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31 Introdu
tionThe residual{free bubble (RFB) method is a two{level �nite element method originallyintrodu
ed by Brezzi and Russo [4℄ and Fran
a and Russo [14℄ for the stable and a

urate
omputation of numeri
al solutions of 
onve
tion{dominated di�usion problems.Later on, the RFB method has been employed on a wide range of equations, su
h asthe di�usion equation with rough 
oeÆ
ients [23℄, the Stokes equation [13℄, the in
om-pressible Navier{Stokes equation [6℄ and the Helmoltz equation [12℄, showing that themethod is quite general.The RFB method 
onsists of enri
hing a 
lassi
al �nite element (FE) spa
e of pie
e-wise polynomial fun
tions with the ri
hest possible spa
e of bubble fun
tions with respe
tto the given triangulation, i.e. the spa
e of all H1 fun
tions with support 
ontained inthe elements of the triangulation. Stati
 
ondensation of the bubble leads to a modi-�ed (generalised Galerkin) formulation in terms of the original FE spa
e. In the 
aseof 
onve
tion{di�usion problems, this takes the form of a stabilised FE formulation inwhi
h the stabilising term depends on the bubble part of the numeri
al solution. Thisreport is dedi
ated to the a posteriori error analysis of su
h RFB formulation.In many s
ienti�
 and engineering appli
ations, the obje
tive is to 
ompute a fewoutput fun
tional with a pres
ribed a

ura
y. For this reason, the a posteriori analysisin terms of a given linear fun
tional of the solution and its appli
ation in a reliable ande�e
tive adaptive mesh re�nement algorithm, is the main 
on
ern of this paper. Thealgorithm proposed here is driven by a residual{based a posteriori error bound dependingexpli
itly on the solution of a dual problem the data of whi
h is the quantity of interest.See the Type I error bounds des
ribed by Giles and S�uli in [15℄ and introdu
ed by Be
kerand Ranna
her in [1℄.The a posteriori analysis of the energy{norm error of the RFB method has been
onsidered previously by Russo [21℄ and Sangalli [22℄. The advantage of our approa
his that the error analysis is in terms of the pie
ewise polynomial part of the solution,rather than in terms of the 
omponent of the RFB solution from an ad ho
 and problem{dependent fun
tion spa
e as, for instan
e, in [22℄.The a posteriori error bound is 
omposed of three terms: the two 
lassi
al residual{based terms of the Galerkin formulation (internal residual and boundary jump of thegradient), and a third term due to stati
 
ondensation of the bubbles. We parti
ularlyemphasize the relevan
e of the bubble term in our error estimator, extending the resultdis
ussed in [21℄, 
on
erning the equivalen
e of the L2{norm of the bubble with theelemental L2{norm of the residual, to non{
onstant 
oeÆ
ient problems.In Se
tion 5 we propose to use the relative magnitude of the terms in the error boundto explore whether the bubble (stabilisation) 
an be turned o� lo
ally. This idea leads toa new hb{adaptive algorithm in whi
h the bubble stabilisation is automati
ally phasedout lo
ally (b{dere�nement) while the mesh is re�ned (h{re�nement). We investigatethe robustness of the algorithm through numeri
al examples.The paper is organized as follows. In Se
tion 2 we present the a posteriori dual{weighted error analysis in terms of linear fun
tional evaluation. Se
tion 3 is dedi
atedto the implementation of an adaptive mesh re�nement algorithm and to some numeri
al



4examples. In Se
tion 4 we present the a posteriori energy{norm error analysis and showthat the L2{norm of the bubble is bounded by the L2{norm of the internal residual.Finally, in Se
tion 5 we de�ne the hb{adaptive algorithm and test it on two numeri
alexamples 
hara
terized by a boundary layer and an internal layer, respe
tively.2 A posteriori dual{weighted error boundsOur aim is to 
ombine the use of the RFB method for the numeri
al solution of bound-ary value problems for 
onve
tion{dominated 
onve
tion{di�usion equations with meshadaptation te
hniques.Let us 
onsider the 
onve
tion{di�usion operatorLu := �"�u+ a � ru;where " is a positive 
onstant and the velo
ity �eld a 2 L1(
)2 is divergen
e-free in anopen polygonal domain 
 � R2 . Given a fun
tion f 2 L2(
), we 
onsider the asso
iatedhomogeneous boundary{value problem in variational form( �nd u 2 V su
h thatL(u; v) = (f; v) 8v 2 V; (2.1)where V = H10 (
), (�; �) denotes the inner produ
t in L2(
) and the bilinear form L(�; �)is de�ned on V � V asL(w; v) = " Z
rw � rv dx+ Z
 (a � rw) v dx:It is often the 
ase that the quantity of interest is not the solution u itself but alinear fun
tional u! J(u) of the solution (e.g. a point value, a 
ux, an average, et
.).A posteriori bounds on the error J(u)� J(uh), where uh is the 
omputed solution, 
anbe obtained through duality arguments. Here we assume thatJ(u) = (u; g); g 2 L2(!);leaving the treatment of other linear fun
tionals su
h as 
uxes through a Neumannboundary to a later example.We de�ne the following dual problem:( �nd z 2 V su
h thatL(w; z) = J(w) 8w 2 V: (2.2)The (adjoint) di�erential operator L� involved in (2.2) 
an be re
overed from (2.2)through integration by parts; for the partial di�erential operator L under 
onsideration,it will be found to be de�ned byL�z := �"�z � a � rz z 2 V:



5We shall perform su
h an a posteriori error analysis for the RFB method seen as ageneralised Galerkin approximation for the polynomial part of the RFB solution. Thatis, we assume that stati
 
ondensation of the bubble part of the solution has beenperformed resulting in a stabilised �nite element approximation on the given pie
ewisepolynomial spa
e Vh and triangulation Th; i.e., a formulation whi
h we 
an write as8><>: �nd uh 2 Vh su
h thatL(uh; vh) + XT2Th(ub; L�vh)T = (f; vh) 8vh 2 Vh; (2.3)where ub is de�ned element{wise as the unique solution in H10(T ) ofLTubjT = (f � Luh)jT :Here, LT : H10(T ) ! H�1(T ) denotes the restri
tion of the operator L to T . See, e.g.,[3℄ for details. Regarding the issue of the 
omputation of the bubble ub, see Se
tion 3where the implementation of the method is dis
ussed.The family of triangulations Th, h > 0, is admissible (regular) if any two triangles inTh either have a 
ommon edge or 
ommon vertex, or they do not interse
t at all.In the sequel, we denote by nT the unit outward normal ve
tor to �T de�ned onthe edges of any element T . Further, we denote by nT � [ruh℄ the jump of the normalderivative of uh a
ross the given edge.We haveJ(u)� J(uh) = J(u� uh)= L(u� uh; z)= L(u� uh; z � zh) + XT2Th(ub; L�zh)T= XT2Th ((f � Luh; z � zh)T � ("nT � ruh; z � zh)�T\
) + XT2Th(ub; L�zh)T= XT2Th�(RT (uh); z � zh)T � 12("nT � [ruh℄; z � zh)�T\
 + (ub; L�zh)T�= XT2Th ���1T ; !1T �T + ��2T ; !2T ��T\
 + ��3T ; !3T�T � ; (2.4)having denoted the elemental residual terms by�1T = RT (uh); �2T = �12"nT � [ruh℄; �3T = ub;and de�ned the weights !1T = !2T = z � zh; !3T = L�zh:Thus, the error representation formula (2.4) is a sum of three terms: the two 
lassi-
al residual{based terms and a third one due to the stabilisation term in (2.3). This



