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Abstract

This is the second article in the series opened by the paper [4].
Jacobi curves were defined, computed, and studied in that paper for
regular extremals of smooth control systems. Here we do the same for
singular extremals. The last section contains a feedback classification
and normal forms of generic single–input affine in control systems on
a 3-dimensional manifold.

Introduction

This paper is a continuation of [4]. Jacobi curves were defined, computed,
and studied in [4] for regular extremals of smooth control systems. Here we
do the same for singular extremals.

The points of the Jacobi curves are the L-derivatives of endpoint map-
pings. The notion of L-derivative was introduced in [4]; in section 1 of the
present paper we prove a general existence theorem for the L-derivatives of
smooth mappings and indicate a way to compute them. In section 2 we ac-
tually compute the L-derivatives of the endpoint mappings and the Jacobi
curves for a wide class of control systems and their extremals. In section 3
we apply the theory to a low dimensional example: we define the curvature
for 3-dimensional control systems of the form ẋ = g0(x) + ug1(x) and give a
local classification of such systems under some nondegeneracy conditions.
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The Jacobi curves studied here and in [4] are determined by the L-
derivatives and are automatically feedback–invariant. To prevent a possi-
ble misunderstanding I have to mention that in all earlier papers we used
the term ”Jacobi curve” for similar but not the same (and not feedback–
invariant) objects. We, however, extensively apply results and techniques
of that earlier papers for the computing and studying this new feedback–
invariant Jacobi curves.

1 The Existence of the L-derivative

We use definitions and notations from [4, Sec. 1]; see also Appendix for the
definition and main properties of the Maslov-type index indΠ. Let (u, λ) be
a Lagrangian point of the mapping f : U →M and let N be a germ of a sub-
manifold in U at u, hence (u, λ) is a Lagrangian point of f |N . If N is finite–
dimensional, then L(u,λ)(f |N) is a Lagrangian subspace. Denote by N the set
of all such germs partially ordered by inclusion. Then

{
L(u,λ)(f |N)

}
N∈N is a

generalized sequence of points of the Lagrangian Grassmannian L(Tλ(T
∗M)).

Theorem 1.1 The limit N -limL(u,λ)(f |N) exists if and only if the negative
or the positive inertia index of Hess(u,λ)f is finite.

Proof. We fix local coordinates in U , M and hence in T ∗M . In these
coordinates, f(u) is the origin 0 in Rn, λ = (p, 0), where p ∈ Rn∗. Let
Π = {(ξ, 0) : ξ ∈ Rn∗} be the fiber of T ∗M at f(u) identified with the
tangent space to the fiber. Set Qv = pf ′′uv, Q̄(v) = 〈Qv, v〉, v ∈ TuU . We
may deal only with the negative inertia index and may assume without lack
of generality that kerQ ∩ ker f ′u = 0.

Lemma 1.1 Let N1 ⊂ N2 be germs at u of finite–dimensional submanifolds
in U , Vi = TuNi, V

0
i = Vi ∩ ker f ′u i = 1, 2. If rank f ′u|V1 = rank f ′u|V2 and

ker Q̄|V 0
1

= ker Q̄|V 0
2

, i = 1, 2, then

ind− Q̄|V 0
2
≥ ind− Q̄|V 0

1
+ indΠ(L(f |N1

),L(f |N2
)).

Proof. The assumption on kernels of Q̄|V 0
i

implies

ind− Q̄|V 0
2

= ind− Q̄|V 0
1

+ ind− Q̄|V2∩W1
,

where W1 = {w : 〈Qw + ξf ′u, V1〉 = 0, f ′uw = 0, for some ξ ∈ Rn∗}.
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On the other hand,

indΠ(L(f |N1
),L(f |N2

)) = ind− S+

+
1

2

(
dim(L(f |N1

) ∩ Π) + dim(L(f |N2
) ∩ Π)

)
− dim

(
2⋂
i=1

L(f |Ni) ∩ Π

)
,

where S is a standard quadratic form defined on
(
(L(f |N1

+ L(f |N2
)
)
∩ Π.

(see Append.). Recall that

L(f |Ni) = {(ξi, f ′uvi) : 〈Qvi + ξif
′
u, Vi〉 = 0, vi ∈ Vi}.

The assumption on kernels of Q̄|V 0
i

implies that L(f |N1
) ∩Π = L(f |N2

) ∩Π.

Hence indΠ(L(f |N1
),L(f |N2

)) = indS. The quadratic form S is computed in
terms of the symplectic structure σ. Let (ξi, f

′
uvi) ∈ L(f |Ni), f

′
u(v1 + v2) = 0,

ξ = ξ1 + ξ2. Then

S(ξ) = σ((ξ1, f
′
uv1), (ξ2, f

′
uv2)) = ξ1f

′
uv2 − ξ2f

′
uv1 = −ξf ′uv1.

We set w = v1 + v2, then w ∈ V2 ∩W1 and we obtain

Q̄(w) = 〈Qw,w〉 = 〈Q(v1 + v2), v1 + v2〉 = 〈Qv1, v1 + v2〉 =

= 〈Q(v1 + v2), v1〉 = 〈Qw, v1〉 = −ξf ′uv1 = S(ξ).

Hence S is equivalent to the restriction of Q̄ to the subspace in V2 ∩W1 and
ind− S ≤ ind− Q̄|V2∩W1

. �

Lemma 1.2 If ind−Q|ker f ′u
< ∞, then there exist finite–dimensional sub-

spaces Vo ⊂ TuU , V 0
o = Vo ∩ ker f ′0 such that rank f ′u = rank f ′u|Vo, ker Q̄|W =

ker Q̄|V 0
o

, and ind− Q̄|W = ind− Q̄|V 0
o

for any W satisfying the inclusions

V 0
o ⊂ W ⊂ ker f ′u.

The proof is left to the reader. �
Let V = TuN , then L(f |N) depends on V rather than on N . We introduce

a shorter notation ΛV = L(f |N).
For any V ⊃ Vo, we have Π ∩ ΛV = Π ∩ ΛVo . We introduce a reduced

symplectic space Σ = (Π ∩ ΛVo)
∠/(Π ∩ ΛVo), dim Σ = 2m ≤ 2n. Then

∀V2 ⊃ V1 ⊃ Vo, ΛVi belongs to the Lagrange Grassmannian L(Σ),

indΠ(ΛV1 ,ΛV2) = 0,
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and ΛVi are transversal to Π in Σ.
Take ∆ ∈ L(Σ) such that indΠ(ΛVo ,∆) = m. The triangle inequality (see

Appendix)
indΠ(ΛVo ,∆) ≤ indΠ(ΛVo ,ΛV ) + indΠ(ΛV ,∆)

implies that indΠ(ΛV ,∆) = m ∀V ⊃ Vo. In particular, ΛV is transversal to
∆ in L(Σ).

Identifying the chart ∆t in L(Σ) with the affine space over the linear space
of quadratic forms on ∆∗ ∼= Σ/∆ we obtain indΠ(ΛV ,∆) = ind(ΛV −Π) (the
inertia index of the quadratic form in the right–hand side). In particular,
ΛV −Π is identified with a negative definite quadratic form. Finally, we make
the affine space ∆t linear fixing Π as the origin. Then ΛV is identified with
a negative definite quadratic form.

