The Curvature and Hyperbolicity of
Hamiltonian Systems

A. A. Agrachev*

Abstract

Curvature-type invariants of Hamiltonian systems generalize sec-
tional curvatures of the Riemannian manifolds: negativity of the cur-
vatures is an indicator of the hyperbolic behavior of the Hamiltonian
flow. In this paper, we give a self-contained description of the related
constructions and facts; they lead to a natural extension of classi-
cal results about Riemannian geodesic flows and indicate some new
phenomena.

Introduction

This paper is especially written to the 70th anniversary of Dmitrij Anosov.
One of the goals of the paper is to explain that classical Anosov’s results
about geodesic flows of the negative curvature Riemannian manifolds can be
actually applied to the essentially larger class of flows than it is normally
expected.

Needless to say, I am not at all expert in the hyperbolic dynamics, but I
was obliged, as a member of the MIAN’s department of differential equations,
to attend the seminar guided by professor Anosov. I learned first definitions
and took some hyperbolic flavor following presentations in this seminar and
Anosov’s comments to them. Then I realized that the curvature of general
Hamiltonian systems originally discovered in the quite different context could
serve for a test of hyperbolicity. Of course, I first expressed this fact in the
Anosov seminar and now present the consistent text.

*SISSA-ISAS, Trieste & Steklov Math. Inst., Moscow



The object to study in this paper is a Hamiltonian system on a sym-
plectic manifold equipped with a Lagrangian vector distribution. We impose
certain regularity assumption which guarantees that the action of the Hamil-
tonian flow on the distribution is nondegenerate. This action generates a
one-parametric family of Lagrangian distributions. Evaluating these distri-
butions at a fixed point of the manifold we obtain a one-parametric family
of Lagrangian subspaces of the tangent space to the manifold at the given
point. We call this family the “Jacobi curve” by analogy with the Jacobi
fields associated to the Riemannian geodesic flows. This is essentially con-
tent of Section 1.

Jacobi curves are curves in the Lagrange Grassmannians and Sections
2-7 are devoted to the basic differential geometry of such curves. Geometry
of Jacobi curves provides us with fundamental differential invariants of the
Hamiltonian systems; these invariants are described and computed in Sec-
tions 8-10. Main invariants are the curvature form and the reduced curvature
forms. In Sections 11-12 we consider the situation when one of these forms
is negative. Strict negativity of the reduced curvature form implies the hy-
perbolic behavior of the flow that is a natural generalization of the classical
fact about Riemannian geodesic flows in the case of the negative sectional
curvature.

Strong negativity of the (not reduced) curvature form implies very strong
consequences for the asymptotic behavior of the flow described in Theorem 3
and Corollary 6. This phenomenon does not occur in geodesic flows but is
easily realized for the flows generated by natural mechanical systems. I do
not know classical predecessors of these results.

1 Regular Hamiltonian systems

Smooth objects are supposed to be C* in this paper; the results remain valid
for the class C* with a finite and not large k but we prefer not to specify the
minimal possible k.

Let N be a 2n-dimensional symplectic manifold endowed with a sym-
plectic form o. A Lagrange distribution A C TN is a smooth vector sub-
bundle of T'N such that each fiber A, = ANT,N, z € N, is a Lagrange
subspace of the symplectic space T,N; in other words, dimA, = n and
0.(&m) =0VEn €A,

Basic examples are cotangent bundles endowed with the standard sym-



plectic structure and the “vertical” distribution:
N=TM, A, =T.(TyM), VzeT;M, qe M. (1)

Let h € C®(N); then h € VecN is the associated to h Hamiltonian
vector field: dh = o(-, E) We assume that 7 is a complete vector field, i.e.
solutions of the Hamiltonian system z = fz(z) are defined on the whole time
axis. We may assume that without a lack of generality since we are going to
study dynamics of the Hamiltonian system on compact subsets of N and may
reduce the general case to the complete one by the usual cut-off procedure.

The generated by h Hamiltonian flow is denoted by e, t € R. Other
notations: A C VecNN is the space of sections of the Lagrange distribution
A; [v1,v9] € VecN is the Lie bracket (the commutator) of the fields vy, vy €
VecN, [v1,v3] = vy 0vy —vg 00y.

Definition 1 We say that h is reqular with respect to the Lagrange distribu-

—

tion A if {[h,v](z) :v € A} =T.N for any z € N.

An effective version of Definition 1 is as follows: Let v; € A, i =1,...,n
be such that the vectors vi(2),. .., v,(z) form a basis of A,; then h is regular
at z with respect to A if and only if the vectors

v1(2), ..., vn(2), [, v1](2), ..., [, v](2)

form a basis of T, N. o
We define a bilinear mapping " : A x A — C*(N) by the formula:

B"(vy,v) = o([h, v1], v2).

Lemma 1 3"(vy,v1) = B"(v1, 1), Vv, v € A and B"(vy,v2)(2) depends
only on v1(z), va(2).

Proof. Hamiltonian flows preserve ¢ and ¢ vanishes on A. Using these
facts, we obtain:

0=o0(vy,v9) = (eth*a) (v1,v9) = a(eff‘vl, eff‘vg).

Differentiation of the identity 0 = o (efvy, efv,) with respect to ¢ at ¢ = 0
gives: 0 = o([h,v1],v2) + o(v1, [, v2]). Now the anti-symmetry of o implies
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the symmetry of 3". Moreover, 8" is C°°(M)-linear with respect to each
argument, hence 3"(vy,v5)(2) depends only on vy (z),v2(2). O

Let z € N, & € AL, & =vi(2), v; € A, i = 1,2. We set Bh(&,&) =
B"(v1,v2)(2). According to Lemma 1, g” is a well-defined symmetric bilinear
form on A,. It is easy to see that the regularity of h at z is equivalent to the
nondegeneracy of g”.

If N = T*M and A is the vertical distribution (see (1)), then g4 =
D2(h|ryu), where z € T; M. The last equation can be easily checked in local
coordinates. Indeed, local coordinates defined on a neighborhood O C M
provide the identification of T*M}O with R” x R" = {(p,q) : p,q € R"} such

that T M is identified with R" x {¢}, the form ¢ is identified with )  dp; Adg;
i=1

and the field A with > (‘% 2 a—hi>. The fields -2~ form a basis of the
i=1

9p; 0q; 0q; Op; Op;
vertical distribution and

o 0 " (Oh O oh 0 0 0%h
h

s = - d ) 5 - s - .
(o) < s [Z; (oo~ o0.3m) api]> B0,

Definition 2 We say that a regular Hamiltonian field h is monotone with
respect to A if B is a sign-definite form for any z € N.

If N =T*M and A is the vertical distribution, then the monotonicity of h
is equivalent to the strong convexity or concavity of the restrictions of A to
the fibers T)M, g € M.

We are going to study the action of the Hamiltonian flow e'* on the ver-
tical distribution A. Namely, for any z € N consider the family of subspaces
J.(t) = e*_thAetg(z) C T.M,t € R; in particular, J,(0) = A,. Let G, (T, N) be
the the Grassmann manifold (Grassmannian) consisting of all n-dimensional
subspaces of the 2n-dimentional space T,N. Then t — J.(t) is a smooth
curve in G,,(T,N), we call it the Jacobi curve associated to the pair 71, A.
Elementary differential geometry of Jacobi curves will provide us with de-
sired curvature-type invariants. To introduce them, we need some basic facts
on the geometry of Grassmannians.

-
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2 The cross-ratio

Let 3 be a 2n-dimensional vector space, vg,v1 € G,(X), vg Nv; = 0. Than
¥ = vg +v1. We denote by m,,,, : 2 — v; the projector of ¥ onto v, parallel
to vg. In other words, m,,,, is a linear operator on X such that m,;,, }UO =0,

Tovy ‘vl = id. Surely, there is a one-to-one correspondence between pairs of
transversal n-dimensional subspaces of ¥ and rank n projectors in gl(X).

Lemma 2 Let vy € G,(X); we set vf = {v € G,(X) : vNwvy = 0}, an open
dense subset of G, (X). Then {my, : v € v]'} is an affine subspace of gl(¥).

