2:935� 10�2 1:073 3:038� 10�3 1:05� 10�3 0:19337 1:332� 10�2 1:499� 10�2 1:125 3:07� 10�3 1:39� 10�3 0:18779 6:8� 10�3 7:45� 10�3 1:097 1:071� 10�3 4:09� 10�4 0:151680 3:543� 10�3 3:87� 10�3 1:092 6:017� 10�4 2:74� 10�4 0:144644 1:995� 10�3 2:144� 10�3 1:075 2:246� 10�4 7:55� 10�5 0:06Nel jJ(u)� J(uh)j eE1(uh) e� jJ(u)� Jor(uh)j Dres +Djump e�or32 1:119� 10�1 1:194� 10�1 1:067 2:44� 10�3 5:12� 10�3 2:169 5:825� 10�2 6:2� 10�2 1:064 2:84� 10�3 9:07� 10�4 0:32166 2:835� 10�2 3:11� 10�2 1:099 2:94� 10�3 1:32� 10�4 0:045345 1:376� 10�2 1:64� 10�2 1:192 2:64� 10�3 8:1� 10�6 0:003763 6:99� 10�3 8:36� 10�3 1:193 1:3� 10�3 4:69� 10�5 0:0361595 3:28� 10�3 4:1� 10�3 1:25 8:41� 10�4 1:93� 10�5 0:0233296 1:648� 10�3 2:03� 10�3 1:234 3:98� 10�4 1:28� 10�5 0:0326552 7:514� 10�4 1:02� 10�3 1:357 2:92� 10�4 2:35� 10�5 0:08Table 2: Example 1. The error under suessive re�nements with respet to the fun-tional J(u) = R
 u dx; " = 10�2 (above) and " = 10�6 (below).Repeating the same experiment for the modi�ed target funtional J� we have ob-served that the terms in �E1(uh) are quantitatively omparable to Dres and Djump, andhene they annot be negleted.Example 2. We onsider the boundary value problem( �"�u+ ux + uy = f in 
 = (0; 1)2;u = 0 on �
; (3.8)



20Nel jJ(u)� J(uh)j eE1(uh) e�32 2:12� 10�2 9:17� 10�2 4:364 2:5� 10�3 8:7� 10�3 3:5146 1:7� 10�3 2:61� 10�3 1:5290 8:78� 10�4 1:24� 10�3 1:4616 2:1� 10�4 4:06� 10�4 1:91396 7:43� 10�5 1:24� 10�4 1:6
Nel jJ(u)� J(uh)j eE1(uh) e�32 2:58� 10�2 1:28� 10�1 4:9882 1:02� 10�3 1:13� 10�3 1:1188 3:77� 10�3 4:61� 10�3 1:2378 2:14� 10�4 6:52� 10�3 3:04708 5:08� 10�4 2:09� 10�3 4:11262 2:0� 10�4 7:04� 10�4 3:52176 1:19� 10�4 3:2� 10�4 2:73858 9:39� 10�5 2:82� 10�4 3Table 3: Example 2. The error under suessive re�nements with respet to the fun-tional J(u) = u((:49; :49)); " = 10�2 (left) and " = 10�6 (right).with f de�ned in suh a way that the exat solution is given byu(x; y) = 2xy(1� e�(1�x)=")(1� e�(1�y)="):Notie that the funtion u is symmetri with respet to the line x = y.The objetive is the omputation of the solution at a given point P = P (x0; y0)with the aim to ensure that the error between u(x0; y0) and uh(x0; y0) does not exeeda given tolerane TOL. We apply the algorithm desribed in Setion 2.1 using the sameparameter values as in (3.7).The suessive meshes produed by the algorithm to alulate the solution at P =(:49; :49) with " = 10�2 and " = 10�6 are depited in Figure 6 and Figure 7, respetively.The meshes respet the symmetry of the problem. Moreover, we notie that initiallythe mesh is re�ned down{wind of P : the algorithm reognizes that some resolution of theboundary{layers is neessary in order to ensure any auray at the point of interest. Insubsequent re�nement the boundary layer zone is left unhanged, the re�nements beingonentrated upwind of the point, along the subharateristi urve passing through P .The e�etivity of the a posteriori error estimator eE1(uh) is reported in Table 3: theestimator is robust with respet to the di�usion parameter.Example 3. We solve the boundary value problem with disontinuous boundaryonditions8>>>><>>>>: �"�u+ (os(�=3); sin(�=3))T � ru = 1 in 
 = (0; 1)2;u = 1 for� x � 1=2; y = 0;x = 0u = 0; otherwise: (3.9)The solution of this problem has an internal layer propagating aross 
 from the dis-ontinuity in the boundary ondition at (0:5; 0) 2 �
. As for Example 1, we de�ned thetarget funtional to be the mean{ow in the entire domain 
; that is J(u) = R
 u dx and�xed " = 10�6. The algorithm is again the one desribed in Setion 2.1, whih employs



