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We derive a posteriori error bounds for the residual-free bubble (RFB)
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ered. The implementation of a reliable and efficient h adaptive algorithm
is discussed. Finally, we propose an hb-adaptive algorithm in which the lo-
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1 Introduction

The residual—free bubble (RFB) method is a two—level finite element method originally
introduced by Brezzi and Russo [4] and Franca and Russo [14] for the stable and accurate
computation of numerical solutions of convection—dominated diffusion problems.

Later on, the RFB method has been employed on a wide range of equations, such as
the diffusion equation with rough coefficients [23], the Stokes equation [13], the incom-
pressible Navier-Stokes equation [6] and the Helmoltz equation [12], showing that the
method is quite general.

The RFB method consists of enriching a classical finite element (FE) space of piece-
wise polynomial functions with the richest possible space of bubble functions with respect
to the given triangulation, i.e. the space of all H' functions with support contained in
the elements of the triangulation. Static condensation of the bubble leads to a modi-
fied (generalised Galerkin) formulation in terms of the original FE space. In the case
of convection—diffusion problems, this takes the form of a stabilised FE formulation in
which the stabilising term depends on the bubble part of the numerical solution. This
report is dedicated to the a posteriori error analysis of such RFB formulation.

In many scientific and engineering applications, the objective is to compute a few
output functional with a prescribed accuracy. For this reason, the a posteriori analysis
in terms of a given linear functional of the solution and its application in a reliable and
effective adaptive mesh refinement algorithm, is the main concern of this paper. The
algorithm proposed here is driven by a residual based a posteriori error bound depending
explicitly on the solution of a dual problem the data of which is the quantity of interest.
See the Type I error bounds described by Giles and Siili in [15] and introduced by Becker
and Rannacher in [1].

The a posteriori analysis of the energy-norm error of the RFB method has been
considered previously by Russo [21] and Sangalli [22]. The advantage of our approach
is that the error analysis is in terms of the piecewise polynomial part of the solution,
rather than in terms of the component of the RFB solution from an ad hoc and problem
dependent function space as, for instance, in [22].

The a posteriori error bound is composed of three terms: the two classical residual
based terms of the Galerkin formulation (internal residual and boundary jump of the
gradient), and a third term due to static condensation of the bubbles. We particularly
emphasize the relevance of the bubble term in our error estimator, extending the result
discussed in [21], concerning the equivalence of the L,—norm of the bubble with the
elemental Ly—norm of the residual, to non—constant coefficient problems.

In Section 5 we propose to use the relative magnitude of the terms in the error bound
to explore whether the bubble (stabilisation) can be turned off locally. This idea leads to
a new hb-adaptive algorithm in which the bubble stabilisation is automatically phased
out locally (b derefinement) while the mesh is refined (h refinement). We investigate
the robustness of the algorithm through numerical examples.

The paper is organized as follows. In Section 2 we present the a posteriori dual—
weighted error analysis in terms of linear functional evaluation. Section 3 is dedicated
to the implementation of an adaptive mesh refinement algorithm and to some numerical



examples. In Section 4 we present the a posteriori energy norm error analysis and show
that the L, norm of the bubble is bounded by the L, norm of the internal residual.
Finally, in Section 5 we define the hb-adaptive algorithm and test it on two numerical
examples characterized by a boundary layer and an internal layer, respectively.

2 A posteriori dual-weighted error bounds

Our aim is to combine the use of the RFB method for the numerical solution of bound-
ary value problems for convection—-dominated convection—diffusion equations with mesh
adaptation techniques.

Let us consider the convection diffusion operator

Lu = —cAu+a-Vu,

where ¢ is a positive constant and the velocity field @ € L>(Q)? is divergence-free in an
open polygonal domain 2 C R?. Given a function f € Ly(2), we consider the associated
homogeneous boundary value problem in variational form

find u € V such that
(2.1)

L(u,v) = (f,v) Yo eV,

where V = H, (), (-, ) denotes the inner product in Ly(£2) and the bilinear form L(-, )
is defined on V' x V as

E(w,v)za/Vw-Vvd:c+/(a-Vw)vd:c.
0 Q

It is often the case that the quantity of interest is not the solution u itself but a
linear functional u — J(u) of the solution (e.g. a point value, a flux, an average, etc.).
A posteriori bounds on the error J(u) — J(uy), where uy is the computed solution, can
be obtained through duality arguments. Here we assume that

J(“‘) = (U,g), g c LQ(w)v

leaving the treatment of other linear functionals such as fluxes through a Neumann
boundary to a later example.
We define the following dual problem:

find z € V such that
(2.2)

L(w,z) = J(w) Yw e V.

The (adjoint) differential operator L* involved in (2.2) can be recovered from (2.2)
through integration by parts; for the partial differential operator L under consideration,
it will be found to be defined by

L'z == —eAz—-a-Vz zeV.



We shall perform such an a posteriori error analysis for the RFB method seen as a
generalised Galerkin approximation for the polynomial part of the RFB solution. That
is, we assume that static condensation of the bubble part of the solution has been
performed resulting in a stabilised finite element approximation on the given piecewise
polynomial space V}, and triangulation 7; i.e., a formulation which we can write as

find uy, € V), such that
L(up,vy) + Z (up, L*vp)r = (f, o) Yo, € Vi, (2.3)

TET,

where uy, is defined element-wise as the unique solution in H{(T') of

Lyuy|r = (f — Lup) |7

Here, Ly : Hy(T) — H'(T) denotes the restriction of the operator L to T. See, e.g.,
[3] for details. Regarding the issue of the computation of the bubble wuy, see Section 3
where the implementation of the method is discussed.

The family of triangulations Ty, h > 0, is admissible (regular) if any two triangles in
Ty, either have a common edge or common vertex, or they do not intersect at all.

In the sequel, we denote by n; the unit outward normal vector to d7 defined on
the edges of any element T'. Further, we denote by ny - [Vu,] the jump of the normal
derivative of u, across the given edge.

We have
J(u) = J(up) = J(u—up)
= L(u—uy,2)
= L(u—up,z—2z)+ Z (up, L z1) 1
TeTH

= Z ((f — Lup, z — Zh)T - (8nT “Vup, z — Zh,)aTmQ) + Z (Ub; L*Zh,)T

TeTh TeT
1

= Z ((RT(U,h), zZ — Zh)T - 5(5 nr - [Vuh], zZ — Zh)aTﬁQ + (U,b, L*Zh)T>
TeTh

= > ((pr-wi)y + (07 97) g + (P wh) 1) (2.4)
TeTy,

having denoted the elemental residual terms by

pr = Rr(up),  pp = —genr [Vusl, pr = U,

and defined the weights
Wy = wh =2z — zp, w3 = L*z,.

Thus, the error representation formula (2.4) is a sum of three terms: the two classi-
cal residual based terms and a third one due to the stabilisation term in (2.3). This



identity is analogous to the error representation formulas for stabilised finite element ap-
proximations of first order hyperbolic problems presented by Houston et al. in [16]. In
particular, we will see later that, when the RFB method is equivalent to the stabilised
finite element method considered by the authors of [16] in the context of first—order
hyperbolic PDEs, then the identity (2.4) corresponds to their first error representation
formula for functionals.