We are going to show that ind∆(ΛV1 ,ΛV2) = 0. It follows from (4.1) that
µ(ΛV1 ,Π,∆) = µ(ΛV2 ,Π,∆) = −m. Now the chain rule for µ applied to the
quadruple ΛV1 ,ΛV2 ,Π,∆ implies µ(ΛV1 ,∆,ΛV2) = µ(ΛV1 ,Π,ΛV2). Recall that
Maslov index µ and the dimensions of the intersections (by pairs and all three
together) form a complete system of invariants of the triples of Lagrangian
subspaces. Since ΛV1 ,ΛV2 are transversal to both Π and ∆, we obtain that
ind∆(ΛV1 ,ΛV2) = indΠ(ΛV1 ,ΛV2). Hence ind∆(ΛV1 ,ΛV2) = 0; this relation
implies the existence of a monotonically increasing curve in ∆t connecting
ΛV1 with ΛV2 . Hence ΛV1 ≤ ΛV2 in the space of quadratic forms.

Remark 1.1 The signs of quadratic forms under consideration and the mono-
tonicity types of curves in the Lagrange Grassmannian depend on the general
sign agreement which varies from paper to paper.

So ΛV , V ⊃ Vo, form a monotonically increasing generalized sequence of
negative definite quadratic forms. The sequence must have the limit which
is a nonpositive quadratic form or, in other words, an element of ∆t ⊂ L(Σ).

We didn’t prove yet the “only if” part of the theorem. This easier and
less important part is left to the reader. �

Let a be a smooth function on M , da ⊂ T ∗M be the differential of a,
which is a Lagrangian submanifold of T ∗M . Let λ ∈ da, we set Πλ(a) =
Tλ(da). Then u is a critical point of the scalar function a◦f and the Hessian
Hessu(a ◦ f) is a well–defined quadratic form on TuU , Hessu(a ◦ f)(v) =
〈(a ◦ f)′′uv, v〉. One can prove the following modification of Lemma 1 in the
same way as that lemma.
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Lemma 1.3 Let N1 ⊂ N2 be germs at u of finite–dimensional submanifolds
in U , Vi = TuNi, V

0
i = Vi ∩ ker f ′u i = 1, 2. If rank f ′u|V1 = rank f ′u|V2 and

ker(Hessu(a ◦ f)|V 0
1

) = ker(Hessu(a ◦ f)|V 0
2

), i = 1, 2, then

ind−Hessu(a ◦ f)|V 0
2
≥ ind−Hessu(a ◦ f) |V 0

1
+ indΠλ(a)(L(f |N1

),L(f |N2
)).

�

The limit from Theorem 1.1 is the precise definition of the L-derivative of
f at the Lagrangian point (u, λ). But it is not enough to prove the existence of
the limit, we must compute it. Introducing local coordinates, we may assume
that U is a Banach space and u its origin. Let U0 ⊂ U be an arbitrary linear
subspace which is dense in U , and N0 be the set of all finite–dimensional
subspaces N0 ⊂ U0, partially ordered by inclusion. Thus, N0 ⊂ N . The
following assertion is an essential addition to Theorem 1.1, making possible
to explicitly compute the limit indicated in the theorem.

Proposition 1.1 Under the hypothesis of Theorem 1.1 the following equality
holds:

N0- limL(u,λ)(f |N0
) = N - limL(u,λ)(f |N).

The proof is based on Lemma 1.3. We didn’t use the completeness of TuU
in the proof of Theorem 1.1, hence the limit in the left–hand side does exist.
Suppose

Λ0 = N0- limL(u,λ)(f |N0
), Λ = N - limL(u,λ)(f |N).

Take an arbitrary ∆ ∈ Πt and the function a such that Tλ(da) = ∆. Using
the fact that ind−(Hessu(a◦f)|U0

) = ind−Hessu(a◦f) and applying Lemma
1.3 one can prove that ind∆(Λ0,Λ) = 0. This is possible for all ∆ only if
Λ0 = Λ (in fact, it would be enough to consider any everywhere dense subset
of ”points” ∆ in the Lagrange Grassmannian). �

Remark 1.2 The L-derivative Λ contains the subspace L = {(ξ, f ′uv) : Qv+
ξf ′u = 0, v ∈ U} and coincides with L if Q(U) is closed in U . In particular,
dimL ≤ n. It is often possible to endow the space U with a natural weaker
topology preserving the continuity of Q and f ′u and such that Q(Ū) is closed
in Ū , where Ū is the completion of U in the new topology. Then Λ coincides
with L̄ = {(ξ, f ′uv) : Qv + ξf ′u = 0, v ∈ Ū}. It follows from Proposition
1.1 applied to the space Ū with the everywhere dense subspace U and the
mapping (f ′u, Q̄) from Ū into Rn = {p}⊥×R. The equality Λ = L̄ still holds
if Q(Ū) is not closed but L̄ is n-dimensional.
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2 Computing the Jacobi Curves

We use definitions and notations from [4, Sec. 2] and we deal with a given
extremal τ 7→ (ξ(τ), λτ ), where the ”control” ξ is presented in the form
ξ(τ) = (ũ(τ), x̃(τ)), d

dτ
x̃ = fτ (x̃(τ), ũ(τ)), 0 ≤ τ ≤ t. Moreover, we as-

sume that isomorphisms Tũ(τ)U ≈ Rr are fixed; it makes ∂fτ
∂u

(x̃(τ), ũ(τ)) a

linear mapping from Rr into Tx̃(τ)M . We also assume that ∂fτ
∂u

(x̃(τ), ũ(τ)) is
Lipschitzian with respect to τ .

Recall that the extremal is regular if and only if ∂2(λτfτ )
∂u2

(x̃(τ), ũ(τ))
is a nondegenerate quadratic form for all τ ∈ [0, t]. We assume that
∂2(λτfτ )
∂u2

(x̃(τ), ũ(τ)) = 0 ∀τ ∈ [0, t], so that τ 7→ (ξ(τ), λτ ) is a totally singular
extremal. We set

gτ (λ, u) = λ(−→exp

τ∫
t

ad f̃θ dθ(fτ (·, u)− f̃τ )),

the same notation as in [4, Sec. 3]. In particular,

gτ (λt, u) = λτ (fτ (x̃(τ), u)− fτ (x̃(τ), ũ(τ)).

We also denote Xτ = ∂~gτ
∂u

(λt, ũ(τ)); then Xτ : Rr → Tx̃(τ)M is a Lipschitzian
with respect to τ ∈ [0, t] family of linear mappings.

Let F0,t = Ft|tΩx0 : ξ 7→ pr ◦ ξ(t) = x(t) be the endpoint mapping,

which is defined on the space of admissible controls subject to the condition
x(0) = pr ◦ ξ(0) = x0. It follows from proposition 3.1 and equality (3.2) of
[4] that

L(ξ,λt)(F0,t) = {ηt ∈ Tλt(T ∗M) : ∃ητ ∈ Tλt(T ∗M), v(τ) ∈ Rr (0 ≤ τ ≤ t),

s. t. η̇ = Xτv(τ), σ(Xτ ·, ητ ) = 0, η0 ∈ Tλt(T ∗x̃(τ)M)},

where τ 7→ ητ is Lipschitzian and τ 7→ vτ is bounded measurable. L(ξ,λt)(F0,t)
is an isotropic subspace of Tλt(T

∗M); recall that L(ξ,λt)(F0,t) is contained in
the L-derivative of F0,t at (ξ, λt, if the L-derivative does exist. It is worth
to note that, contrary to the regular case, the dimension of L(ξ,λt)(F0,t) is
usually stricly less than n, so that L(ξ,λt)(F0,t) is not a Lagrangian subspace
and hence it is not the L-derivative. Indeed, the vectors Xτv are skew-
orthogonal to L(ξ,λt)(F0,t) though these vectors do not belong to L(ξ,λt)(F0,t)
except of very degenerate cases.
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Proposition 2.1 ([1, 2, 5]) If the negative inertia index of the quadratic
form
Hess(ξ,λt)F0,t is finite, i.e. ind−Hess(ξ,λt)F0,t <∞, then

σ(Xτv1, Xτv2) = 0, σ(Ẋτv1, Xτv1) ≥ 0, ∀vi ∈ Rr, τ ∈ [0, t].