6identity is analogous to the error representation formulas for stabilised �nite element ap-proximations of �rst{order hyperboli
 problems presented by Houston et al. in [16℄. Inparti
ular, we will see later that, when the RFB method is equivalent to the stabilised�nite element method 
onsidered by the authors of [16℄ in the 
ontext of �rst{orderhyperboli
 PDEs, then the identity (2.4) 
orresponds to their �rst error representationformula for fun
tionals.We now dis
uss a mesh adaptation algorithm based on the a posteriori error repre-sentation (2.4).Given a positive toleran
e TOL, the goal is the 
omputation of uh 2 Vh su
h thatjJ(u)� J(uh)j � TOL: (2.5)From (2.4) we have thatjJ(u)� J(uh)j = ����� XT2Th ���1T ; !1T �T + ��2T ; !2T��T\
 + ��3T ; !3T �T � ����� =: E1(uh): (2.6)Thus, the 
onstraint (2.5) is satis�ed as soon asE1(uh) � TOL:This will be our stopping 
riterion.We now need to 
hoose a re�nement 
riterion, i.e. a marking strategy for the re�ne-ment of the elements in the mesh, and establish a way to a
tually 
ompute the errorrepresentation formula (2.6).The design of a re�nement 
riterion is based on the lo
alization of E1(uh). Puttingthe absolute value sign under the summation sign, we getjJ(u)� J(uh)j � XT2Th ����1T ; !1T�T + ��2T ; !2T ��T\
 + ��3T ; !3T�T �� =: XT2Th �T =: E2(uh);and a de
ision as to whi
h elements to re�ne 
an now be taken depending on the mag-nitude of the lo
al error indi
ator �T .There are many possible re�nement 
riterions; see [1℄ for a review. An optimalstrategy, known as error per 
ell strategy, would be to equilibrate the lo
al error indi
ator�T by re�ning or 
oarsening a

ording to the 
riterion�T � TOLNel ;where Nel is the number of elements in the subdivision.A 
riterion that may be more suitable if 
oarsening is not 
onsidered, is the �xedfra
tion strategy in whi
h the elements are ordered a

ording to the size of �T andthen some portion of those with largest �T is re�ned. We have 
hosen to use the �xedfra
tion strategy proposed by Papastavrou and Verf�urth in their arti
le dedi
ated to the



7
omparison of a posteriori error estimators for 
onve
tion{di�usion problems [19℄. Theauthors of [19℄ suggest to re�ne those elements for whi
h�T � 
ref ��;for some user{sele
ted threshold parameter 
ref 2 (0; 1); the referen
e value �� is takento be the maximum of �T after 
utting the upper 10% or 5% of the values (in orderto pre
lude runaway values). That is, a se
ond parameter pref, usually �xed to 0:1 or0:05, is de�ned and �� is obtained as the maximum of �T after dis
arding the bprefNel
elements with the largest �T .Regarding the 
omputation of (2.6), the diÆ
ulty is in the evaluation of the dualsolution. Here the dual solution z is 
omputed using a new mesh TH , di�erent from Th.Given the �nite element spa
e VH 
orresponding to TH and the RFB solution zH 2 VH ofthe dual problem (2.2), the approximation zh is taken as the proje
tion or the interpolantof the 
omputed zH from the primal �nite element spa
e.We re
onsider the error representation formula (2.6). By de
omposing!1T = (z � zh)jT = (zH � zh)jT + (z � zH)jT = e!T + �!T ;we get jJ(u)� J(uh)j � ����� XT2Th ���1T ; e!T�T + ��2T ; e!T��T\
 + ��3T ; !3T �T � �����+ ����� XT2Th ���1T ; �!T�T + ��2T ; �!T��T\
� �����= eE1(uh) + �E1(uh): (2.7)In this way we have isolated in �E1(uh) the un
omputable terms of the error bound.2.1 Adaptive algorithmLet us assume for a moment that �E1(uh), i.e. the term depending on the di�eren
ez � zH , is su
h that �E1(uh) � eE1(uh). The validity of this hypothesis will be dis
ussedin Se
tion 3 below. We then de�ne the new lo
al re�nement indi
atore�T = ��(�1T ; e!T )T + (�2T ; e!T )�T\
 + (�3T ; !3T )T �� 8T 2 Th; (2.8)and rede�ne �� a

ordingly. Further, we de�ne the new stopping 
riterioneE1(uh) � TOLC ; (2.9)for some 
onstant 1 < C < 2.We may then 
onsider the following adaptive algorithm:



8 1. De�ne an initial mesh;2. Cal
ulate uh and the dual solutions zH and zh on the 
urrent meshes;3. Che
k the stopping 
riterion: IF eE1(uh) � TOL=C then STOP;4. Apply the re�nement 
riterion: re�ne those elements T whose lo
al error indi
ator�T ex
eeds 
ref�� and GOTO 2.2.2 Approximation of the dual solutionTo ensure that the stopping 
riterion (2.9) is reliable, i.e. that the approximation error isbelow the given toleran
e, we need to 
ontrol the size of �E1(uh). To this end, we observethat the global{residual R(uh) : v �! (f; v)� L(uh; v);is a bounded linear fun
tional in V . Hen
e, returning to (2.4), we see that we 
an writethe term �E1(uh) asL(u� uh; z � zH) = L(u; z � zH)� L(uh; z � zH)= (f; z � zH)
 � L(uh; z � zH)= hR(uh); z � zHi; (2.10)where h�; �i is the duality pairing between V and its dual spa
e V 0. We now noti
e thatthe right{hand side in (2.10) de�nes a new linear fun
tionalN(v) = hR(uh); vi:Thus, we 
an estimate the error terms in �E1(uh) by performing an a posteriori analysisof the error N(z)�N(zH); for this purpose we 
onsider the dual of the dual problem( �nd t 2 V su
h thatL(t; v) = N(v) 8v 2 V: (2.11)Let tH 2 VH be some approximation of t. We haveN(z)�N(zH) = N(z � zH)= L(t; z � zH)= L(t� tH ; z � zH) + XK2TH (LtH ; zb)K= XK2TH � (t� tH ; RK(zH))K � 12" (t� tH ;nK � [rzH ℄)�K\
 + (LtH ; zb)K �where, as before, the elemental{residual is de�ned as RK(zH) = (g � L�zH)jK. Finally,zb represents the bubble part of the RFB solution to the dual problem.



9The new error representation just obtained is in terms of t � tH whi
h is just asun
omputable as z� zH . To avoid a possibly in�nite sequen
e of duality arguments, webound t� tH in terms of a stability 
onstant. The bound obtained in this way need notbe sharper then the one we would obtain if instead we were to bound z� zH dire
tly aswas done by Eriksson et al. in [10℄ and [11℄. From the pra
ti
al point of view, though,the 
rudeness of the bound of �E1(uh) is not of parti
ular 
on
ern sin
e all we need �E1(uh)for is to generate an adequate sequen
e of �nite element approximations zH whi
h we
an use to 
ompute eE1(uh).From now on, we assume that linear �nite elements are used, soVH = �' 2 C(�
) : 'jK 2 P1 8K 2 TH	 ;and assume that for any triangulation TH and any element T 2 TH the number ofneighbors of T is bounded.We 
hoose tH = PHt, where PH is the modi�
ation of the quasi{interpolation oper-ator of Cl�emant [9℄ analysed by Verf�urth [25℄. With this 
hoi
e we 
an take advantageof expli
it interpolation error bounds in terms of the H1{seminorm.The de�nition of the modi�ed Cl�emant's quasi{interpolant requires the introdu
tionof the following notational 
onventions. Let EH and NH be the sets of all the edges andall the verti
es in TH , respe
tively. Further, letEH = EH;
 [ EH;D; NH = NH;
 [ NH;D;be the de
ompositions of EH and NH into the subsets of internal and boundary edgesand verti
es, respe
tively. For any S 2 TH [ EH , let N (S) be the set of its verti
es; andfor any K 2 TH , let E(K) be the set of all fa
es of K whi
h are internal to 
. Finally,for any vertex x 2 NH , denote by !x the union of all triangles whi
h have x as a vertex.The following de�nition and bounds 
an be extended to H1�D(
) for any �D � �
,essentially by interpreting the nodes sitting on the Neumann boundary �
 n �D asinternal.Given a fun
tion u 2 L2(!x) we asso
iate to any x 2 NH the value�xu = 1j!xj Z!x u:The quasi{interpolation operator PH : V ! VH is de�ned as follows:PHu = Xx2NH;
(�xu)'x;where 'x 2 VH is the �nite element basis fun
tion asso
iated with x. Noti
e that PH isnot a proje
tion operator.Lemma 2.1 For all v 2 V , all K 2 TH and all E 2 EH we havekv � PHvk0;K � Xx2N (K)CK;xHxjvj1;!x; (2.12)kv � PHvk0;E � Xx2N (E)CE;xH1=2x jvj1;!x; (2.13)