21the omputable error estimator eE1(uh). The values for the parameters in the adaptivealgorithm are: ref = :5; pref = :05; TOL = 10�3:As we an see in Figure 8, �rst the mesh gets re�ned in the boundary layer, whih isthe major soure of error. Only when the boundary layer has been partially resolved, isthe mesh re�ned along the internal layer, showing that the indiator orretly identi�esloations in the mesh that most a�et the auray of the approximation of the fun-tional. The �nal mesh onsists of 7405 triangles, approximately 5 out of 7 of whih areloated in the proximity of the boundary layer given by y > 7=8.Example 4. We onsider the mixed boundary{value problem for the onvetion{di�usion equation spei�ed in Figure 4 (top left). Homogeneous Neumann boundaryondition is imposed on �N = f(x; y) 2 � : y = 0 or x = 1g, while on �D = �
n�N aDirihlet boundary{ondition is given.The objetive is to evaluate the mean{ow over the Neumann boundary. That is,J(u) = Z�N u dx:The orresponding dual{problem is given by8><>: �"�z � a � rz = 0 in 
 = (0; 1)2z = 0 on �D"n � rz + n � az = 1 on �N : (3.10)This time, the a posteriori analysis proeeds as follows:J(u)� J(uh) = J(u� uh)= L(u� uh; z)= L(u� uh; z � zh) + XT2Th(ub; L�zh)T= XT2Th �(f � Luh; z � zh)T � ("nT � ruh; z � zh)�T\(
[�N )�+XT2T (ub; L�zh)T= XT2Th �(RT (uh); z � zh)T � 12("nT � [ruh℄; z � zh)�T\
�("nT � ruh; z � zh)�T\�N + (ub; L�zh)T�;with the new term related to the presene of the Neumann boundary.The results obtained by using the error estimator �E1, modi�ed to inlude the Neu-mann term, are shown in Figure 4. We notie that the re�nement is mainly onentrated



22along the internal layer in the primal solution, but some re�nement is performed wherefeatures of the dual solution are present. This should be ompared with the output ofmesh adaptation driven by norm error examined in the next setion.
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Figure 4: Example 4. Above: problem spei�ations (left) and mesh after �ve re�ne-ments (right) for J(u) = R�N udx and " = 10�3. Below: The orresponding solution(left) and dual solution (right).
4 The bubble as error estimatorIn this setion we disuss a posteriori error estimation with respet to the energy normon shape regular triangulations.We onsider the following model problem with mixed Dirihlet and Neumann bound-



23ary onditions: 8><>: �"�u+ a � ru = f in 
;u = 0 on �D;"n � ru = g on �N ; (4.1)with �
 = �D \ �N and �D [ �N = ;, assuming that �D is losed and has nonzeromeasure.Let Th, h > 0 be a family of triangulations of 
 suh that the following onditionshold.1. Conformity: Any two triangles in Th either have a ommon edge or ommon vertex,or they do not interset at all;2. Consisteny: Any triangle{edge lying on the boundary is ontained either in �Dor in �N ;3. Shape regularity: For any triangle, the ratio of the largest irumsribed irleto that of the smallest insribed irle is bounded by a onstant whih does notdepend on the triangle and on h.As we have mentioned in Setion 2, the bubble part of the RFB �nite element solutionis given element{wise as the funtion ubjT 2 H10(T ) satisfying�"�ubjT + a � rubjT = (f � Luh)jT 8T 2 Th: (4.2)Thus, we an bound the L2{norm of the bubble ub using the following stability resultfor the onvetion{di�usion equation.Let ! be a bounded Lipshitz domain in R2 and let w 2 H10 (!) be suh that( �"�w + a � rw = f in !;w = 0 on �!;where " > 0, f 2 L2(!) and a 2 (C1(!))2 satis�es( r � a � 0 in !;a has no losed integral urves in �!:Then, aording to [18℄, there exist a onstant C dependent only on ! and on a suhthat "1=2jwj1;! + kwk0;! � Ckfk0;!: (4.3)The following result is mentioned by Russo in [21℄ where the ase of onstant oeÆ-ients is treated.



