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Abstract

Curvature-type invariants of Hamiltonian systems generalize sec-

tional curvatures of the Riemannian manifolds: negativity of the cur-

vatures is an indicator of the hyperbolic behavior of the Hamiltonian

flow. In this paper, we give a self-contained description of the related

constructions and facts; they lead to a natural extension of classi-

cal results about Riemannian geodesic flows and indicate some new

phenomena.

Introduction

This paper is especially written to the 70th anniversary of Dmitrij Anosov.
One of the goals of the paper is to explain that classical Anosov’s results
about geodesic flows of the negative curvature Riemannian manifolds can be
actually applied to the essentially larger class of flows than it is normally
expected.

Needless to say, I am not at all expert in the hyperbolic dynamics, but I
was obliged, as a member of the MIAN’s department of differential equations,
to attend the seminar guided by professor Anosov. I learned first definitions
and took some hyperbolic flavor following presentations in this seminar and
Anosov’s comments to them. Then I realized that the curvature of general
Hamiltonian systems originally discovered in the quite different context could
serve for a test of hyperbolicity. Of course, I first expressed this fact in the
Anosov seminar and now present the consistent text.

∗SISSA–ISAS, Trieste & Steklov Math. Inst., Moscow
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The object to study in this paper is a Hamiltonian system on a sym-
plectic manifold equipped with a Lagrangian vector distribution. We impose
certain regularity assumption which guarantees that the action of the Hamil-
tonian flow on the distribution is nondegenerate. This action generates a
one-parametric family of Lagrangian distributions. Evaluating these distri-
butions at a fixed point of the manifold we obtain a one-parametric family
of Lagrangian subspaces of the tangent space to the manifold at the given
point. We call this family the “Jacobi curve” by analogy with the Jacobi
fields associated to the Riemannian geodesic flows. This is essentially con-
tent of Section 1.

Jacobi curves are curves in the Lagrange Grassmannians and Sections
2–7 are devoted to the basic differential geometry of such curves. Geometry
of Jacobi curves provides us with fundamental differential invariants of the
Hamiltonian systems; these invariants are described and computed in Sec-
tions 8–10. Main invariants are the curvature form and the reduced curvature
forms. In Sections 11–12 we consider the situation when one of these forms
is negative. Strict negativity of the reduced curvature form implies the hy-
perbolic behavior of the flow that is a natural generalization of the classical
fact about Riemannian geodesic flows in the case of the negative sectional
curvature.

Strong negativity of the (not reduced) curvature form implies very strong
consequences for the asymptotic behavior of the flow described in Theorem 3
and Corollary 6. This phenomenon does not occur in geodesic flows but is
easily realized for the flows generated by natural mechanical systems. I do
not know classical predecessors of these results.

1 Regular Hamiltonian systems

Smooth objects are supposed to be C∞ in this paper; the results remain valid
for the class Ck with a finite and not large k but we prefer not to specify the
minimal possible k.

Let N be a 2n-dimensional symplectic manifold endowed with a sym-
plectic form σ. A Lagrange distribution ∆ ⊂ TN is a smooth vector sub-
bundle of TN such that each fiber ∆z = ∆ ∩ TzN, z ∈ N, is a Lagrange
subspace of the symplectic space TzN ; in other words, dim ∆z = n and
σz(ξ, η) = 0 ∀ξ, η ∈ ∆z.

Basic examples are cotangent bundles endowed with the standard sym-
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plectic structure and the “vertical” distribution:

N = T ∗M, ∆z = Tz(T
∗
q M), ∀z ∈ T ∗

q M, q ∈ M. (1)

Let h ∈ C∞(N); then ~h ∈ VecN is the associated to h Hamiltonian

vector field: dh = σ(·,~h). We assume that ~h is a complete vector field, i.e.

solutions of the Hamiltonian system ż = ~h(z) are defined on the whole time
axis. We may assume that without a lack of generality since we are going to
study dynamics of the Hamiltonian system on compact subsets of N and may
reduce the general case to the complete one by the usual cut-off procedure.

The generated by ~h Hamiltonian flow is denoted by et~h, t ∈ R. Other
notations: ∆̄ ⊂ VecN is the space of sections of the Lagrange distribution
∆; [v1, v2] ∈ VecN is the Lie bracket (the commutator) of the fields v1, v2 ∈
VecN, [v1, v2] = v1 ◦ v2 − v2 ◦ v1.

Definition 1 We say that ~h is regular with respect to the Lagrange distribu-
tion ∆ if {[~h, v](z) : v ∈ ∆̄} = TzN for any z ∈ N .

An effective version of Definition 1 is as follows: Let vi ∈ ∆̄, i = 1, . . . , n
be such that the vectors v1(z), . . . , vn(z) form a basis of ∆z; then ~h is regular
at z with respect to ∆ if and only if the vectors

v1(z), . . . , vn(z), [~h, v1](z), . . . , [~h, vn](z)

form a basis of TzN .
We define a bilinear mapping βh : ∆̄ × ∆̄ → C∞(N) by the formula:

βh(v1, v2) = σ([~h, v1], v2).

Lemma 1 βh(v2, v1) = βh(v1, v2), ∀v1, v2 ∈ ∆̄ and βh(v1, v2)(z) depends
only on v1(z), v2(z).

Proof. Hamiltonian flows preserve σ and σ vanishes on ∆̄. Using these
facts, we obtain:

0 = σ(v1, v2) =
(

et~h∗σ
)

(v1, v2) = σ(et~h
∗ v1, e

t~h
∗ v2).

Differentiation of the identity 0 = σ(et~h
∗ v1, e

t~h
∗ v2) with respect to t at t = 0

gives: 0 = σ([~h, v1], v2) + σ(v1, [~h, v2]). Now the anti-symmetry of σ implies
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the symmetry of βh. Moreover, βh is C∞(M)-linear with respect to each
argument, hence βh(v1, v2)(z) depends only on v1(z), v2(z). �

Let z ∈ N, ξi ∈ ∆z, ξi = vi(z), vi ∈ ∆, i = 1, 2. We set βh
z (ξ1, ξ2) =

βh(v1, v2)(z). According to Lemma 1, gh
z is a well-defined symmetric bilinear

form on ∆z. It is easy to see that the regularity of h at z is equivalent to the
nondegeneracy of gh

z .
If N = T ∗M and ∆ is the vertical distribution (see (1)), then βh

z =
D2

z(h|T ∗

q M), where z ∈ T ∗
q M . The last equation can be easily checked in local

coordinates. Indeed, local coordinates defined on a neighborhood O ⊂ M
provide the identification of T ∗M

∣

∣

O
with R

n ×R
n = {(p, q) : p, q ∈ R

n} such

that T ∗
q M is identified with R

n×{q}, the form σ is identified with
n
∑

i=1

dpi∧dqi

and the field ~h with
n
∑

i=1

(

∂h
∂pi

∂
∂qi

− ∂h
∂qi

∂
∂pi

)

. The fields ∂
∂pi

form a basis of the

vertical distribution and

βh

(

∂

∂pi

,
∂

∂pj

)

= −

〈

dqj ,

[

n
∑

i=1

(

∂h

∂pi

∂

∂qi

−
∂h

∂qi

∂

∂pi

)

,
∂

∂pi

]〉

=
∂2h

∂pi∂pj

.

Definition 2 We say that a regular Hamiltonian field ~h is monotone with
respect to ∆ if βh

z is a sign-definite form for any z ∈ N .

If N = T ∗M and ∆ is the vertical distribution, then the monotonicity of ~h
is equivalent to the strong convexity or concavity of the restrictions of h to
the fibers T ∗

q M , q ∈ M .

We are going to study the action of the Hamiltonian flow et~h on the ver-
tical distribution ∆. Namely, for any z ∈ N consider the family of subspaces

Jz(t) = e−t~h
∗ ∆

et~h(z) ⊂ TzM , t ∈ R; in particular, Jz(0) = ∆z. Let Gn(TzN) be

the the Grassmann manifold (Grassmannian) consisting of all n-dimensional
subspaces of the 2n-dimentional space TzN . Then t 7→ Jz(t) is a smooth

curve in Gn(TzN), we call it the Jacobi curve associated to the pair ~h, ∆.
Elementary differential geometry of Jacobi curves will provide us with de-
sired curvature-type invariants. To introduce them, we need some basic facts
on the geometry of Grassmannians.
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2 The cross-ratio

Let Σ be a 2n-dimensional vector space, v0, v1 ∈ Gn(Σ), v0 ∩ v1 = 0. Than
Σ = v0 + v1. We denote by πv0v1 : Σ → v1 the projector of Σ onto v1 parallel
to v0. In other words, πv0v1 is a linear operator on Σ such that πv0v1

∣

∣

v0
= 0,

πv0v1

∣

∣

v1
= id. Surely, there is a one-to-one correspondence between pairs of

transversal n-dimensional subspaces of Σ and rank n projectors in gl(Σ).

Lemma 2 Let v0 ∈ Gn(Σ); we set v⋔
0 = {v ∈ Gn(Σ) : v ∩ v0 = 0}, an open

dense subset of Gn(Σ). Then {πvv0 : v ∈ v⋔
0 } is an affine subspace of gl(Σ).

Indeed, any operator of the form απvv0 + (1 − α)πwv0 , where α ∈ R, takes
values in v0 and its restriction to v0 is the identity operator. Hence απvv0 +
(1 − α)πwv0 is the projector of Σ onto v0 along some subspace.

The mapping v 7→ πvv0 thus serves as a local coordinate chart on Gn(Σ).
These charts indexed by v0 form a natural atlas on Gn(Σ).

Projectors πvw satisfy the following basic relations:

πv0v1 + πv1v0 = id, πv0v2πv1v2 = πv1v2 , πv0v1πv0v2 = πv0v1 , (2)

where vi ∈ Gn(Σ), vi ∩ vj = 0 for i 6= j. If n = 1, then Gn(Σ) is just the pro-
jective line RP

1; basic geometry of Gn(Σ) is somehow similar to geometry of
the projective line for arbitrary n as well. The group GL(Σ) acts transitively
on Gn(Σ). Let us consider its standard action on (k + 1)-tuples of points in
Gn(Σ):

A(v0, . . . , vk)
def
= (Av0, . . . , Avk), A ∈ GL(Σ), vi ∈ Gn(Σ).

It is an easy exercise to check that the only invariants of a triple (v0, v1, v2)
of points of Gn(Σ) for such an action are dimensions of the intersections:
dim(vi∩vj), 0 ≤ i ≤ 2, and dim(v0∩v1∩v2). Quadruples of points possess a
more interesting invariant: a multidimensional version of the classical cross-
ratio.