Indeed, any operator of the form am,, + (1 — @)y, where a € R, takes
values in vy and its restriction to vy is the identity operator. Hence am,,, +
(1 — @)y, is the projector of ¥ onto vy along some subspace.

The mapping v — 7, thus serves as a local coordinate chart on G, (X).
These charts indexed by vy form a natural atlas on G,,(X).

Projectors m,,, satisfy the following basic relations:

7Tv0v1 _'_ 7Tv11)0 = Zd’ Wvovgﬂ-vlvg - 7Tv11)27 7Tv0v1 ﬂ-vovg - 7Tv0v17 (2>

where v; € G, (X), v;Nv; =0 fori # j. If n =1, then G,,(X) is just the pro-
jective line RP'; basic geometry of G,,(X) is somehow similar to geometry of
the projective line for arbitrary n as well. The group GL(X) acts transitively
on G,(X). Let us consider its standard action on (k + 1)-tuples of points in

Gn(2):
Alvo, .., on) " (Avg, ..., Avy), A € GL(T), v € Go(D).

It is an easy exercise to check that the only invariants of a triple (vg, vy, vo)
of points of G,(X) for such an action are dimensions of the intersections:
dim(v; Nv;), 0 <7 <2, and dim(vy Ny Nwvg). Quadruples of points possess a
more interesting invariant: a multidimensional version of the classical cross-
ratio.

Definition 3 Let v; € G, (X), i =0,1,2,3, and vo Nv; = vy Nwvg = 0. The
cross-ratio of v; is the operator [vg, v1, va, v3] € gl(vy) defined by the formula:

[,U()a V1, U2, U3] = 7Tvov17rv2v3 ‘1)1 .



Remark. We do not lose information when restrict the product 7y, Tyyus tO
v1; indeed, this product takes values in v; and its kernel contains vy.

For n = 1, vy is aline and [vg, v1, v, v3] is a real number. For general n, the
Jordan form of the operator provides numerical invariants of the quadruple
v, 1 =0,1,2,3.

We will mainly use an infinitesimal version of the cross-ratio that is an
invariant [, &1] € gl(vy) of a pair of tangent vectors & € T,,G,(X), i =
0,1, where vg N vy = 0. Let ~;(¢t) be curves in G,(X) such that ,;(0) =
v, %%(t)‘t:o =¢;, i = 0,1. Then the cross-ratio: [yo(t),v1(0), vo(7), 71(0)]
is a well defined operator on v; = 71(0) for all ¢, 7, 6 close enough to 0. More-
over, it follows from (2) that [yo(t),71(0),70(0),v1(0)] =

[70(0), 71(0),70(£), 71(0)] = [76(0),71(0),7(0), 71 (¢)] = id. We set

2

60,611 = 55— ho(0), 31 0),70(0), M,

(3)

t=7=0

It is easy to check that the right-hand side of (3) depends only on &, &; and
that (&, &1) — [£o, &1 is a bilinear mapping from 7,,G,(X) x T, G,,(X) onto
gl(vy).

Lemma 3 Let vy,v; € G,(X), voNwvy = 0, & € T,,Gp(X), and & =
LYi(t)|,_yr @ = 0,1. Then [&,&] = ataTml()w(T)}vl’t:T:O and vy, vy are

wmvariant subspaces of the operator a??”w(t)vo(f)‘

Yl {t=r=0

Proof. According to the definition, [y, &;1] = ataT (T (671 (0) 0 (0) 71 (- ))}Ul o
The differentiation of the identities 1)y ©O0)To@mE) = Ty (0)s

Moo (0)71(7) T10(0)1 () = Tao(0) () Bives the equalities:

o 0
Btr "M O Om )| = "Moo g Taem@|,_
o2
= T oty Mm@ | Teovr:
It remains to mention that 8t877r71( o (r) = _a?—;ﬂ%(f)m @ U



3 Coordinate setting

Given v; € G,(X), i =0, 1,2,3, we coordinatize ¥ = R" x R" = {(z,y) : x €
R" y € R"} in such a way that v; N {(0,y) : y € R"} = 0. Then there exist
n X n-matrices S; such that

v ={(z,Sz):x € R"}, i=0,1,2,3. (4)

The relation v; Nv; = 0 is equivalent to det(S; —S;) # 0. If Sy = 0, then the
-1

projector m,,, is represented by the 2n x 2n-matrix ( 8 S} ) . In general,

- Sa'So =Sy
vovL S185,"Sy =818yt )
where Sy = Sy — 51. Relation (4) provides coordinates {z} on the spaces v;.

In these coordinates, the operator [vg, v1,v2,v3] on vy is represented by the
matrix:

we have

-1 -1
[U07 U1, V2, Us] = 510 503532 Sot,

where S;; = 5; — 5.

We now compute the coordinate representation of the infinitesimal cross-
ratio. Let yo(t) = {(z, Siz) : © € R"}, % (t) = {(x, S1047) : = € R"} so that
& = %%(t)‘t:o is represented by the matrix S; = %St i = 0,1. Then
[0, &1] is represented by the matrix

=i

82 B B 0 o - .
%Sulswsfolsol o = @Sltlsl}t:o = Sp1' SoSa1' S
So . :
[£0,&1] = 551 50501 51 (5)

There is a canonical isomorphism 7, G, (X) = Hom(vg, X/vy); it is defined
as follows. Let & € T,,,Gn(X), & = L7(t)|;=o, and 2y € vg. Take a smooth
curve z(t) € v(t) such that z(0) = zo. Then the residue class (2(0) + vy) €
Y. /vy depends on £ and zy rather than on a particular choice of (t) and
z(t). Indeed, let 7/(t) be another curve in G,(X) whose velocity at t =
0 equals . Take some smooth with respect to t bases of v(t) and ~'(t):

v(t) = spand{ei(t),...,e.(t)}, V' (t) = span{e|(t),... e (t)}, where ¢;(0) =



ei(0), ¢ = 1,...,n; then (&(0)—¢€,(0)) € vy, ¢ = 1,...,n. Let 2(t) =
doai(t)e(t), 2/(t) = > al(t)ei(t), where a;(0) = a4(0). We have:

s
I
—_
-
Il
—_

£(0) = 2(0) = Y ((@:(0) — d;(0))es(0) + @ (0)(é:(0) — €(0))) € vo,

1=1

ie. 2(0) + v = Z(0) + vp.

We associate to & the mapping £ : vy — X /vy defined by the formula
€20 = 2(0) + vo. The fact that ¢ + ¢ is an isomorphism of the vector
spaces T,,,Gp(X) and Hom(vg, ¥/vy) can be easily checked in coordinates.
The matrices S; above are actually coordinate presentations of &, i = 0, 1.

The standard action of the group GL(X) on G,(X) induces the action
of GL(X) on the tangent bundle T'G,(X). It is easy to see that the only
invariant of a tangent vector ¢ for this action is rank & (tangent vectors are
just “double points” or “pairs of infinitesimaly close points” and number
(n — rank ) is the infinitesimal version of the dimension of the intersection

for a pair of points in the Grassmannian). Formula (5) implies:

rank[¢o, £1] < min{rank &y, rank &, }.

4 Curves in the Grassmannian
Let t — v(t) be a germ at ¢ of a smooth curve in the Grassmannian G,,(3).

Definition 4 We say that the germ v(-) is ample if v(t) Nv(t) = 0 Vt # €
and the operator-valued function t — Tuuu@ has a pole at t. We say that
the germ v(-) is regular if the function t — T,uw@) has a simple pole at t.
A smooth curve in G,(X) is called ample (regular) if all its germs are ample
(regular).

Assume that ¥ = {(x,y) : x,y € R"} is coordinatized in such a way that

v(t) = {(x,0) : x € R"}. Then v(t) = {(z, Six) : * € R"}, where S(t) = 0
o1

and Ty (o) = é % . The germ v(+) is ample if and only if the scalar

function ¢ + det S; has a finite order root at £. The germ v(-) is regular if

and only if the matrix S is not degenerate. More generally, the curve 7 +—

{(z, S;x) : © € R"} is ample if and only if V¢ the function 7 — det(S, — .5;)
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has a finite order root at ¢t. This curve is regular if and only if det S, #0, Vt.
The intrinsic version of this coordinate characterization of regularity reads:
the curve v(-) is regular if and only if the map v(¢) € Hom(v(t), ¥/v(¢)) has
rank n, Vt.