24Proposition 4.1 Let ubjT 2 H10 (T ) be the solution of (4.2). If r � a � 0 and a has nolosed integral urves in T , thenkubk0;T � ChTkf � a � ruhk0;T ; (4.4)where C is independent of " and hT .Proof. Upon saling problem (4.2) by using the transformation A : (x; y)! hT (�; �)we dedue that the image of ubjT , say ûb 2 H10 (bT ), where bT = A(T ), satis�es� "hT�ûb(�; �) + a � rûb(�; �) = hT (f � a � ruh)(x(�; �); y(�; �)):To obtain (4.4), we sale the stability estimate (4.3) applied to ûb:kubk0;T � ChTkûbk0;bT � Ch2Tk(f � a � ruh) Æ A�1k0; bT � ChTkf � a � ruhk0;T ;where C depends on a and the shape regularity of T . 2This result permits us to repeat, for the RFB formulation with linear �nite elements,the a posteriori analysis arried out by Verf�urth [24℄ for the SUPG method.From the oerivity of L we have"1=2ju� uhj1;
 � supv2V nf0g L(u� uh; v)"1=2jvj1;
 :Now let v 2 V be suh that "1=2jvj1;
 = 1. For any suh v we have"1=2ju� uhj1;
 � L(u� uh; v � Phv) + L(u� uh; Phv) = I + II:Let Eh;N be the set of all edges ontained in the Neumann boundary �N . To bound the�rst term on the right{hand side we employ Green's formula element{wise:I = XT2Th�(f � Luh; v � Phv)T � 12("nT � [ruh℄; v � Phv)�T\
�+ XE2Eh;N(g � "n � ruh; v � Phv)E� XT2Th�kf � Luhk0;Tkv � Phvk0;T + 12k"nT � [ruh℄k0;�T\
kv � Phvk0;�T\
�+ XE2Eh;N kg � "n � ruhk0;Ekv � Phvk0;E� C XT2Th�h2T "�1kf � Luhk20;T + 12hT "knT � [ruh℄k20;�T\
�+ XE2Eh;N hT "�1kg � "n � ruhk20;E!1=2; (4.5)



25having made use of the Cauhy{Shwarz inequality, the interpolant approximation prop-erties (2.12) and (2.13) applied on T and the shape regularity of Th.To bound II, we notie that sine u is the solution of (2.1), uh solves (2.3) and�Phv = 0, we haveII = XT2Th(ub; L�Phv)T= �XT2Th(ub;a � rPhv)T� XT2Th kubk0;Tka � rPhvk0;T� C XT2Th hT "�1=2kf � a � ruhk0;Tkak1;T"1=2jPhvj1;T� C (XT2Th kak21;Th2T "�1kf � a � ruhk20;T)1=2 (4.6)thanks to (4.4), (2.14) and the shape regularity of Th.Thus, from (4.5) and (4.6) we onlude that the following error bound holds:"1=2ju� uhj1;
 � C ES; (4.7)with the error estimator ES given byE2S := XT2Th�h2T "�1kf � Luhk20;T + 12hT "kn � [ruh℄k20;�T\
�+ XE2Eh;N kak21;ThT "�1kg � "n � ruhk20;E:Remark. The a posteriori error analysis in both the "1=2{weighted H1{seminormand the L2{norm error of the RFB method based on general �nite elements (i.e. notneessarily linear) was arried out by Sangalli [22℄ under the hypothesis that the vetor�eld a has no losed integral urves on the whole domain 
. Sangalli's result, though,applies to the omponent of the RFB solution in the spaefWh = fv 2 VRFB : L�v = 0 in eah element T 2 Thg ;instead of the pieewise polynomial omponent as is the ase of our bound.Under suh a hypothesis on a and again restriting ourselves to the ase of linear�nite elements, we an repeat Sangalli's argument, this time applied to the polynomialomponent of the solution by employing (4.4). In this way the error bound (4.7) follows,with the extra ontrol on the L2{norm error.
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xyFigure 5: Example 5. The �nal solution produed by the algorithm based on the ESerror indiator.Example 5. We onsider again the boundary{value problem of Example 1 of theprevious setion. The outome of the implementation of the error estimator (4.7) in anadaptive algorithm is displayed in Table 4 (top). The quantities Si and Sb reported inthe table are the two terms in the error estimator whih are relevant to this problem,i.e. S2i = XT2Th h2T "�1kf � Luhk20;T ;S2b = 12 XT2Th hT "kn � [ruh℄k20;�T\
:In the omputation the marking parameters and the tolerane were set toref = :3; pref = :1; TOL = 0:1:The �nal solution and mesh an be seen in Figure 5. The intermediate meshes are similarto those shown in Figure 10 below.We have repeated the same experiment but using as error indiator the L2{normof the bubble part of the RFB solution, whih we know to be a representation of theinternal residual. Thus, we de�ne the new indiatorE2B = XT2Th kak21;T"�1kubk20;T :The results obtained using this error indiator are shown in Table 4 (bottom). Ofourse, EB is reliable only as long as the internal residual term Si dominates the edge