We now discuss a mesh adaptation algorithm based on the a posteriori error repre-
sentation (2.4).
Given a positive tolerance TOL, the goal is the computation of u; € V}, such that

T (u) — J(up)| < TOL. (2.5)

From (2.4) we have that

I = )l = | Y (0 oh) e+ (503) g (P ) y) | = E1m). (26)
TeTH

Thus, the constraint (2.5) is satisfied as soon as
Er(uy) < TOL.

This will be our stopping criterion.

We now need to choose a refinement criterion, i.e. a marking strategy for the refine-
ment of the elements in the mesh, and establish a way to actually compute the error
representation formula (2.6).

The design of a refinement criterion is based on the localization of & (uy). Putting
the absolute value sign under the summation sign, we get

() = Ju)l <) (0 wi)y + (07 w7) ypog + (PR w0) | =D nr = Ex(un),
TeT TeTy,

and a decision as to which elements to refine can now be taken depending on the mag-
nitude of the local error indicator nr.

There are many possible refinement criterions; see [1] for a review. An optimal
strategy, known as error per cell strategy, would be to equilibrate the local error indicator
nr by refining or coarsening according to the criterion

TOL
Ne] ’

nr =~

where Ny is the number of elements in the subdivision.

A criterion that may be more suitable if coarsening is not considered, is the fized
fraction strategy in which the elements are ordered according to the size of nr and
then some portion of those with largest 7 is refined. We have chosen to use the fixed
fraction strategy proposed by Papastavrou and Verfiirth in their article dedicated to the



comparison of a posteriori error estimators for convection diffusion problems [19]. The
authors of [19] suggest to refine those elements for which

nr Z Crefﬁ;

for some user selected threshold parameter ¢, € (0,1); the reference value 7 is taken
to be the maximum of 5, after cutting the upper 10% or 5% of the values (in order
to preclude runaway values). That is, a second parameter p,, usually fixed to 0.1 or
0.05, is defined and 7 is obtained as the maximum of 7y after discarding the |prer/Nel|
elements with the largest ny.

Regarding the computation of (2.6), the difficulty is in the evaluation of the dual
solution. Here the dual solution z is computed using a new mesh Ty, different from 7.
Given the finite element space V}; corresponding to 7y and the RFB solution z; € Vy of
the dual problem (2.2), the approximation z;, is taken as the projection or the interpolant
of the computed zy from the primal finite element space.

We reconsider the error representation formula (2.6). By decomposing

w% = (Z - Zh)\T = (ZH - Zh,)\T + (Z - ZH)\T = (ET + wr,

we get
() = )l < D (o0 @r) g+ (65 O1) gy + (07 7))
TeTy
+ Z ((p1T=a)T)T + (p%’(DT)(‘)TﬁQ)
TeTy
= & (up) + & (up). (2.7)

In this way we have isolated in & (uy,) the uncomputable terms of the error bound.

2.1 Adaptive algorithm

Let us assume for a moment that & (uy), i.e. the term depending on the difference
z — zp, is such that & (uy) < & (uy). The validity of this hypothesis will be discussed
in Section 3 below. We then define the new local refinement indicator

ﬁT = ‘(p%‘a EDT)T + (p%‘; EDT)(')TQQ + (p;aw;)T‘ VT € Tn, (28)

and redefine 1 accordingly. Further, we define the new stopping criterion

~ TOL
g] (Uh) S 7, (29)
for some constant 1 < C' < 2.
We may then consider the following adaptive algorithm:



1. Define an initial mesh;

2. Calculate uj, and the dual solutions zy and z, on the current meshes;

3. Check the stopping criterion: IF & (u;,) < TOL/C' then STOP;

4. Apply the refinement criterion: refine those elements T" whose local error indicator

nr exceeds ¢ and GOTO 2.

2.2 Approximation of the dual solution

To ensure that the stopping criterion (2.9) is reliable, i.e. that the approximation error is
below the given tolerance, we need to control the size of & (u;). To this end, we observe
that the global residual

R(up) : v — (f,v) — L(up,v),

is a bounded linear functional in V. Hence, returning to (2.4), we see that we can write
the term & (uyp) as

L(u—wup,z—2) = L(u,z—2zp)— L(up, 2z — zn)
= (f.z2—2zu)o — L(un, z — zn)
= (R(un),z — 2m), (2.10)

where (-, ) is the duality pairing between V and its dual space V'. We now notice that
the right-hand side in (2.10) defines a new linear functional

N(v) = (R(un),v).

Thus, we can estimate the error terms in £;(uy,) by performing an a posteriori analysis
of the error N(z) — N(zy); for this purpose we consider the dual of the dual problem

find ¢t € V such that
(2.11)

L(t,v) = N(v) Yo e V.
Let ty € Vi be some approximation of £. We have
N(z) — N(zy) = N(z — zg)
= L(t,z — zy)
= £(f — t[.[, Z — ZH) + Z (Ltn, Zb)[(

KeTh

= ((t —tu R (2n)) g — %5 (t = tu,nx - [Vau))yrng + (Ltn, Zb)K)
KeTy

where, as before, the elemental residual is defined as Ry (zn) = (9 — L*2zy) k. Finally,
zp represents the bubble part of the RFB solution to the dual problem.



The new error representation just obtained is in terms of ¢ — ¢ty which is just as
uncomputable as z — zy. To avoid a possibly infinite sequence of duality arguments, we
bound ¢ — t5 in terms of a stability constant. The bound obtained in this way need not
be sharper then the one we would obtain if instead we were to bound z — zp directly as
was done by Eriksson ef al. in [10] and [11]. From the practical point of view, though,
the crudeness of the bound of £;(uy,) is not of particular concern since all we need & (uy,)
for is to generate an_adequate sequence of finite element approximations zy which we
can use to compute & (uy).

From now on, we assume that linear finite elements are used, so

Vi ={peCQ):plx P VK €Ty},

and assume that for any triangulation 7y and any element 7' € Ty the number of
neighbors of T" is bounded.

We choose ty = Pyt, where Py is the modification of the quasi interpolation oper-
ator of Clémant [9] analysed by Verfiirth [25]. With this choice we can take advantage
of explicit interpolation error bounds in terms of the H'-seminorm.

The definition of the modified Clémant’s quasi—interpolant requires the introduction
of the following notational conventions. Let £ and Ny be the sets of all the edges and
all the vertices in Ty, respectively. Further, let

En=EmaU&np, Nu = NpoUNup,

be the decompositions of £y and ANy into the subsets of internal and boundary edges
and vertices, respectively. For any S € Ty U &y, let N(S) be the set of its vertices; and
for any K € Ty, let £(K) be the set of all faces of K which are internal to 2. Finally,
for any vertex x € Ny, denote by w, the union of all triangles which have z as a vertex.