10where Hx is the maximum length of an edge having x as an end point. The values of the
onstants CK;x and CE;x are given expli
itly by Verf�urth [25℄ in terms of the followingmesh{quality related quantities�3;x := maxK1; K2 2 THx 2 N (K1) \ N (K2) jK1jjK2j ; �4;x := maxK 2 TH ; E 2 EHx 2 N (K) \ N (E) jEjHKjKj :Moreover, the following bound holds on the interpolation error in the H1{seminorm:jv � PHvj1;K � Xx2N (K)C 0K;xjvj1;!x; (2.14)with the 
onstant C 0K;x depending expli
itly on �3;x and on the shape{regularity of K,i.e. the ratio �K = HK=�K between the diameter of K and the diameter of the largest
ir
le ins
ribed into K.Proof. The bounds (2.12) and (2.13) are due to Verf�urth, see [25℄. We prove (2.14)by adapting Verf�urth's proof of (2.12). To start with, (2.14) is to be shown for anoperator whi
h does not need to satisfy the Diri
hlet boundary 
onditions. That is, anew operator �PH , a modi�
ation of PH , is de�ned as�PHu = Xx2NH(�xu)'x:Fix an arbitrary K 2 KH . Sin
e Px2N (K) 'x = 1 on K, we havekr(u� �PHu)k0;K = 




 Xx2N (K) ((u� �xu)r'x + (ru)'x) 




0;K� Xx2N (K) kr'xk1;Kku� �xuk0;K + Xx2N (K) k'xk1;Kkruk0;K� Xx2N (K) �KHK ku� �xuk0;K + Xx2N (K) kruk0;K: (2.15)We have now rea
hed the point at whi
h this part of the proof follows that of (2.12)given in [25℄.The following result is Lemma 4.3 in [25℄: for any x 2 NH and u 2 H1(!x) we haveku� �xuk0;!x � CxHxkruk0;!x; (2.16)where Cx is an expli
it 
onstant depending on the ratio�1;x = Hx�x ;and �x is the minimum length of an edge having x as an end point (in parti
ular, if !xis 
onvex, then Cx = 2=�).



11Applying (2.16) in (2.15) we obtain the desired result for �PH .The proof is 
ompleted by bounding the norm of the di�eren
e between rPHu andr �PHu: kr(PHu� �PHu)k0;K = 




 Xx2N (K)\NH;D �xur'x




0;K� Xx2N (K)\NH;D j�xuj kr'xk0;K� Xx2N (K)\NH;D p12�KHK j�xuj k'xk0;K:We are again within the framework of the proof of (2.12) given in [25℄. This time, theproof is 
ompleted by using the following result (equation (5.6) in [25℄):j�xuj k'xk0;K � 12 � jKjjKxj�1=2 (ku� �xuk0;Kx +Hxkruk0;Kx) ;(here Kx represents any triangle K with the following properties: x is a vertex of K andK shares an entire edge with �
), and applying again (2.16). 2We are now ready to obtain a 
omputable bound on jN(z) � N(zH)j. By applyingthe Cau
hy{S
hwarz inequality and the interpolation error bounds (2.12), (2.13) and(2.14) after noting that LPHt = a � rPHt, we havejN(z)�N(zH)j � XK2TH  kRK(zH)k0;Kkt� PHtk0;K+ XE2E(K) k12"nK � [rzH ℄k0;Ekt� PHtk0;E + kzbk0;Kka � rPHtk0;K!� XK2TH  kRK(zH)k0;K Xx2N (K)CK;xHxjtj1;!x+ XE2E(K)�k12"nK � [rzH ℄k0;E Xx2N (E)CE;xH1=2x jtj1;!x�+kak1;Kkzbk0;K�jtj1;K + Xx2N (K)C 0K;xjtj1;!x�!:The solution tH has now been removed from the bound, but t is still present. We 
aneliminate t as follows, at the expense of breaking up the sum over the elements of the



12triangulation. Let CK = maxx2N (K)(CK;x�1;x);C�K = maxE2E(K) maxx2N (E)(CE;x�1=21;x );C 0K = 1 + maxx2N (K)C 0K;x:Then, sin
e the number of neighbors of any T 2 TH is bounded, we getjN(z)�N(zH)j� XK2TH �CKHKkRK(zH)k0;K + 2C�KH1=2K k12"nK � [rzH ℄k0;�K\
� Xx2N (K) jtj1;!x�+C 0Kkak1;Kkzbk0;K Xx2N (K) jtj1;!x!�3 XK2TH �CKHKkRK(zH)k0;K + C�KH1=2K k"nK � [rzH ℄k0;�K\
+C 0Kkak21;Kkzbk20;K�2!1=2jtj1;
:To quantify jtj1;
, we re
onsider the problem (2.11) in strong form with for
ing termR(uh) 2 H�1(
): ( Lt = R(uh) in 
;t = 0 on �
: (2.17)Multiplying the �rst equation in (2.17) by t and integrating by parts over 
, we get"jtj21;
 = hR(th); ti � jtj1;
 supv2V nf0g hR(uh); vijvj1;
 :Hen
e, we have the stability estimatejtj1;
 � "�1kR(uh)k�1;
;and we 
on
lude thatjN(z) � N(zH)j� 3 XK2TH �CKHKk"�1RK(zH)k0;K + C�KH1=2K knK � [rzH ℄k0;�K\
+"�1C 0Kkak21;Kkzbk20;K�2!1=2kR(uh)k�1;
:= �E2(uh): (2.18)