27residual term Sb. From the table we observe that this may be true initially, but notasymptotially. Indeed, it has been proved by Kunert and Verf�urth [17℄ and Carstensenand Verf�urth [7℄ that edge residuals dominate the error of the �nite element method inthe ase of low order �nite elements, by showing that the edge residuals yield globalupper and loal lower bounds on the error, both in the H1{ and the L2{norm.So EB annot alone be onsidered as a reliable a posteriori error bound. However,it gives a more e�etive estimate of the internal residual than Si; see the e�etivitiesreported in Table 4.Alternatively, EB may be used to deide wherever to loally turn o� the stabilisationterm. This idea is developed in the next setion.Example 6. Our �nal example of this setion regards the mixed boundary valueproblem Example 4 in the previous setion. The problem data are spei�ed in Figure 4(above{left): a disontinuity in the Dirihlet boundary ondition at (x; y) = (0; 1=2) ispropagated (and smoothed) inside the domain and exits through the Neumann boundary.Figure 9 shows the suessive re�nements obtained using the bubble error indiatorEB, with the tolerane set to TOL = 0:05. The solution on the �nal mesh is also shown.Re�nement is limited to the areas with relatively strong variations of ru. Figure 9should be ompared with Figure 4 whih reports the triangulation obtained by solvingthe same boundary{value problem but with the re�nement driven by a linear funtionalof the solution as target.5 hb{adaptivityWe have examined adaptive mesh re�nement algorithms for the stabilised Galerkin �niteelement formulation (2.3) derived from the RFB method. The stabilisation term in (2.3)depends on the bubble part of the solution ub. Using the assumption of loal onstantoeÆients, we have been able to redue the omplex task of the evaluation of suh termto that of the evaluation of an average of the bubble. Further, the approximation (3.1)led to the even simpler task of the evaluation of the elemental diameter in the diretionof the onvetive �eld. As a onsequene, in terms of omputational omplexity, theresulting method in the ase of pieewise linear elements is equivalent to the SDFEM,with the advantage that the stabilisation parameter is given by the method.This way of proeeding, of ourse, has some limitations. The approximation (3.1)may not be suÆiently aurate if the oeÆients in the p.d.e. annot be treated aspieewise onstant funtions or if the mesh is suÆiently re�ned. One may also wish toompute the bubbles more aurately, for example to inlude an edge{stabilisation ofthe sort disussed in [5℄. Finally, it is lear that in parts of the omputational domainwhere the mesh has been suÆiently re�ned or where the solution is relatively at, thereis no reason for stabilising in the �rst plae.This justi�es the idea of inluding in the mesh adaptation algorithms disussed sofar (h{re�nement) an automati way of `turning o�' the stabilising term wherever thisis no more required (b{dere�nement).