The following definition and bounds can be extended to H}. (2) for any ', C 99,
essentially by interpreting the nodes sitting on the Neumann boundary 0Q \ T'p as
internal.

Given a function u € Ly(w,) we associate to any x € Ny the value

1

|w$| J Wy

T LU

The quasi—interpolation operator Py : V — Vj is defined as follows:
Pyu = Z (1) oo,
,’I“,E./\fyﬁg
where ¢, € Vg is the finite element basis function associated with x. Notice that Py is
not a projection operator.
Lemma 2.1 ForallveV, all K € Ty and oll E € £ we have
|lv — Prol|o,x < Z CraHylv
zeN(K)

|v — Puvllo,r < Z CE;mHTI,/2|U
zEN(E)

L (2.12)

1wa s (2.13)
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where H, is the maximum length of an edge having x as an end point. The values of the
constants C ., and Cp., are given explicitly by Verfirth [25] in terms of the following
mesh—quality related quantities
K| E|Hg
K3g = max — Ky 1= max

Ky Ko €Ty | KeTy Beey |K|
z € N(K1)NN(Ka) r € N(K)NN(E)

Moreover, the following bound holds on the interpolation error in the H' seminorm:

|v — Ppo|i g < Z Cralv
zeN(K)

T,wes (214)

with the constant Cl., depending explicitly on k3, and on the shape regularity of K,
i.e. the ratio kx = Hy/pK between the diameter of K and the diameter of the largest
circle inscribed into K.

Proof. The bounds (2.12) and (2.13) are due to Verfiirth, see [25]. We prove (2.14)
by adapting Verfiirth’s proof of (2.12). To start with, (2.14) is to be shown for an
operator which does not need to satisfy the Dirichlet boundary conditions. That is, a
new operator Py, a modification of Py, is defined as

Pau=Y" (mu)pn.

zeNH

Fix an arbitrary K € Ky. Since 37, k) ¥z =1 on K, we have

V(= Pulose = || Y ((u—mu)Ves+ (Vu)p,)

2EN(K) 0,K

< Z |Valloo i llu = maullox + Z [ lloo, i [ Vel o,
TEN(K) TEN (K)

< Y glumlost 3 [Vullox (215)
zeN (K) 2eN(K)

We have now reached the point at which this part of the proof follows that of (2.12)
given in [25].
The following result is Lemma 4.3 in [25]: for any 2 € Ny and u € H'(w,) we have

lu — mpu)|ow, < CoHy||Vullow,, (2.16)

where C,, is an explicit constant depending on the ratio

H,

Rix = 3
Px

and p, is the minimum length of an edge having x as an end point (in particular, if w,
is convex, then C, = 2/m).
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Applying (2.16) in (2.15) we obtain the desired result for Py.

The proof is completed by bounding the norm of the difference between V Pyu and
V Pyu:

IV(Pyu— Pgu)llox =

Z T2 Vo,

mEN(K)ﬁNH,D

0,K

< Y mul Ve
zeN(K)NNu b
V12K
< Y g malledx

:EE./\/’(K)Q./\/’H,D

We are again within the framework of the proof of (2.12) given in [25]. This time, the
proof is completed by using the following result (equation (5.6) in [25]):

K
WWH%%K<§<K-> (lu— meullo, + Hal Fulo,)
€T

(here K, represents any triangle K with the following properties: x is a vertex of K and
K shares an entire edge with 02), and applying again (2.16). O

We are now ready to obtain a computable bound on |[N(z) — N(zy)|. By applying
the Cauchy Schwarz inequality and the interpolation error bounds (2.12), (2.13) and
(2.14) after noting that LPyt = a - V Pyt, we have

IN(2) = N(zu)| < Z (HRK(ZH)HO,KHt—PHt||0,K

KeTy

1
+ D Isenw - [Vzullosllt = Putllor +lzlo,xlla - VPHtHo,K)

EeE(K)

< Z <|RK ZH ||0K Z CK:I: a}‘t|]7Wz

KeTy zeN(K)

+ Z <||—5n;( VZH ||[]F‘ Z OF‘z )

Ec&(K TzeN(E)

HMR«WWwOWK+ ZZO@WWJ)
zeN(K)

The solution t; has now been removed from the bound, but ¢ is still present. We can
eliminate ¢ as follows, at the expense of breaking up the sum over the elements of the
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triangulation. Let

CK - max (CK;:EK"],CL‘)’
zeN(K)
Csx = max max (C’E.Tm}ﬂ),
EeE(K)zeN(E) 7
C'. = 14+ max O .
K zeN(K) Kz

Then, since the number of neighbors of any 7" € T} is bounded, we get
[N (2) = N(zn)]

17“').77 )

1
< Z((OKHKHRK(zH)no,K+209KH;!2||5mK-[Vszo,am) > It

KeTny 2EN(K)

+COkllallsrllzsllox D t|1,wz)

zeN(K)

<3< Z (CKHKHRK(ZH)HO,K + OaKH;(/QHE’nK [Vzulllo.orkne

KeTy

1,0-

) 1/2
+c;(||a||io,,(||zb||3,,()) t

To quantify |t|; o, we reconsider the problem (2.11) in strong form with forcing term
R(up) € H '(Q):

(2.17)

Lt = R(up) inQ,
t=20 on 0.

Multiplying the first equation in (2.17) by ¢ and integrating by parts over 2, we get

R(up),v
R g = (R(t).2) < [t sup Si):?)
veV\{0} ‘7)|]7Q

Hence, we have the stability estimate
[the < e R(ua)l-10,
and we conclude that

IN(2) = N(zu)]

- 3( ) (CKHKHKIRK(ZH)HU,K + Cox H* |nic - [Vzulllo.oxnn

KeTy

1/2
2
+5]Cll(||a||§c,l(||zb”3,i(>) [ R (un)]| 1,0

= Ey(up). (2.18)
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In this way, we have obtained the following computable error bound:
T (1) — J(up)| < & (up) + Ex(uy) (2.19)

Two remarks are in order. First, the number ||R(up)||—1.q is not directly computable
from wuy,. We can still compute it, but at the expense of the solution of an auxiliary
problem; see the next section for details. Finally, the derivation of sharp and computable
a posteriori error bounds is a nontrivial task. Our bound is no exception in this respect:
by bounding z — zy we achieved computability and reliability of the bound, but we
anticipate a loss in terms of sharpness.

In the next section, we investigate the sharpness of the error bound (2.19), and study
the reliability and effectivity of the alternative error estimator & (uy).

3 Implementation

We experiment with the a posterior: error bound described in the previous section by
considering linear finite elements on triangles for both the primal and dual computations.
We have chosen to define 7y as the triangulation obtained by subdividing every triangle
in 7y, into the four triangles obtained by bisection of its edges. A survey of other possible
choices can be found, for example, in [1]; see also the comments in the review article by
Giles and Siili [15].

Let V, C V = Hy(€) denote the usual space of linear finite elements

Vh:{QOGC(Q)ZQD‘TE,P] VTE’FL},

and similarly for V.