13In this way, we have obtained the following 
omputable error bound:jJ(u)� J(uh)j � eE1(uh) + �E2(uh) (2.19)Two remarks are in order. First, the number kR(uh)k�1;
 is not dire
tly 
omputablefrom uh. We 
an still 
ompute it, but at the expense of the solution of an auxiliaryproblem; see the next se
tion for details. Finally, the derivation of sharp and 
omputablea posteriori error bounds is a nontrivial task. Our bound is no ex
eption in this respe
t:by bounding z � zH we a
hieved 
omputability and reliability of the bound, but weanti
ipate a loss in terms of sharpness.In the next se
tion, we investigate the sharpness of the error bound (2.19), and studythe reliability and e�e
tivity of the alternative error estimator �E1(uh).3 ImplementationWe experiment with the a posteriori error bound des
ribed in the previous se
tion by
onsidering linear �nite elements on triangles for both the primal and dual 
omputations.We have 
hosen to de�ne TH as the triangulation obtained by subdividing every trianglein Th into the four triangles obtained by bise
tion of its edges. A survey of other possible
hoi
es 
an be found, for example, in [1℄; see also the 
omments in the review arti
le byGiles and S�uli [15℄.Let Vh � V = H10 (
) denote the usual spa
e of linear �nite elementsVh = �' 2 C(
) : 'jT 2 P1 8T 2 Th	 ;and similarly for VH .To implement the RFB formulation (2.3) over Vh we need to 
al
ulate the bubblepart of the solution ub. As explained, for example, in [4℄ and [3℄, this is given on everyelement T 2 Th as the solution in H10 (T ) of the bubble equationLTubjT = (f � Luh)jT ;where LT : H10 (T )! H�1(T ) denotes the restri
tion of the operator L to T .In what follows we assume that, in the evaluation of the bubble term of the RFBformulation (2.3), the velo
ity �eld a and the for
ing term f 
an be treated as pie
ewise
onstant fun
tions on Th.As proved in [4℄, these assumptions ensure that the RFB method is equivalent toSDFEM. Indeed, in this 
ase, the bubble part of the solution of the RFB formulation isgiven by ubjT = (f � a � ruh)jT bT ;where bT is the solution of the lo
al problem� �"�bT + a � rbT = 1 in T;bT = 0 on �T:



14(In other words, the bubble spa
e is one{dimensional on every element). Thus, for anyT 2 Th, the stati
 
ondensation of the bubble results in the 
lassi
al streamline{di�usionstabilisation term, sin
e(ub; L�vh)T = �L�1T (f � Luh)jT ; vh�T= �(f � a � ruh)jT (a � rvh)jT ZT bT dx= RT bT dxjT j ZT (a � ruh � f)(a � rvh) dx= �T (a � ruh � f;a � rvh)T ;where the SD{parameter �T is de�ned via the bubble bT as�T = 1jT j ZT bT dx:Moreover, assuming that " � jaj, i.e. that the equation is 
onve
tion{dominated,we 
an approximate the integral average of the bubble bT by integrating, instead, thesolution ebT of the redu
ed problem:( a � rebT = 1 in T;ebT = 0 on �T�;where �T� denotes the in
ow boundary of T . Further, let us 
onsider the approximation�T � e�T := 1jT j ZT ebT dx = ha3jaj ; (3.1)where ha is the length of the longest segment 
ontained in T in the dire
tion of a.The third term in the a posteriori error estimator eE1(uh) de�ned in (2.7) 
an beapproximated in exa
tly the same way, sin
e(�3T ; !3T )T = (ub; L�zh)T = �T (f � a � ruh;�a � rzh)T� e�T jT j(a � ruh � f)jT (a � rzh)jT :We noti
e that the �rst line above 
oin
ides with the third term in the �rst error estima-tor for fun
tionals de�ned in [16℄. That is, in the spe
ial 
ase in whi
h the RFB method
oin
ides with the streamline{di�usion method, our estimator eE1(uh) is identi
al to thatfor the streamline{di�usion method.Regarding the 
omputation of kR(uh)k�1;
 in �E2(uh) (see (2.18)), we may pro
eed asfollows. We de�ne the auxiliary problem� ��� = R(uh) in
;� = 0 on �
: (3.2)



15By de�nition of the norm of the dual spa
e V 0, we havekR(uh)k�1;
 = sup 2V (R(uh);  )kr k0;
= sup 2V (���;  )kr k0;
= sup 2V (r�;r )kr k0;
= kr�k0;
:Thus, we have redu
ed the problem of the 
omputation of kR(uh)k�1;
 to that of the
omputation of kr�k0;
, where � is the solution of (3.2). This will be done approxi-mately, by 
onsidering (3.2) in weak form and solving it by a �nite element method onthe triangulation Th. That is, we will solve the problem( �nd �h 2 Vh su
h that(r�h;rvh) = hR(uh); vhi = (f; vh)� L(uh; vh) 8vh 2 Vh; (3.3)and 
ompute kr�hk0;
.At every iteration of the adaptive algorithm we need to re�ne the triangulation,basing the re�nement on the marking strategy des
ribed in the previous se
tion. Inour numeri
al 
omputations we utilize the MATLAB pde{toolbox re�nement routinerefinemesh, whi
h performs red re�nement on the marked elements. That is, everyelement marked for re�nement is subdivided into four triangles (sons) by 
onne
ting themid{points of the edges. To avoid the 
reation of hanging{nodes, and hen
e to 
omplywith the 
onstraint of admissibility of the triangulations given before, the neighbors ofthe marked elements are subje
ted to blue re�nement following the longest edge bise
tions
heme [20℄, as shown in Figure 1. This te
hnique is not ideal, sin
e it involves re�nementof distant neighbours, but it has the advantage of ensuring the shape{regularity of thetriangulation.Example 1. We 
onsider the boundary value problem( �"�u+ ux + uy = f in 
 = (0; 1)2;u = 0 in �
; (3.4)with f de�ned in su
h a way that the exa
t solution is given byu(x; y) = 2 sin(x) y2(1� e�(1�x)=")(1� e�(1�y)="):Our aim is the 
omputation of the mean{
ow over 
, i.e.J(u) = Z
 u dx; (3.5)
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Figure 1: Example of red re�nement (dot{dashed edges) and subsequent re�nement ofthe neighbors (dashed edges). The rule for blue re�nement is that the longest edge isalways bise
ted.with the aim to ensure that the error does not ex
eed a given toleran
e TOL.To start with, we 
ompare the true error jJ(u) � J(uh)j and the a posteriori errorbound (2.19) on su

essively re�ned uniform meshes. We re
all that the r.h.s. of (2.19)
onsists of two terms: eE1(uh) whi
h is related to the di�eren
e zH�zh, and �E2(uh) whi
his an upper bound for �E1(uh) whi
h refers to z � zH .The results for " = 10�2 are shown in Figure 2(a): the log{log plot makes it apparentthat �E2(uh) is over{estimating the true error. On the other hand, the term eE1(uh) aloneagrees remarkably well with the error, see also the e�e
tivity indi
es reported in Table 1.In order to 
on
lude that eE1(uh) 
an be used in an adaptive algorithm as an aposteriori error bound, we still need to as
ertain its reliability, whi
h depends on whetheror not �E1(uh), i.e. the omitted term in (2.7), is of higher order.We 
an 
ompare eE1(uh) and �E1(uh) for a slightly di�erent problem, in whi
h thetarget linear fun
tional is 
hosen so that the dual solution z is known. This is a
hievedby performing the 
hange of variables (x; y) ! (1 � x; 1 � y) in the primal problem.Thus we de�ne z(x; y) = 2 sin(1� x)(1� y)2(1� e�x=")(1� e�y=");and �x the new target fun
tional J� 
onsequently. The results obtained for this newproblem are shown in Figure 2(b). The bound �E2(uh) is still over{estimating the errorin approximately the same way as before, while we observe that (ex
ept on the 
oarsestgrid) the sharper bound �E1(uh) is indeed of higher order than the true error.We 
on
lude that the adaptive algorithm des
ribed in Se
tion 2.1, whi
h uses eE1(uh)as error estimator, is, for this problem at least, reliable and eÆ
ient.We 
an further investigate the relative magnitudes of the terms in the a posteriori
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(b)Figure 2: Example 1. The error and the a posteriori error bounds under su

essiveuniform re�nements with respe
t to the fun
tional J(�) (a) and J�(�) (b), with " = 10�2.