28 Nel ku� uhk0;
 "1=2ju� uhj1;
 ES(uh) Si Sb e�l2 e�en32 0:29 0:9 10:4 10:4 0:44 35:9 11:569 0:19 0:83 7:13 7:1 0:58 36:3 8:6155 0:12 0:74 4:71 4:6 0:66 39:1 6:3329 0:06 0:59 2:99 2:9 0:69 45 5711 0:034 0:4 1:83 1:7 0:62 52:9 4:61501 0:018 0:24 1:1 0:1 0:5 58:8 4:63706 0:01 0:13 0:66 0:5 0:35 66:5 4:811272 0:005 0:07 0:38 0:3 0:22 72:7 5:06Nel ku� uhk0;
 "1=2ju� uhj1;
 EB(uh) e�l2 e�en Si Sb32 0:29 0:9 3:01 10:3 3:3 10:4 0:4469 0:19 0:83 2:03 10:3 2:4 7:1 0:58143 0:12 0:7 1:33 10:9 1:79 4:7 0:67310 0:068 0:59 0:83 12:2 1:4 3:03 0:69650 0:036 0:4 0:49 13:6 1:21 1:8 0:621358 0:019 0:24 0:27 14:1 1:12 1:04 0:513137 0:011 0:14 0:15 14:2 1:07 0:6 0:379367 0:0058 0:08 0:08 14:4 1:02 0:3 0:2428705 0:0032 0:04 0:04 14:6 0:98 0:19 0:15Table 4: Example 5. Error over suessive re�nements in the L2 and "1=2{weightedH1{seminorm (energy norm); " = 10�2. ES indiator (above) and bubble indiator EB(below).To address the ruial issue of when and where to phase out the bubble stabilisationalongside the h{re�nement proess, we may use the partiular residual term in the aposteriori error bound whih is related to the stabilising term itself.Let us onsider, in partiular, the "1=2{weighted H1{seminorm error bound ES in(4.7), disarding, for simpliity, any term related to Neumann boundary onditions.Looking bak to (4.6) we see that ES in fat onsists of three terms, Si, Sb and Eb, relatedto the internal residual, the boundary jump and the stabilising term, respetively. LetSTi , STb and ETb be the loal omponents of these terms, that is,STi = hT "�1=2kf � (�"�uh + a � ruh)k0;TSTb = �hT "2 �1=2 kn � [ruh℄k0;�T\
ETb = kak1;T"�1=2kubk0;T :We have seen that the term ETb is bounded by STi . Moreover, we expet the termETb to be relatively small wherever stabilisation is not ruial. Hene we use the relativemagnitude of ETb with respet to STi and STb as an indiator for b{dere�nement.



29Let �T = STi + STb ;be the loal error indiator and let �� be the maximum of �T after utting the upper 10%or 5% of the values. Finally, let ref 2 (0; 1) and b > 0 be some user{seleted thresholdparameters and TOL a given tolerane.We propose the following algorithm, whih is a modi�ation of the one de�ned inSetion 2.1:1. De�ne an initial mesh;2. Calulate uh on the urrent mesh;3. Chek the stopping riterion: IF ES � TOL=C then STOP;4. Apply the h{re�nement riterion: re�ne those elements whose error estimatorETS = STi + STb exeeds ref��;5. Apply the b{dere�nement riterion: IF ETb < b �STi + STb �, turn o� the stabilisa-tion term on T or its newly de�ned sons and GOTO 2.Sine we are not assuming any a priori knowledge about the behavior of the solution,the algorithm is started up with the stabilising term turned on everywhere. Later on,the fration of elements seleted for b{dere�nement depends on the threshold parameterb. Its `orret' value should be expeted to be subjet to the relative sharpness of thedi�erent omponents of the error bound. In both examples below the value b = 0:1produed satisfatory results.Example 7. It is instrutive to apply the hb{adaptive algorithm to Example 5above. We reall that we are solving:( �"�u+ ux + uy = f in 
 = (0; 1)2;u = 0 in �
:The exat solution exhibits a boundary layer at the outow boundary x = 1 and y = 1(see Figure 5). Ideally, stabilisation should be employed only in the layer. The sequeneof meshes produed is shown in Figure 10: the shadowed elements are those wherestabilisation is turned on. We notie that stabilisation is soon removed away from thelayer and, when this is resolved, also inside it.The e�etiveness of the new algorithm an be appreiated from the numbers displayedin Table 5: the outputs of the old algorithm are reprodued on the left (f. Table 4),while, on the right, we present those of the hb{re�nement algorithm. Similar aurayis ahieved with omparable meshes. The new algorithm uses more elements whileremoving the stabilisation from the layer. On the other hand, the �nal mesh, whih islayer{resolving, is slightly more e�etive sine the same auray is obtained with 32