To implement the RFB formulation (2.3) over V,, we need to calculate the bubble
part of the solution wu,. As explained, for example, in [4] and [3], this is given on every
element T € Ty, as the solution in H}(T) of the bubble equation

Lyuy|lr = (f — Luy) |7,

where Ly : Hy(T) — H'(T) denotes the restriction of the operator L to T.

In what follows we assume that, in the evaluation of the bubble term of the RFB
formulation (2.3), the velocity field a and the forcing term f can be treated as piecewise
constant functions on 7},

As proved in [4], these assumptions ensure that the RFB method is equivalent to
SDFEM. Indeed, in this case, the bubble part of the solution of the RFB formulation is
given by

Up|T = (f —a- Vuh)\TbTa
where br is the solution of the local problem

—eAbr+a-Vbr=1 inT,
bT =0 on OT.
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(In other words, the bubble space is one dimensional on every element). Thus, for any
T € Ty, the static condensation of the bubble results in the classical streamline diffusion
stabilisation term, since

(“‘ba L*Uh)T - (L;] (f - L?llh)|’r, 'I)h),r
= (fa'vuh)T(a'Vvh)T/dem
JT

= fTb+|dx/(a -Vup, — f)(a-Vu,) de
T

=71r(a-Vu, — f,a-Vo,)r,

where the SD—parameter 71 is defined via the bubble by as

.
T = —— br dx.
VA

Moreover, assuming that ¢ < |a|, i.e. that the equation is convection—dominated,
we can approximate the integral average of the bubble by by integrating, instead, the
solution by of the reduced problem:

a-VZT:I in T,
br =0 on 0T,

where 71" denotes the inflow boundary of T'. Further, let us consider the approximation

~ 1 /~ ha
TR T = — | bpdr = ——, 3.1
AT ), e = g (3.1)

where hgq, is the length of the longest segment contained in 7" in the direction of a.
The third term in the a posteriori error estimator & (u;) defined in (2.7) can be
approximated in exactly the same way, since
(prswp)r = (up, L'20)r = 70(f — @ Vup, —a - Va)r
~ ’FT‘TKG . Vuh — f)‘T(a . Vzh)‘T.

We notice that the first line above coincides with the third term in the first error estima-
tor for functionals defined in [16]. That is, in the special case in which the RFB method
coincides with the streamline diffusion method, our estimator & (uy,) is identical to that
for the streamline—diffusion method.

Regarding the computation of | R(uy)|| 1o in E(uy) (see (2.18)), we may proceed as
follows. We define the auxiliary problem

{ —A¢ = R(up) inQ,

6=0 on ). (3.2)
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By definition of the norm of the dual space V', we have

(R(up), )
[R(un)l|-10 = e [Vélloao
— supM
vev [[Vllog
— supw
vev [|VYlfon
= Voo

Thus, we have reduced the problem of the computation of ||R(us)||-1,o to that of the
computation of ||V¢||oq, where ¢ is the solution of (3.2). This will be done approxi-
mately, by considering (3.2) in weak form and solving it by a finite element method on
the triangulation 7,. That is, we will solve the problem

find ¢, € V), such that
{ e (3.3)

(Von, Vop) = (R(up),vn) = (f,vn) — L(un, vp) Vo, € Vy,

and compute ||[Vop|o.o-

At every iteration of the adaptive algorithm we need to refine the triangulation,
basing the refinement on the marking strategy described in the previous section. In
our numerical computations we utilize the MATLAB pde toolbox refinement routine
refinemesh, which performs red refinement on the marked elements. That is, every
element marked for refinement is subdivided into four triangles (sons) by connecting the
mid—points of the edges. To avoid the creation of hanging—nodes, and hence to comply
with the constraint of admissibility of the triangulations given before, the neighbors of
the marked elements are subjected to blue refinement following the longest edge bisection
scheme [20], as shown in Figure 1. This technique is not ideal, since it involves refinement
of distant neighbours, but it has the advantage of ensuring the shape regularity of the
triangulation.

Example 1. We consider the boundary value problem

—eAu+u, +u, =f inQ=(0,1)%
{ ! (0.1) (3.4)

u=0 in 99,
with f defined in such a way that the exact solution is given by
u(z,y) = 2sin(z) y2(1 — e /) (1 — o (- 0)/5),

Our aim is the computation of the mean—flow over €2, i.e.

ﬂw:Aum, (3.5)
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Figure 1: Example of red refinement (dot—dashed edges) and subsequent refinement of
the neighbors (dashed edges). The rule for blue refinement is that the longest edge is
always bisected.

with the aim to ensure that the error does not exceed a given tolerance TOL.

To start with, we compare the true error |J(u) — J(uy)| and the a posteriori error
bound (2.19) on successively refined uniform meshes. We recall that the r.h.s. of (2.19)
consists of two terms: gl(uh) which is related to the difference zy — z;,, and & (uy) which
is an upper bound for & (u) which refers to z — zj.

The results for ¢ = 1072 are shown in Figure 2(a): the log log plot makes it apparent
that &(uy) is over—estimating the true error. On the other hand, the term & (uy) alone
agrees remarkably well with the error, see also the effectivity indices reported in Table 1.

In order to conclude that a(uh) can be used in an adaptive algorithm as an a
posteriori error bound, we still need to ascertain its reliability, which depends on whether
or not & (uy), i.e. the omitted term in (2.7), is of higher order.

We can compare & (uy) and & (up) for a slightly different problem, in which the
target linear functional is chosen so that the dual solution z is known. This is achieved
by performing the change of variables (z,y) — (1 — z,1 — y) in the primal problem.
Thus we define

2(z,y) = 2sin(1 — 2)(1 — )3 (1 — e */%) (1 — e ¥/*),

and fix the new target functional J* consequently. The results obtained for this new
problem are shown in Figure 2(b). The bound &;(uy) is still over—estimating the error
in approximately the same way as before, while we observe that (except on the coarsest
grid) the sharper bound & (uy) is indeed of higher order than the true error.

We conclude that the adaptive algorithm described in Section 2.1, which uses & (uy)
as error estimator, is, for this problem at least, reliable and efficient.