Definition 3 Let vi ∈ Gn(Σ), i = 0, 1, 2, 3, and v0 ∩ v1 = v2 ∩ v3 = 0. The
cross-ratio of vi is the operator [v0, v1, v2, v3] ∈ gl(v1) defined by the formula:

[v0, v1, v2, v3] = πv0v1πv2v3

∣

∣

v1
.
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Remark. We do not lose information when restrict the product πv0v1πv2v3 to
v1; indeed, this product takes values in v1 and its kernel contains v0.

For n = 1, v1 is a line and [v0, v1, v2, v3] is a real number. For general n, the
Jordan form of the operator provides numerical invariants of the quadruple
vi, i = 0, 1, 2, 3.

We will mainly use an infinitesimal version of the cross-ratio that is an
invariant [ξ0, ξ1] ∈ gl(v1) of a pair of tangent vectors ξi ∈ Tvi

Gn(Σ), i =
0, 1, where v0 ∩ v1 = 0. Let γi(t) be curves in Gn(Σ) such that γi(0) =
vi,

d
dt

γi(t)
∣

∣

t=0
= ξi, i = 0, 1. Then the cross-ratio: [γ0(t), γ1(0), γ0(τ), γ1(θ)]

is a well defined operator on v1 = γ1(0) for all t, τ, θ close enough to 0. More-
over, it follows from (2) that [γ0(t), γ1(0), γ0(0), γ1(0)] =
[γ0(0), γ1(0), γ0(t), γ1(0)] = [γ0(0), γ1(0), γ0(0), γ1(t)] = id. We set

[ξ0, ξ1] =
∂2

∂t∂τ
[γ0(t), γ1(0), γ0(0), γ1(τ)]

∣

∣

v1

∣

∣

∣

t=τ=0
(3)

It is easy to check that the right-hand side of (3) depends only on ξ0, ξ1 and
that (ξ0, ξ1) 7→ [ξ0, ξ1] is a bilinear mapping from Tv0Gn(Σ)× Tv1Gn(Σ) onto
gl(v1).

Lemma 3 Let v0, v1 ∈ Gn(Σ), v0 ∩ v1 = 0, ξi ∈ Tvi
Gn(Σ), and ξi =

d
dt

γi(t)
∣

∣

t=0
, i = 0, 1. Then [ξ0, ξ1] = ∂2

∂t∂τ
πγ1(t)γ0(τ)

∣

∣

v1

∣

∣

∣

t=τ=0
and v1, v0 are

invariant subspaces of the operator ∂2

∂t∂τ
πγ1(t)γ0(τ)

∣

∣

v1

∣

∣

∣

t=τ=0
.

Proof. According to the definition, [ξ0, ξ1] = ∂2

∂t∂τ
(πγ0(t)γ1(0)πγ0(0)γ1(τ))

∣

∣

v1

∣

∣

∣

t=τ=0
.

The differentiation of the identities πγ0(t)γ1(0)πγ0(t)γ1(τ) = πγ0(t)γ1(0),
πγ0(t)γ1(τ)πγ0(0)γ1(τ) = πγ0(0)γ1(τ) gives the equalities:

∂2

∂t∂τ
(πγ0(t)γ1(0)πγ0(0)γ1(τ))

∣

∣

∣

t=τ=0
= −πv0v1

∂2

∂t∂τ
πγ0(t)γ1(τ)

∣

∣

∣

t=τ=0

= −
∂2

∂t∂τ
πγ0(t)γ1(τ)

∣

∣

∣

t=τ=0
πv0v1 .

It remains to mention that ∂2

∂t∂τ
πγ1(t)γ0(τ) = − ∂2

∂t∂τ
πγ0(τ)γ1(t). �
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3 Coordinate setting

Given vi ∈ Gn(Σ), i = 0, 1, 2, 3, we coordinatize Σ = R
n ×R

n = {(x, y) : x ∈
R

n, y ∈ R
n} in such a way that vi ∩ {(0, y) : y ∈ R

n} = 0. Then there exist
n × n-matrices Si such that

vi = {(x, Six) : x ∈ R
n}, i = 0, 1, 2, 3. (4)

The relation vi ∩ vj = 0 is equivalent to det(Si −Sj) 6= 0. If S0 = 0, then the

projector πv0v1 is represented by the 2n×2n-matrix

(

0 S−1
1

0 I

)

. In general,

we have

πv0v1 =

(

S−1
01 S0 −S−1

01

S1S
−1
01 S0 −S1S

−1
01

)

,

where S01 = S0 −S1. Relation (4) provides coordinates {x} on the spaces vi.
In these coordinates, the operator [v0, v1, v2, v3] on v1 is represented by the
matrix:

[v0, v1, v2, v3] = S−1
10 S03S

−1
32 S21,

where Sij = Si − Sj .
We now compute the coordinate representation of the infinitesimal cross-

ratio. Let γ0(t) = {(x, Stx) : x ∈ R
n}, γ1(t) = {(x, S1+tx) : x ∈ R

n} so that
ξi = d

dt
γi(t)

∣

∣

t=0
is represented by the matrix Ṡi = d

dt
St

∣

∣

t=i
, i = 0, 1. Then

[ξ0, ξ1] is represented by the matrix

∂2

∂t∂τ
S−1

1t StτS
−1
τ0 S01

∣

∣

∣

t=0
τ=1

=
∂

∂t
S−1

1t Ṡ1

∣

∣

∣

t=0
= S−1

01 Ṡ0S
−1
01 Ṡ1.

So
[ξ0, ξ1] = S−1

01 Ṡ0S
−1
01 Ṡ1. (5)

There is a canonical isomorphism Tv0Gn(Σ) ∼= Hom(v0, Σ/v0); it is defined
as follows. Let ξ ∈ Tv0Gn(Σ), ξ = d

dt
γ(t)|t=0, and z0 ∈ v0. Take a smooth

curve z(t) ∈ γ(t) such that z(0) = z0. Then the residue class (ż(0) + v0) ∈
Σ/v0 depends on ξ and z0 rather than on a particular choice of γ(t) and
z(t). Indeed, let γ′(t) be another curve in Gn(Σ) whose velocity at t =
0 equals ξ. Take some smooth with respect to t bases of γ(t) and γ′(t):
γ(t) = span{e1(t), . . . , en(t)}, γ′(t) = span{e′1(t), . . . , e

′
n(t)}, where ei(0) =
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e′i(0), i = 1, . . . , n; then (ėi(0) − ė′i(0)) ∈ v0, i = 1, . . . , n. Let z(t) =
n
∑

i=1

αi(t)ei(t), z′(t) =
n
∑

i=1

α′
i(t)e

′
i(t), where αi(0) = α′

i(0). We have:

ż(0) − ż′(0) =
n

∑

i=1

((α̇i(0) − α̇′
i(0))ei(0) + α′

i(0)(ėi(0) − ė′i(0))) ∈ v0,

i.e. ż(0) + v0 = ż′(0) + v0.
We associate to ξ the mapping ξ̄ : v0 → Σ/v0 defined by the formula

ξ̄z0 = ż(0) + v0. The fact that ξ 7→ ξ̄ is an isomorphism of the vector
spaces Tv0Gn(Σ) and Hom(v0, Σ/v0) can be easily checked in coordinates.
The matrices Ṡi above are actually coordinate presentations of ξ̄i, i = 0, 1.

The standard action of the group GL(Σ) on Gn(Σ) induces the action
of GL(Σ) on the tangent bundle TGn(Σ). It is easy to see that the only
invariant of a tangent vector ξ for this action is rank ξ̄ (tangent vectors are
just “double points” or “pairs of infinitesimaly close points” and number
(n − rank ξ̄) is the infinitesimal version of the dimension of the intersection
for a pair of points in the Grassmannian). Formula (5) implies:

rank[ξ0, ξ1] ≤ min{rank ξ̄0, rank ξ̄1}.

4 Curves in the Grassmannian

Let t 7→ v(t) be a germ at t̄ of a smooth curve in the Grassmannian Gn(Σ).

Definition 4 We say that the germ v(·) is ample if v(t) ∩ v(t̄) = 0 ∀t 6= t̄
and the operator-valued function t 7→ πv(t)v(t̄) has a pole at t̄. We say that
the germ v(·) is regular if the function t 7→ πv(t)v(t̄) has a simple pole at t̄.
A smooth curve in Gn(Σ) is called ample (regular) if all its germs are ample
(regular).

Assume that Σ = {(x, y) : x, y ∈ R
n} is coordinatized in such a way that

v(t̄) = {(x, 0) : x ∈ R
n}. Then v(t) = {(x, Stx) : x ∈ R

n}, where S(t̄) = 0

and πv(t)v(t̄) =

(

I −S−1
t

0 0

)

. The germ v(·) is ample if and only if the scalar

function t 7→ det St has a finite order root at t̄. The germ v(·) is regular if
and only if the matrix Ṡt̄ is not degenerate. More generally, the curve τ 7→
{(x, Sτx) : x ∈ R

n} is ample if and only if ∀t the function τ 7→ det(Sτ − St)
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has a finite order root at t. This curve is regular if and only if det Ṡt 6= 0, ∀t.
The intrinsic version of this coordinate characterization of regularity reads:
the curve v(·) is regular if and only if the map ¯̇v(t) ∈ Hom(v(t), Σ/v(t)) has
rank n, ∀t.

Let v(·) be an ample curve in Gn(Σ). We consider the Laurent expansions
at t of the operator-valued function τ 7→ πv(τ)v(t) ,

πv(τ)v(t) =

m
∑

i=−kt

(τ − t)iπi
t + O(τ − t)m+1.

Projectors of Σ on the subspace v(t) form an affine subspace of gl(Σ) (cf.
Lemma 2). This fact implies that π0

t is a projector of Σ on v(t); in other
words, π0

t = πv◦(t)v(t) for some v◦(t) ∈ v(t)⋔. We thus obtain another curve
t 7→ v◦(t) in Gn(Σ), where Σ = v(t)⊕v◦(t), ∀t. The curve t 7→ v◦(t) is called
the derivative curve of the ample curve v(·).

The affine space {πwv(t) : w ∈ v(t)⋔} is a translation of the linear space
N(v(t)) = {n : Σ → v(t) | n|v(t) = 0} ⊂ gl(Σ)} containing only nilpotent
operators. It is easy to see that πi

t ∈ N(v(t)) for i 6= 0.
The derivative curve is not necessary ample. Moreover, it may be nons-

mooth and even discontinuous.

Lemma 4 If v(·) is regular then v◦(·) is smooth.