Let v(+) be an ample curve in G,,(X). We consider the Laurent expansions
at t of the operator-valued function 7+ myryu()

Totr) = ) (T =)'+ O(r — )™,
i=—ky
Projectors of ¥ on the subspace v(t) form an affine subspace of gl(3) (cf.
Lemma 2). This fact implies that 70 is a projector of ¥ on v(t); in other
words, T = Tyo (e for some v°(t) € v(¢)™. We thus obtain another curve
t — v°(t) in G,(X), where X = v(t) B v°(t), Vi. The curve t — v°(t) is called
the derivative curve of the ample curve v(-).

The affine space {Tyu() @ w € v(t)™} is a translation of the linear space
Nv(t) = {n: X — v(t) | n[,ey = 0} C gl(¥)} containing only nilpotent
operators. It is easy to see that 7} € 9(v(t)) for i # 0.

The derivative curve is not necessary ample. Moreover, it may be nons-
mooth and even discontinuous.

Lemma 4 Ifv(-) is reqular then v°(-) is smooth.

Proof. We'll find the coordinate representation of v°(-). Let v(t) = {(z, S;z) :
x € R™}. Regularity of v(-) is equivalent to the nondegeneracy of S;. We

have:
_( Sa'S. =S4
To(r)u(t) = StSq—_tl S'r _St Sq—_tl )

where S, = S; —S;. Then S;,' = (7 — t)_ls’t_l — %S;létst—l +O(T — 1) as
T — t and - -
_ S;°S -5
71-1)(7')1)(1‘,) = (7— - t) ! < St*ts"t_lktgt _5}2;—1 ) +
[-15718,8718,  18718,8.! B
( 5 — L5,5718,501s, 15,58 ) O
I+ AS, —A, is
Sy + S AS;  —Si A

smooth with respect to ¢. Hence ¢ +— v°(t) is smooth. We obtain:

v*(t) = {(Aw.y + SiAwy) : y € R"}. (6)

We set A, = _%St_lgtst_l; then 7o (v = <



5 The curvature

Definition 5 Let v be an ample curve and v° be the derivative curve of
v. Assume that v° is differentiable at t and set R,(t) = [0°(t),0(t)]. The
operator R,(t) € gl(v(t)) is called the curvature of the curve v at t.

If v is a regular curve, then v° is smooth, the curvature is well-defined
and has a simple coordinate presentation. To find this presentation, we’ll
use formula (5) applied to § = 0°(t), & = 0(t). As before, we assume that
v(t) = {(z, Six) : © € R™}; in particular, v(t) is transversal to the subspace
{(0,y) : y € R"}. In order to apply (5) we need an extra assumption on the
coordinatization of X: the subspace v°(t) has to be transversal to {(0,y) :
y € R"} for given t. The last property is equivalent to the nondegeneracy
of the matrix A; (see (6)). It is important to note that the final expression
for R,(t) as a differential operator of S must be valid without this extra
assumption since the definition of R, (%) is intrinsic! Now we compute: v°(t) =
{(z,(A7" + Sp)z) rx € R}, Ry(t) = [0°(1), 0(t)] = A (A7' + S) A, =
(AS)? — A,S, = i(St_lStY — A,S,. We also have AS = —%%(5‘155‘1)5 =
(S71)% — 1S-1 §. Finally,

Ru(t) = %5’;1 g, —Z(S{létf _ % (28)75) - ((2&)—1&)2, (7)

the matrix version of the Schwartzian derivative.

Curvature operator is a fundamental invariant of the curve in the Grass-
mannian. One more intrinsic construction of this operator, without using
the derivative curve, is provided by the following

Proposition 1 Let v be a regular curve in G,(3). Then
1
[0(7), 0(t)] = (7 — )" %id + ng(t) +O(r —1t)
as T —t.

Proof. It is enough to check the identity in some coordinates. Given ¢t we
may assume that

v(t) ={(z,0): x € R"}, 0°(t) ={(0,y):y € R"}.
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Let v(7) = {(2, S,z : x € R"}, then S, = S, = 0 (see (6)). Moreover, we
may assume that the bases of the subspaces v(t) and v°(t) are coordinated
in such a way that S; = I. Then R,(t) = 1'S¢ (see (7)). On the other hand,
formula (5) for the infinitesimal cross-ratio implies:

[0(7), 0(t)] = S718, 57 (71 =

dr

o tm)‘uwwz
( t) -

(-0
]

) O —1) = (r—0)*1+ 1 § +0(r— 1)

Curvature operator is an invariant of the curves in G,(X) with fixed
parametrizations. Asymptotic presentation obtained in Proposition 1 implies
a nice chain rule for the curvature of the reparametrized curves.

Let ¢ : R — R be a regular change of variables, i.e. ¢ # 0, Vt. The
standard imbedding R C RP' = G;(R?) makes ¢ a regular curve in G4 (R?).
As we know (see (7)), the curvature of this curve is the Schwartzian of ¢:

P 3 (0N
=50 1 (57)
We set v,(t) = v(p(t)) for any curve v in G, ().

Proposition 2 Let v be a reqular curve in G,(3) and ¢ : R — R be a
reqular change of variables. Then

R, (t) = ¢*(t) Ru(p(t)) + Ry (1). (8)
Proof. We have
[0,(T), 0,(t)] = (T — t)~%d + %va (t) +O(T —1).
On the other hand,

(7). 5, 8)] = [H(7)(0(), GE)0(0(0))] = S(r)o(0)[3(o()), (1)) =
$01510) ((67) = ()0 + Rp(0) + O 1)) =
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We treat ¢ as a curve in RP' = G(R?). Then [¢(7), 9(t)] = %,

Ry(p(t)) + O(1 = 1).

see (5). The one-dimensional version of Proposition 1 reads:
1

[p(r), o)) = (t—7)7* + 3 1tp(t) + O(T = ).

Finally,

[0,(7), 0(1)] = (t = 7) 7 + 5 (Ro(t) + $* () Ru(0(1)) + O(7 —t). O

The following identity is an immediate corollary of Proposition 2:

1 1
(Ao, — (i) = %0 (R~ Sria) ). ©
Definition 6 An ample curve v is called flat if R,(t) = 0.

It follows from Proposition 1 that any small enough piece of a regular
curve can be made flat by a reparametrization if and only if the curvature
of the curve is a scalar operator, i.e. R,(t) = +(trR,(¢))id. In the case
of a nonscalar curvature, one can use equality (9) to define a distinguished
parametrization of the curve and then derive invariants which do not depend
on the parametrization.

Remark. In this paper we are mainly focused on the regular curves. See
paper [3] for the version of the chain rule which is valid for any ample curve
and for basic invariants of unparametrized ample curves.

6 Structural equations

Assume that v and w are two smooth curves in G,(X) such that
v(t) Nw(t) =0, Vt.

Lemma 5 For any t and any e € v(t) there exists a unique f. € w(t)
with the following property: 3 a smooth curve e, € v(T), e; = e, such that
%eT‘T:t = f.. Moreover, the mapping ®}" : e — f. is linear and for any
ep € v(0) there exists a unique smooth curve e(t) € v(t) such that e(0) = e
and

e(t) = BUe(t), Vi (10)
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Proof. First we take any curve é, € v(7) such that e, = e. Then é, = a,+b,
where a, € v(t), b, € w(t). We take x, € v(r) such that x; = a, and set
e, =é+ (t —7)x,. Then & = b, and we put fe= by.

Let us prove that by depends only on e and not on the choice of e,.
Computing the difference of two admissible e, we reduce the lemma to the
following statement: if z(7) € v(7), V7 and z(t) = 0, then 2(t) € v(t).

To prove the last statement we take smooth vector-functions e’ € v(7), i =
1,...,n such that v(7) = span{el, ... e"}. Then 2(7) = > a;(7)el, au(t) =

i=1
0. Hence 2(t) = > q;(t)el € v,.