If, additionally, σ(Ẋτv,Xτv) ≥ α|v|2 for some α > 0, any v ∈ Rr, and
almost all τ ∈ [0, t], then indeed ind−Hess(ξ,λt)F0,t <∞.

The identity from the above proposition is called the Goh condition while
the inequality is called the (first) generalized Legendre condition.

The finiteness of ind−Hess(ξ,λt)F0,t provides the existence of the L-deriva-
tive of F0,t at (ξ, λt). Our nearest goal is to compute the L-derivative under
conditions

σ(Xτv1, Xτv2) = 0, σ(Ẋτv,Xτv) ≥ α|v|2, (2.1)

i.e. under the Goh condition and the strengthened (first) generalized Leg-
endre condition. Differentiating the identity σ(Xτv1, Xτv2) = 0 with respect
to τ we obtain that σ(Ẋτv1, Xτv2) is a symmetric bilinear form of v1, v2.
We define the linear mapping bτ : Rr → Rr∗ by the identity 〈bτv1, v2〉 =
σ(Ẋτv1, Xτv2). Then bτ is selfadjoint and invertible. In particular, b−1

τ :
Rr∗ → Rr is a selfadjoint mapping and it may be identified with a quadratic

form on Rr∗; we denote this quadratic form by b−1
τ (·) so that b−1

τ (w)
def
=

〈w, b−1
τ w〉, w ∈ Rr∗.

Proposition 2.2 Under conditions (2.1), the L-derivative of F0,t at (ξ, λt)
is a subspace Λt ⊂ Tλt(T

∗M) which is the sum of the subspace {Xtv : v ∈ Rr}
and the subspace consisting of the values at t of the solutions τ 7→ η(τ) of
the linear Hamiltonian system on Tλt(T

∗M) associated to the nonstationary
quadratic Hamiltonian

qτ (η) = −1

2
b−1
τ (σ(Ẋτ ·, η))

with the initial conditions η(0) ∈ Tλt(T ∗x̃(t)M), σ(η(0), X0v) = 0 ∀v ∈ Rr.

Proof. Let us first show that Λt is a Lagrangian subspace. We have ~qτ (η) =
Ẋτb

−1
τ σ(Ẋτ ·, η). In particular,

~qτ (Xτv) = Ẋτb
−1
τ σ(Ẋτ ·, Xτv) = Ẋτb

−1
τ bτv = Ẋτv.
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Hence τ 7→ Xτv is a solution of the Hamiltonian system η̇ = ~qτ (η). Let
Φτ ∈ Sp(Tλt(T ∗M)), τ ∈ [0, t], be a linear symplectic flow generated by this
system, Φ0 = id. We also denote Γτ = {Xτv : v ∈ Rr}, Πt = Tλt(T

∗
x̃(t)M).

Then Γτ is a family of isotropic subspaces and

Λt = Φ(Πt ∩ Γ∠0 ) + Γt = Φt(Πt) ∩ Γ∠t + Γt = Φ(Πt ∩ Γ∠0 + Γ0).

In other words, Λt = Φ(ΠΓ0
t = Φ(Πt)

Γt (see Appendix for the notation).
So Λt is a Lagrangian subspace. In order to prove that Λt is the L-

derivative we’ll use the method described in Remark 1.2. Let us recall the
construction of L(ξ,λt)(F0,t). This subspace consists of the vectors (η0 +
t∫

0

Xτv(τ) dτ), where η0 ∈ Πt, the vector function v(·) belongs to Lr∞[0, t]

and satisfies the equation

σ(η0 +

τ∫
0

Xθv(θ) dθ,Xτ ·) = 0, 0 ≤ τ ≤ t. (2.2)

The operator v(·) 7→ σ((η0 +
·∫

0

Xθv(θ) dθ,X·) is continuous in a much weaker

topology than the topology of Lr∞[0, t]; namely, this operator is continuous in
the topology of the Sobolev space Hr

−1[0, t]. More precisely, the norm ‖ · ‖−1

of Hr
−1[0, t] has a form ‖v‖−1 =

(
|wt|2 +

t∫
0

w2
τ dτ

) 1
2

, where wτ =
t∫

0

v(τ) dτ .

The completion of Lr∞[0, t] in the norm ‖ · ‖−1 consists of the all pairs
(wt, w(·)), wt ∈ Rr, w(·) ∈ Lr2[0, t]. Integrating by part and applying the
Goh condition we obtain that the extension of equation (2.2) to the space
Hr
−1[0, t] has a form

σ(η0 −
τ∫

0

Ẋθw(θ) dθ,Xτ ·) = 0, 0 ≤ τ ≤ t,

η0 ∈ Πt, , wt ∈ Rr, w(·) ∈ Lr2[0, t]; (2.3)

the corresponding extension of L(ξ,λt)(F0,t) consists of the vectors η0 +Xtwt−
t∫

0

Ẋτw(τ) dτ , where η0, wt, w(·) satisfy equation (2.3). Set

ητ = η0 +Xτwt −
τ∫

0

Ẋθw(θ) dθ.
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If the data satisfy (2.3), then η(0) ∈ (Π ∩ Γ∠0 + Γ0) = ΠΓ0
t . We have to show

that

Λt = {η(t) : σ(η(τ), Xτ ·) ≡ 0, η̇(τ) = Xτw(τ), w ∈ Lr2[0, t], η(0) ∈ ΠΓ0
t }.

Differentiating the equality σ(η(τ), Xτ ·) = 0 gives the identity

−σ(Ẋτw(τ), Xτ ·) + σ(η(τ), Ẋτ ·) = 0,

which can be rewritten in the form bτw(τ) = σ(η(τ), Ẋτ ·), or

w(t) = b−1
τ σ(η(τ), Ẋτ ·).

Thus
η̇ = −Ẋτb

−1
τ σ(η(τ), Ẋτ ·) = ~qτ (η)

and we are done. �

We stay with the notations of the paper [4] as long as it is possible. In
particular, Fτ,t = Ft|Ωt−τ

x̃(τ)
(see [4, Sec. 4]). The difference with the mentioned

paper is the singularity of the extremal (ξ, λt). Because of this, the definition
of the quadratic Hamiltonian qτ must be modified. The definition of the
Jacobi curve must be modified as well. Suppose that (ξ, λt) satisfies relations
(2.1), and let Λτ,t be the L-derivative of Fτ,t at the point (ξ|[τ,t], λt). We
may apply Proposition 2.2 to construct Λτ,t since (ξ|[τ,t], λt) satisfies the Goh
condition and the strengthened generalized Legendre condition.

Let Φτ,s ∈ Sp(Tλt(T ∗M)) be the family of linear symplectic transforma-
tions defined by the relations

∂

∂s
Φτ,s = ~qsΦτ,s, Φτ,τ = id.