We can further investigate the relative magnitudes of the terms in the a posterior:
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Figure 2: Example 1. The error and the a posteriori error bounds under successive
uniform refinements with respect to the functional J(-) (a) and J*(-) (b), with e = 1072,

error bound by considering separately the three terms comprising g'l(uh). Define

> (Re(un), zu = z1)y

DI‘GS

Djump

Dbub]

T€ETh

1
5 Z (en - [Vupl, 2y — 21) 7

TeTh

Z (11,[,, L*Zh)T ‘

TeT,

Y

Y

The behavior of these three terms can be appreciated from the numbers in Table 1 and

h |J(71) - J(?Lh)‘ (‘:] (U,h) eﬁ Dbubl Dres Djump (‘:2 (“h)
/4] 1.09x 107" [ 1.15x 107" | 1.05 | 1.08 x 10" [ 7.5x 103 [ 5.8 x 10~ * | 8.88
1/8 | 576 x 1072 | 5.91x 102 |1.025| 58 x 1072 [ 1.4x 103 [ 25 x 10 * | 4.69
1/16] 2.93 x 1072 | 297 x 102 | 1.01 | 295 x 1072 | 3.1 x 107" | 9.0 x 107° | 2.187
1/32] 147 x10 2 | 1.48x 10 2 [1.003] 1.48 x 10 2| 7.7 x 10 ° | 2.6 x 10 ° | 0.917
1/64] 739 x10 % | 74x10°° [1.001] 739 x 10 3 | 1.9 x 10 7 | 6.3 x 10 ° | 0.342

Table 1: Example 1. Convergence of |J(u) — J(uy)| and & (u,) and its components, with
e=10"2

the graphs in Figure 3. We observe that D, and Dj,m, are of higher order and the
true error is well approximated by the term Dy, alone. Given that Dy, is computable
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107 —— [ (u) = J(up)]
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107}
107}
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107}
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Figure 3: Example 1. The error and the three terms of the a posteriori error estimator
&1 under successive uniform refinements with respect to the functional (3.5); ¢ = 1072

(from u,, and zp,), this fact suggests to use Dy,p as a correction term by moving it across
to the left—hand side of the error representation formula (this viewpoint is discussed in
Giles & Siili [15]). In other words, the quantity

er(uh) = J(uh) — Z (ub, L*Zh,)T; (36)

T€ETh

should give a better approximation to J(u) than J(uy). The error representation formula
now becomes:

J(u) = Jeor = L(u — up, 2z — zp)-
For this we can rewrite the a posteriori error bound in the following form:
|J(“) - Jcor| < Dres + Djump + g? (“h)-

We know already that this error bound is not sharp, due to the third term on the right
hand side. But, this time the term & (uy) is no longer negligible in comparison with
D,es + Djymp alone. Indeed the quantity Dyes + Djump under—estimates the true error,
and so it cannot be used as an a posteriori error bound in an adaptive algorithm.

To show this, we have run the adaptive algorithm described in the previous section,
using the following values of the parameters in the adaptive algorithm:

Cref = D, Dref = -1, TOL = 107. (3.7)

The results are shown in Table 2, for ¢ = 1072 and £ = 1075, We observe that:
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1. The error estimator & (uy) is very effective in predicting the error J(u) — J(uy,),
robustly with respect to ¢;

2. The corrected quantity (3.6) gives, as expected, a considerably better approxima-
tion of the target quantity .J(u);

3. Dies + Djump under estimates the true error, as indicated by the related effectivity
index

Dres + Djump
S () = Jeor (un)|

Qﬁ cor —

We conclude that the quantity (3.6) is best used as a more accurate approximation of
J(u) after the last step in an adaptive algorithm based on the error estimator &;(up).

Ne | |J(u) — J(up)| Er(up) eff [|J(u) — Jeor(un)| | Dres + Diump | effcor
32 1.095 x 10! 1.15 x 10! 1.05 1.1388 x 1072 8.05 x 1073 | 0.43
69 | 5.667 x 102 5.93 x 1072 | 1.046 2.192 x 1073 1.62 x 1072 | 0.27
155 | 2.736 x 1072 | 2.935 x 1072 | 1.073 3.038 x 1073 1.05x 1073 | 0.19
337 | 1.332x 1072 | 1.499 x 1072 | 1.125 3.07 x 1073 1.39 x 107% | 0.18
779 6.8 x 107° 7.45 % 107% [ 1.097 | 1.071 x 107° 4.09 x 107* | 0.15
1680 | 3.543 x 1073 | 3.87 x 107% | 1.092 6.017 x 1074 2.74x 1071 | 0.14
4644 | 1.995x 1072 | 2.144 x 1073 | 1.075 2.246 x 10~* 7.55 x 107° | 0.06

Ne | |J(u) — J(up)| Er(up) eff ||J(u) — Jeor(un)|| Dres + Djump | €ffeor
32| 1.119x 1071 | 1.194 x 1071 | 1.067 2.44 x 1073 5.12 x 1073 2.1
69 | 5.825 x 1072 6.2 x 1072 | 1.064 2.84 x 1073 9.07 x 10~* | 0.32

166 | 2.835 x 102 3.11 x 1072 | 1.099 2.94 x 1073 1.32 x 107* | 0.045

345 | 1.376 x 102 1.64 x 1072 | 1.192 2.64 x 1073 8.1 x10°% |0.003

763 | 6.99 x 1073 8.36 x 1073 | 1.193 1.3 x 1073 4.69 x 107° | 0.036

1595 3.28 x 1073 4.1 %1073 1.25 8.41 x 101 1.93 x 107 | 0.023
3296 | 1.648 x 1072 | 2.03 x 1077 | 1.234 3.98 x 1074 1.28 x 107" | 0.032
6552 | 7.514 x 107* | 1.02 x 1073 | 1.357 2.92 x 1074 2.35 x 107° | 0.08

Table 2: Example 1. The error under successive refinements with respect to the func-
tional J(u) = [, udx; ¢ =107 (above) and € = 107 (below).

Repeating the same experiment for the modified target functional J* we have ob-
served that the terms in & (uy) are quantitatively comparable to D,es and Djymp, and
hence they cannot be neglected.

Example 2. We consider the boundary value problem

—eAu+u, +u, =f inQ=(0,1)%
! 0.1) (3.8)
u=20 on 02,
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Ne | [ J(u) — J(up)| Er(up) eff || Nea | |J(u) — J(up) E(up) eff
32 212x1072 |9.17x107%2]4.3 32 258x102% [1.28x10 '] 4.98
64| 2.5x1073 8.7x 1073 | 3.5 82 1.02x10°% [1.13x103%] 1.1

146 1.7 x 1073 261 x103 [ 15| 188 | 377 x103 [461x103| 1.2

200 | 8.78x107* |1.24x103|14]|] 378 | 214 x10~* |6.52x 1073 | 3.04

616 2.1 x10~* 406 x107* 1.9 708 | 5.08x107% [2.09x1072]| 4.1

1396 | 743 x10° [1.24x10*[16]/ 1262 20x10* |7.04x10*]| 3.5
2176 | 1.19x107* | 3.2x107* | 2.7
3858 | 9.39x10° |282x10*| 3

Table 3: Example 2. The error under successive refinements with respect to the func-
tional J(u) = u((.49,.49)); ¢ = 1072 (left) and € = 10° (right).

with f defined in such a way that the exact solution is given by
u(z,y) = 2ay(1 — e"-D/2) (1 — e~ (1-0)/e),

Notice that the function u is symmetric with respect to the line x = y.

The objective is the computation of the solution at a given point P = P(xg, o)
with the aim to ensure that the error between wu(zg, yo) and uy (g, yo) does not exceed
a given tolerance TOL. We apply the algorithm described in Section 2.1 using the same
parameter values as in (3.7).

The successive meshes produced by the algorithm to calculate the solution at P =
(.49,.49) with e = 1072 and £ = 1079 are depicted in Figure 6 and Figure 7, respectively.