Linearity of ‘éhé map P} follows from the uniqueness of f.. Indeed, if
foi = %ei‘T:t, then %(alei—l—o&ef)‘ﬁt = ay fo+an fo2; hence oy for o for =
fa161+a262, Vel € U(t), a, €R, 1 =1,2.

Now consider the smooth submanifold V' = {(t,e) : t € R, e € v(t)} of
R x X. We have (1, ®y"e) € T(;)V since (1, Py e) is the velocity of a curve
T+ (1,e;) in V. So (t,e) — (1,Dy"e), (t,e) € V is a smooth vector field on
V. The curve e(t) € v(t) satisfies (10) if and only if (¢,e(t)) is a trajectory
of this vector field. Now the standard existence and uniqueness theorem for
ordinary differential equations provides the existence of a unique solution to
the Cauchy problem for small enough ¢ while the linearity of the equation

guarantees that the solution is defined for all . [

It follows from the proof of the lemma that ®}"e = m(t)w(t)éT‘ for

any e, € v(r) such that e, = e. Let v(t) = {(z,Suz) : * € R"}, tTU_(%) =
{(z,Sytx) : * € R"}; the matrix presentation of ®}" in coordinates z is
(Swt — Svt)_lgvt. Linear mappings ®}* and ®}"" provide a factorization of
the infinitesimal cross-ratio [w(t),v(t)]. Indeed, equality (5) implies:

[w(t), 0(t)] = =P @7 (11)

Equality (10) implies one more useful presentation of the infinitesimal cross-
ratio: if e(t) satisfies (10), then

[w(t), o(t)]e(t) = =@ Be(t) = =P é(t) = —Twmuwé(t).  (12)

Now let w be the derivative curve of v, w(t) = v°(t). It happens that
é(t) € v(t) in this case and (12) is reduced to the structural equation:

é(t) = —[6°(1), 9(1)]e(t) = — R, (t)e(?),

where R,(t) is the curvature operator. More precisely, we have the following

13



Proposition 3 Assume that v is a reqular curve in G, (%), v° is its deriva-
tive curve, and e(-) is a smooth curve in ¥ such that e(t) € v(t), Vt. Then
é(t) € v°(t) if and only if é(t) € v(t).

Proof. Given t, we take coordinates in such a way that v(t) = {(z,0) : x €
R™}, v°(t) = {(0,y) : y € R™}. Then v(7) = {(z, S;x) : x € R"} for 7 close
enough to t, where S; = S; = 0 (see (6)).

Let e(7) = (x(7), S;z(7)). The inclusion é(t) € v°(t) is equivalent to the
equality #(t) = 0. Further,

é(t) = (i(t), Spx(t) + 28,0 (t) + S (t)) = (i(t), 25%) € v(t).

Regularity of v implies the nondegeneracy of S(t). Hence é(t) € v(t) if and
only if #(¢) =0. O
Now equality (12) implies

Corollary 1 If é(t) = ¥ e(t), then é(t) + R,(t)e(t) = 0.

Let us consider invertible linear mappings V; : v(0) — v(t) defined by
the relations V;e(0) = e(t), é(r) = ®e(r), 0 < 7 < t. It follows from
the structural equation that the curve v is uniquely reconstructed from o(0)
and the curve ¢t — V; 'Ry (t) in gl(v(0)). Moreover, let vy € G,,(X) and & €
T,, G (X), where the map € € Hom (v, ©/vp) has rank n; then for any smooth
curve t — A(t) in gl(vy) there exists a unique regular curve v such that
0(0) = € and V; 'R, (1)V; = A(t). Indeed, let ¢;(0), i = 1,...,n, be a basis

of vg and A(t)e;(0) = éai]—(t)ej(()). Then v(t) = span{ei(t),...,en(t)},
where

&i(1) + Zaij(ﬂej(f) =0, 0<7<Ht, (13)

and e;(t) are uniquely defined by fixing the ©(0).

The obtained classification of regular curves in terms of the curvature is
particularly simple in the case of a scalar curvature operators R, (t) = p(t)id.
Indeed, we have A(t) = V"' R,(t)V; = p(t)id and system (13) is reduced to
n copies of the Hill equation é(7) + p(7)e(7) = 0.

Recall that all ¢ € TG,,(X) such that rank £ = n are equivalent under the
action of GL(X) on T'G,(X) induced by the standard action on the Grass-
mannian G,,(X). We thus obtain
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Corollary 2 For any smooth scalar function p(t) there exists a unique, up
to the action of GL(X), reqular curve v in G, (X) such that R,(t) = p(t)id.

Another important special class is that of symmetric curves.
Definition 7 A regular curve v is called symmetric if V:R,(0) = R, (t)V;, Vt.

In other words, v is symmetric if and only if the curve A(t) = V, 'R, (t)V;
in gl(v(0)) is constant and coincides with R,(0). The structural equation
implies

Corollary 3 For any nxXn-matriz Ay, there exists a unique, up to the action
of GL(X), symmetric curve v such that R,(t) is similar to Ay.

The derivative curve v° of a regular curve v is not necessary regular.
The formula R,(t) = ®Y"*®¥" implies that v° is regular if and only if the
curvature operator R,(t) is nondegenerate for any ¢. Then we may compute
the second derivative curve v°° = (v°)°.

Proposition 4 A regular curve v with nondegenerate curvature operators is
symmetric if and only if v°° = v.

Proof. Let us consider system (13). We are going to apply Proposition 3
to the curve v° (instead of v) and the vectors é;(t) € v°(t). According to
Proposition 3, v°° = v if and only if %é,-(t) € v°(t). Differentiating (13) we
obtain that v°° = v if and only if the functions «;;(¢) are constant. The last
property is none other than a characterization of symmetric curves. [J

7 Lagrange Grassmannians

We study curves in the Grassmannian keeping in mind the Jacobi curves
J.(t) (see Sec. 1). Recall that J,(t) are subspaces of the symplectic space
T.N endowed with the symplectic form o,. Moreover, J,(t) are Lagrange
subspaces of T,N. In other words, ¢t — J,(t) is a curve in the Lagrange
Grassmannian L(7T,N) consisting of all Lagrange subspaces of the symplectic
space.

In this section, we give few simple facts on Lagrangian Grassmannians to
be used below (see [1, Sec. 4] for a consistent description of their geometry).
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Let (3, @) be a 2n-dimensional symplectic space and vy, v; € L(X) be a pair of
transversal Lagrangian subspaces, voNv; = 0. Bilinear form & induces a non
degenerate pairing of the spaces vy and v; by the rule (e, f) — a(e, f), e €
vg, [ € vy. To any basis ey, .. ., e, of vy we may associate a unique dual basis
fi,. .., fa of vy such that 7(e;, f;) = d;;. The form & is totally normalized in
the basis e, ..., ey, f1,..., fn of 3, since o(e;, e;) = o(fi, f;) = 0. It follows
that symplectic group

Sp(2) = {A € GL(X) : 5(Ae, Af) = a(e, f), e, f € 2}

acts transitively on the pairs of transversal Lagrangian subspaces.
Next result is a ‘symplectic specification’” of Lemma 2 from Section 2.

Lemma 6 Let vy € L(X); then {m, : v € 0§ N L(X)} is an affine subspace
of the affine space {Ty, : v € V§'} characterized by the relation:

v EVINL(Y) & (T, ) + (-, Twer) = (-, -).
Proof. Assume that v; € o] NL(X). Lete, f €%, e=eg+e1, f=fot+ fi
where e;, f; € v;, i =0, 1; then

5-(67 f) = 5-(60 + €1, fO + fl) = 5-(607 fl) + 5-(617 fO) =

5(607 f) + 5(67 fO) = 5(7TU1U067 f) + 5(67 7TUWOf)’

Conversely, let v € v is not a Lagrangian subspace. Then there exist e, f € v
such that a(e, f) # 0, while 7 (7€, f) = a(e, T, f) =0. O

Corollary 4 Let v(-) be a regular curve in G,(X) and v°(-) be the derivative
curve of v(-). Ifv(t) € L(X), Vt, then v°(t) € L(X).