�E2(uh)eE1(uh)jJ(u)� J(uh)j

h

�E2(uh)eE1(uh)jJ�(u)� J�(uh)j�E1(uh)

h
error bound by 
onsidering separately the three terms 
omprising eE1(uh). De�neDres = ��� XT2Th (RT (uh); zH � zh)T ���;Djump = ���12 XT2Th ("n � [ruh℄; zH � zh)T ���;Dbubl = ��� XT2Th (ub; L�zh)T ���:The behavior of these three terms 
an be appre
iated from the numbers in Table 1 andh jJ(u)� J(uh)j eE1(uh) e� Dbubl Dres Djump �E2(uh)1=4 1:09� 10�1 1:15� 10�1 1:05 1:08� 10�1 7:5� 10�3 5:8� 10�4 8:881=8 5:76� 10�2 5:91� 10�2 1:025 5:8� 10�2 1:4� 10�3 2:5� 10�4 4:691=16 2:93� 10�2 2:97� 10�2 1:01 2:95� 10�2 3:1� 10�4 9:0� 10�5 2:1871=32 1:47� 10�2 1:48� 10�2 1:003 1:48� 10�2 7:7� 10�5 2:6� 10�5 0:9171=64 7:39� 10�3 7:4� 10�3 1:001 7:39� 10�3 1:9� 10�5 6:3� 10�6 0:342Table 1: Example 1. Convergen
e of jJ(u)�J(uh)j and eE1(uh) and its 
omponents, with" = 10�2.the graphs in Figure 3. We observe that Dres and Djump are of higher order and thetrue error is well approximated by the term Dbubl alone. Given that Dbubl is 
omputable
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Figure 3: Example 1. The error and the three terms of the a posteriori error estimatoreE1 under su

essive uniform re�nements with respe
t to the fun
tional (3.5); " = 10�2.

jJ(u)� J(uh)jDbublDresDjump

h
(from ub and zh), this fa
t suggests to use Dbubl as a 
orre
tion term by moving it a
rossto the left{hand side of the error representation formula (this viewpoint is dis
ussed inGiles & S�uli [15℄). In other words, the quantityJ
or(uh) = J(uh)� XT2Th (ub; L�zh)T ; (3.6)should give a better approximation to J(u) than J(uh). The error representation formulanow be
omes: J(u)� J
or = L(u� uh; z � zh):For this we 
an rewrite the a posteriori error bound in the following form:jJ(u)� J
orj � Dres +Djump + �E2(uh):We know already that this error bound is not sharp, due to the third term on the right{hand side. But, this time the term �E1(uh) is no longer negligible in 
omparison withDres + Djump alone. Indeed the quantity Dres + Djump under{estimates the true error,and so it 
annot be used as an a posteriori error bound in an adaptive algorithm.To show this, we have run the adaptive algorithm des
ribed in the previous se
tion,using the following values of the parameters in the adaptive algorithm:
ref = :5; pref = :1; TOL = 10�3: (3.7)The results are shown in Table 2, for " = 10�2 and " = 10�6. We observe that:



191. The error estimator eE1(uh) is very e�e
tive in predi
ting the error J(u) � J(uh),robustly with respe
t to ";2. The 
orre
ted quantity (3.6) gives, as expe
ted, a 
onsiderably better approxima-tion of the target quantity J(u);3. Dres+Djump under{estimates the true error, as indi
ated by the related e�e
tivityindex e�
or = Dres +DjumpjJ(u)� J
or(uh)j :We 
on
lude that the quantity (3.6) is best used as a more a

urate approximation ofJ(u) after the last step in an adaptive algorithm based on the error estimator eE1(uh).Nel jJ(u)� J(uh)j eE1(uh) e� jJ(u)� J
or(uh)j Dres +Djump e�
or32 1:095� 10�1 1:15� 10�1 1:05 1:1388� 10�3 8:05� 10�3 0:4369 5:667� 10�2 5:93� 10�2 1:046 2:192� 10�3 1:62� 10�3 0:27155 2:736� 10�2 2:935� 10�2 1:073 3:038� 10�3 1:05� 10�3 0:19337 1:332� 10�2 1:499� 10�2 1:125 3:07� 10�3 1:39� 10�3 0:18779 6:8� 10�3 7:45� 10�3 1:097 1:071� 10�3 4:09� 10�4 0:151680 3:543� 10�3 3:87� 10�3 1:092 6:017� 10�4 2:74� 10�4 0:144644 1:995� 10�3 2:144� 10�3 1:075 2:246� 10�4 7:55� 10�5 0:06Nel jJ(u)� J(uh)j eE1(uh) e� jJ(u)� J
or(uh)j Dres +Djump e�
or32 1:119� 10�1 1:194� 10�1 1:067 2:44� 10�3 5:12� 10�3 2:169 5:825� 10�2 6:2� 10�2 1:064 2:84� 10�3 9:07� 10�4 0:32166 2:835� 10�2 3:11� 10�2 1:099 2:94� 10�3 1:32� 10�4 0:045345 1:376� 10�2 1:64� 10�2 1:192 2:64� 10�3 8:1� 10�6 0:003763 6:99� 10�3 8:36� 10�3 1:193 1:3� 10�3 4:69� 10�5 0:0361595 3:28� 10�3 4:1� 10�3 1:25 8:41� 10�4 1:93� 10�5 0:0233296 1:648� 10�3 2:03� 10�3 1:234 3:98� 10�4 1:28� 10�5 0:0326552 7:514� 10�4 1:02� 10�3 1:357 2:92� 10�4 2:35� 10�5 0:08Table 2: Example 1. The error under su

essive re�nements with respe
t to the fun
-tional J(u) = R
 u dx; " = 10�2 (above) and " = 10�6 (below).Repeating the same experiment for the modi�ed target fun
tional J� we have ob-served that the terms in �E1(uh) are quantitatively 
omparable to Dres and Djump, andhen
e they 
annot be negle
ted.Example 2. We 
onsider the boundary value problem( �"�u+ ux + uy = f in 
 = (0; 1)2;u = 0 on �
; (3.8)



20Nel jJ(u)� J(uh)j eE1(uh) e�32 2:12� 10�2 9:17� 10�2 4:364 2:5� 10�3 8:7� 10�3 3:5146 1:7� 10�3 2:61� 10�3 1:5290 8:78� 10�4 1:24� 10�3 1:4616 2:1� 10�4 4:06� 10�4 1:91396 7:43� 10�5 1:24� 10�4 1:6
Nel jJ(u)� J(uh)j eE1(uh) e�32 2:58� 10�2 1:28� 10�1 4:9882 1:02� 10�3 1:13� 10�3 1:1188 3:77� 10�3 4:61� 10�3 1:2378 2:14� 10�4 6:52� 10�3 3:04708 5:08� 10�4 2:09� 10�3 4:11262 2:0� 10�4 7:04� 10�4 3:52176 1:19� 10�4 3:2� 10�4 2:73858 9:39� 10�5 2:82� 10�4 3Table 3: Example 2. The error under su

essive re�nements with respe
t to the fun
-tional J(u) = u((:49; :49)); " = 10�2 (left) and " = 10�6 (right).with f de�ned in su
h a way that the exa
t solution is given byu(x; y) = 2xy(1� e�(1�x)=")(1� e�(1�y)="):Noti
e that the fun
tion u is symmetri
 with respe
t to the line x = y.The obje
tive is the 
omputation of the solution at a given point P = P (x0; y0)with the aim to ensure that the error between u(x0; y0) and uh(x0; y0) does not ex
eeda given toleran
e TOL. We apply the algorithm des
ribed in Se
tion 2.1 using the sameparameter values as in (3.7).The su