Proof. We’ll find the coordinate representation of v◦(·). Let v(t) = {(x, Stx) :
x ∈ R

n}. Regularity of v(·) is equivalent to the nondegeneracy of Ṡt. We
have:

πv(τ)v(t) =

(

S−1
τt Sτ −S−1

τt

StS
−1
τt Sτ −StS

−1
τt

)

,

where Sτt = Sτ − St. Then S−1
τt = (τ − t)−1Ṡ−1

t − 1
2
Ṡ−1

t S̈tṠ
−1
t + O(τ − t) as

τ → t and

πv(τ)v(t) = (τ − t)−1

(

Ṡ−1
t St −Ṡ−1

t

StṠ
−1
t St −StṠ

−1
t

)

+

(

I − 1
2
Ṡ−1

t S̈tṠ
−1
t St

1
2
Ṡ−1

t S̈tṠ
−1
t

St −
1
2
StṠ

−1
t S̈tṠ

−1
t St

1
2
StṠ

−1
t S̈tṠ

−1
t

)

+ O(τ − t).

We set At = −1
2
Ṡ−1

t S̈tṠ
−1
t ; then πv◦(t)v(t) =

(

I + AtSt −At

St + StAtSt −StAt

)

is

smooth with respect to t. Hence t 7→ v◦(t) is smooth. We obtain:

v◦(t) = {(Aty, y + StAty) : y ∈ R
n} . (6)
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5 The curvature

Definition 5 Let v be an ample curve and v◦ be the derivative curve of
v. Assume that v◦ is differentiable at t and set Rv(t) = [v̇◦(t), v̇(t)]. The
operator Rv(t) ∈ gl(v(t)) is called the curvature of the curve v at t.

If v is a regular curve, then v◦ is smooth, the curvature is well-defined
and has a simple coordinate presentation. To find this presentation, we’ll
use formula (5) applied to ξ0 = v̇◦(t), ξ1 = v̇(t). As before, we assume that
v(t) = {(x, Stx) : x ∈ R

n}; in particular, v(t) is transversal to the subspace
{(0, y) : y ∈ R

n}. In order to apply (5) we need an extra assumption on the
coordinatization of Σ: the subspace v◦(t) has to be transversal to {(0, y) :
y ∈ R

n} for given t. The last property is equivalent to the nondegeneracy
of the matrix At (see (6)). It is important to note that the final expression
for Rv(t) as a differential operator of S must be valid without this extra
assumption since the definition of Rv(t) is intrinsic! Now we compute: v◦(t) =
{(x, (A−1

t + St)x) : x ∈ R
n}, Rv(t) = [v̇◦(t), v̇(t)] = At

d
dt

(A−1
t + St)AtṠt =

(AtṠt)
2 − ȦtṠt = 1

4
(Ṡ−1

t S̈t)
2 − ȦtṠt. We also have ȦṠ = −1

2
d
dt

(Ṡ−1S̈Ṡ−1)Ṡ =

(Ṡ−1)2 − 1
2
Ṡ−1

...

S. Finally,

Rv(t) =
1

2
Ṡ−1

t

...

St −
3

4
(Ṡ−1

t S̈t)
2 =

d

dt

(

(2Ṡt)
−1S̈t

)

−
(

(2Ṡt)
−1S̈t

)2

, (7)

the matrix version of the Schwartzian derivative.
Curvature operator is a fundamental invariant of the curve in the Grass-

mannian. One more intrinsic construction of this operator, without using
the derivative curve, is provided by the following

Proposition 1 Let v be a regular curve in Gn(Σ). Then

[v̇(τ), v̇(t)] = (τ − t)−2id +
1

3
Rv(t) + O(τ − t)

as τ → t.

Proof. It is enough to check the identity in some coordinates. Given t we
may assume that

v(t) = {(x, 0) : x ∈ R
n}, v◦(t) = {(0, y) : y ∈ R

n}.
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Let v(τ) = {(x, Sτx : x ∈ R
n}, then St = S̈t = 0 (see (6)). Moreover, we

may assume that the bases of the subspaces v(t) and v◦(t) are coordinated

in such a way that Ṡt = I. Then Rv(t) = 1
2

...

St (see (7)). On the other hand,
formula (5) for the infinitesimal cross-ratio implies:

[v̇(τ), v̇(t)] = S−1
τ ṠτS

−1
τ = −

d

dτ
(S−1

τ ) =

−
d

dτ

(

(τ − t)I +
(τ − t)3

6

...

St

)−1

+ O(τ − t) =

−
d

dτ

(

(τ − t)−1I −
(τ − t)

6

...

St

)

+ O(τ − t) = (τ − t)−2I +
1

6

...

St +O(τ − t).

�

Curvature operator is an invariant of the curves in Gn(Σ) with fixed
parametrizations. Asymptotic presentation obtained in Proposition 1 implies
a nice chain rule for the curvature of the reparametrized curves.

Let ϕ : R → R be a regular change of variables, i.e. ϕ̇ 6= 0, ∀t. The
standard imbedding R ⊂ RP

1 = G1(R
2) makes ϕ a regular curve in G1(R

2).
As we know (see (7)), the curvature of this curve is the Schwartzian of ϕ:

Rϕ(t) =

...
ϕ (t)

2φ̇(t)
−

3

4

(

ϕ̈(t)

ϕ̇(t)

)2

.

We set vϕ(t) = v(ϕ(t)) for any curve v in Gn(Σ).

Proposition 2 Let v be a regular curve in Gn(Σ) and ϕ : R → R be a
regular change of variables. Then

Rvϕ(t) = ϕ̇2(t)Rv(ϕ(t)) + Rϕ(t). (8)

Proof. We have

[v̇ϕ(τ), v̇ϕ(t)] = (τ − t)−2id +
1

3
Rvϕ(t) + O(τ − t).

On the other hand,

[v̇ϕ(τ), v̇ϕ(t)] = [ϕ̇(τ)v̇(ϕ(τ)), ϕ̇(t)v̇(ϕ(t))] = ϕ̇(τ)ϕ̇(t)[v̇(ϕ(τ)), v̇(ϕ(t))] =

ϕ̇(τ)ϕ̇(t)

(

(ϕ(τ) − ϕ(t))−2id +
1

3
Rv(ϕ(t)) + O(τ − t)

)

=

11



ϕ̇(τ)ϕ̇(t)

((ϕ(τ) − ϕ(t))2
id +

ϕ̇2(t)

3
Rv(ϕ(t)) + O(τ − t).

We treat ϕ as a curve in RP
1 = G1(R

2). Then [ϕ̇(τ), ϕ̇(t)] = ϕ̇(τ)ϕ̇(t)
(ϕ(τ)−ϕ(t))2

,

see (5). The one-dimensional version of Proposition 1 reads:

[ϕ̇(τ), ϕ̇(t)] = (t − τ)−2 +
1

3
Rϕ(t) + O(τ − t).

Finally,

[v̇ϕ(τ), v̇ϕ(t)] = (t − τ)−2 +
1

3

(

Rϕ(t) + ϕ̇2(t)Rv(ϕ(t))
)

+ O(τ − t). �

The following identity is an immediate corollary of Proposition 2:
(

Rvϕ −
1

n
(trRvϕ)id

)

(t) = ϕ̇2(t)

(

Rv −
1

n
(trRv)id

)

(ϕ(t)). (9)

Definition 6 An ample curve v is called flat if Rv(t) ≡ 0.

It follows from Proposition 1 that any small enough piece of a regular
curve can be made flat by a reparametrization if and only if the curvature
of the curve is a scalar operator, i.e. Rv(t) = 1

n
(trRv(t))id. In the case

of a nonscalar curvature, one can use equality (9) to define a distinguished
parametrization of the curve and then derive invariants which do not depend
on the parametrization.

Remark. In this paper we are mainly focused on the regular curves. See
paper [3] for the version of the chain rule which is valid for any ample curve
and for basic invariants of unparametrized ample curves.

6 Structural equations

Assume that v and w are two smooth curves in Gn(Σ) such that
v(t) ∩ w(t) = 0, ∀t.

Lemma 5 For any t and any e ∈ v(t) there exists a unique fe ∈ w(t)
with the following property: ∃ a smooth curve eτ ∈ v(τ), et = e, such that
d
dτ

eτ

∣

∣

τ=t
= fe. Moreover, the mapping Φvw

t : e 7→ fe is linear and for any
e0 ∈ v(0) there exists a unique smooth curve e(t) ∈ v(t) such that e(0) = e0

and
ė(t) = Φvw

t e(t), ∀t. (10)
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Proof. First we take any curve êτ ∈ v(τ) such that et = e. Then êτ = aτ +bτ

where aτ ∈ v(t), bτ ∈ w(t). We take xτ ∈ v(τ) such that xt = ȧt and set
eτ = êτ + (t − τ)xτ . Then ėt = ḃt and we put fe = ḃt.

Let us prove that ḃt depends only on e and not on the choice of eτ .
Computing the difference of two admissible eτ we reduce the lemma to the
following statement: if z(τ) ∈ v(τ), ∀τ and z(t) = 0, then ż(t) ∈ v(t).

To prove the last statement we take smooth vector-functions ei
τ ∈ v(τ), i =

1, . . . , n such that v(τ) = span{e1
τ , . . . , e

n
τ }. Then z(τ) =

n
∑

i=1

αi(τ)ei
τ , αi(t) =

0. Hence ż(t) =
n
∑

i=1

α̇i(t)e
i
t ∈ vt.

Linearity of the map Φvw
t follows from the uniqueness of fe. Indeed, if

fei = d
dτ

ei
τ

∣

∣

τ=t
, then d

dτ
(α1e

1
τ +α2e

2
τ )

∣

∣

τ=t
= α1fe1+α2fe2 ; hence α1fe1+α2fe2 =

fα1e1+α2e2, ∀ei ∈ v(t), αi ∈ R, i = 1, 2.
Now consider the smooth submanifold V = {(t, e) : t ∈ R, e ∈ v(t)} of

R × Σ. We have (1, Φvw
t e) ∈ T(t,e)V since (1, Φvw

t e) is the velocity of a curve
τ 7→ (τ, eτ ) in V . So (t, e) 7→ (1, Φvw

t e), (t, e) ∈ V is a smooth vector field on
V . The curve e(t) ∈ v(t) satisfies (10) if and only if (t, e(t)) is a trajectory
of this vector field. Now the standard existence and uniqueness theorem for
ordinary differential equations provides the existence of a unique solution to
the Cauchy problem for small enough t while the linearity of the equation
guarantees that the solution is defined for all t. �

It follows from the proof of the lemma that Φvw
t e = πv(t)w(t)ėτ

∣

∣

τ=t
for

any eτ ∈ v(τ) such that et = e. Let v(t) = {(x, Svtx) : x ∈ R
n}, w(t) =

{(x, Swtx) : x ∈ R
n}; the matrix presentation of Φvw

t in coordinates x is
(Swt − Svt)

−1Ṡvt. Linear mappings Φvw
t and Φwv

t provide a factorization of
the infinitesimal cross-ratio [ẇ(t), v̇(t)]. Indeed, equality (5) implies:

[ẇ(t), v̇(t)] = −Φwv
t Φvw

t . (11)

Equality (10) implies one more useful presentation of the infinitesimal cross-
ratio: if e(t) satisfies (10), then

[ẇ(t), v̇(t)]e(t) = −Φwv
t Φvw

t e(t) = −Φwv
t ė(t) = −πw(t)v(t) ë(t). (12)

Now let w be the derivative curve of v, w(t) = v◦(t). It happens that
ë(t) ∈ v(t) in this case and (12) is reduced to the structural equation:

ë(t) = −[v̇◦(t), v̇(t)]e(t) = −Rv(t)e(t),

where Rv(t) is the curvature operator. More precisely, we have the following
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Proposition 3 Assume that v is a regular curve in Gn(Σ), v◦ is its deriva-
tive curve, and e(·) is a smooth curve in Σ such that e(t) ∈ v(t), ∀t. Then
ė(t) ∈ v◦(t) if and only if ë(t) ∈ v(t).