In other words, Φτ,s is the fundamental matrix of the Hamiltonian system
associated to the nonstationary quadratic Hamiltonian qs. We also set Γτ =
{Xτv : v ∈ Rr}, Πt = Tλt(T

∗
x̃(t)M). Then

Λτ,t = Φτ,t(Π
Γτ
t ) = Φτ,t(Πt ∩ Γ∠τ ) + Γt. (2.4)

In particular, all the spaces Λτ,t, τ ∈ [0, t] contain the subspace Γt; it is also
easy to see that the subspaces Λτ,t contain the line Rλt ⊂ Πt, this line is in the
kernel of the quadratic form qs, ∀s. Hence Λτ,t ⊂ (Γt +Rλt)∠ ⊂ (Tλt(T

∗M)).
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We set
Σ(ξ,λt) = (Γt + Rλt)∠/(Γt + Rλt); (2.5)

then Σ(ξ,λt) is a 2(n − 1 − r)-dimensional symplectic space and Λτ,t are La-
grangian subspaces of Σ(ξ,λt). The curve

J(ξ,λ) : τ 7→ Λτ,t, τ ∈ [0, t],

in the Lagrange Grassmannian L(Σ(ξ,λt) will be called the Jacobi curve asso-
ciated with the extremal (ξ, λ).

Originally defined on [0, t) the curve J(ξ,λ) has the smooth extension to

[0, t] such that J(ξ,λ)(t) = Π
(Γt+Rλt)
t .

Remark 2.1 The same construction of the L-derivative and of the Jacobi
curve works if one replace conditions (2.1) by their opposite-sign version

σ(Xτv1, Xτv2) = 0, σ(Ẋτv1, Xτv1) ≤ −α|v1|2. (2.1−)

Under conditions (2.1–), the positive inertia index of the Hess(ξ,λt)F0,t is fi-
nite. The difference of these two cases disappears if one defines the Lagrange
multiplier λt up to a scalar nonzero factor, i.e. as a point in the projectiviza-
tion of T ∗M (see Remark in [4, Sec. 1]).

Suppose that we have an affine in control system:

fτ (x, u) = g0(x) +G(x)u,

where G(x) : Rr → TxM is a smooth with respect to x family of linear
mappings. Then ∂fτ

∂u
(x, u) = G(x) and any extremal is singular. The Goh

condition has the following form:

λτ [Gv1, Gv2](x̃(τ)) = 0, ∀v1, v2 ∈ Rr, τ ∈ [0, t]. (2.6)

Besides that, Xtv =
−−→
λGv|λ=λt

. If ũ(τ) ≡ 0, then the (first) generalized
Legendre condition takes the form

λτ [[g
0, Gv], Gv](x̃(τ)) ≥ 0, ∀v ∈ Rr, τ ∈ [0, t].

To obtain the strenghtened generalized Legendre condition one has to replace
0 by α|v|2 in the right–hand side of the last inequality, for some α > 0.

10



Now consider a linear in control system: fτ (x, u) = G(x)u. This is,
of course, a special case of the affine in control systems, but there is an
essential pecularity in the linear case. Namely, if an extremal satisfy the Goh
condition, then it may also satisfy the generalized Legendre condition but
never the strengthened one. The reason is simple. Any reparametrization of
an admissible trajectory of the linear in control system is again an admissible
trajectory. At the same time, the reparametrizations do not change the
endpoint mapping! This gives a big kernel of the Hessian of the endpoint
mapping and implies the degeneration of the generalized Legendre condition.
Nevertheless, the described above method for computing the L-derivative
works perfectly after a simple modification of the original system.

Let ũ(τ) ≡ u0, ξ = (u0, x̃), and let W be a transversal to u0 linear
hyperplane in Rr, i.e. Rr = Ru0 ⊕W . Then ((0, x̃), λ) is an extremal of the
affine in control system

ẋ = G(x)u0 +G(x)|Wu, u ∈ W. (2.7)

The Goh condition and the (first) generalized Legendre condition for the ex-
tremal (ξ, λ) of the original system and the extremal ((0, x̃), λ) of the system
(2.7) are equivalent. The strengthened generalized Legendre condition for
the given extremal of system (2.7) is equivalent to the inequality

λτ [[Gu0, Gv], Gv](x̃(τ)) ≥ α|v ∧ u0|2, ∀v ∈ Rr, τ ∈ [0, t], (2.8)

for some α > 0.

Proposition 2.3 Let fτ (x, u) = G(x)u, ũ(τ) ≡ u0. Under conditions (2.6),
(2.8), if Λ ⊂ Tλt(T

∗M) is the L-derivative of the endpoint mapping of the

reduced system (2.7) at ((0, x̃), λt), then ΛRλ̇t is the L-derivative of F0,t at
(ξ, λt). The same is true if not λ· but (−λ·) satisfy relations (2.6), (2.8).
�

Let Λτ,t be the L-derivative of Fτ,t at (ξ|[τ,t], λt) and Γτ = {Xτv : v ∈ Rr}.
Then Λτ,t ⊃ (Γt + Rλt) so that

Λτ,t ⊂ Σ(ξ,λt)
def
= (Γt + Rλt)∠/(Γt + Rλt).

The curve J(ξ,λ) : τ 7→ Λτ,t is the Jacobi curve associated with the extremal
(ξ, λ). Note that the isotropic subspace Γt is defined for the original system,
not for the reduced system (2.7) and is, in general, r-dimensional.
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Let us consider the case of rank 2 distributions on M , which are linear
in control systems with r = 2. Any extremal automatically satisfies the Goh
condition in this case and there is a nice intrinsic description of the Jacobi
curves. So let ∆x ⊂ TxM , x ∈ M , be a rank 2 distribution (a smooth two-
dimensional linear subbundle of TM). By ∆1 we denote the space of all
smooth sections of the distribution, ∆1 ⊂ V ecM . Set

∆2 = span{[g1, g2] : gi ∈ ∆1, i = 1, 2},

∆3 = span{[[g1, g2], g3] : gi ∈ ∆1, i = 1, 2, 3},

∆i⊥ = {λ ∈ T ∗M : λg(π(λ)) = 0, ∀g ∈ ∆i}, i = 1, 2, 3,

where π : T ∗M → M is the canonical projection. It is easy to check that
∆1
x ⊂ ∆2

x ⊂ ∆3
x ∀x ∈ M , where ∆i

x = {g(x) : g ∈ ∆i}. Hence ∆3⊥ ⊂ ∆2⊥ ⊂
∆1⊥. We also introduce a linear subbundle ~∆λ0 , λ0 ∈ T ∗M , in T (T ∗M) as
follows:

~∆λ0 = {−→λg|λ=λ0
: g ∈ ∆1}.

Then Tλ(T
∗
xM) ⊂ ~∆λ, π∗~∆λ = ∆x for any λ ∈ T ∗xM \ {0}, x ∈M .

Let σ̄ be the standard symplectic structure of the symplectic manifold
T ∗M , then σ = σ̄λt . To say that (ξ, λ) is an extremal is the same as to say
that τ 7→ λτ is a characteristic curve of σ̄|∆1⊥ , i.e σ̄(λ̇τ , ·)|∆1⊥ = 0, and that
ξ is the 1-jet of π(λ·). The form σ̄ is nondegenerate on (∆1⊥ \∆2⊥), hence
all extremals live in ∆2⊥ and thus satisfy the Goh condition. The extremal
λ· satisfies the strengthened generalized Legendre condition (or the opposite
sign version of this condition) if and only if λτ ∈ (∆2⊥ \∆3⊥), ∀τ ∈ [0, t].