Proof. The derivative curve v° was defined in Section 4. Recall that
oo (o(t) = 7), where 70 is the free term of the Laurent expansion

[e.9]

To(r)u(t) = Z(T — t)iﬂ'z.

i=—1

The free term 70 belongs to the affine hull of To(r)o(t), When 7 runs a neigh-
borhood of t. Since (7)) belongs to the affine space {7y, : v € v NL(X)},
then 7 belongs to this affine space as well. [
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It is clearly seeing in coordinates how Lagrange Grassmanian is sitting
in the usual one. Let ¥ = R™ x R" = {(n,y) : n € R™,y € R"}. Then
any v € ({0} x R")™ has a form v = {(y",Sy) : y € R"}, where S is an
n X n-matrix. It is easy to see that v is a Lagrangian subspace if and only if
S is a symmetric matrix, S = S7.

It happens that any tangent vector to L(X) at the point v € L(X) can be
naturally identified with a quadratic form on v. Her we use the fact that v is
not just a point in the Grassmannian but an n-dimensional vector space. To
associate a quadratic form on v(t) to the velocity v(t) € T, L(X) of a smooth
curve v(-) we proceed as follows: given z € v(t) we take a smooth curve
7 — z(7) in ¥ in such a way that z(7) € v(7), Vr and z(t) = 2. Then we
define a quadratic form ©(t)(z), z € v(t), by the formula v(¢)(2) = o(z, 2(t)).

The point is that o(z, 2(t)) does not depend on the freedom in the choice
of the curve 7 — z(7), although 2(¢) depends on this choice. Let us check
the required property in the coordinates. Assume that v(7) = {(y', S;y) :
y € R"} We have z = (y ", Syy) for some y € R* and 2(7) = (y(7)7, S;y(7)).
Then . '

o(z,2(t) =y (Sey + Sew) — 4" Sey =y Swy;
vector y does not show up. We have obtained a coordinate presentation of

o(t):

Q(t)(yT> Swy) = yTStyv

which implies that v — v, © € T,,L(X) is an isomorphism of 7,,L(X) on the
vector space of quadratic forms on v.

It is easy to see that a curve v(-) in L(X) is regular if and only if the
quadratic forms v(t) are nondegenerate for all . We say that such a curve
is monotone increasing (decreasing) if ©(t) are positive definite (negative
definite) forms. In both cases we say that v(-) is monotone.

Given a regular monotone increasing (decreasing) curve v(-), the quadratic
form v(t) defines an Euclidean structure (-, )3 on v(t) so that (z,z)ss) =
o(t)(z) (= —o(t)(z)). Let R,(t) € gl(v(t)) be the curvature operator of
the curve v(-); we define the curvature quadratic form r,(t) on v(t) by the
formula:

ro(t)(x) = (Ry(t)x, )5y, € v(1).

Proposition 5 The curvature operator R,(t) is a self-adjoint operator for

the Euclidean structure (-,-)yw). The form r,(t) is equivalent (up to linear
changes of variables) to the form v°(t), where v°(-) is the derivative curve.
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Proof. The statement is intrinsic and we may check it in any coordinates.
Fix ¢ and take Darboux coordinates {(n,y) : n € R™ y € R"} in ¥ in
such a way that v(t) = {(y',0) : y € R}, v°(t) = {(0,y) : y € R"},
0(t)(y) =y"y. Let v(t) = {(y", S;y) : y € R}, then S; = 0. Moreover, S(t)
is the matrix of the form ©(¢) in given coordinates, hence S; = I. Recall that
(1) = {(y"Ar,y + S-Ary) 1y € R}, where A, = —15-15, 571 (see (6)).
Hence S, = 0. We have: R,(t) = 1 Sure)(y) =3y Siy,

1)) =0 (0.9). (7 4.0)) =~y dw = 2y" S

So r,(t) and ©°(t) have equal matrices for our choice of coordinates in v(t)
and v°(t). The curvature operator is self-adjoint since it is presented by
a symmetric matrix in coordinates where form ©(t) is the standard inner
product. O

Proposition 5 implies that the curvature operators of regular monotone
curves in the Lagrange Grassmannian are diagonalizable and have only real
eigenvalues.

8 Canonical connection

Now we apply the developed theory of curves in the Grassmannian to the
Jacobi curves J,(t) (see Sec. 1).

Proposition 6 All Jacobi curves J,(-), z € N, associated to the given
Hamiltonian field { = h are reqular (monotone) if and only if the field
is reqular (monotone).

Proof. The definition of the regular (monotone) field is actually the speci-
fication of the definition of the regular (monotone) germ of the curve in the
Lagrange Grassmannian: general definition is applied to the germs at ¢ = 0
of the curves ¢t — J,(t). What remains is to demonstrate that other germs
of these curves are regular (monotone) as soon as the germs at 0 are. The
latter fact follows from the identity

Jz(t+T) = €*_t<<]etg(z)(7') (14)

(which, in turn, is an immediate corollary of the identity e, e e;% o

e;™). Indeed, (14) implies that the germ of J,(-) at t is the image of the
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germ of Jic(7)(+) at 0 under the fixed linear symplectic transformation e} &
TocxyN — T.N. The properties of the germs to be regular or monotone
survive symplectic transformations since they are intrinsic properties. [

Let ¢ be a regular field. Then the derivative curves J3(t) are well-defined.
Moreover, identity (14) and the fact that the construction of the derivative
curve is intrinsic imply:

J(t) = e T (0). (15)
The value at 0 of the derivative curve provides the splitting T, M = J,(0) ®
J2(0) where, recall, J,(0) = A,.

The subspaces J2(0) C T, N, z € N, form a smooth vector distribution,
which is the direct complement to the ‘vertical” distribution A. Direct com-
plements to the vertical distribution are sometimes called Ehresmann con-
nections (or just nonlinear connections, even if linear connections are their
special cases). The Ehresmann connection A = {J°(0) : z € N} is called
the canonical connection associated with ¢ and the correspondent splitting
TN = A ® AS is called the canonical splitting. Our nearest goal is to give a
simple intrinsic characterization of A¢ which does not require the integration
of the equation Z = ((z) and is suitable for calculations not only in local
coordinates but also in moving frames.

Let =2 = {Z, C TN : z € N} be an Ehresmann connection. Given
a vector field £ on N we denote Euer(2) = m=20.8, &hor(2) = ma.z.&, the
“vertical” and the “horizontal” parts of {(z). Then £ = &,er + &por, Where
&ver 18 a section of the distribution A and &, is a section of the distribution
=. In general, sections of A are called vertical fields and sections of = are
called horizontal fields.

Proposition 7 An Ehresmann connection = is a canonical one, i.e. ¥ =
AS, if and only if the equality

[§7 [§7 V]]hOT = Q[Cu [Ca V]ver]hm" (16)
holds for any vertical vector field v. Here [, ] is Lie bracket of vector fields.

Proof. The deduction of identity (16) is based on the following classical
expression:

ertse = e7(c. 8], (17)
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for any vector field &.

Given z € N, we take coordinates in 7T, N in such a way that T,N =
{(z,y) : xz,y € R"}, where J,(0) = {(z,0) : z € R"}, J2(0) = {(0,y) : y €
R"}. Let J.(t) = {(z, Syz) : 2 € R"}, then Sy = Sy = 0 and det Sy # 0 due
to the regularity of the Jacobi curve J,.

Let v be a vertical vector field, v(z) = (z,0) and (e;*v) (z) = (2, y2).-
Then (z,0) = (e;v),  (2), (0,4) = (es"v),  (2). Moreover, y; = Sy,
since (e;%v) (z) € J.(t). Differentiating the identity y, = Syz, we obtain:
Uy = Syxy + Syiy. In particular, go = Sozo. It follows from (17) that (20,0) =
€, Vvers (0,90) = [C, V]nor- Hence (0, Sozo) = [C, ¥]nor(2), Where, I recall, v is
any vertical field. Now we differentiate once more and evaluate the derivative
at 0:

yo = S()ZL’Q + QS()I"() + S()i’() = 250!13’0 (18)

The Lie bracket presentations of the left and right hand sides of (18) are:
(0,90) = [¢,[¢, Vllnors (0, Soio) = [C, [C, V]ver]hor- Hence (18) implies identity
(16).