Proof. Given t, we take coordinates in such a way that v(t) = {(x, 0) : x ∈
R

n}, v◦(t) = {(0, y) : y ∈ R
n}. Then v(τ) = {(x, Sτx) : x ∈ R

n} for τ close
enough to t, where St = S̈t = 0 (see (6)).

Let e(τ) = (x(τ), Sτx(τ)). The inclusion ė(t) ∈ v◦(t) is equivalent to the
equality ẋ(t) = 0. Further,

ë(t) = (ẍ(t), S̈tx(t) + 2Ṡtẋ(t) + Stẍ(t)) = (ẍ(t), 2Ṡẋ) ∈ v(t).

Regularity of v implies the nondegeneracy of Ṡ(t). Hence ë(t) ∈ v(t) if and
only if ẋ(t) = 0. �

Now equality (12) implies

Corollary 1 If ė(t) = Φvv◦

t e(t), then ë(t) + Rv(t)e(t) = 0.

Let us consider invertible linear mappings Vt : v(0) → v(t) defined by
the relations Vte(0) = e(t), ė(τ) = Φvv◦

τ e(τ), 0 ≤ τ ≤ t. It follows from
the structural equation that the curve v is uniquely reconstructed from v̇(0)
and the curve t 7→ V −1

t RV (t) in gl(v(0)). Moreover, let v0 ∈ Gn(Σ) and ξ ∈
Tv0Gn(Σ), where the map ξ̄ ∈ Hom(v0, Σ/v0) has rank n; then for any smooth
curve t 7→ A(t) in gl(v0) there exists a unique regular curve v such that
v̇(0) = ξ and V −1

t Rv(t)Vt = A(t). Indeed, let ei(0), i = 1, . . . , n, be a basis

of v0 and A(t)ei(0) =
n
∑

j=1

aij(t)ej(0). Then v(t) = span{e1(t), . . . , en(t)},

where

ëi(τ) +
n

∑

j=1

aij(τ)ej(τ) = 0, 0 ≤ τ ≤ t, (13)

and ei(t) are uniquely defined by fixing the v̇(0).
The obtained classification of regular curves in terms of the curvature is

particularly simple in the case of a scalar curvature operators Rv(t) = ρ(t)id.
Indeed, we have A(t) = V −1

t Rv(t)Vt = ρ(t)id and system (13) is reduced to
n copies of the Hill equation ë(τ) + ρ(τ)e(τ) = 0.

Recall that all ξ ∈ TGn(Σ) such that rank ξ̄ = n are equivalent under the
action of GL(Σ) on TGn(Σ) induced by the standard action on the Grass-
mannian Gn(Σ). We thus obtain
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Corollary 2 For any smooth scalar function ρ(t) there exists a unique, up
to the action of GL(Σ), regular curve v in Gn(Σ) such that Rv(t) = ρ(t)id.

Another important special class is that of symmetric curves.

Definition 7 A regular curve v is called symmetric if VtRv(0) = Rv(t)Vt, ∀t.

In other words, v is symmetric if and only if the curve A(t) = V −1
t Rv(t)Vt

in gl(v(0)) is constant and coincides with Rv(0). The structural equation
implies

Corollary 3 For any n×n-matrix A0, there exists a unique, up to the action
of GL(Σ), symmetric curve v such that Rv(t) is similar to A0.

The derivative curve v◦ of a regular curve v is not necessary regular.
The formula Rv(t) = Φv◦v

t Φvv◦

t implies that v◦ is regular if and only if the
curvature operator Rv(t) is nondegenerate for any t. Then we may compute
the second derivative curve v◦◦ = (v◦)◦.

Proposition 4 A regular curve v with nondegenerate curvature operators is
symmetric if and only if v◦◦ = v.

Proof. Let us consider system (13). We are going to apply Proposition 3
to the curve v◦ (instead of v) and the vectors ėi(t) ∈ v◦(t). According to
Proposition 3, v◦◦ = v if and only if d2

dt2
ėi(t) ∈ v◦(t). Differentiating (13) we

obtain that v◦◦ = v if and only if the functions αij(t) are constant. The last
property is none other than a characterization of symmetric curves. �

7 Lagrange Grassmannians

We study curves in the Grassmannian keeping in mind the Jacobi curves
Jz(t) (see Sec. 1). Recall that Jz(t) are subspaces of the symplectic space
TzN endowed with the symplectic form σz. Moreover, Jz(t) are Lagrange
subspaces of TzN . In other words, t 7→ Jz(t) is a curve in the Lagrange
Grassmannian L(TzN) consisting of all Lagrange subspaces of the symplectic
space.

In this section, we give few simple facts on Lagrangian Grassmannians to
be used below (see [1, Sec. 4] for a consistent description of their geometry).
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Let (Σ, σ̄) be a 2n-dimensional symplectic space and υ0, υ1 ∈ L(Σ) be a pair of
transversal Lagrangian subspaces, υ0∩υ1 = 0. Bilinear form σ̄ induces a non
degenerate pairing of the spaces υ0 and υ1 by the rule (e, f) 7→ σ̄(e, f), e ∈
υ0, f ∈ υ1. To any basis e1, . . . , en of υ0 we may associate a unique dual basis
f1, . . . , fn of υ1 such that σ̄(ei, fj) = δij . The form σ̄ is totally normalized in
the basis e1, . . . , en, f1, . . . , fn of Σ, since σ(ei, ej) = σ(fi, fj) = 0. It follows
that symplectic group

Sp(Σ) = {A ∈ GL(Σ) : σ̄(Ae, Af) = σ̄(e, f), e, f ∈ Σ}

acts transitively on the pairs of transversal Lagrangian subspaces.
Next result is a ‘symplectic specification’ of Lemma 2 from Section 2.

Lemma 6 Let υ0 ∈ L(Σ); then {πυυ0 : υ ∈ υ⋔
0 ∩ L(Σ)} is an affine subspace

of the affine space {πvυ0 : v ∈ υ⋔
0 } characterized by the relation:

v ∈ υ⋔

0 ∩ L(Σ) ⇔ σ̄(πvυ0 ·, ·) + σ̄(·, πvυ0 ·) = σ̄(·, ·).

Proof. Assume that υ1 ∈ υ⋔
0 ∩ L(Σ). Let e, f ∈ Σ, e = e0 + e1, f = f0 + f1

where ei, fi ∈ υi, i = 0, 1; then

σ̄(e, f) = σ̄(e0 + e1, f0 + f1) = σ̄(e0, f1) + σ̄(e1, f0) =

σ̄(e0, f) + σ̄(e, f0) = σ̄(πυ1υ0e, f) + σ̄(e, πυ1υ0f).

Conversely, let v ∈ υ⋔
0 is not a Lagrangian subspace. Then there exist e, f ∈ v

such that σ̄(e, f) 6= 0, while σ̄(πvυ0e, f) = σ̄(e, πvυ0f) = 0. �

Corollary 4 Let v(·) be a regular curve in Gn(Σ) and v◦(·) be the derivative
curve of v(·). If v(t) ∈ L(Σ), ∀t, then v◦(t) ∈ L(Σ).

Proof. The derivative curve v◦ was defined in Section 4. Recall that
πv◦(t)v(t) = π0

t , where π0
t is the free term of the Laurent expansion

πv(τ)v(t) ≈

∞
∑

i=−1

(τ − t)iπi
t.

The free term π0
t belongs to the affine hull of πv(τ)v(t), when τ runs a neigh-

borhood of t. Since πv(τ)v(t) belongs to the affine space {πvv0 : v ∈ v⋔
0 ∩L(Σ)},

then π0
t belongs to this affine space as well. �
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It is clearly seeing in coordinates how Lagrange Grassmanian is sitting
in the usual one. Let Σ = R

n∗ × R
n = {(η, y) : η ∈ R

n∗, y ∈ R
n}. Then

any v ∈ ({0} × R
n)⋔ has a form v = {(y⊤, Sy) : y ∈ R

n}, where S is an
n× n-matrix. It is easy to see that v is a Lagrangian subspace if and only if
S is a symmetric matrix, S = S⊤.

It happens that any tangent vector to L(Σ) at the point v ∈ L(Σ) can be
naturally identified with a quadratic form on v. Her we use the fact that v is
not just a point in the Grassmannian but an n-dimensional vector space. To
associate a quadratic form on v(t) to the velocity v̇(t) ∈ Tv(t)L(Σ) of a smooth
curve v(·) we proceed as follows: given z ∈ v(t) we take a smooth curve
τ 7→ z(τ) in Σ in such a way that z(τ) ∈ v(τ), ∀τ and z(t) = z. Then we
define a quadratic form v̇(t)(z), z ∈ v(t), by the formula v̇(t)(z) = σ(z, ż(t)).

The point is that σ(z, ż(t)) does not depend on the freedom in the choice
of the curve τ 7→ z(τ), although ż(t) depends on this choice. Let us check
the required property in the coordinates. Assume that v(τ) = {(y⊤, Sτy) :
y ∈ R

n} We have z = (y⊤, Sty) for some y ∈ R
n and z(τ) = (y(τ)⊤, Sτy(τ)).

Then
σ(z, ż(t)) = y⊤(Ṡty + Stẏ) − ẏ⊤Sty = y⊤Ṡty;

vector ẏ does not show up. We have obtained a coordinate presentation of
v̇(t):

v̇(t)(y⊤, Sty) = y⊤Ṡty,

which implies that v̇ 7→ v̇, v̇ ∈ TvL(Σ) is an isomorphism of TvL(Σ) on the
vector space of quadratic forms on v.