essive meshes produ
ed by the algorithm to 
al
ulate the solution at P =(:49; :49) with " = 10�2 and " = 10�6 are depi
ted in Figure 6 and Figure 7, respe
tively.The meshes respe
t the symmetry of the problem. Moreover, we noti
e that initiallythe mesh is re�ned down{wind of P : the algorithm re
ognizes that some resolution of theboundary{layers is ne
essary in order to ensure any a

ura
y at the point of interest. Insubsequent re�nement the boundary layer zone is left un
hanged, the re�nements being
on
entrated upwind of the point, along the sub
hara
teristi
 
urve passing through P .The e�e
tivity of the a posteriori error estimator eE1(uh) is reported in Table 3: theestimator is robust with respe
t to the di�usion parameter.Example 3. We solve the boundary value problem with dis
ontinuous boundary
onditions8>>>><>>>>: �"�u+ (
os(�=3); sin(�=3))T � ru = 1 in 
 = (0; 1)2;u = 1 for� x � 1=2; y = 0;x = 0u = 0; otherwise: (3.9)The solution of this problem has an internal layer propagating a
ross 
 from the dis-
ontinuity in the boundary 
ondition at (0:5; 0) 2 �
. As for Example 1, we de�ned thetarget fun
tional to be the mean{
ow in the entire domain 
; that is J(u) = R
 u dx and�xed " = 10�6. The algorithm is again the one des
ribed in Se
tion 2.1, whi
h employs



21the 
omputable error estimator eE1(uh). The values for the parameters in the adaptivealgorithm are: 
ref = :5; pref = :05; TOL = 10�3:As we 
an see in Figure 8, �rst the mesh gets re�ned in the boundary layer, whi
h isthe major sour
e of error. Only when the boundary layer has been partially resolved, isthe mesh re�ned along the internal layer, showing that the indi
ator 
orre
tly identi�eslo
ations in the mesh that most a�e
t the a

ura
y of the approximation of the fun
-tional. The �nal mesh 
onsists of 7405 triangles, approximately 5 out of 7 of whi
h arelo
ated in the proximity of the boundary layer given by y > 7=8.Example 4. We 
onsider the mixed boundary{value problem for the 
onve
tion{di�usion equation spe
i�ed in Figure 4 (top left). Homogeneous Neumann boundary
ondition is imposed on �N = f(x; y) 2 � : y = 0 or x = 1g, while on �D = �
n�N aDiri
hlet boundary{
ondition is given.The obje
tive is to evaluate the mean{
ow over the Neumann boundary. That is,J(u) = Z�N u dx:The 
orresponding dual{problem is given by8><>: �"�z � a � rz = 0 in 
 = (0; 1)2z = 0 on �D"n � rz + n � az = 1 on �N : (3.10)This time, the a posteriori analysis pro
eeds as follows:J(u)� J(uh) = J(u� uh)= L(u� uh; z)= L(u� uh; z � zh) + XT2Th(ub; L�zh)T= XT2Th �(f � Luh; z � zh)T � ("nT � ruh; z � zh)�T\(
[�N )�+XT2T (ub; L�zh)T= XT2Th �(RT (uh); z � zh)T � 12("nT � [ruh℄; z � zh)�T\
�("nT � ruh; z � zh)�T\�N + (ub; L�zh)T�;with the new term related to the presen
e of the Neumann boundary.The results obtained by using the error estimator �E1, modi�ed to in
lude the Neu-mann term, are shown in Figure 4. We noti
e that the re�nement is mainly 
on
entrated



22along the internal layer in the primal solution, but some re�nement is performed wherefeatures of the dual solution are present. This should be 
ompared with the output ofmesh adaptation driven by norm error examined in the next se
tion.
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Figure 4: Example 4. Above: problem spe
i�
ations (left) and mesh after �ve re�ne-ments (right) for J(u) = R�N udx and " = 10�3. Below: The 
orresponding solution(left) and dual solution (right).
4 The bubble as error estimatorIn this se
tion we dis
uss a posteriori error estimation with respe
t to the energy normon shape regular triangulations.We 
onsider the following model problem with mixed Diri
hlet and Neumann bound-



23ary 
onditions: 8><>: �"�u+ a � ru = f in 
;u = 0 on �D;"n � ru = g on �N ; (4.1)with �
 = �D \ �N and �D [ �N = ;, assuming that �D is 
losed and has nonzeromeasure.Let Th, h > 0 be a family of triangulations of 
 su
h that the following 
onditionshold.1. Conformity: Any two triangles in Th either have a 
ommon edge or 
ommon vertex,or they do not interse
t at all;2. Consisten
y: Any triangle{edge lying on the boundary is 
ontained either in �Dor in �N ;3. Shape regularity: For any triangle, the ratio of the largest 
ir
ums
ribed 
ir
leto that of the smallest ins
ribed 
ir
le is bounded by a 
onstant whi
h does notdepend on the triangle and on h.As we have mentioned in Se
tion 2, the bubble part of the RFB �nite element solutionis given element{wise as the fun
tion ubjT 2 H10(T ) satisfying�"�ubjT + a � rubjT = (f � Luh)jT 8T 2 Th: (4.2)Thus, we 
an bound the L2{norm of the bubble ub using the following stability resultfor the 
onve
tion{di�usion equation.Let ! be a bounded Lips
hitz domain in R2 and let w 2 H10 (!) be su
h that( �"�w + a � rw = f in !;w = 0 on �!;where " > 0, f 2 L2(!) and a 2 (C1(!))2 satis�es( r � a � 0 in !;a has no 
losed integral 
urves in �!:Then, a

ording to [18℄, there exist a 
onstant C dependent only on ! and on a su
hthat "1=2jwj1;! + kwk0;! � Ckfk0;!: (4.3)The following result is mentioned by Russo in [21℄ where the 
ase of 
onstant 
oeÆ-
ients is treated.



24Proposition 4.1 Let ubjT 2 H10 (T ) be the solution of (4.2). If r � a � 0 and a has no
losed integral 
urves in T , thenkubk0;T � ChTkf � a � ruhk0;T ; (4.4)where C is independent of " and hT .Proof. Upon s
aling problem (4.2) by using the transformation A : (x; y)! hT (�; �)we dedu
e that the image of ubjT , say ûb 2 H10 (bT ), where bT = A(T ), satis�es� "hT�ûb(�; �) + a � rûb(�; �) = hT (f � a � ruh)(x(�; �); y(�; �)):To obtain (4.4), we s
ale the stability estimate (4.3) applied to ûb:kubk0;T � ChTkûbk0;bT � Ch2Tk(f � a � ruh) Æ A�1k0; bT � ChTkf � a � ruhk0;T ;where C depends on a and the shape regularity of T . 2This result permits us to repeat, for the RFB formulation with linear �nite elements,the a posteriori analysis 
arried out by Verf�urth [24℄ for the SUPG method.From the 
oer
ivity of L we have"1=2ju� uhj1;
 � supv2V nf0g L(u� uh; v)"1=2jvj1;
 :Now let v 2 V be su
h that "1=2jvj1;
 = 1. For any su
h v we have"1=2ju� uhj1;
 � L(u� uh; v � Phv) + L(u� uh; Phv) = I + II:Let Eh;N be the set of all edges 
ontained in the Neumann boundary �N . To bound the�rst term on the right{hand side we employ Green's formula element{wise:I = XT2Th�(f � Luh; v � Phv)T � 12("nT � [ruh℄; v � Phv)�T\
�+ XE2Eh;N(g � "n � ruh; v � Phv)E� XT2Th�kf � Luhk0;Tkv � Phvk0;T + 12k"nT � [ruh℄k0;�T\
kv � Phvk0;�T\
�+ XE2Eh;N kg � "n � ruhk0;Ekv � Phvk0;E� C XT2Th�h2T "�1kf � Luhk20;T + 12hT "knT � [ruh℄k20;�T\
�+ XE2Eh;N hT "�1kg � "n � ruhk20;E!1=2; (4.5)