We assume that ∆2 6= ∆3; then (∆2⊥ \ ∆3⊥) is a (2n − 3)-dimensional
submanifold in T ∗M and

rank σ̄λ|∆2⊥ = (2n− 4) ∀λ ∈ (∆1⊥ \∆2⊥).

Hence (ker σ̄λ) ∩ Tλ∆2⊥ form a line distribution on (∆2⊥ \∆3⊥) and charac-
teristics of σ̄λ|∆2⊥ form a smooth characteristic 1-foliation of (∆1⊥ \∆2⊥).

Suppose that given extremal (ξ, λ) satisfies the strengthened generalized
Legendre condition. Then τ 7→ λτ , τ ∈ [0, t], is a segment of a leaf of the
characteristic foliation. We assume that this segment has no double points.
Let Oλ be a tubular neighborhood of {λτ : 0 ≤ τ ≤ t} in ∆2⊥ and let D
be the restriction of the characteristic foliation to Oλ such that the quotient
space Oλ/D is well–defined and is a smooth 2(n− 2)-dimensional manifold.
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Let ν : Oλ → Oλ/D be the canonical projection. The form σ̄λ|∆2⊥ induces a
canonical symplecic structure σ̂ on the quotient space Oλ/D by the relation
ν∗σ̂ = σ̄|O. Then Tλ·(Oλ/D) is a 2(n−2)-dimensional symplectic space. It is
easy to see that the line ν∗(Rλτ ) ⊂ Tλ·(Oλ/D) does not depend on τ ∈ [0, t].
We set Rλ̂ = ν∗(Rλτ ) and Σλ = (Rλ̂)∠/Rλ̂. The symplectic space Σλ is
naturally isomorphic to the space Σ(ξ,λt) (see (2.5)) for the control problem
under consideration. Finally, set

Jλ(τ) = ν∗(~∆λτ ∩ Tλτ∆2⊥);

then Jλ(τ) is a Lagrangian subspace of Σλ and the curve τ 7→ Jλ(τ) is the
Jacobi curve of the extremal (ξ, λ) up to the isomorphism Σλ

∼= Σ(ξ,λt) .

A similar intrinsic description of Jacobi curves is valid for rank 1 affine
distributions on M , i.e. for affine in control systems with scalar controls.
Let `x ⊂ TxM \ {0}, x ∈ M , be a rank 1 affine distribution (a smooth one-
dimensional affine subbundle of TM). We’ll consider only normal extremals
of this control system, i.e. such that they are not extremals for the rank
2 distribution span `x, x ∈ M . For the normal extremal (ξ, λ) we have
λτ ˙̃x(τ) 6= 0. Since λτ ˙̃x(τ) does not depend on τ and λ· is defined up to a
scalar multiplier, we may (and will) suppose that λτ ˙̃x(τ) = 1.

By `1 we denote the space of all smooth sections of the affine subbundle,
`1 ⊂ V ecM . Set

`0 = {g1 − g2 : gi ∈ `1, i = 1, 2},

`2 = span{[g1, g2] : gi ∈ `1, i = 1, 2},

`3 = span{[[g1, g2], g3] : gi ∈ `1, i = 1, 2, 3}.

Then `0 is the space of smooth sections of the one-dimensional vector sub-
bundle associated with given affine subbundle and `0 ⊂ `2 ⊂ `3. We also
introduce dual objects similar to the linear case:

`1◦ = {λ ∈ T ∗M : λg(π(λ)) = 1, ∀g ∈ `1},

`i◦ = {λ ∈ `1◦ : λg(π(λ)) = 0, ∀g ∈ `i}, i = 0, 2, 3,

~̀0
λ0

= {−→λg|λ=λ0
: g ∈ `0}, λ0 ∈ T ∗xM \ {0}, x ∈M.

Normal extremals that satisfy the strengthened generalized Legendre condi-
tion (or the opposite–sign version of this condition) are just properly paramet-
rized characteristic curves of σ̄λ|(`2◦\`3◦). If `2◦ 6= `3◦, then `2◦ \ `3◦ is a
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(2n−3)-dimensional submanifold and characteristic curves of σ̄λ|(`2◦\`3◦) form
a smooth 1-foliation of this submanifold. Let τ 7→ λτ , τ ∈ [0, t], be a segment
of a leaf of this foliation, Oλ be a tubular neighborhood of {λτ : 0 ≤ τ ≤ t}
in `2◦, and D be the restriction of the foliation to Oλ such that the quotient
space Oλ/D is well–defined and is a smooth 2(n− 2)-dimensional manifold.
The quotient space Oλ/D is endowed with a symplectic structure induced
by σ̄λ|`2◦ . The symplectic space Tλ·(Oλ/D) is naturally isomorphic to Σ(ξ,λt)

(the space Tλ·(Oλ/D) does not contain Rλτ in contrast to the case of linear
distributions). Let ν : Oλ → Oλ/D be the canonical projection. The curve

Jλ : τ 7→ ν∗( ~̀0λτ ∩ Tλτ `
2◦)

in the Lagrange Grassmannian of Tλ·(Oλ/D) is the Jacobi curve of the ex-
tremal (ξ, λ) up to the isomorphism Tλ·(Oλ/D) ∼= Σ(ξ,λt).

We now go back to the general nonlinear system and finish this Section
with an expression for the L-derivative which unifies the regular case, the
case of Proposition 2.2, and also works in much more degenerate cases. What
follows is, in fact, a corollary of results proved in [1].

So we cancel the above assumption on the total singularity of the extremal
(ξ, λ) in order to include the regular case. We assume, however, that Xτ is
not just Lipschitzian but piecewise smooth with respect to τ ; we need this
assumption to handle highly degenerate cases. We agree to take all piecewise
smooth functions to be left–smooth and to have limits from the right of
all derivatives under consideration; the expression X

(k)
τ v below denotes the

derivative ofXτv of order k ≥ 0 with respect to τ . Letm = dim span{π∗Xτv :
v ∈ Rr, τ ∈ (0, t]}, then m equals the rank of the differential of the mapping
F0,t at ξ. With each τ ∈ (0, t] we associate an integer kτ ≥ 0 and a quadratic

form bτ on Rr as follows: if the form ∂2(λθfθ)
∂u2

(x̃(θ), ũ(θ)) is not identical zero

on any interval τ̄ < θ < τ , then let kτ = 0 and bτ = ∂2(λτfτ )
∂u2

(x̃(τ), ũ(τ));

otherwise, let kτ be the maximal number k such that σ(X
(i)
θ v1, X

(j)
θ v2) ≡ 0

for i + j < 2(k − 1) and v1, v2 ∈ Rr on some interval τ̄ < θ < τ , and let

bτ (v) = σ(X
(kτ )
θ v,X

(kτ−1)
θ v), v ∈ Rr (if the maximal k exists, then it does

not exceed m; if it does not exist, then we set kτ = m+ 1 and bτ = 0).

Proposition 2.4 ([1, 2]) If ind−Hess(ξ,λt)F0,t <∞, then

σ(X(kτ−1)
τ v1, X

(kτ−1)
τ v2) = 0, ∀v1, v2 ∈ Rr, bτ ≥ 0, τ ∈ (0, t].
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If, additionally, bτ (v) ≥ α|v|2 for some α > 0 and all v ∈ Rr, τ ∈ (0, t], then
indeed ind−Hess(ξ,λt)F0,t <∞.