It is easy to see that a curve v(·) in L(Σ) is regular if and only if the
quadratic forms v̇(t) are nondegenerate for all t. We say that such a curve
is monotone increasing (decreasing) if v̇(t) are positive definite (negative
definite) forms. In both cases we say that v(·) is monotone.

Given a regular monotone increasing (decreasing) curve v(·), the quadratic
form v̇(t) defines an Euclidean structure 〈·, ·〉v̇(t) on v(t) so that 〈x, x〉v̇(t) =
v̇(t)(x) (= −v̇(t)(x)). Let Rv(t) ∈ gl(v(t)) be the curvature operator of
the curve v(·); we define the curvature quadratic form rv(t) on v(t) by the
formula:

rv(t)(x) = 〈Rv(t)x, x〉v̇(t), x ∈ v(t).

Proposition 5 The curvature operator Rv(t) is a self-adjoint operator for
the Euclidean structure 〈·, ·〉v̇(t). The form rv(t) is equivalent (up to linear
changes of variables) to the form v̇◦(t), where v◦(·) is the derivative curve.
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Proof. The statement is intrinsic and we may check it in any coordinates.
Fix t and take Darboux coordinates {(η, y) : η ∈ R

n∗, y ∈ R
n} in Σ in

such a way that v(t) = {(y⊤, 0) : y ∈ R
n}, v◦(t) = {(0, y) : y ∈ R

n},
v̇(t)(y) = y⊤y. Let v(τ) = {(y⊤, Sτy) : y ∈ R

n}, then St = 0. Moreover, Ṡ(t)
is the matrix of the form v̇(t) in given coordinates, hence Ṡt = I. Recall that
v◦(τ) = {(y⊤Aτ , y + SτAτy) : y ∈ R

n}, where Aτ = −1
2
Ṡ−1

τ S̈τ Ṡ
−1
τ (see (6)).

Hence S̈t = 0. We have: Rv(t) = 1
2

...

St, rv(t)(y) = 1
2
y⊤

...

St y,

v̇◦(t)(y) = σ
(

(0, y), (y⊤Ȧt, 0)
)

= −y⊤Ȧty =
1

2
y⊤

...

St y.

So rv(t) and v̇◦(t) have equal matrices for our choice of coordinates in v(t)
and v◦(t). The curvature operator is self-adjoint since it is presented by
a symmetric matrix in coordinates where form v̇(t) is the standard inner
product. �

Proposition 5 implies that the curvature operators of regular monotone
curves in the Lagrange Grassmannian are diagonalizable and have only real
eigenvalues.

8 Canonical connection

Now we apply the developed theory of curves in the Grassmannian to the
Jacobi curves Jz(t) (see Sec. 1).

Proposition 6 All Jacobi curves Jz(·), z ∈ N , associated to the given

Hamiltonian field ζ = ~h are regular (monotone) if and only if the field ζ
is regular (monotone).

Proof. The definition of the regular (monotone) field is actually the speci-
fication of the definition of the regular (monotone) germ of the curve in the
Lagrange Grassmannian: general definition is applied to the germs at t = 0
of the curves t 7→ Jz(t). What remains is to demonstrate that other germs
of these curves are regular (monotone) as soon as the germs at 0 are. The
latter fact follows from the identity

Jz(t + τ) = e−tζ
∗ Jetζ(z)(τ) (14)

(which, in turn, is an immediate corollary of the identity e
−(t+τ)ζ
∗ = e−tζ

∗ ◦
e−τζ
∗ ). Indeed, (14) implies that the germ of Jz(·) at t is the image of the
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germ of Jetζ(τ)(·) at 0 under the fixed linear symplectic transformation e−tζ
∗ :

Tetζ(z)N → TzN . The properties of the germs to be regular or monotone
survive symplectic transformations since they are intrinsic properties. �

Let ζ be a regular field. Then the derivative curves J◦
z (t) are well-defined.

Moreover, identity (14) and the fact that the construction of the derivative
curve is intrinsic imply:

J◦
z (t) = e−tζ

∗ J◦
etζ(z)(0). (15)

The value at 0 of the derivative curve provides the splitting TzM = Jz(0) ⊕
J◦

z (0) where, recall, Jz(0) = ∆z.
The subspaces J◦

z (0) ⊂ TzN, z ∈ N, form a smooth vector distribution,
which is the direct complement to the ‘vertical’ distribution ∆. Direct com-
plements to the vertical distribution are sometimes called Ehresmann con-
nections (or just nonlinear connections, even if linear connections are their
special cases). The Ehresmann connection ∆ζ = {J◦

z (0) : z ∈ N} is called
the canonical connection associated with ζ and the correspondent splitting
TN = ∆ ⊕ ∆ζ is called the canonical splitting. Our nearest goal is to give a
simple intrinsic characterization of ∆ζ which does not require the integration
of the equation ż = ζ(z) and is suitable for calculations not only in local
coordinates but also in moving frames.

Let Ξ = {Ξz ⊂ TzN : z ∈ N} be an Ehresmann connection. Given
a vector field ξ on N we denote ξver(z) = πΞz∆zξ, ξhor(z) = π∆zΞzξ, the
“vertical” and the “horizontal” parts of ξ(z). Then ξ = ξver + ξhor, where
ξver is a section of the distribution ∆ and ξhor is a section of the distribution
Ξ. In general, sections of ∆ are called vertical fields and sections of Ξ are
called horizontal fields.

Proposition 7 An Ehresmann connection Ξ is a canonical one, i.e. Σ =
∆ζ , if and only if the equality

[ζ, [ζ, ν]]hor = 2[ζ, [ζ, ν]ver]hor (16)

holds for any vertical vector field ν. Here [ , ] is Lie bracket of vector fields.

Proof. The deduction of identity (16) is based on the following classical
expression:

d

dt
e−tζ
∗ ξ = e−tζ

∗ [ζ, ξ], (17)
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for any vector field ξ.
Given z ∈ N , we take coordinates in TzN in such a way that TzN =

{(x, y) : x, y ∈ R
n}, where Jz(0) = {(x, 0) : x ∈ R

n}, J◦
z (0) = {(0, y) : y ∈

R
n}. Let Jz(t) = {(x, Stx) : x ∈ R

n}, then S0 = S̈0 = 0 and det Ṡ0 6= 0 due
to the regularity of the Jacobi curve Jz.

Let ν be a vertical vector field, ν(z) = (x0, 0) and
(

e−tζ
∗ ν

)

(z) = (xt, yt).
Then (xt, 0) =

(

e−tζ
∗ ν

)

ver
(z), (0, yt) =

(

e−tζ
∗ ν

)

hor
(z). Moreover, yt = Stxt

since
(

e−tζ
∗ ν

)

(z) ∈ Jz(t). Differentiating the identity yt = Stxt we obtain:

ẏt = Ṡtxt + Stẋt. In particular, ẏ0 = Ṡ0x0. It follows from (17) that (ẋ0, 0) =
[ζ, ν]ver, (0, ẏ0) = [ζ, ν]hor. Hence (0, Ṡ0x0) = [ζ, ν]hor(z), where, I recall, ν is
any vertical field. Now we differentiate once more and evaluate the derivative
at 0:

ÿ0 = S̈0x0 + 2Ṡ0ẋ0 + S0ẍ0 = 2Ṡ0ẋ0. (18)

The Lie bracket presentations of the left and right hand sides of (18) are:
(0, ÿ0) = [ζ, [ζ, ν]]hor, (0, Ṡ0ẋ0) = [ζ, [ζ, ν]ver]hor. Hence (18) implies identity
(16).

Assume now that {(0, y) : y ∈ R
n} 6= J◦

z (0); then S̈0x0 6= 0 for some x0.
Hence ÿ0 6= 2Ṡ0ẋ0 and equality (16) is violated. �

Equality (16) can be equivalently written in the following form that is
often more convenient for the computations:

π∗[ζ, [ζ, ν]](z) = 2π∗[ζ, [ζ, ν]ver](z), ∀z ∈ N. (19)

Let RJz(t) ∈ gl(Jz(t)) be the curvature of the Jacobi curve Jz(t). Identity
(14) and the fact that construction of the Jacobi curve is intrinsic imply that

RJz(t) = e−tζ
∗ RJ

etζ (z)
(0)etζ

∗

∣

∣

Jz(t)
.

Recall that Jz(0) = ∆z; the operator RJz(0) ∈ gl(∆z) is called the curvature

operator of the field ζ at z. We introduce the notation: Rζ(z)
def
= RJz(0);

then Rζ = {Rζ(z)}
z∈E

is an endomorphism of the ‘vertical’ vector bundle ∆.

Proposition 8 Assume that TN = ∆⊕∆ζ is the canonical splitting. Then

Rζν = −[ζ, [ζ, ν]hor]ver (20)

for any vertical field ν.
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Proof. Recall that RJz(0) = [J̇◦
z (0), J̇z(0)], where [·, ·] is the infinitesimal

cross–ratio (not the Lie bracket!). The presentation (11) of the infinitesimal
cross–ratio implies:

Rζ(z) = RJz(0) = −Φ
J◦

z Jz

0 Φ
JzJ◦

z

0 ,

where Φvw
0 e = πv(0)w(0)ė0 for any smooth curve eτ ∈ v(τ) such that e0 = e.

Equalities (15) and (17) imply: Φ
JzJ◦

z

0 ν(z) = [ζ, ν]ver(z), ∀z ∈ M. Similarly,

Φ
J◦

z Jz

0 µ(z) = [ζ, µ]hor(z) for any horizontal field µ and any z ∈ M . Finally,

Rζ(z)ν(z) = −Φ
J◦

z Jz

0 Φ
JzJ◦

z

0 = −[ζ, [ζ, ν]hor]ver(z). �

9 Coordinate presentation

We restrict ourselves to the case of the involutive Lagrange distribution ∆;
then integral submanifolds of ∆ form a Lagrange foliation of N . According
to the standard Darboux–Weinstein theorem (see [7]) all Lagrange foliations
are locally equivalent. More precisely, this theorem states that any z ∈ M
possesses a neighborhood Oz and local coordinates which turn the restriction
of the Lagrange foliation to Oz into the trivial bundle R

n × R
n = {(x, y) :

x, y ∈ R
n} and, simultaneously, turn σ|Oz into the form

n
∑

i=1

dxi ∧ dyi. In this

special coordinates, the fibers become coordinate subspaces R
n×{y}, y ∈ R

n.
Below we use abridged notations: ∂

∂xi
= ∂xi

, ∂ϕ

∂xi
= ϕxi

etc. We also use the
standard summation agreement for repeating indices.