The meshes respect the symmetry of the problem. Moreover, we notice that initially
the mesh is refined down—wind of P: the algorithm recognizes that some resolution of the
boundary—layers is necessary in order to ensure any accuracy at the point of interest. In
subsequent refinement the boundary layer zone is left unchanged, the refinements being
concentrated upwind of the point, along the subcharacteristic curve passing through P.

The effectivity of the a posteriori error estimator & (uy) is reported in Table 3: the
estimator is robust with respect to the diffusion parameter.

Example 3. We solve the boundary value problem with discontinuous boundary
conditions

—eAu + (cos(m/3),sin(x/3)) - Vu=1 inQ=(0,1)2,

< =
u=1 for{ ma:__ol/?, y=0, (3.9)

u =0, otherwise.

The solution of this problem has an internal layer propagating across 2 from the dis-
continuity in the boundary condition at (0.5,0) € 092. As for Example 1, we defined the
target functional to be the mean flow in the entire domain Q; that is .J(u) = [, u da and
fixed £ = 107%. The algorithm is again the one described in Section 2.1, which employs
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the computable error estimator g'l(uh). The values for the parameters in the adaptive
algorithm are:

Cref = .D, Pref = .05, TOL = 10°.

As we can see in Figure 8, first the mesh gets refined in the boundary layer, which is
the major source of error. Only when the boundary layer has been partially resolved, is
the mesh refined along the internal layer, showing that the indicator correctly identifies
locations in the mesh that most affect the accuracy of the approximation of the func-
tional. The final mesh consists of 7405 triangles, approximately 5 out of 7 of which are
located in the proximity of the boundary layer given by y > 7/8.

Example 4. We consider the mixed boundary—value problem for the convection—
diffusion equation specified in Figure 4 (top left). Homogeneous Neumann boundary
condition is imposed on I'y = {(z,y) € I' : y = 0orz = 1}, while on I', = 0OQ\I'y a
Dirichlet boundary condition is given.

The objective is to evaluate the mean—flow over the Neumann boundary. That is,

J(u)—/ udz.
Jry

The corresponding dual problem is given by
—eAz—a-Vz=0 inQ=(0,1)?
z2=0 onl'p (3.10)
en-Vz4+n-az=1 only.
This time, the a posteriori analysis proceeds as follows:

J(u) — J(up) = J(u—up)

= L(u—uy,2)
= L(u—up,z—2z)+ Z (wp, L*zp) 1
TeTy

= Z ((f = Lun, 2 — 2p)r — (Enr - Vug, 2 — 21)orn@ury))

TeTy

+ Z(Ub, L*Zh)T
TeT
1

= > ((Brlun),z = z)r = 5(Eemr - [Vun), 2 = 20)arno

TeTy

—(eng - Vup, 2z — zn)orary + (U, L*Zh,)T>a

with the new term related to the presence of the Neumann boundary.
The results obtained by using the error estimator &£, modified to include the Neu-
mann term, are shown in Figure 4. We notice that the refinement is mainly concentrated
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along the internal layer in the primal solution, but some refinement is performed where
features of the dual solution are present. This should be compared with the output of
mesh adaptation driven by norm error examined in the next section.

u=0

1 1
o
I £=1073

a=(y, -X o
0.5 =) I, 0.5

-]

- =0
1
5
0 0
0 u=0 1 0 0.2 0.4 0.6 0.8 1

X

Figure 4: Example 4. Above: problem specifications (left) and mesh after five refine-
ments (right) for J(u) = fFN udr and ¢ = 107*. Below: The corresponding solution

(left) and dual solution (right).

4 The bubble as error estimator

In this section we discuss a posteriori error estimation with respect to the energy norm
on shape regular triangulations.

We consider the following model problem with mixed Dirichlet and Neumann bound-
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ary conditions:

—<cAu+a-Vu=f inQ,
u=20 onI'p, (4.1)
en-Vu=g on Iy,
with 9Q = T'p N Ty and I'p U Ty = 0, assuming that I'p is closed and has nonzero
measure.

Let 7,, h > 0 be a family of triangulations of {2 such that the following conditions
hold.

1. Conformity: Any two triangles in 7, either have a common edge or common vertex,
or they do not intersect at all;

2. Consistency: Any triangle edge lying on the boundary is contained either in I'j
orin I'y;

3. Shape regularity: For any triangle, the ratio of the largest circumscribed circle
to that of the smallest inscribed circle is bounded by a constant which does not
depend on the triangle and on h.

As we have mentioned in Section 2, the bubble part of the RFB finite element solution
is given element wise as the function u,|; € Hy(T) satisfying

—eAup|r + a - Vup|r = (f — Lup)|r VT € Tp. (4.2)

Thus, we can bound the Ls—norm of the bubble u, using the following stability result
for the convection—diffusion equation.
Let w be a bounded Lipschitz domain in R? and let w € Hj(w) be such that

—Aw+a-Vw=f inuw,
w=0 on Ow,

where e > 0, f € Ly(w) and a € (C'(w))” satisfies

a has no closed integral curves in w.

{V-aSO inw,

Then, according to [18], there exist a constant C' dependent only on w and on a such
that

e wlw + lwllow < Cll fllow- (4.3)

The following result is mentioned by Russo in [21] where the case of constant coeffi-
cients is treated.
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Proposition 4.1 Let uy|r € Hy(T) be the solution of (4.2). If V-a < 0 and a has no
closed integral curves in T, then

[ullo,r < Chellf —a - Vuylor, (4.4)

where C' is independent of € and hyp.

Proof. Upon scaling problem (4.2) by using the transformation A : (z,y) — hy(&,n)
we deduce that the image of uy|p, say @, € Hy(T), where T = A(T), satisfies

i Nin(En) + - V(€ n) = he(f — @ Vo) (w6 ), y (& 7).

To obtain (4.4), we scale the stability estimate (4.3) applied to ,:
lupllor < Chelli|ly 7 < CHE|(f = a - Vuy) o A7y 7 < Chell f = @ - Vunlo,

where C' depends on a and the shape regularity of 7. O

This result permits us to repeat, for the RFB formulation with linear finite elements,
the a posteriori analysis carried out by Verfiirth [24] for the SUPG method.
From the coercivity of £ we have

L(u— up, v
51/2\11,—uh|179 < sup %
veV\{o} €& \”|1,Q

Now let v € V' be such that !/2|v|, o = 1. For any such v we have
61/2|u —upl1o < L(u—up,v— Py) + L(u—up, Poo) =1+ 11.

Let &, n be the set of all edges contained in the Neumann boundary I'y. To bound the
first term on the right hand side we employ Green’s formula element wise:

I = Z ((f — Lup,v — Pyv), — %(5 ny - [Vuy],v — th)aTmQ>

T€ETh

+ Z (9 —en-Vup,v— Po)g

EEgh’N
1
< Z |f = Lunllor[lv — Pyollor + §||6 ny - [Vup]lloornallv — Prollo.orne
TET,
+ Z ||g —E&n - V’U,hHo’F;H?) — P]ﬂ)”o,p)
EEgh’N
_ 1
: C( S (#8715 - unlly + ghaelime - (Funll o
TET,
1/2
+ Y hre Mg —en- Vuhllé,E) : (4.5)
EEgh’N
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having made use of the Cauchy Schwarz inequality, the interpolant approximation prop-
erties (2.12) and (2.13) applied on T and the shape regularity of 7.