Assume now that {(0,7) : y € R"} # J°(0); then Spzo # 0 for some .
Hence §jy # 250ty and equality (16) is violated. [

Equality (16) can be equivalently written in the following form that is
often more convenient for the computations:

™G G vII(2) = 2m[C, [C, Vver(2),  VZ € N. (19)

Let Ry, (t) € gl(J.(t)) be the curvature of the Jacobi curve J,(t). Identity
(14) and the fact that construction of the Jacobi curve is intrinsic imply that

Ry (t) = e*_tCRJe 0)e’

*

t<<z)( Ja(t)"

Recall that J,(0) = A,; the operator R, (0) € gl(A,) is called the curvature

operator of the field ( at z. We introduce the notation: R.(z) = R;.(0);

then R¢ = {R¢(2)},.p is an endomorphism of the ‘vertical’ vector bundle A.
Proposition 8 Assume that TN = A ® AS is the canonical splitting. Then

RCV = _[Ca [Cu V]hor]ver (20)

for any vertical field v.
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Proof. Recall that R (0) = [J°(0), J.(0)], where [-,-] is the infinitesimal
cross—ratio (not the Lie bracket!). The presentation (11) of the infinitesimal
cross—ratio implies:

Re(2) = Ry.(0) = =&y @57~

where ®f"e = myo)w(0)€o for any smooth curve e, € v(7) such that ey = e.
Equalities (15) and (17) imply: ®"*1(2) = [¢, V]ver(2), Vz € M. Similarly,
O 1u(2) = [C, Wlnor(2) for any horizontal field p and any z € M. Finally,

RC(Z)V(Z) = _(I)gﬁqu)ngS = _[Ca [Ca V]hor]ver(z)~ H

9 Coordinate presentation

We restrict ourselves to the case of the involutive Lagrange distribution A;
then integral submanifolds of A form a Lagrange foliation of N. According
to the standard Darboux—Weinstein theorem (see [7]) all Lagrange foliations
are locally equivalent. More precisely, this theorem states that any z € M
possesses a neighborhood O, and local coordinates which turn the restriction
of the Lagrange foliation to O, into the trivial bundle R® x R" = {(z,y) :

x,y € R"} and, simultaneously, turn o|p, into the form > dx; A dy;. In this
i=1
special coordinates, the fibers become coordinate subspaces R"x{y}, y € R™.

Below we use abridged notations: % = Oy, % = ,, etc. We also use the
standard summation agreement for repeating indices.
Now consider a Hamiltonian vector field ( = —hy,0,, + hy,0,,, where h

is a smooth function on R™ x R™ (a Hamiltonian). The field ¢ is regular if
and only if the matrix h,, = (hxixj)?jzl is non degenerate. We are going to
characterize the canonical connection associated with C.

Vector fields 0,,, ¢ = 1,...,n, provide a basis of the space of vertical
fields. As soon as coordinates are fixed, any Ehresmann connection has a
unique basis of the form:

(ayi>hor = 891’ + Czjarjv

where CZ, i,j =1,...,n, are smooth functions on R" x R™. To characterize a
connection in coordinates thus means to find functions ¢. In the case of the
canonical connection of a regular vector field, the functions ¢! can be easily

recovered from identity (19) applied to v = 0,,, i =1,...,n.
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Let C = (CZ )?jzl; the straightforward computation reduces identity (19)
to the following equalities:

2 (hwahrr)ij = hwkhwirg‘yk - hykhrﬂjwk - hriykhrkrj - hrirkhykwj
or, in the matrix form:
2hmm0hmm = {h, hxw} - hmyhmv - hmvhymv

where {h, h,.} is the Poisson bracket: {h, hoe}ij = {R, haya, } = Pay haie;y, —
hykhxﬂjl‘k'

Note that matrix C' is symmetric (indeed, hyphye = (hayhaes) ') that is a
coordinate expression of the fact that canonical Ehresmann connection is a
Lagrange distribution.

As soon as we found the canonical connection, formula (20) gives us
the presentation of the curvature operator although the explicit coordinate
expression can be bulky. Let us specify the vector field more. In the case of
the Hamiltonian of a natural mechanical system in R"”,

h(e,y) = sl + U ), (21)

the canonical connection is trivial: ¢/ = 0; the matrix of the curvature
operator is just Uy,.

Hamiltonian  vector  field associated to the  Hamiltonian
h(z,y) = g”(y)z;z; with a non degenerate symmetric matrix (g% ):L j—1 gener-
ates a (pseudo-)Riemannian geodesic flow. Canonical connection in this case
is classical Levi Civita connection and the curvature operator is Ricci oper-
ator of (pseudo-)Riemannian geometry (see [2, Sec. 5] for details). Finally,
Hamiltonian h(z,y) = ¢" (y)z;x; + U(y) (the energy of a natural mechanical
system on the (pseudo-)Riemannian manifold) has the same connection as
Hamiltonian h(z,y) = ¢“(y)x;x; while its curvature operator is sum of Ricci
operator and second covariant derivative of U.

More generally, let h be a regular Hamiltonian field on 7*M and U a
smooth function on M (a potential). We can treat U as a constant on the
fibers function on T*M. Then U is a vertical field, the Hamiltonian h + U
has the same canonical connection as h, while R; v = R; — [4, [i_i, U hor]ver
according to the formula (20). The second term of this sum can be seeing as
the second covariant derivative of U in virtue of given Ehresmann connection.
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10 Reduction

We consider a Hamiltonian system 2z = fz(z) on a symplectic manifold N
endowed with a fixed Lagrange distribution A. Assume that g: N — R is a
first integral of our Hamiltonian system, i.e. {h,g} = 0.

Lemma 7 Let z € N, g(z) = c. The subspace A, is transversal to g~*(c) at
z if and only if §(z) ¢ A,.

Proof. Hypersurface g~'(c) is not transversal to A, at z if and only if
dog(A) =0 & o(f(2).A) =0 & §(z) € AZ= A,

where A“ is orthogonal complement with respect to the symplectic form of
the subset A in the symplectic space. O

If all points of some level g~!(c) satisfy conditions of Lemma 7, then
g~ '(c) is a (2n — 1)-dimensional manifold endowed with the rank (n — 1)
distribution AY “r (E.N g %(c)). Note that Rg(z) = ker O"T o) hence

9 = T.97'(c)/Rg(z) is a 2(n — 1)-dimensional symplectic space and AY is
a Lagrangian subspace in 39, i.e. A9 € L(X9).

The submanifold g~!(c) is invariant for the flow e®. Moreover, el'g =

G. Hence ¢! induces a symplectic transformation e!® : ¥y — ¥ o Set
e z

JI(t) = e;tﬁAztﬁ(z). The curve ¢t — JY(t) in the Lagrange Grassmannian

L(%9) is called a reduced Jacobi curve for the Hamiltonian field & at z € N.
The reduced Jacobi curve can be easily reconstructed from the Jacobi
curve J,(t) = e;tﬁAetg(z) € L(T.N) and vector g(z). An elementary calcula-
tion shows that
JI(t) = J.(t) N G(2)* + Ry(2).

Now we can temporary forget the symplectic manifold and Hamiltonians and
formulate everything in terms of the curves in the Lagrange Grassmannian.
So let v(-) be a smooth curve in the Lagrange Grassmannian L(X) and 7 a
one-dimensional subspace in ¥. We set v7(t) = v(t) N v* + v, a Lagrange
subspace in the symplectic space ¥4 /. If v ¢ v(t), then v (-) is smooth and
o(t) = Q(t>‘fy(t)ﬂfy , as it easily follows from the definitions. In particular,

regularity and monotonicity of A(-) implies regularity and monotonicity of
v7(+). The curvatures of v(-) and v7(-) are related in a more complicated way.
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Theorem 1 Let v(t), t € [ty,t1] be a regular monotone curve in L(X) and
v a one-dimensional subspace of ¥ such that v ¢ v(t), Vt € [to,t1]. Then

T (t) > rv(t)}v(t)mé and rank <rm (t) — rv(t)‘v(t)mé) < 1. More precisely,

rov(t)(x) = 1y () (z) + %, r € v(t) Uqy”,

where e € v\ 0 and vector a.(t) € v(t) is defined by the relation (a.(t) —e) €

v(t).