Now consider a Hamiltonian vector field ζ = −hyi
∂xi

+ hxi
∂yi

, where h
is a smooth function on R

n × R
n (a Hamiltonian). The field ζ is regular if

and only if the matrix hxx =
(

hxixj

)n

i,j=1
is non degenerate. We are going to

characterize the canonical connection associated with ζ .
Vector fields ∂xi

, i = 1, . . . , n, provide a basis of the space of vertical
fields. As soon as coordinates are fixed, any Ehresmann connection has a
unique basis of the form:

(∂yi
)
hor

= ∂yi
+ cj

i∂xj
,

where cj
i , i, j = 1, . . . , n, are smooth functions on R

n×R
n. To characterize a

connection in coordinates thus means to find functions cj
i . In the case of the

canonical connection of a regular vector field, the functions cj
i can be easily

recovered from identity (19) applied to ν = ∂xi
, i = 1, . . . , n.
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Let C =
(

cj
i

)n

i,j=1
; the straightforward computation reduces identity (19)

to the following equalities:

2 (hxxChxx)ij = hxk
hxixjyk

− hyk
hxixjxk

− hxiyk
hxkxj

− hxixk
hykxj

or, in the matrix form:

2hxxChxx = {h, hxx} − hxyhxx − hxxhyx,

where {h, hxx} is the Poisson bracket: {h, hxx}ij = {h, hxixj
} = hxk

hxixjyk
−

hyk
hxixjxk

.
Note that matrix C is symmetric (indeed, hxxhyx = (hxyhxx)

⊤) that is a
coordinate expression of the fact that canonical Ehresmann connection is a
Lagrange distribution.

As soon as we found the canonical connection, formula (20) gives us
the presentation of the curvature operator although the explicit coordinate
expression can be bulky. Let us specify the vector field more. In the case of
the Hamiltonian of a natural mechanical system in R

n,

h(x, y) =
1

2
|x|2 + U(y), (21)

the canonical connection is trivial: cj
i = 0; the matrix of the curvature

operator is just Uyy.
Hamiltonian vector field associated to the Hamiltonian

h(x, y) = gij(y)xixj with a non degenerate symmetric matrix (gij)
n

i,j=1 gener-
ates a (pseudo-)Riemannian geodesic flow. Canonical connection in this case
is classical Levi Civita connection and the curvature operator is Ricci oper-
ator of (pseudo-)Riemannian geometry (see [2, Sec. 5] for details). Finally,
Hamiltonian h(x, y) = gij(y)xixj + U(y) (the energy of a natural mechanical
system on the (pseudo-)Riemannian manifold) has the same connection as
Hamiltonian h(x, y) = gij(y)xixj while its curvature operator is sum of Ricci
operator and second covariant derivative of U .

More generally, let ~h be a regular Hamiltonian field on T ∗M and U a
smooth function on M (a potential). We can treat U as a constant on the

fibers function on T ∗M . Then ~U is a vertical field, the Hamiltonian h + U
has the same canonical connection as h, while R~h+~Uν = R~h − [~u, [~h, ν]hor]ver

according to the formula (20). The second term of this sum can be seeing as
the second covariant derivative of U in virtue of given Ehresmann connection.
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10 Reduction

We consider a Hamiltonian system ż = ~h(z) on a symplectic manifold N
endowed with a fixed Lagrange distribution ∆. Assume that g : N → R is a
first integral of our Hamiltonian system, i.e. {h, g} = 0.

Lemma 7 Let z ∈ N, g(z) = c. The subspace ∆z is transversal to g−1(c) at
z if and only if ~g(z) /∈ ∆z.

Proof. Hypersurface g−1(c) is not transversal to ∆z at z if and only if

dzg(∆z) = 0 ⇔ σ(~g(z), ∆z) = 0 ⇔ ~g(z) ∈ ∆∠

z = ∆z,

where A∠ is orthogonal complement with respect to the symplectic form of
the subset A in the symplectic space. �

If all points of some level g−1(c) satisfy conditions of Lemma 7, then
g−1(c) is a (2n − 1)-dimensional manifold endowed with the rank (n − 1)

distribution ∆g
z

def
= Tz (Ez ∩ g−1(c)). Note that R~g(z) = ker σ

∣

∣

Tzg−1(c)
, hence

Σg
z

def
= Tzg

−1(c)/R~g(z) is a 2(n − 1)-dimensional symplectic space and ∆g
z is

a Lagrangian subspace in Σg
z , i.e. ∆g

z ∈ L(Σg
z).

The submanifold g−1(c) is invariant for the flow et~h. Moreover, et~h
∗ ~g =

~g. Hence et~h
∗ induces a symplectic transformation et~h

∗ : Σg
z → Σg

et~h(z)
. Set

Jg
z (t) = e−t~h

∗ ∆g

et~h(z)
. The curve t 7→ Jg

z (t) in the Lagrange Grassmannian

L(Σg
z) is called a reduced Jacobi curve for the Hamiltonian field ~h at z ∈ N .
The reduced Jacobi curve can be easily reconstructed from the Jacobi

curve Jz(t) = e−t~h
∗ ∆

et~h(z)
∈ L(TzN) and vector ~g(z). An elementary calcula-

tion shows that
Jg

z (t) = Jz(t) ∩ ~g(z)∠ + R~g(z).

Now we can temporary forget the symplectic manifold and Hamiltonians and
formulate everything in terms of the curves in the Lagrange Grassmannian.
So let v(·) be a smooth curve in the Lagrange Grassmannian L(Σ) and γ a
one-dimensional subspace in Σ. We set vγ(t) = v(t) ∩ γ∠ + γ, a Lagrange
subspace in the symplectic space γ∠/γ. If γ 6⊂ v(t), then vγ(·) is smooth and
v̇γ(t) = v̇(t)

∣

∣

γ(t)∩γ∠
as it easily follows from the definitions. In particular,

regularity and monotonicity of Λ(·) implies regularity and monotonicity of
vγ(·). The curvatures of v(·) and vγ(·) are related in a more complicated way.
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Theorem 1 Let v(t), t ∈ [t0, t1] be a regular monotone curve in L(Σ) and
γ a one-dimensional subspace of Σ such that γ 6⊂ v(t), ∀t ∈ [t0, t1]. Then

rvγ (t) ≥ rv(t)
∣

∣

v(t)∩γ∠
and rank

(

rvγ (t) − rv(t)
∣

∣

v(t)∩γ∠

)

≤ 1. More precisely,

rvγ (t)(x) = rv(t)(x) +
3σ(äe(t), x)2

4σ(ae(t), e)
, x ∈ v(t) ∪ γ∠,

where e ∈ γ \ 0 and vector ae(t) ∈ v(t) is defined by the relation (ȧe(t)− e) ∈
v(t).

Proof. It is sufficient to compute curvatures at t = 0. Take coordinates in Σ
in such a way that Σ ∼= R

n∗ ×R
n = {(η, y) : η ∈ R

n∗, y ∈ R
n}, v(0) = R

n∗ ×
{0} and γ is a coordinate axis in {0}×R

n. Then v(t) = {(y⊤, Sty) : y ∈ R
n},

vγ(t) = {(y⊤
γ , Sγ

t yγ) : yγ ∈ R
n−1}, where Sγ

t is obtained from St by the
elimination of the row and column corresponding to the axis γ. We may
also assume that v(·) is monotone increasing and Ṡ0 = I. The coordinate
expression of the curvature via the Schwartzian derivative implies:

rv(0)(y) =
1

2
〈

...

S0 y, y〉 −
3

4
〈S̈0y, S̈0y〉,

rvγ (0)(yγ) =
1

2
〈

...

S
γ

0 yγ, yγ〉 −
3

4
〈S̈γ

0 yγ, S̈
γ
0 yγ〉.

It is now obvious that rvγ (0) − rv(0)
∣

∣

v(t)∩γ∠
is a nonnegative quadratic form

whose rank is not greater than 1. Let us write this form in the way which
does not depend on the special choice of the basis in R

n:

rvγ (0)(y)− rv(0)(y) =
3〈S̈0a0, y〉

2

4〈a0, e〉
,

where e is any nonzero element of the line γ ⊂ R
n and a0 = Ṡ−1

0 e.
Moreover, we have: ae(t) =

(

y⊤
e (t), Stye(t)

)

, where ye(0) = a0, S̈a0 =

−Ṡ0ẏe(0). Hence (ä(0) + S̈0a0) ∈ v(0) and 〈S̈a0, y〉 = −σ(äe(0), y), 〈a0, e〉 =
σ(ae(0), e). �

The inequality rvγ (t) ≥ rv(t)
∣

∣

v(t)∩γ∠
turns into the equality if γ ⊂ v◦(t), ∀t.

Then γ ⊂ ker v̇◦(t). According to Proposition 5, to γ there corresponds a
one-dimensional subspace in the kernel of rv(t); in particular, rv(t) is degen-
erate.
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Return to the Jacobi curves Jz(t) of a monotone Hamiltonian field ~h.

Quadratic form rz
def
= rJz(0) on ∆z is called the curvature form of h at z ∈ N .

We have, rz(ξ) = βh
z (Rzξ, ξ)sgnβh, ξ ∈ ∆z, where βh

z is the symmetric

bilinear form defined in Section 1. Let g be a first integral of ~h and dzg 6= 0;

then the monotonicity of ~h implies ~g /∈ ∆z. Quadratic form rg
z

def
= rJ

g
z
(0) is

called the reduced by g curvature form of h at z. The following identity is a
simple corollary of Theorem 1:

rg
z(ξ) = rz(ξ) +

3σz([~h, [~h, ā]](z), ξ)2

4|βh
z (ā, ā)|

, ξ ∈ ∆z ∩ ker dzh,

where the vector field ā is determined by the identity β(ξ, ā) = σ(ξ,~g), ∀ξ ∈
∆.

There always exists at least one first integral: the Hamiltonian h itself. In
general, ~h(z) /∈ J◦

z (0) and the reduction procedure has a nontrivial influence
on the curvature. For instance, in the case of a natural mechanical system

in R
n (see (21)) we obtain: rh

(x,y)(ξ) = r(x,y)(ξ) + 3
|x|2

〈

dU
dy

, ξ
〉2

. More gener-

ally, for a natural mechanical system on the Riemannian manifold, with the
potential energy U we have:

rh
x,y(ξ) = rx,y(ξ) +

3βh(dyU, ξ)2

2(h(x, y) − U(y))
(22)

Still, there is an important class of Hamiltonians and Lagrange foliations for
which the relation ~h(z) ∈ J◦

z (0) holds ∀z. These are homogeneous on fibers
Hamiltonians on cotangent bundles (in particular, those generating Rieman-
nian or Finsler geodesic flows). In this case the generating homotheties of
the fibers Euler vector field belongs to the kernel of the curvature form.