To bound 71, we notice that since u is the solution of (2.1), uy solves (2.3) and
AP,v = 0, we have

IT = ) (uy, L*Pyo)r

TET
= — Z (up, @ - VPyv)r

TET
< Y lwllorlla - VPwlor

TET

< O hre Pf —a Vunlor|alore Puolyr

TET

1/2
< C { > llall2rhie Mf —a- V“h”gm} (4.6)
TET

thanks to (4.4), (2.14) and the shape regularity of 7y,.
Thus, from (4.5) and (4.6) we conclude that the following error bound holds:

V2 u — upli 0 < C&s, (4.7)

with the error estimator £g given by

_ 1
& = Y (M lf - Ll + bl (Furll o)
TeTy

+ Y llalikghre g —en- V| .
EEgh’N

Remark. The a posteriori error analysis in both the £!/?>~weighted H'-seminorm
and the Lo—norm error of the RFB method based on general finite elements (i.e. not
necessarily linear) was carried out by Sangalli [22] under the hypothesis that the vector
field @ has no closed integral curves on the whole domain €2. Sangalli’s result, though,
applies to the component of the RFB solution in the space

W, = {v € Vgpp : L'v =0 in each element T' € Ty},

instead of the piecewise polynomial component as is the case of our bound.

Under such a hypothesis on a and again restricting ourselves to the case of linear
finite elements, we can repeat Sangalli’s argument, this time applied to the polynomial
component of the solution by employing (4.4). In this way the error bound (4.7) follows,
with the extra control on the Ly norm error.
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Figure 5: Example 5. The final solution produced by the algorithm based on the &g
error indicator.

Example 5. We consider again the boundary—value problem of Example 1 of the
previous section. The outcome of the implementation of the error estimator (4.7) in an
adaptive algorithm is displayed in Table 4 (top). The quantities S; and Sy reported in
the table are the two terms in the error estimator which are relevant to this problem,
ie.

Si = D e 'IIf = Lualigr,

TeT,

1
S = 3 Z hre||n - [vuh]Hg,(’)TﬁQ'

TET,

In the computation the marking parameters and the tolerance were set to
Cref = -3, Pref = .1, TOL = 0.1.

The final solution and mesh can be seen in Figure 5. The intermediate meshes are similar
to those shown in Figure 10 below.

We have repeated the same experiment but using as error indicator the Ls—norm
of the bubble part of the RFB solution, which we know to be a representation of the
internal residual. Thus, we define the new indicator

€h=_ laliae bl

TETh

The results obtained using this error indicator are shown in Table 4 (bottom). Of
course, £p is reliable only as long as the internal residual term S; dominates the edge
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residual term S,. From the table we observe that this may be true initially, but not
asymptotically. Indeed, it has been proved by Kunert and Verfiirth [17] and Carstensen
and Verfiirth [7] that edge residuals dominate the error of the finite element method in
the case of low order finite elements, by showing that the edge residuals yield global
upper and local lower bounds on the error, both in the H'- and the L, norm.

So £p cannot alone be considered as a reliable a posteriori error bound. However,
it gives a more effective estimate of the internal residual than S;; see the effectivities
reported in Table 4.

Alternatively, £ may be used to decide wherever to locally turn off the stabilisation
term. This idea is developed in the next section.

Example 6. Our final example of this section regards the mixed boundary value
problem Example 4 in the previous section. The problem data are specified in Figure 4
(above left): a discontinuity in the Dirichlet boundary condition at (z,y) = (0,1/2) is
propagated (and smoothed) inside the domain and exits through the Neumann boundary.

Figure 9 shows the successive refinements obtained using the bubble error indicator
&g, with the tolerance set to TOL = 0.05. The solution on the final mesh is also shown.

Refinement is limited to the areas with relatively strong variations of Vu. Figure 9
should be compared with Figure 4 which reports the triangulation obtained by solving
the same boundary—value problem but with the refinement driven by a linear functional
of the solution as target.

5 hb—adaptivity

We have examined adaptive mesh refinement algorithms for the stabilised Galerkin finite
element formulation (2.3) derived from the REB method. The stabilisation term in (2.3)
depends on the bubble part of the solution u,. Using the assumption of local constant
coefficients, we have been able to reduce the complex task of the evaluation of such term
to that of the evaluation of an average of the bubble. Further, the approximation (3.1)
led to the even simpler task of the evaluation of the elemental diameter in the direction
of the convective field. As a consequence, in terms of computational complexity, the
resulting method in the case of piecewise linear elements is equivalent to the SDFEM,
with the advantage that the stabilisation parameter is given by the method.

This way of proceeding, of course, has some limitations. The approximation (3.1)
may not be sufficiently accurate if the coefficients in the p.d.e. cannot be treated as
piecewise constant functions or if the mesh is sufficiently refined. One may also wish to
compute the bubbles more accurately, for example to include an edge—stabilisation of
the sort discussed in [5]. Finally, it is clear that in parts of the computational domain
where the mesh has been sufficiently refined or where the solution is relatively flat, there
is no reason for stabilising in the first place.

This justifies the idea of including in the mesh adaptation algorithms discussed so
far (h refinement) an automatic way of ‘turning off’ the stabilising term wherever this
is no more required (b derefinement).
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Ne | [Ju—uplloq | e¥?lu —uplio | Es(un) | S; Sy | effio | effen
32 0.29 0.9 10.4 10.4 1 044 | 35.9 | 11.5
69 0.19 0.83 7.13 7.1 | 0.58 | 36.3 | 8.6
155 0.12 0.74 4.71 4.6 |10.66 | 39.1| 6.3
329 0.06 0.59 2.99 2.9 | 0.69 | 45 5
711 0.034 0.4 1.83 1.7 10.62 ] 529 | 4.6
1501 0.018 0.24 1.1 0.1 0.5 | 58.8 | 4.6
3706 0.01 0.13 0.66 0.5 | 0.35]|66.5 | 4.8
11272 0.005 0.07 0.38 0.3 | 0.22 | 72.7 | 5.06
Ne | [|u — unllon 12|y — unlio | E(un) | effie | effen | Si Sy
32 0.29 0.9 3.01 10.3 | 3.3 |10.4 | 0.44
69 0.19 0.83 2.03 10.3 | 24 7.1 | 0.58
143 0.12 0.7 1.33 109 | 1.79 | 4.7 | 0.67
310 0.068 0.59 0.83 122 1.4 | 3.03 | 0.69
650 0.036 0.4 0.49 13.6 | 1.21 | 1.8 | 0.62
1358 0.019 0.24 0.27 14.1 | 1.12 | 1.04 | 0.51
3137 0.011 0.14 0.15 14.2 | 1.07 | 0.6 | 0.37
9367 0.0058 0.08 0.08 144 11.02 | 0.3 | 0.24
28705 0.0032 0.04 0.04 14.6 | 0.98 | 0.19 | 0.15

Table 4: Example 5. Error over successive refinements in the L, and e'/?-weighted
H'-seminorm (energy norm); ¢ = 1072. &g indicator (above) and bubble indicator £p

(below).