25having made use of the Cau
hy{S
hwarz inequality, the interpolant approximation prop-erties (2.12) and (2.13) applied on T and the shape regularity of Th.To bound II, we noti
e that sin
e u is the solution of (2.1), uh solves (2.3) and�Phv = 0, we haveII = XT2Th(ub; L�Phv)T= �XT2Th(ub;a � rPhv)T� XT2Th kubk0;Tka � rPhvk0;T� C XT2Th hT "�1=2kf � a � ruhk0;Tkak1;T"1=2jPhvj1;T� C (XT2Th kak21;Th2T "�1kf � a � ruhk20;T)1=2 (4.6)thanks to (4.4), (2.14) and the shape regularity of Th.Thus, from (4.5) and (4.6) we 
on
lude that the following error bound holds:"1=2ju� uhj1;
 � C ES; (4.7)with the error estimator ES given byE2S := XT2Th�h2T "�1kf � Luhk20;T + 12hT "kn � [ruh℄k20;�T\
�+ XE2Eh;N kak21;ThT "�1kg � "n � ruhk20;E:Remark. The a posteriori error analysis in both the "1=2{weighted H1{seminormand the L2{norm error of the RFB method based on general �nite elements (i.e. notne
essarily linear) was 
arried out by Sangalli [22℄ under the hypothesis that the ve
tor�eld a has no 
losed integral 
urves on the whole domain 
. Sangalli's result, though,applies to the 
omponent of the RFB solution in the spa
efWh = fv 2 VRFB : L�v = 0 in ea
h element T 2 Thg ;instead of the pie
ewise polynomial 
omponent as is the 
ase of our bound.Under su
h a hypothesis on a and again restri
ting ourselves to the 
ase of linear�nite elements, we 
an repeat Sangalli's argument, this time applied to the polynomial
omponent of the solution by employing (4.4). In this way the error bound (4.7) follows,with the extra 
ontrol on the L2{norm error.
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xyFigure 5: Example 5. The �nal solution produ
ed by the algorithm based on the ESerror indi
ator.Example 5. We 
onsider again the boundary{value problem of Example 1 of theprevious se
tion. The out
ome of the implementation of the error estimator (4.7) in anadaptive algorithm is displayed in Table 4 (top). The quantities Si and Sb reported inthe table are the two terms in the error estimator whi
h are relevant to this problem,i.e. S2i = XT2Th h2T "�1kf � Luhk20;T ;S2b = 12 XT2Th hT "kn � [ruh℄k20;�T\
:In the 
omputation the marking parameters and the toleran
e were set to
ref = :3; pref = :1; TOL = 0:1:The �nal solution and mesh 
an be seen in Figure 5. The intermediate meshes are similarto those shown in Figure 10 below.We have repeated the same experiment but using as error indi
ator the L2{normof the bubble part of the RFB solution, whi
h we know to be a representation of theinternal residual. Thus, we de�ne the new indi
atorE2B = XT2Th kak21;T"�1kubk20;T :The results obtained using this error indi
ator are shown in Table 4 (bottom). Of
ourse, EB is reliable only as long as the internal residual term Si dominates the edge



27residual term Sb. From the table we observe that this may be true initially, but notasymptoti
ally. Indeed, it has been proved by Kunert and Verf�urth [17℄ and Carstensenand Verf�urth [7℄ that edge residuals dominate the error of the �nite element method inthe 
ase of low order �nite elements, by showing that the edge residuals yield globalupper and lo
al lower bounds on the error, both in the H1{ and the L2{norm.So EB 
annot alone be 
onsidered as a reliable a posteriori error bound. However,it gives a more e�e
tive estimate of the internal residual than Si; see the e�e
tivitiesreported in Table 4.Alternatively, EB may be used to de
ide wherever to lo
ally turn o� the stabilisationterm. This idea is developed in the next se
tion.Example 6. Our �nal example of this se
tion regards the mixed boundary valueproblem Example 4 in the previous se
tion. The problem data are spe
i�ed in Figure 4(above{left): a dis
ontinuity in the Diri
hlet boundary 
ondition at (x; y) = (0; 1=2) ispropagated (and smoothed) inside the domain and exits through the Neumann boundary.Figure 9 shows the su

essive re�nements obtained using the bubble error indi
atorEB, with the toleran
e set to TOL = 0:05. The solution on the �nal mesh is also shown.Re�nement is limited to the areas with relatively strong variations of ru. Figure 9should be 
ompared with Figure 4 whi
h reports the triangulation obtained by solvingthe same boundary{value problem but with the re�nement driven by a linear fun
tionalof the solution as target.5 hb{adaptivityWe have examined adaptive mesh re�nement algorithms for the stabilised Galerkin �niteelement formulation (2.3) derived from the RFB method. The stabilisation term in (2.3)depends on the bubble part of the solution ub. Using the assumption of lo
al 
onstant
oeÆ
ients, we have been able to redu
e the 
omplex task of the evaluation of su
h termto that of the evaluation of an average of the bubble. Further, the approximation (3.1)led to the even simpler task of the evaluation of the elemental diameter in the dire
tionof the 
onve
tive �eld. As a 
onsequen
e, in terms of 
omputational 
omplexity, theresulting method in the 
ase of pie
ewise linear elements is equivalent to the SDFEM,with the advantage that the stabilisation parameter is given by the method.This way of pro
eeding, of 
ourse, has some limitations. The approximation (3.1)may not be suÆ
iently a

urate if the 
oeÆ
ients in the p.d.e. 
annot be treated aspie
ewise 
onstant fun
tions or if the mesh is suÆ
iently re�ned. One may also wish to
ompute the bubbles more a

urately, for example to in
lude an edge{stabilisation ofthe sort dis
ussed in [5℄. Finally, it is 
lear that in parts of the 
omputational domainwhere the mesh has been suÆ
iently re�ned or where the solution is relatively 
at, thereis no reason for stabilising in the �rst pla
e.This justi�es the idea of in
luding in the mesh adaptation algorithms dis
ussed sofar (h{re�nement) an automati
 way of `turning o�' the stabilising term wherever thisis no more required (b{dere�nement).



28 Nel ku� uhk0;
 "1=2ju� uhj1;
 ES(uh) Si Sb e�l2 e�en32 0:29 0:9 10:4 10:4 0:44 35:9 11:569 0:19 0:83 7:13 7:1 0:58 36:3 8:6155 0:12 0:74 4:71 4:6 0:66 39:1 6:3329 0:06 0:59 2:99 2:9 0:69 45 5711 0:034 0:4 1:83 1:7 0:62 52:9 4:61501 0:018 0:24 1:1 0:1 0:5 58:8 4:63706 0:01 0:13 0:66 0:5 0:35 66:5 4:811272 0:005 0:07 0:38 0:3 0:22 72:7 5:06Nel ku� uhk0;
 "1=2ju� uhj1;
 EB(uh) e�l2 e�en Si Sb32 0:29 0:9 3:01 10:3 3:3 10:4 0:4469 0:19 0:83 2:03 10:3 2:4 7:1 0:58143 0:12 0:7 1:33 10:9 1:79 4:7 0:67310 0:068 0:59 0:83 12:2 1:4 3:03 0:69650 0:036 0:4 0:49 13:6 1:21 1:8 0:621358 0:019 0:24 0:27 14:1 1:12 1:04 0:513137 0:011 0:14 0:15 14:2 1:07 0:6 0:379367 0:0058 0:08 0:08 14:4 1:02 0:3 0:2428705 0:0032 0:04 0:04 14:6 0:98 0:19 0:15Table 4: Example 5. Error over su