In what follows we assume the sufficient condition in Proposition 2.4 for
ind−Hess(ξ,λt)F0,t <∞ to be finite. Let

Γτ = span{X(i)
τ v : 0 ≤ i < kτ , v ∈ Rr},

an rkτ -dimensional isotrpic subspace of Tλt(T
∗M).

The quadratic form bτ is identified with an invertible selfadjoint mapping
from Rr in Rr∗, and the inverse mapping determines a quadratic form b−1

τ on
Rr∗. The invertibility of bτ implies that Γτ and bτ are smooth with respect to
τ on any interval where Xτ is smooth. In particular, Γτ and b−1

τ are piecewise
smooth on [0, t].

Set qτ (η) = −1
2
b−1
τ (σ(X

(kτ )
τ ·, η)), a nonstationary quadratic Hamiltonian

on Tλt(T
∗M). Hamiltonian qτ defines a linear Hamiltonian system on

Tλt(T
∗M) and, hence, a nonautonomous differential equation on the La-

grange Grassmannian L(Tλt(T
∗M)). We need the last one, which becomes

the matrix Riccati equation in ”affine” local coordinates on L(Tλt(T
∗M)).

We prefer coordinate free notations and denote qτ (Λ) the value at Λ ∈
L(Tλt(T

∗M)) of the vector field on L(Tλt(T
∗M)) induced by the Hamilto-

nian field ~qτ on Tλt(T
∗M). This notation is coordinated with the canonical

identification of the tangent vectors to L(Tλt(T
∗M)) and quadratic forms

(see Append.).
So we have a differential equation

Λ̇ = qτ (Λ), Λ ∈ L(Tλt(T
∗M)); (2.9)

what is important and is not quite standard, we allow piecewise smooth
(maybe discontinuous in some points) solutions of this equations. Thus to
determine a solution of (2.9) we need not only the initial condition but also
the relations for ”jumps” at the points of discontinuity. In fact, the solution
may have a ”jump” even at the initial moment since piecewise continuous
functions are supposed to be left–smooth but not right–smooth.

Proposition 2.5 Differential equation (2.9) and the relations

Λ(0) = Tλt(T
∗
x̃(t)M), Λ(τ + 0) = Λ(τ)Γτ+0 , τ ∈ [0, t),

imply the inclusions Γτ ⊂ Λ(τ), τ ∈ (0, t], and uniquely determine a piecewise
smooth curve Λ(τ), τ ∈ [0, t], in L(Tλt(T

∗M)). Then Λ(t) is the L-derivative
of F0,t at (ξ, λt). �
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Theorem 2.1 Under conditions of Proposition 2.5, let τ1, . . . , τl be all points
of discontinuity of the curve Λ(·). Suppose Λ̄(·) is a continuous closed curve
in the Lagrange Grassmannian obtained from the curve τ 7→ Λ(t− τ) by the
connecting of Λ(τi + 0) with Λ(τi), i = 1, . . . , l, and Λ(0) with Λ(t) by simple
nondecreasing curves (see Append.). Then

ind−Hess(ξ,λt)F0,t = ind Λ̄(·)−m,

where ind Λ̄(·) is the Maslov index of Λ̄(·). �

3 Three-dimensional systems

We are going to study generic germs of affine in control systems admitting
extremals, and we are going to do it in a lowest possible dimension. Generic
germs do not admit extremals if n = 2 and if n = 3, r = 2, therefore we focus
on the case n = 3, r = 1. So we deal with the germ at x0 ∈M of a system

ẋ = g0(x) + ug1(x), u ∈ R, x ∈M, dimM = 3. (3.1)

Generic assumptions are as follows:

g0(x) ∧ g1(x) ∧ [g0, g1](x) 6= 0,
g1(x) ∧ [g1, g0](x) ∧ [g1, [g1, g0]](x) 6= 0.

(3.2)

We’ll describe a normal form of the germ and a complete system of invariants
under feedback and state transformations.

First let us roughly evaluate the ”number of parameters”. Affine lines
in R3 form a 4-dimensional manifold, hence the space of the equivalence
classes of systems of form (3.1) with respect to purely feedback (not the
state!) transformations can be locally parametrized by 4 germs of real smooth
functions of 3 variables. The group of state transformations is parametrized
by 3 smooth functions of 3 variables. We thus may expect 4−3 = 1 arbitrary
germ of a smooth function of 3 variables as a principal invariant and a number
of germs of functions of 2, 1, and 0 variables as some additional invariants.

We have `x = g0(x) + Rg1(x),

`2◦ = {λ ∈ T ∗M : λg0 = 1, λg1 = λ[g0, g1] = 0}, `3◦ = ∅.

Hence `2◦ = `2◦ \ `3◦ is just a section of the bundle T ∗M and `2◦ is foliated
by the extremals. In other words, extremal trajectories form a local flow in
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M; there exists a unique smooth function v on M such that the extremal
trajectories are exactly trajectories of the differential equation ẋ = g0(x) +
v(x)g1(x). Replacing g0 by g0 + vg1, if necessary, we may assume from the
very beginning that the trajectories of the system ẋ = g0(x) are the extremal
trajectories. The last property is equivalent to the identity

g0(x) ∧ [g0, g1](x) ∧ [g0, [g0, g1]](x) = 0, x ∈M. (3.3)

The only feedback transformations preserving identity (3.3) are the multipli-
cations of g1 by a nonvanishing function.

The extremals do not admit reparametrizations and a Jacobi curve is as-
sociated to every extremal. The Jacobi curves are curves in the Lagrange
Grassmannian of the symplectic space of dimension 2(3 − 2) = 2. In other
words, these are curves in the projective line. The curvature tensors asso-
ciated to germs of regular curves in the Lagrange Grassmannians are just
real numbers in this low dimensional case (see [4, Sec. 4]). Through every
x ∈ M passes exactly one extremal trajectory corresponding to a uniquely
determined extremal in `2◦. Take the germ of the extremal with the endpoint
λt = `2◦ ∩ TxM . Assume that R(x) is the curvature of the germ at t of the
Jacobi curve associated to the extremal. We’ll see that R(x), x ∈ M , is
a smooth function of x and the function R turns into the required princi-
pal functional invariant as soon as one fix some canonical coordinates in the
neighborhood of x0.

Let us denote g2 = [g0, g1]; then g0(x), g1(x), g2(x) form a basis of T ∗xM
and we have

[g0, g1] = g2, [g2, g0] = c1
02g

1 + c2
02g

2, [g2, g1] =
2∑

k=0

ck12g
k,

where the ”structural constants” ckij are actually smooth functions on M and
c0

12 6= 0.

Proposition 3.1 R = c1
02 − 1

4
(c2

02)2 − 1
2
g0c2

02.

Proof. Let ω0, ω1, ω2 be the frame in T ∗M dual to the frame g0, g1, g2 in
TM , i.e. 〈ωi, gj〉 = δij, i, j = 0, 1, 2. Then `2◦ ⊂ T ∗M is the graph of ω0,

σ̄|`2◦ = (π|`2◦)
∗ (c0

12ω1 ∧ ω2), ~̀0 ∩ T`2◦ = (π|`2◦)
−1
∗ g1.