Proof. It is sufficient to compute curvatures at ¢t = 0. Take coordinates in ¥
in such a way that ¥ = R™ x R" = {(n,y) : n € R™, y € R"}, v(0) = R™ x
{0} and 7 is a coordinate axis in {0} x R™. Then v(¢) = {(y", Syy) : y € R"},
v(t) = {(yy,57yy) : yy € R"'}, where S] is obtained from S; by the
elimination of the row and column corresponding to the axis v. We may
also assume that v(-) is monotone increasing and S; = I. The coordinate
expression of the curvature via the Schwartzian derivative implies:

ro0)) = 5 (5o v.) — = (Sow. Sou),

1 .. 3 .
Tv”f(o)(y’y) = 5(53 y'yay’y> - Z(Sgy’ya Sgyﬁ-

It is now obvious that 7, (0) — Tv(O)‘U(t) < 18 & nonnegative quadratic form
whose rank is not greater than 1. Let us write this form in the way which

does not depend on the special choice of the basis in R™:

3(50a0,y>2
w(0)(y) =1 (0)(y) = —7———,
o (O)) = r(0)) = =S
where e is any nonzero element of the line vy C R” and aq = S 'e. )
Moreover, we have: a.(t) = (y. (t), Siye(t)), where y.(0) = ao, Sag =
—S09e(0). Hence (a(0) + Soao) € v(0) and (Sag, y) = —0(ic(0),y), (ao,€) =
o(ac(0),e). O
The inequality 7, (t) > r,(¢) ‘U(t)
Then v C ker 9°(t). According to Proposition 5, to - there corresponds a

one-dimensional subspace in the kernel of r,(t); in particular, r,(t) is degen-
erate.

< turns into the equality if v C v°(t), Vt.
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Return to the Jacobi curves J,(¢) of a monotone Hamiltonian field h.

Quadratic form 7, oy 7.(0) on A, is called the curvature form of h at z € N.
We have, 7,(¢) = B%(R.£ E)sgn B, € € A,, where 8" is the symmetric
bilinear form defined in Section 1. Let g be a first integral of h and d,g # 0;
then the monotonicity of /& implies § ¢ A,. Quadratic form 79 “y 79(0) is
called the reduced by g curvature form of h at z. The following identity is a
simple corollary of Theorem 1:

30’2([};7 [}_{'7 C_L]](Z), £>2
Algi(a,a)l

where the vector field a is determined by the identity 3(§,a) = o(&, g), V€ €
A.

There always exists at least one first integral: the Hamiltonian h itself. In
general, h(z) ¢ J2(0) and the reduction procedure has a nontrivial influence
on the curvature. For instance, in the case of a natural mechanical system

2
in R (see (21)) we obtain: r&y)(g) = Ty (§) + ﬁ <f§—g, > . More gener-
ally, for a natural mechanical system on the Riemannian manifold, with the

potential energy U we have:

ri(§) = r.(§) + £ €A, Nkerd,h,

36" (dyU, €)°
2(h(x,y) = U(y))

Still, there is an important class of Hamiltonians and Lagrange foliations for
which the relation i_i(z) € J2(0) holds Vz. These are homogeneous on fibers
Hamiltonians on cotangent bundles (in particular, those generating Rieman-
nian or Finsler geodesic flows). In this case the generating homotheties of
the fibers Euler vector field belongs to the kernel of the curvature form.

rafcl,y(g) = T:cyy(g) +

(22)

11 Hyperbolicity

In this section we show that negativity of the curvature forms implies hy-
perbolic behavior of the flow generated by the monotone Hamiltonian field.
This is a natural extension of the classical result about hyperbolicity of the
Riemannian geodesic flow in the case of the negative sectional curvatures.
Main tool is the structural equation derived in Section 6. First we’ll
show that this equation is well coordinated with the symplectic structure.
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Let A(t), t € R, be a regular curve in L(X) and X = A(t) @ A°(¢) the
correspondent canonical splitting. Consider the structural equation

é(t) + Ra(t)e(t) =0, where e(t) € A(t), é(t) € A°(t), (23)
(see Corollary 1).

Lemma 8 The mapping e(0)@é(0) — e(t)®é(t), where e(-) and é(-) satisfies
(23), is a symplectic transformation of ¥.

Proof. We have to check that o(ei(t),es(t)), o(é1(t),éx(t)), o(ei(t), éa(t))
do not depend on t as soon as e;(t),é;(t), i = 1,2, satisfy (23). First two
quantities vanish since A(t) and A°(t) are Lagrangian subspaces. The deriva-
tive of the third quantity vanishes as well since é;(t) € A(¢). O

Let i be a regular monotone field on the symplectic manifold N equipped
with a Lagrange distribution A. As before, we denote by J,(t) the Jacobi
curves of i and by J'(t) the reduced to the level of i Jacobi curves (see
previous Section). Let R(z) = R, (0), R"(z) = Ry (0) be the correspon-
dent curvature operators and r,, r” the curvature forms. We say that the
Hamiltonian field & has a negative curvature at z (with respect to A) if all
eigenvalues of R(z) are negative or, equivalently, r, < 0. We say that h has a
negative reduced curvature at z if all eigenvalues of R" are negative, in other
words, if " < 0.

Proposition 9 Let zp € N, 2z = etﬁ(z). Assume that {z :t € R} is a
compact subset of N and that N is endowed with a Riemannian structure. If
h has a negative curvature at any z € {z : t € R}, then there exist a constant
o> 0 and a splitting T.,N = AL, & A7, where AZ are Lagrangian subspaces

zt)

of T.,N such that eIH(AZf) =A% Vt.7€R and

Zt41
les™Call = eTliGell V¢ e AL r20,teR. (24)
Simalarly, if h has a negative reduced curvature at any z € {2z, : t € R}, then
there exists a splitting T.,(h='(c)/Rh(z)) = AT & A7, where ¢ = h(z) and
Afﬁ are Lagrangian subspaces of T.,(h™'(c)/Rh(z)) such that eih(Azit) =
A Vi1 eR and |[eF"Cy| > ||| YVCe AT, 7>0,teR

24T 2t
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Proof. Obviously, the desired properties of Azit and Azit do not depend on
the choice of the Riemannian structure on N. We’ll introduce a special Rie-
mannian structure determined by h. The Riemannian structure is a smooth
family of inner products (-,-), on T, N, z € N. We have T,N = .J,(0)® J2(0),
where J,(0) = A,. Replacing h with —h if necessary we may assume that 3"
is a positive definite form and set (-, >Z} 50 = B, Symplectic form o induces
a nondegenerate pairing of J,(0) and J2(0). In particular, for any ¢ € J.(0)
there exists a unique ¢° € J2(0) such that o(¢°, ')‘Jz(o) = ((, '>Z‘Jz(0)' There
exists a unique extension of the inner product (-, -), from J.(0) to the whole
T, N with the following properties:

e J2(0) is orthogonal to .J,(0) with respect to (-, -).;
o (C1,G2): = (7, 63)= YV (1, G2 € J:(0).

We'll need the following classical fact from Hyperbolic Dynamics (see, for
instance, [10, Sec. 17.6]).

Lemma 9 Let A(t), t € R, be a bounded family of symmetric n X n-matrices
whose eigenvalues are all negative and uniformly separated from 0. Let T'(t,T)

be the fundamental matriz of the 2n-dimensional linear system & = —y,
y = A(t)z, where x,y € R", i.e.