30 Nel "1=2ju� uhj1;
 ES(uh) e�en32 0:9 10:4 11:569 0:83 7:13 8:6155 0:74 4:71 6:3329 0:59 2:99 5711 0:4 1:83 4:61501 0:24 1:1 4:63706 0:13 0:66 4:811272 0:07 0:38 5:06
Nel "1=2ju� uhj1;
 ES(uh) e�en32 0:9 10:4 11:569 0:83 7:13 8:6155 0:74 4:86 6:5332 0:59 3:15 5:3727 0:39 1:92 4:81523 0:22 1:16 5:23808 0:123 0:67 5:411240 0:067 0:38 5:7Table 5: Example 5. Error and ES indiator over suessive re�nements in the "1=2{weighted H1{seminorm (energy norm); " = 10�2. We show the output of the h{re�nement algorithm (left) and hb{algorithm (right).elements less. Over all, if the parameter b is appropriately tuned, the numerial solutionis not orrupted and the algorithm is robust.Example 8. To onlude, we test the hb{re�nement algorithm on a problem whosesolution exhibits an internal layer, namely Example 6 above. The sequene of meshre�nements is depited in Figure 11. Again the shadowed elements are those wherestabilisation is present. To highlight more learly suh elements, the �nal mesh is plotteda seond time at the bottom{right of the �gure with the stabilised elements lifted out ofthe xy{plane. The meshes are very similar to those obtained without b{dere�nement, fFigure 9: this may have to do with the fat that the layer in the solution of this problemis less severe then the one of Example 7 above.6 ConlusionsWe have developed an h{adaptive algorithm that is driven by a residual{based a poste-riori error bound. The error is represented in terms of the residual of the �nite elementapproximation weighted by the solution of the dual problem. The numerial approxi-mation of linear funtionals of the solution as well as energy norm error estimation havebeen onsidered.We have shown that the elimination of the dual solution from the a posteriori bound,via strong stability estimates, leads to rude bounds. For this reason, the algorithmproposed is based on the so alled Type I error bounds, i.e. as few as possible stepsare performed in the bounding of the error. The downside of this approah is that thedual solution is not eliminated from the bound and needs to be approximated in orderto obtain a omputable error bound. For the error bound to be reliable, it is neessarythat the dual problem is solved aurately. The approah adopted here has been to usea dual mesh with mesh size half of that of the primal mesh. On the examples onsidered



31the algorithm was reliable and e�etive.The a posteriori analysis for the energy norm error of the RFB method presentedhere is similar to that of the SUPG method performed by Verf�urth [24℄. The errorbound obtained onsists of three terms: the two lassial residual{based terms of theGalerkin formulation, i.e. internal residual and boundary jump of the gradient, plus athird term due to stati ondensation of the bubbles. We have shown how the latteran be bounded in terms of the internal residual using an appropriate stability resultapplied to the bubble part of the solution.We also introdued a new hb{adaptive algorithm in whih, to avoid the evaluationof the bubble part of the solution where this is not ruial, the bubble stabilisation isphased out loally depending on the relative magnitude of the terms in the a posteriorierror bound mentioned above.Referenes[1℄ Beker, R., and Rannaher, R. A feed-bak approah to error ontrol in �niteelement methods: basi analysis and examples. East-West J. Numer. Math. 4, 4(1996), 237{264.[2℄ Brenner, S. C., and Sott, L. R. The mathematial theory of �nite elementmethods. Springer-Verlag, New York, 1994.[3℄ Brezzi, F., Marini, D., and S�uli, E. Residual-free bubbles for advetion-di�usion problems: the general error analysis. Numer. Math. 85, 1 (2000), 31{47.[4℄ Brezzi, F., and Russo, A. Choosing bubbles for advetion-di�usion problems.Math. Models Methods Appl. Si. 4, 4 (1994), 571{587.[5℄ Cangiani, A., and S�uli, E. Enhaned RFB method. Oxford University Com-puting Laboratory researh report no. 03/17 (2003), submitted for publiation inNumer. Math.[6℄ Canuto, C., Russo, A., and van Kemenade, V. Stabilized spetral methodsfor the Navier-Stokes equations: residual-free bubbles and preonditioning. Comput.Methods Appl. Meh. Engrg. 166, 1-2 (1998), 65{83.[7℄ Carstensen, C., and Verf�urth, R. Edge residuals dominate a posteriori errorestimates for low order �nite element methods. SIAM J. Numer. Anal. 36, 5 (1999),1571{1587 (eletroni).[8℄ Ciarlet, P. G. The �nite element method for ellipti problems. North-HollandPublishing Co., Amsterdam, 1978. Studies in Mathematis and its Appliations,Vol. 4.
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Figure 6: Example 2. Suessive mesh re�nements, " = 10�2, P = (:49; :49)
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Figure 7: Example 2. Suessive mesh re�nements, " = 10�6, P = (:49; :49)
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Figure 8: Example 3. Suessive mesh re�nement and �nal solution for J(u) = R
 u and" = 10�6.
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Figure 9: Example 6. Suessive mesh re�nement using the error estimator EB, " = 10�3.
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Figure 10: Example 7. Suessive mesh re�nement and bubble dere�nement, " = 10�2.
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Figure 11: Example 8. Suessive mesh re�nement and bubble dere�nement, " = 10�3.