The diffeomorphism π|`2◦ provides the identification of `2◦ with M and we
make the remaining calculations in M instead of `2◦. Let τ 7→ Jx(τ) be the
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Jacobi curve associated to the extremal trajectory τ 7→ xe(τ−t)g0 . Then Jx(τ)
is a line in the plane TxM/(Rg0(x)) endowed with the symplectic structure

(c0
12ω1 ∧ ω2)x. More precisely, Jx(τ) = R

(
e

(t−τ)g0

∗ g1
)

(x) + Rg0(x). The

vectors g1(x), 1
c012(x)

g2(x) form a canonical basis of the symplectic plane; what

we need are the coordinates of the vector
(
e

(t−τ)g0

∗ g1
)

(x) =
(
e(τ−t)ad g0g1

)
(x)

in this basis. We have e(τ−t)ad g0g1 = a1
τg

1 + a2
τg

2, where a1
t = ȧ2

t = 1,
ȧ1
t = a2

t = 0,

äiτ = −
(
e(τ−t)g0c1

02

)
aiτ −

(
e(τ−t)g0c2

02

)
ȧiτ , i = 1, 2; (3.4)

here ˙ is the differentiation with respect to τ .
According to [4, Sec. 4], the curvature R(x) is the Schwartzian derivative

at t of the function Sτ = c0
12(x)a

2
τ (x)
a1τ (x)

,

R(x) =
1

2

...

St

Ṡt
− 3

4

(
S̈t

Ṡt

)2

. (3.5)

The desired expression for R is derived from (3.4), (3.5) by a straightforward
calculation. �

The curvature R is feedback–invariant, while the ”structural constants”
ckij are not. A feedback transformation g1 7→ bg1, where b ∈ C∞(M), trans-
forms c0

12 7→ b2c0
12. Hence sign c0

12 is feedback–invariant and the vector field

ĝ = |c0
12|−

1
2 g1 may change only the sign under feedback transformations.

We put ν = sign c0
12 and define a feedback invariant germ N of a two-

dimensional submanifold of M as follows:

N = {x0e
y2[g0,ĝ] ◦ ey1ĝ : y1, y2 are close to 0 real numbers}.

Lemma 3.1 There is a unique up to a sign feedback normalization of the
germ of g1 at x0 such that the following identities hold for the normalized
germ:

c2
02 ≡ 0, |c0

12|
∣∣∣
N
≡ 1 (3.6)

Proof. We set g1|N = ĝ|N . Note that the field g1 is tangent to N . The
field g0 is transversal to N , therefore the trajectories of g0 define a tubular
neighborhood of N in M . A renormalization g1 7→ bg1 transforms c2

02 7→
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c2
02 − 2

b
g0b. The renormalized field satisfies the required conditions if and

only if b|N = ±1, g0b = 1
2
bc2

02. The second identity is equivalent to the
following one:

etg
0

b = be
1
2

t∫
0

eτg
0
c202 dτ

.

This means that b is uniquely defined on a trajectory of the field g0 as soon
as we fix b at a point of the trajectory, and this is all we need to complete
the proof. �

Assume that g1 is normalized and (3.6) is valid. We introduce normal
coordinates (y0, y1, y2) in a neighborhood of x0 by the formula

Φ(y0, y1, y2) = x0e
y2g2 ◦ ey1g1 ◦ ey0g0 .

In particular, Φ−1(N) is the coordinate plane y0 = 0.
Let t 7→ ρi(t, y1, y2), i = 0, 1, be the solutions of the Hill equation

ρ̈+R(t, y1, y2)ρ = 0 with the initial conditions(
ρ0(0, y1, y2) ρ̇0(0, y1, y2)
ρ1(0, y1, y2) ρ̇1(0, y1, y2)

)
=

(
1 0
0 1

)
.

In the coordinates y = (y0, y1, y2), the fields g0, g1 have the form:

g0 =
∂

∂y0

, g1 = ρ0(y)
∂

∂y1

+ ρ1(y)
2∑
i=0

αi(y1, y2)
∂

∂yi
, (3.7)

where α1, α2 are arbitrary germs of smooth functions meeting the conditions

α1(0, y2) = 0, α2(0, y2) = 1, (3.8)

and α0(y1, y2) = −ν
y1∫
0

α2(y1,y2)
α2(t,y2)

dt. The only ambiguity of the construction is

the sign of g1. Changing the sign leads to the transformation

R(y1, y2, y3) 7→ R(y1,−y2,−y3),
(α1(y1, y2), α2(y1, y2)) 7→ (α1(−y1,−y2), α2(−y1,−y2)).

(3.9)

Summing up, we obtain the following
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Proposition 3.2 Any system of the form (3.1) subject to conditions (3.2)
has a local normal form (3.7) under smooth feedback and state transforma-
tions. In the normal form, R is an arbitrary germ of smooth function on
R3, α1, α2 are arbitrary germs of smooth function on R2 meeting conditions
(3.8); ρ0, ρ1 are determined by R, α0 is determined by α2 and the discrete
invariant ν ∈ {−1, 1}. The germs R,α1, α2 are feedback and state invariants
up to the involution (3.9). �

Recall that R is the curvature, i.e. a well–defined function on M with a
clear geometric and variational meaning. The invariant ν has the following
nice interpretation. Small enough pieces of the extremal trajectories realize
local extrema in the time optimal problem for system (3.1); they are local
time minimizers if ν = −1 and local time maximizers if ν = 1. Invari-
ants α1, α2 are well–defined germs of smooth functions on N ; the geometric
meaning of these germs is not so clear yet.

In the ”flat” case R ≡ 0, α1 ≡ 0, α2 ≡ 1 we obtain the relations

[g0, [g0, g1]] = 0, [g1, [g1, g0]] = νg0.

The fields g0, g1 thus generate a solvable three-dimensional Lie algebra: the
Lie algebra of the group of isometries of the Euclidean plane for ν = −1 and of
the pseudo-Euclidean plane for ν = 1. Then system (3.1) is locally equivalent
to a left–invariant system on the corresponding group of isometries.

Remark 3.1 Actually, the results of this section give more than a normal
form in a neighborhood of a point. It is easy to see that the same normal form
is valid in a neighborhood of an as long as we want segment of the extremal
trajectory, while the trajectory has no double points and conditions (3.2) are
satisfied.

4 Appendix. On Lagrange Grassmannians

Here we introduce some notions of linear symplectic geometry that we use in
the paper (see [3, 7, 10, 11] for more details). A symplectic structure in an
even-dimensional linear space Σ is defined by a nondegenerate bilinear skew-
symmetric 2-form σ(·, ·). Two vectors ξ1, ξ2 ∈ Σ are called skew-orthogonal,
written ξ1∠ξ2, if σ(ξ1, ξ2) = 0. If N is a subspace of Σ, let us denote by
N∠ its skew-orthogonal complement: N∠ = {ξ ∈ Σ | σ(ξ, ν) = 0,∀ν ∈ N}.
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Evidently dimN + dimN∠ = dim Σ. A subspace Γ ⊆ Σ is called isotropic, if
Γ ⊆ Γ∠, and coisotropic, if Γ ⊇ Γ∠. A subspace Λ ⊂ Σ is called Lagrangian,
if Λ∠ = Λ. Such subspaces have dimension 1

2
dim Σ. If Λ is a Lagrangian

subspace and Γ is isotropic, then it is easy to prove, that (Λ ∩ Γ∠) + Γ =
(Λ + Γ) ∩ Γ∠ is a Lagrangian subspace. We denote it by ΛΓ.