essive re�nements in the L2 and "1=2{weightedH1{seminorm (energy norm); " = 10�2. ES indi
ator (above) and bubble indi
ator EB(below).To address the 
ru
ial issue of when and where to phase out the bubble stabilisationalongside the h{re�nement pro
ess, we may use the parti
ular residual term in the aposteriori error bound whi
h is related to the stabilising term itself.Let us 
onsider, in parti
ular, the "1=2{weighted H1{seminorm error bound ES in(4.7), dis
arding, for simpli
ity, any term related to Neumann boundary 
onditions.Looking ba
k to (4.6) we see that ES in fa
t 
onsists of three terms, Si, Sb and Eb, relatedto the internal residual, the boundary jump and the stabilising term, respe
tively. LetSTi , STb and ETb be the lo
al 
omponents of these terms, that is,STi = hT "�1=2kf � (�"�uh + a � ruh)k0;TSTb = �hT "2 �1=2 kn � [ruh℄k0;�T\
ETb = kak1;T"�1=2kubk0;T :We have seen that the term ETb is bounded by STi . Moreover, we expe
t the termETb to be relatively small wherever stabilisation is not 
ru
ial. Hen
e we use the relativemagnitude of ETb with respe
t to STi and STb as an indi
ator for b{dere�nement.



29Let �T = STi + STb ;be the lo
al error indi
ator and let �� be the maximum of �T after 
utting the upper 10%or 5% of the values. Finally, let 
ref 2 (0; 1) and 
b > 0 be some user{sele
ted thresholdparameters and TOL a given toleran
e.We propose the following algorithm, whi
h is a modi�
ation of the one de�ned inSe
tion 2.1:1. De�ne an initial mesh;2. Cal
ulate uh on the 
urrent mesh;3. Che
k the stopping 
riterion: IF ES � TOL=C then STOP;4. Apply the h{re�nement 
riterion: re�ne those elements whose error estimatorETS = STi + STb ex
eeds 
ref��;5. Apply the b{dere�nement 
riterion: IF ETb < 
b �STi + STb �, turn o� the stabilisa-tion term on T or its newly de�ned sons and GOTO 2.Sin
e we are not assuming any a priori knowledge about the behavior of the solution,the algorithm is started up with the stabilising term turned on everywhere. Later on,the fra
tion of elements sele
ted for b{dere�nement depends on the threshold parameter
b. Its `
orre
t' value should be expe
ted to be subje
t to the relative sharpness of thedi�erent 
omponents of the error bound. In both examples below the value 
b = 0:1produ
ed satisfa
tory results.Example 7. It is instru
tive to apply the hb{adaptive algorithm to Example 5above. We re
all that we are solving:( �"�u+ ux + uy = f in 
 = (0; 1)2;u = 0 in �
:The exa
t solution exhibits a boundary layer at the out
ow boundary x = 1 and y = 1(see Figure 5). Ideally, stabilisation should be employed only in the layer. The sequen
eof meshes produ
ed is shown in Figure 10: the shadowed elements are those wherestabilisation is turned on. We noti
e that stabilisation is soon removed away from thelayer and, when this is resolved, also inside it.The e�e
tiveness of the new algorithm 
an be appre
iated from the numbers displayedin Table 5: the outputs of the old algorithm are reprodu
ed on the left (
f. Table 4),while, on the right, we present those of the hb{re�nement algorithm. Similar a

ura
yis a
hieved with 
omparable meshes. The new algorithm uses more elements whileremoving the stabilisation from the layer. On the other hand, the �nal mesh, whi
h islayer{resolving, is slightly more e�e
tive sin
e the same a

ura
y is obtained with 32



30 Nel "1=2ju� uhj1;
 ES(uh) e�en32 0:9 10:4 11:569 0:83 7:13 8:6155 0:74 4:71 6:3329 0:59 2:99 5711 0:4 1:83 4:61501 0:24 1:1 4:63706 0:13 0:66 4:811272 0:07 0:38 5:06
Nel "1=2ju� uhj1;
 ES(uh) e�en32 0:9 10:4 11:569 0:83 7:13 8:6155 0:74 4:86 6:5332 0:59 3:15 5:3727 0:39 1:92 4:81523 0:22 1:16 5:23808 0:123 0:67 5:411240 0:067 0:38 5:7Table 5: Example 5. Error and ES indi
ator over su

essive re�nements in the "1=2{weighted H1{seminorm (energy norm); " = 10�2. We show the output of the h{re�nement algorithm (left) and hb{algorithm (right).elements less. Over all, if the parameter 
b is appropriately tuned, the numeri
al solutionis not 
orrupted and the algorithm is robust.Example 8. To 
on
lude, we test the hb{re�nement algorithm on a problem whosesolution exhibits an internal layer, namely Example 6 above. The sequen
e of meshre�nements is depi
ted in Figure 11. Again the shadowed elements are those wherestabilisation is present. To highlight more 
learly su
h elements, the �nal mesh is plotteda se
ond time at the bottom{right of the �gure with the stabilised elements lifted out ofthe xy{plane. The meshes are very similar to those obtained without b{dere�nement, 
fFigure 9: this may have to do with the fa
t that the layer in the solution of this problemis less severe then the one of Example 7 above.6 Con
lusionsWe have developed an h{adaptive algorithm that is driven by a residual{based a poste-riori error bound. The error is represented in terms of the residual of the �nite elementapproximation weighted by the solution of the dual problem. The numeri
al approxi-mation of linear fun
tionals of the solution as well as energy norm error estimation havebeen 
onsidered.We have shown that the elimination of the dual solution from the a posteriori bound,via strong stability estimates, leads to 
rude bounds. For this reason, the algorithmproposed is based on the so 
alled Type I error bounds, i.e. as few as possible stepsare performed in the bounding of the error. The downside of this approa
h is that thedual solution is not eliminated from the bound and needs to be approximated in orderto obtain a 
omputable error bound. For the error bound to be reliable, it is ne
essarythat the dual problem is solved a

urately. The approa
h adopted here has been to usea dual mesh with mesh size half of that of the primal mesh. On the examples 
onsidered



31the algorithm was reliable and e�e
tive.The a posteriori analysis for the energy norm error of the RFB method presentedhere is similar to that of the SUPG method performed by Verf�urth [24℄. The errorbound obtained 
onsists of three terms: the two 
lassi
al residual{based terms of theGalerkin formulation, i.e. internal residual and boundary jump of the gradient, plus athird term due to stati
 
ondensation of the bubbles. We have shown how the latter
an be bounded in terms of the internal residual using an appropriate stability resultapplied to the bubble part of the solution.We also introdu
ed a new hb{adaptive algorithm in whi
h, to avoid the evaluationof the bubble part of the solution where this is not 
ru
ial, the bubble stabilisation isphased out lo
ally depending on the relative magnitude of the terms in the a posteriorierror bound mentioned above.Referen
es[1℄ Be
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Figure 6: Example 2. Su

essive mesh re�nements, " = 10�2, P = (:49; :49)
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Figure 7: Example 2. Su

essive mesh re�nements, " = 10�6, P = (:49; :49)
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Figure 8: Example 3. Su

essive mesh re�nement and �nal solution for J(u) = R
 u and" = 10�6.



37

0 0.5 1
0

0.5

1

0

0.5

1

Figure 9: Example 6. Su

essive mesh re�nement using the error estimator EB, " = 10�3.
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Figure 10: Example 7. Su

essive mesh re�nement and bubble dere�nement, " = 10�2.
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Figure 11: Example 8. Su

essive mesh re�nement and bubble dere�nement, " = 10�3.