11 Hyperbolicity

In this section we show that negativity of the curvature forms implies hy-
perbolic behavior of the flow generated by the monotone Hamiltonian field.
This is a natural extension of the classical result about hyperbolicity of the
Riemannian geodesic flow in the case of the negative sectional curvatures.

Main tool is the structural equation derived in Section 6. First we’ll
show that this equation is well coordinated with the symplectic structure.
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Let Λ(t), t ∈ R, be a regular curve in L(Σ) and Σ = Λ(t) ⊕ Λ◦(t) the
correspondent canonical splitting. Consider the structural equation

ë(t) + RΛ(t)e(t) = 0, where e(t) ∈ Λ(t), ė(t) ∈ Λ◦(t), (23)

(see Corollary 1).

Lemma 8 The mapping e(0)⊕ė(0) 7→ e(t)⊕ė(t), where e(·) and ė(·) satisfies
(23), is a symplectic transformation of Σ.

Proof. We have to check that σ(e1(t), e2(t)), σ(ė1(t), ė2(t)), σ(e1(t), ė2(t))
do not depend on t as soon as ei(t), ėi(t), i = 1, 2, satisfy (23). First two
quantities vanish since Λ(t) and Λ◦(t) are Lagrangian subspaces. The deriva-
tive of the third quantity vanishes as well since ëi(t) ∈ Λ(t). �

Let ~h be a regular monotone field on the symplectic manifold N equipped
with a Lagrange distribution ∆. As before, we denote by Jz(t) the Jacobi

curves of ~h and by Jh
z (t) the reduced to the level of h Jacobi curves (see

previous Section). Let R(z) = RJz(0), Rh(z) = RJh
z
(0) be the correspon-

dent curvature operators and rz, rh
z the curvature forms. We say that the

Hamiltonian field ~h has a negative curvature at z (with respect to ∆) if all

eigenvalues of R(z) are negative or, equivalently, rz < 0. We say that ~h has a
negative reduced curvature at z if all eigenvalues of Rh

z are negative, in other
words, if rh

z < 0.

Proposition 9 Let z0 ∈ N, zt = et~h(z). Assume that {zt : t ∈ R} is a
compact subset of N and that N is endowed with a Riemannian structure. If
~h has a negative curvature at any z ∈ {zt : t ∈ R}, then there exist a constant
α > 0 and a splitting TztN = ∆+

zt
⊕∆−

zt
, where ∆±

zt
are Lagrangian subspaces

of TztN such that eτ~h
∗ (∆±

zt
) = ∆±

zt+τ
∀ t, τ ∈ R and

‖e±τ~h
∗ ζ±‖ ≥ eατ‖ζ±‖ ∀ ζ ∈ ∆±

zt
, τ ≥ 0, t ∈ R. (24)

Similarly, if ~h has a negative reduced curvature at any z ∈ {zt : t ∈ R}, then
there exists a splitting Tzt(h

−1(c)/Rh(zt)) = ∆̂+
zt
⊕ ∆̂−

zt
, where c = h(z0) and

∆̂±
zt

are Lagrangian subspaces of Tzt(h
−1(c)/Rh(zt)) such that eτ~h

∗ (∆̂±
zt

) =

∆̂±
zt+τ

∀ t, τ ∈ R and ‖e±τ~h
∗ ζ±‖ ≥ eατ‖ζ±‖ ∀ ζ ∈ ∆̂±

zt
, τ ≥ 0, t ∈ R.
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Proof. Obviously, the desired properties of ∆±
zt

and ∆̂±
zt

do not depend on
the choice of the Riemannian structure on N . We’ll introduce a special Rie-
mannian structure determined by h. The Riemannian structure is a smooth
family of inner products 〈·, ·〉z on TzN , z ∈ N . We have TzN = Jz(0)⊕J◦

z (0),
where Jz(0) = ∆z. Replacing h with −h if necessary we may assume that βh

z

is a positive definite form and set 〈·, ·〉z
∣

∣

Jz(0)
= βh

z . Symplectic form σ induces

a nondegenerate pairing of Jz(0) and J◦
z (0). In particular, for any ζ ∈ Jz(0)

there exists a unique ζ◦ ∈ J◦
z (0) such that σ(ζ◦, ·)

∣

∣

Jz(0)
= 〈ζ, ·〉z

∣

∣

Jz(0)
. There

exists a unique extension of the inner product 〈·, ·〉z from Jz(0) to the whole
TzN with the following properties:

• J◦
z (0) is orthogonal to Jz(0) with respect to 〈·, ·〉z;

• 〈ζ1, ζ2〉z = 〈ζ◦
1 , ζ

◦
2 〉z ∀ ζ1, ζ2 ∈ Jz(0).

We’ll need the following classical fact from Hyperbolic Dynamics (see, for
instance, [10, Sec. 17.6]).

Lemma 9 Let A(t), t ∈ R, be a bounded family of symmetric n×n-matrices
whose eigenvalues are all negative and uniformly separated from 0. Let Γ(t, τ)
be the fundamental matrix of the 2n-dimensional linear system ẋ = −y,
ẏ = A(t)x, where x, y ∈ R

n, i.e.

∂

∂t
Γ(t, τ) =

(

0 −I
A 0

)

Γ(t, τ), Γ(τ, τ) = ( I 0
0 I ) . (25)

Then there exist closed conic neighborhoods C+
Γ , C−

Γ , where C+
Γ ∩C−

Γ = 0, of
some n-dimensional subspaces of R

2n and a constant α > 0 such that

Γ(t, τ)C+
Γ ⊂ C+

Γ , |Γ(t, τ)ξ+| ≥ eα(τ−t)|ξ+|, ∀ ξ+ ∈ C+
Γ , t ≤ τ,

and

Γ(t, τ)C−
Γ ⊂ C−

Γ , |Γ(t, τ)ξ−| ≥ eα(t−τ)|ξ−|, ∀ ξ− ∈ C−
Γ , t ≥ τ.

The constant α depends only on upper and lower bounds of the eigenvalues
of A(t). �

Corollary 5 Let C±
Γ be the cones described in Lemma 9; then

Γ(0,±t)C±
Γ ⊂ Γ(0;±τ)C±

Γ for any t ≥ τ ≥ 0, and the subsets
K±

Γ =
⋂

t≥0

Γ(0, t)C±
Γ are Lagrangian subspaces of R

n × R
n equipped with the

standard symplectic structure.

27



Proof. The relations Γ(τ, t)C+
Γ ⊂ C+

Γ and Γ(−τ,−t)C−
Γ ⊂ C−

Γ imply:

Γ(0,±t)C±
Γ = Γ(0,±τ)Γ(±τ,±t)C±

Γ ⊂ Γ(0,±τ)C±
Γ .

In what follows we’ll study K+
Γ ; the same arguments work for K−

Γ . Take
vectors ζ, ζ ′ ∈ K+

Γ ; then ζ = Γ(0, t)ζt and ζ ′ = Γ(0, t)ζ ′
t for any t ≥ 0 and

some ζt, ζ
′
t ∈ C+

Γ . Then, according to Lemma 9, |ζt| ≤ e−αt|ζ |, |ζ ′
t| ≤ e−αt|ζ ′|,

i.e. ζt and ζ ′
t tend to 0 as t → +∞. On the other hand,

σ(ζ, ζ ′) = σ(Γ(0, t)ζt, Γ(0, t)ζ ′
t) = σ(ζt, ζ

′
t) ∀t ≥ 0

since Γ(0, t) is a symplectic matrix. Hence σ(ζ, ζ ′) = 0.
We have shown that K+

Γ is an isotropic subset of R
n × R

n. On the other
hand, K+

Γ contains an n-dimensional subspace since C+
Γ contains one and

Γ(0, t) are invertible linear transformations. Isotropic n-dimensional sub-
space is equal to its skew-orthogonal complement, therefore K+

Γ is a La-
grangian subspace. �

Take now a regular monotone curve Λ(t), t ∈ R in the Lagrange Grass-
mannian L(Σ). We may assume that Λ(·) is monotone increasing, i.e. Λ̇(t) >
0. Recall that Λ̇(t)(e(t)) = σ(e(t), ė(t)), where e(·) is an arbitrary smooth
curve in Σ such that e(τ) ∈ Λ(τ), ∀τ . Differentiation of the identity
σ(e1(τ), e2(τ)) = 0 implies: σ(e1(t), ė2(t)) = −σ(ė1(t), e2(t)) = σ(e2(t), ė1(t))
if ei(τ) ∈ Λ(τ), ∀τ , i = 1, 2. Hence the Euclidean structure 〈·, ·〉Λ̇(t) defined

by the quadratic form Λ̇(t) reads: 〈e1(t), e2(t)〉Λ̇(t) = σ(e1(t), ė2(t)).

Take a basis e1(0), . . . , en(0) of Λ(0) such that the form Λ̇(0) has the
unit matrix in this basis, i.e. σ(ei(0), ėj(0)) = δij. In fact, vectors ėj(0)
are defined modulo Λ(0); we can normalize them assuming that ėi(0) ∈
Λ◦(0), i = 1, . . . , n. Then e1(0), . . . , en(0), ė1(0), . . . , ėn(0) is a Darboux basis
of Σ. Fix coordinates in Σ using this basis: Σ = R

n × R
n, where ( x

y ) ∈

R
n × R

n is identified with
n
∑

j=1

(xjej(0) + yj ėj(0)) ∈ Σ, x = (x1, . . . , xn)⊤,

y = (y1, . . . , yn)⊤.
We claim that there exists a smooth family A(t), t ∈ R, of symmetric

n × n matrices such that A(t) has the same eigenvalues as RΛ(t) and

Λ(t) = Γ(0, t) ( R
n

0 ) , Λ◦(t) = Γ(0, t) ( 0
R

n ) , ∀t ∈ R

in the fixed coordinates, where Γ(t, τ) satisfies (25). Indeed, let ei(t), i =
1, . . . , n, be solutions to the structural equation (23). Then

Λ(t) = span{e1(t), . . . , en(t)}, Λ◦(t) = span{ė1(t), . . . , ėn(t)}.
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Moreover, ëi(t) = −
n
∑

i=1

aij(t)ej(t), where A(t) = {aij(t)}
n
i,j=1 is the matrix of

the operator RΛ(t) in the ‘moving’ basis e1(t), . . . , en(t). Lemma 8 implies
that 〈ei(t), ej(t)〉Λ̇(t) = σ(ei(t), ėj(t)) = δij . In other words, the Euclidean
structure 〈·, ·〉Λ̇(t) has unit matrix in the basis e1(t), . . . , en(t). Operator RΛ(t)
is self-adjoint for the Euclidean structure 〈·, ·〉Λ̇(t) (see Proposition 5). Hence
matrix A(t) is symmetric.