The symplectic group Sp(Σ) is the group of those linear transformations
of Σ, which preserve the symplectic form:

Sp(Σ) = {S ∈ GL(Σ) : σ(Sξ1, Sξ2) = σ(ξ1, ξ2) ∀ξ1, ξ2 ∈ Σ}.

The elements of this group are called symplectic transformations of Σ. The
Lie algebra of the symplectic group is:

sp(Σ) = {A ∈ gl(Σ) : σ(Aξ1, ξ2) = σ(Aξ2, ξ1) ∀ξ1, ξ2 ∈ Σ}.

Let H be a real quadratic form on Σ and dξH be the differential of H at a
point ξ ∈ Σ. Then dξH is a linear form on Σ which depends linearly on ξ. For

every ξ ∈ Σ there exists a unique vector
→
H (ξ) ∈ Σ which satisfies equality

σ(·,
→
H (ξ)) = dξH. It is easy to show that the linear operator

→
H: Σ → Σ

belongs to sp(Σ), and the mapping H 7→
→
H is an isomorphism of the space of

quadratic forms onto sp(Σ). The differential equation ξ̇ =
→
H (ξ) is called the

linear Hamiltonian system corresponding to the quadratic Hamiltonian H.
Denote by L(Σ) the Grassmanian of Lagrangian subspaces of Σ. This is

a smooth compact manifold of dimension 1
8

dim Σ(dim Σ + 2).
Certainly symplectic transformations transform Lagrangian subspaces into

Lagrangian ones, hence the symplectic group acts on L(Σ). It is easy to show
that it acts transitively.

Let us consider a tangent space TΛL(Σ), Λ ∈ L(Σ). To every quadratic

form h on Σ there corresponds a linear Hamiltonian vector field
→
h and a one-

parameter subgroup t 7→ et
→
h in Sp(Σ). Let us consider the linear mapping

2h 7→ d
dt
et
→
h (Λ)|t=0 of the space of quadratic forms into TΛL(Σ). This mapping

is surjective and its kernel consists of all quadratic forms which vanish on
Λ. Thus two different quadratic forms correspond to the same vector from
TΛL(Σ) if and only if the restrictions of these forms on Λ coincide. Hence
we obtain a natural identification of the space TΛL(Σ) with the space of
quadratic forms on Λ.

A tangent vector η ∈ TΛL(Σ) is called nonnegative if the corresponding
quadratic form is nonnegative on Λ. An absolutely continuous curve Λτ (τ ∈
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[0, t]) in L(Σ) is called nondecreasing if the velocities Λ̇τ ∈ TΛτL(Σ) are
nonnegative for almost all τ ∈ [0, T ].

Treating the action of symplectic group Sp(Σ) on L(Σ) one can easily
verify, that pairs of Lagrangian subspaces (Λ,Λ′) have only one invariant
w.r.t. this action: it is dim(Λ ∩ Λ′). For triples of Lagrangian subspaces,
there are more invariants.

Let Λ1,Λ2,Λ3 be Lagrangian subspaces. Let us present a vector λ ∈
(Λ1 + Λ3) ∩ Λ2 as a sum λ = λ1 + λ3 and consider a properly defined on
(Λ1+Λ3)∩Λ2 quadratic form S(λ) = σ(λ1, λ3). Maslov index µ(Λ1,Λ2,Λ3) of
the triple (Λ1,Λ2,Λ3) is the signature of S(λ). It is an invariant of the action
of symplectic group. Maslov index is anti-symmetric and satisfies the chain
rule: µ(Λ1,Λ2,Λ3) = −µ(Λ2,Λ1,Λ3) = −µ(Λ1,Λ3,Λ2), µ(Λ1,Λ2,Λ3) −
µ(Λ1,Λ2,Λ4) + µ(Λ1,Λ3,Λ4)− µ(Λ2,Λ3,Λ4) = 0.

In [1] a bit different invariant of a triple of Lagrangian planes (Λ1,Λ2,Λ3)
was exploited for computation of Morse index for singular extremals.

Definition 4.1 Consider the quadratic form S(λ) = σ(λ1, λ3) with the do-
main ((Λ1 + Λ3)∩Λ2)/

⋂3
i=1 Λi. A sum 1

2
dim kerS+ ind− S, where ind− S is

the negative inertia index of S, is an invariant of the triple (Λ1,Λ2,Λ3) of La-
grangian subspaces. It is denoted by indΛ2(Λ1,Λ3) and is called Maslov-type
index.

Let us note, that kerS = ((Λ1 ∩Λ2) + (Λ2 ∩Λ3))/
⋂3
i=1 Λi. We refer to [1]

for a simple formula connecting this Maslov-type index with Maslov index of
the triple and for the proof of the following ‘triangle inequality’:

indΛ0(Λ1,Λ3) ≤ indΛ0(Λ1,Λ2) + indΛ0(Λ2,Λ3).

It also follows directly from the definition, that:

indΛ2(Λ1,Λ3) = dim Λ1 ⇔ µ(Λ1,Λ2,Λ3) = − dim Λ1; (4.1)

indΛ1(Λ1,Λ3) =
1

2
dim kerS =

1

2
(dim Λ1 − dim(Λ1 ∩ Λ3)).

A continuous curve Λ(τ) ∈ L(Σ), 0 ≤ τ ≤ 1, is called simple if there exists
∆ ∈ L(Σ) such that Λ(τ) ∩∆ = 0 ∀τ ∈ [0, 1].

Lemma 4.1 If Λ(τ) ∈ L(Σ), 0 ≤ τ ≤ 1, is a simple nondecreasing curve in
L(Σ), and Π ∈ L(Σ), then

indΠ(Λ(0),Λ(1)) = indΠ(Λ(0),Λ(τ)) + indΠ(Λ(τ),Λ(1)), ∀τ ∈ [0, 1].
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Lemma 4.2 Let Λ0,Λ1 ∈ L(Σ). There exist ∆ ∈ L(Σ) and neighborhoods
V 0 3 Λ0, V 1 3 Λ1 in L(Σ) such that whenever Λ ∈ V 0,Λ′ ∈ V 1 and
dim(Λ ∩ Λ′) = dim(Λ0 ∩ Λ1) then there exists a simple nondecreasing curve
Λ(τ), τ ∈ [0, 1] such that Λ(0) = Λ,Λ(1) = Λ′, Λ(τ) ∩∆ = 0 ∀τ ∈ [0, 1].

Both Lemmas are proved in [1].

Definition 4.2 Let Λ(τ), 0 ≤ τ ≤ t, be a nondecreasing curve in L(Σ)
and 0 = τ0 < τ1 < · · · < τl = t are such, that the curves Λ(·)|[τi,τi+1], i =

0, . . . l − 1, are simple and Π ∈ L(Σ). The expression

indΠΛ(·) =
l−1∑
i=0

indΠ(Λ(τi),Λ(τi+1)) (4.2)

is called Maslov index of the curve Λ(·) with respect to Π.

It follows from Lemma 4.1 that (4.2) does not depend on a choice of
τ1 < · · · < τl−1. If Λ(0) ∩ Π = Λ(t) ∩ Π = 0, then the intersection number
Λ(·) ·MΠ of the curve Λ(·) with the hypersurface (train)MΠ = {∆ ∈ L(Σ) :
∆∩Π 6= 0} is well–defined and the identity Λ(·) ·MΠ = indΠΛ(·) is valid. If
the curve Λ(τ) is closed (Λ(0) = Λ(t)), then indΠΛ(·) does not depend also
on the choice of Π and is denoted ind Λ(·) (cf. [1]).
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