To address the crucial issue of when and where to phase out the bubble stabilisation
alongside the h—refinement process, we may use the particular residual term in the a
posterior: error bound which is related to the stabilising term itself.

Let us consider, in particular, the '/? weighted H' seminorm error bound £g in
(4.7), discarding, for simplicity, any term related to Neumann boundary conditions.
Looking back to (4.6) we see that £ in fact consists of three terms, S;, S, and &, related
to the internal residual, the boundary jump and the stabilising term, respectively. Let
ST, SE and & be the local components of these terms, that is,

ST = hpe 2| f — (—eAup + a - Vup)|lor

7

h e 1/2
T
st = (%) In [Vl

& = llallsre lwllor.

We have seen that the term &£/ is bounded by S]. Moreover, we expect the term
&l to be relatively small wherever stabilisation is not crucial. Hence we use the relative
magnitude of & with respect to S/ and S; as an indicator for b derefinement.



29

Let
nr = SzT—i_Slr)ra

be the local error indicator and let 7 be the maximum of 7y after cutting the upper 10%
or 5% of the values. Finally, let c.ef € (0,1) and ¢, > 0 be some user selected threshold
parameters and TOL a given tolerance.

We propose the following algorithm, which is a modification of the one defined in
Section 2.1:

1. Define an initial mesh;
2. Calculate uj on the current mesh;
3. Check the stopping criterion: IF £ < TOL/C then STOP;

4. Apply the h-refinement criterion: refine those elements whose error estimator
EL =S+ S exceeds crer;

5. Apply the b derefinement criterion: IF & < ¢, (S7 + S'), turn off the stabilisa-
tion term on 7" or its newly defined sons and GOTO 2.

Since we are not assuming any a priori knowledge about the behavior of the solution,
the algorithm is started up with the stabilising term turned on everywhere. Later on,
the fraction of elements selected for b—derefinement depends on the threshold parameter
cp. Its ‘correct’ value should be expected to be subject to the relative sharpness of the
different components of the error bound. In both examples below the value ¢, = 0.1
produced satisfactory results.

Example 7. It is instructive to apply the hb-adaptive algorithm to Example 5
above. We recall that we are solving:

—eAu+u, +u, =f inQ=(0,1)%
u=20 in 0.

The exact solution exhibits a boundary layer at the outflow boundary z =1 and y = 1
(see Figure 5). Ideally, stabilisation should be employed only in the layer. The sequence
of meshes produced is shown in Figure 10: the shadowed elements are those where
stabilisation is turned on. We notice that stabilisation is soon removed away from the
layer and, when this is resolved, also inside it.

The effectiveness of the new algorithm can be appreciated from the numbers displayed
in Table 5: the outputs of the old algorithm are reproduced on the left (cf. Table 4),
while, on the right, we present those of the hb-refinement algorithm. Similar accuracy
is achieved with comparable meshes. The new algorithm uses more elements while
removing the stabilisation from the layer. On the other hand, the final mesh, which is
layer resolving, is slightly more effective since the same accuracy is obtained with 32
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N | e2lu —uplio | Es(un) | effen N | e?u —upli0 | Es(un) | effen
32 0.9 10.4 11.5 32 0.9 10.4 11.5

69 0.83 7.13 8.6 69 0.83 7.13 8.6
155 0.74 4.71 6.3 155 0.74 4.86 6.5
329 0.59 2.99 5 332 0.59 3.15 5.3
711 0.4 1.83 4.6 727 0.39 1.92 4.8
1501 0.24 1.1 4.6 1523 0.22 1.16 5.2
3706 0.13 0.66 4.8 3808 0.123 0.67 5.4
11272 0.07 0.38 5.06 || 11240 0.067 0.38 5.7

Table 5: Example 5. Error and &g indicator over successive refinements in the ¢'/?
weighted H' seminorm (energy norm); e = 1072 We show the output of the h
refinement algorithm (left) and hb—algorithm (right).

elements less. Over all, if the parameter ¢, is appropriately tuned, the numerical solution
is not corrupted and the algorithm is robust.

Example 8. To conclude, we test the hb-refinement algorithm on a problem whose
solution exhibits an internal layer, namely Example 6 above. The sequence of mesh
refinements is depicted in Figure 11. Again the shadowed elements are those where
stabilisation is present. To highlight more clearly such elements, the final mesh is plotted
a second time at the bottom-right of the figure with the stabilised elements lifted out of
the xy—plane. The meshes are very similar to those obtained without b—derefinement, cf
Figure 9: this may have to do with the fact that the layer in the solution of this problem
is less severe then the one of Example 7 above.

6 Conclusions

We have developed an h adaptive algorithm that is driven by a residual based a poste-
riori error bound. The error is represented in terms of the residual of the finite element
approximation weighted by the solution of the dual problem. The numerical approxi-
mation of linear functionals of the solution as well as energy norm error estimation have
been considered.

We have shown that the elimination of the dual solution from the a posteriori bound,
via strong stability estimates, leads to crude bounds. For this reason, the algorithm
proposed is based on the so called Type I error bounds, i.e. as few as possible steps
are performed in the bounding of the error. The downside of this approach is that the
dual solution is not eliminated from the bound and needs to be approximated in order
to obtain a computable error bound. For the error bound to be reliable, it is necessary
that the dual problem is solved accurately. The approach adopted here has been to use
a dual mesh with mesh size half of that of the primal mesh. On the examples considered
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the algorithm was reliable and effective.

The a posterior: analysis for the energy norm error of the RFB method presented
here is similar to that of the SUPG method performed by Verfiirth [24]. The error
bound obtained consists of three terms: the two classical residual based terms of the
Galerkin formulation, i.e. internal residual and boundary jump of the gradient, plus a
third term due to static condensation of the bubbles. We have shown how the latter
can be bounded in terms of the internal residual using an appropriate stability result
applied to the bubble part of the solution.

We also introduced a new hb-adaptive algorithm in which, to avoid the evaluation
of the bubble part of the solution where this is not crucial, the bubble stabilisation is
phased out locally depending on the relative magnitude of the terms in the a posterior:
error bound mentioned above.
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Figure 6: Example 2. Successive mesh refinements, e = 1072, P = (.49, .49)



Figure 7: Example 2. Successive mesh refinements, e = 107%, P = (.49, .49)
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Figure 8: Example 3. Successive mesh refinement and final solution for J(u) = [, u and

e =107,



37

Figure 9: Example 6. Successive mesh refinement using the error estimator £, € = 1073,
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Figure 10: Example 7. Successive mesh refinement and bubble derefinement, £ = 102,
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Figure 11: Example 8. Successive mesh refinement and bubble derefinement, ¢ = 103,