Let ei(t) =
(

xi(t)
yi(t)

)

∈ R
n × R

n in the fixed coordinates. Make up n × n-

matrices X(t) = (x1(t), . . . , xn(t)), Y (t) = (y1(t), . . . , yn(t)) and a 2n × 2n-

matrix
(

X(t) Ẋ(t)

Y (t) Ẏ (t)

)

. We have

d

dt

(

X Ẋ

Y Ẏ

)

(t) =

(

X Ẋ

Y Ẏ

)

(t)

(

0 −A(t)
I 0

)

,

(

X Ẋ

Y Ẏ

)

(0) =

(

I 0
0 I

)

.

Hence
(

X Ẋ
Y Ẏ

)

(t) = Γ(t, 0)−1 = Γ(0, t).

Let now Λ(·) be the Jacobi curve, Λ(t) = Jz0(t). Set ξi(zt) = et~h
∗ ei(t),

ηi(zt) = et~h
∗ ėi(t); then

ξ1(zt), . . . , ξn(zt), η1(zt), . . . , ηn(zt) (26)

is a Darboux basis of TztN , where Jzt(0) = span{ξ1(zt), . . . , ξn(zt)}, J◦
zt
(0) =

span{η1(zt), . . . , ηn(zt)}. Moreover, the basis (26) is orthonormal for the
inner product 〈·, ·〉zt on TztN .

The intrinsic nature of the structural equation implies the translation
invariance of the construction of the frame (26): if we would start from zs

instead of z0 and put Λ(t) = Jzs(t), ei(0) = ξi(zs), ėi(0) = ηi(zs) for some

s ∈ R, then we would obtain et~h
∗ ei(t) = ξi(zs+t), et~h

∗ ėi(t) = ηi(zs+t).
The frame (26) gives us fixed orthonormal Darboux coordinates in TzsN

for ∀ s ∈ R and the correspondent symplectic 2n× 2n-matrices Γzs(τ, t). We
have: Γzs(τ, t) == Γz0(s + τ, s + t); indeed, Γzs(τ, t) ( x

y ) is the coordinate
presentation of the vector

e(τ−t)~h
∗

∑

i

(

xiξi(zs+t) + yiηi(zs+t)
)

in the basis ξi(zs+τ ), ηi(zs+τ ). In particular,

|Γzs(0, t) ( x
y )| =

∥

∥

∥

∥

∥

e−t~h
∗

∑

i

(

xiξi(zs+t) + yiηi(zs+t)
)

∥

∥

∥

∥

∥

zs

. (27)

29



Recall that ξ1(zτ ), . . . , ξn(zτ ), η1(zτ ), . . . , ηn(zτ ) is an orthonormal frame for
the scalar product 〈·, ·〉zτ and ‖ζ‖zτ =

√

〈ζ, ζ〉
zτ

.
We introduce the notation:

⌊W ⌋zs =

{

∑

i

(

xiξi(zs) + yiηi(zs)
)

: ( x
y ) ∈ W

}

,

for any W ⊂ R
n × R

n. Let C±
Γz0

be the cones from Lemma 9. Then

e−τ~h
∗ ⌊Γzs(0, t)C

±
Γz0

⌋zs−τ
= ⌊Γzs−τ

(0, t + τ)C±
Γz0

⌋zs−τ
, ∀ t, τ, s. (28)

Now set K+
Γzs

=
⋂

t≥0

C+
Γz0

, K−
Γzs

=
⋂

t≤0

C−
Γz0

and ∆±
zs

= ⌊K∓
Γzs

⌋zs. Corollary

5 implies that ∆±
zs

are Lagrangian subspaces of TzsN . Moreover, it follows

from (28) that et~h
∗ ∆±

zs
= ∆±

zs+t
, while (28) and (27) imply inequalities (24).

This finishes the proof of the part of Proposition 9 which concerns Jacobi
curves Jz(t). We leave to the reader a simple adaptation of this proof to the
case of reduced Jacobi curves Jh

z (t). �

Remark. Constant α depends, of course, on the Riemannian structure on N .
In the case of the special Riemannian structure defined at the beginning of
the proof of Proposition 9 this constant depends only on the upper and lower
bounds for the eigenvalues of the curvature operators and reduced curvature
operators correspondently (see Lemma 9 and further arguments).

Let etX , t ∈ R be the flow generated by the the vector field X on a
manifold M . Recall that a compact invariant subset W ⊂ M of the flow
etX is called a hyperbolic set if there exists a Riemannian structure in a
neighborhood of W , a positive constant α, and a continuous splitting TzM =
E+

z ⊕ E−
z ⊕ RX(z), z ∈ W , such that etX

∗ E±
z = E±

etX(z)
and ‖e±tX

∗ ζ±‖ ≥

eαt‖ζ±‖, ∀t ≥ 0, ζ± ∈ E±
z . Just the fact some invariant set is hyperbolic

implies a rather detailed information about asymptotic behavior of the flow
in a neighborhood of this set (see [10] for the introduction to Hyperbolic
Dynamics). The flow etX is called an Anosov flow if the entire manifold M
is a hyperbolic set.

The following result is an immediate corollary of Proposition 9 and the
above remark.

Theorem 2 Let ~h be a regular monotone field on N , c ∈ R, W ⊂ h−1(c) a

compact invariant set of the flow et~h, t ∈ R, and dzh 6= 0, ∀z ∈ W . If ~h has
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a negative reduced curvature at every point of W , then W is a hyperbolic set

of the flow et~h
∣

∣

h−1(c)
. �

This theorem generalizes a classical result about geodesic flows on com-
pact Riemannian manifolds with negative sectional curvatures. Indeed, if N

is the cotangent bundle of a Riemannian manifold and et~h is the geodesic
flow, then negativity of the reduced curvature of ~h means simply negativ-
ity of the sectional Riemannian curvature. In this case, the Hamiltonian h
is homogeneous on the fibers of the cotangent bundle and the restrictions

et~h
∣

∣

h−1(c)
are equivalent for all c > 0.

The situation changes if h is the energy function of a general natural
mechanical system on the compact Riemannian manifold. In this case, the
flow and the reduced curvature depend on the energy level. Still, negativity of
the sectional curvature implies negativity of the reduced curvature at h−1(c)

for all sufficiently big c. In particular, et~h
∣

∣

h−1(c)
is an Anosov flow for any

sufficiently big c; this can be easily derived from formula (22).
Theorem 2 concerns only the reduced curvature while the next result

deals with the (not reduced) curvature of ~h.

Theorem 3 Let h be a regular monotone Hamiltonian and W a compact

invariant set of the flow et~h. If ~h has a negative curvature at any point of
W , then W is a finite set and each point of W is a hyperbolic equilibrium of
the field ~h.

Proof. Let z ∈ W ; the trajectory zt = et~h(z), t ∈ R, satisfies conditions
of Proposition 9. Take the correspondent splitting TztN = ∆+

zt
⊕ ∆−

zt
. In

particular, ~h(zt) = ~h+(zt) + ~h−(zt), where ~h±(zt) ∈ ∆±
zt

.

We have eτ~h
∗

~h(zt) = ~h(zt+τ ). Hence

‖~h(zt+τ )‖ = ‖eτ~h
∗

~h(zt)‖ ≥ ‖eτ~h
∗

~h+(zt)‖ − ‖eτ~h
∗

~h−(zt)‖

≥ eατ‖~h+(zt)‖ − e−ατ‖~h−(zt)‖, ∀τ ≥ 0.

Compactness of {zt : t ∈ R} implies that ~h+(zt) is uniformly bounded; hence
~h+(zt) = 0. Similarly, ‖~h(zt−τ‖ ≥ eατ‖~h−(zt)‖ − e−ατ‖~h+(zt)‖ that implies

the equality ~h−(zt) = 0. Finally, ~h(zt) = 0. In other words, zt ≡ z is an

equilibrium of ~h and TzN = ∆+
z ⊕∆−

z is the splitting of TzN into the repelling

and attracting invariant subspaces for the linearization of the flow et~h at z.
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Hence z is a hyperbolic equilibrium; in particular, z is an isolated equilibrium
of ~h. �

We say that a subset of a finite dimensional manifold is bounded if it has
a compact closure.

Corollary 6 Assume that h is a regular monotone Hamiltonian and ~h has
everywhere negative curvature. Then any bounded semi-trajectory of the sys-
tem ż = ~h(z) converges to an equilibrium with the exponential rate while
another semi-trajectory of the same trajectory must be unbounded. �

Typical Hamiltonians which satisfy conditions of Corollary 6 are energy
functions of natural mechanical systems in R

n with a strongly concave poten-
tial energy. Indeed, in this case, the second derivative of the potential energy
is equal to the matrix of the curvature operator in the standard Cartesian
coordinates (see Sec. 9).

12 Entropy

It is easy to see from what was done in the previous section that structural
equation (23) allows to almost automatically generalize the arguments nor-
mally applied to Riemannian geodesic flows and to make them working for
the flows generated by an arbitrary monotone Hamiltonian fields. This is
true not only for the hyperbolicity property but also for the measure the-
oretic entropy. We finish the paper with an estimate for the entropy that
is a direct generalization of the result obtained in [8]; see paper [9] for the
detailed proof of this generalization.

Assume that ~h is a monotone Hamiltonian field, h−1(c) is a compact

level set and ~h(z) /∈ ∆z, ∀z ∈ h−1(c). The normalized Liouville measure
on h−1(c) is defined by the form µ = 1

C
iXσn

∣

∣

h−1(c)
, where 〈dh, X〉 = 1 and

C =
∫

h−1(c)

iXσn. It is easy to check that µ does not depend on the freedom

in the choice of the vector field X.
The Hamiltonian flow et~h preserves symplectic form σ while the flow

et~h
∣

∣

h−1(c)
preserves µ. Let hµ be the measure theoretic entropy of the last

flow.

Theorem 4 (Ballmann–Wojtkowski–Chittaro) Assume that the reduced
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curvature operator Rh
z is nonpositive for any z ∈ h−1(c). Then

hµ ≥

∫

h−1(c)

tr
√

−Rh
z µ(z). (29)

Remark. The estimate is sharp: inequality (29) turns into the equality
if all reduced Jacobi curves Jh

z (·) are symmetric curves (see Definition 7);
the flows generated by such “symmetric” Hamiltonians provide a natural
generalization of the geodesic flows of symmetric Riemannian manifolds.
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