0

ST = (§5) T, T = (59). (25)

Then there exist closed conic neighborhoods Ct, Cr, where Cf NCr =0, of
some n-dimensional subspaces of R** and a constant o > 0 such that

F(t’T)CIJ"_ C Cf—i_a |P(t77)§+| 2 ea(T_t)|€+|a v€+ € Cf—i_a t S T,
and
T(t,7)Cr C Cp, |T(t,7)é | >e ||, VE €O, t >

The constant a depends only on upper and lower bounds of the eigenvalues
of A(t). O

Corollary 5 Let C’l? be the cones described in Lemma 9; then
00,+£)C% C T(0;£7)CE for any t > 7 > 0, and the subsets

KF =N F(O,t)C’ﬁE are Lagrangian subspaces of R™ x R™ equipped with the
>0
standard symplectic structure.
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Proof. The relations I'(7,t)Cf¢ C Cf and I'(—7, —t)Cp C Cp imply:
[(0,4+t)CF = [(0, +7)[(£7, £t)CE C T(0, +7)CE.

In what follows we'll study K7'; the same arguments work for K. Take
vectors ¢, (' € Ki; then ¢ = I'(0,t)¢; and ¢’ = T'(0,t)¢] for any ¢t > 0 and
some (;, ¢, € Cf. Then, according to Lemma 9, |¢;| < e (|, [¢]] < e (|,
i.e. ¢; and (] tend to 0 as ¢ — +o00. On the other hand,

(¢, (') = o(I'(0, )G, (0, £)¢) = (G, ¢) Vi =0

since I'(0, t) is a symplectic matrix. Hence o(¢, (") = 0.

We have shown that Kt is an isotropic subset of R” x R™. On the other
hand, K contains an n-dimensional subspace since C; contains one and
['(0,t) are invertible linear transformations. Isotropic n-dimensional sub-
space is equal to its skew-orthogonal complement, therefore K is a La-
grangian subspace. [

Take now a regular monotone curve A(t), ¢ € R in the Lagrange Grass-
mannian L(X). We may assume that A(-) is monotone increasing, i.e. A(t) >
0. Recall that A(t)(e(t)) = o(e(t),é(t)), where e(+) is an arbitrary smooth
curve in ¥ such that e(r) € A(r), V7. Differentiation of the identity
o(e1(7),ea(7)) = 0 implies: o(eq(t), é2(t)) = —a(é1(t), ea(t)) = o(ea(t), é1(t))
if e;(7) € A(7), V7, i = 1,2. Hence the Euclidean structure (-, ), defined
by the quadratic form A(t) reads: (e (t), ea(t)) iy = oler(t), é2('t)).

Take a basis e1(0),...,e,(0) of A(0) such that the form A(0) has the
unit matrix in this basis, i.e. o(e;(0),€;(0)) = 6&;;. In fact, vectors é;(0)
are defined modulo A(0); we can normalize them assuming that é;(0) €
A°(0), i =1,...,n. Then e;(0),...,e,(0),¢é1(0),...,é,(0) is a Darboux basis

T

of 3. Fix coordinates in ¥ using this basis: ¥ = R" x R", where () €

R™ x R" is identified with Y (27¢;(0) +y?¢;(0)) € ¥, x = (2t,...,2")7,
j=1
y=@ .y
We claim that there exists a smooth family A(t), t € R, of symmetric
n X n matrices such that A(t) has the same eigenvalues as Ry (t) and

A(t) =T0,0) (%), A°() =T(0,1) (gn), VieR

in the fixed coordinates, where I'(t,7) satisfies (25). Indeed, let e;(t), i =
1,...,n, be solutions to the structural equation (23). Then

A(t) = span{ei(t),...,e (t)}, A°(t) = span{éi(t),. .., é.(t)}.
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Moreover, &(t) = — _ ay(t)e;(t), where A(t) = {ay(t)}7;=; is the matrix of
=1

the operator R (t) in the ‘moving’ basis e1(t),...,ey(t). Lemma 8 implies
that (e;(t),€;(t))iq) = o(ei(t),€;(t)) = dij. In other words, the Euclidean
structure (-, ) 4,y has unit matrix in the basis e (¢), ..., €,(t). Operator R (t)

is self-adjoint for the Euclidean structure (-, -);,) (see Proposition 5). Hence
matrix A(t) is symmetric.

Let e;(t) = (Syc’ét)) € R” x R™ in the fixed coordinates. Make up n x n-
matrices X (t) = (z z,(t)), Y(t) = (y1(t),...,yn(t)) and a 2n x 2n-

1(t), -
matrix (X(t) X(1) ) We have

Y () Y(t)
d
dt

Va)o=( Dol ) G He-60)
)

Hence (g; X) (1) = (8,07 = T(0,¢).
(

) be the Jacobi curve, A(t) = J,,(t). Set &(z) = ethel(t)
ni(z) = ethé;(t); then

gl(zt)a"'agn(zt)anl(zt)a"'977n(zt) (26)

is a Darboux basis of 1%, N, where J.,(0) = span{& (2),...,&(2)}, J2.(0) =
span{m (z),...,mn(z)}. Moreover, the basis (26) is orthonormal for the
inner product (-,-),, on 7,,N.

The intrinsic nature of the structural equation implies the translation
invariance of the construction of the frame (26): if we would start from z,
instead of 2o and put A(t) = J.,(1), €:(0) = &(2s), €:(0) = mi(z;) for some
s € R, then we would obtain ee;(t) = &/(2s11), €é:(t) = n;(Zs1e).

The frame (26) gives us fixed orthonormal Darboux coordinates in T, N
for Vs € R and the correspondent symplectic 2n x 2n-matrices I, (7,t). We
have: I', (7,t) == [',,(s + 7,5 + t); indeed, I',,(7,t) (y) is the coordinate
presentation of the vector

elr0" D (#€ (2er) + Y'mil2014))

i

Let now A
(t

in the basis &;(zs1+), 7i(zs+-). In particular,

0-.(0,8) (y)| =

e Z (€ (2o1e) + Y'mi(2514))

Zs
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Recall that & (z;),...,&u(27), m(2:), ..., nu(2;) is an orthonormal frame for
the scalar product (-, )., and |[C|l., = 1/{(, (), -
We introduce the notation:

(W], = {Z (Ilgz(%) +yi77i(28)) 1(y) € W}>

i

for any W C R™ x R™. Let Ci . be the cones from Lemma 9. Then

DL O0.0CE | =T (0,64 7)CE .. Virs ()

Zs—T

Now set Kt = (\Cf , Kf. = (N Cr. and AL = [K{f |.,. Corollary
zs tZO z0 zs tSO D) Zs
5 implies that Azis are Lagrangian subspaces of T, N. Moreover, it follows

from (28) that eiﬁAi = A7, while (28) and (27) imply inequalities (24).
This finishes the proof of the part of Proposition 9 which concerns Jacobi
curves J,(t). We leave to the reader a simple adaptation of this proof to the

case of reduced Jacobi curves J(t). O

Remark. Constant o depends, of course, on the Riemannian structure on V.
In the case of the special Riemannian structure defined at the beginning of
the proof of Proposition 9 this constant depends only on the upper and lower
bounds for the eigenvalues of the curvature operators and reduced curvature
operators correspondently (see Lemma 9 and further arguments).

Let e* |t € R be the flow generated by the the vector field X on a
manifold M. Recall that a compact invariant subset W C M of the flow
e!X is called a hyperbolic set if there exists a Riemannian structure in a
neighborhood of W, a positive constant «, and a continuous splitting T, M =
Ef ® EZ @ RX(z), 2 € W, such that elXEF = E;EX(Z) and [[eFX(¢E|| >
e“||CE|l, YVt > 0, ¢* € EEX. Just the fact some invariant set is hyperbolic
implies a rather detailed information about asymptotic behavior of the flow
in a neighborhood of this set (see [10] for the introduction to Hyperbolic
Dynamics). The flow eX is called an Anosov flow if the entire manifold M
is a hyperbolic set.

The following result is an immediate corollary of Proposition 9 and the
above remark.

Theorem 2 Let h be a reqular monotone field on N, c € R, W C h™!(¢) a
compact invariant set of the flow e, t € R, and d,h # 0, V= € W. If h has
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a negatiwe reduced curvature at every point of W, then W is a hyperbolic set
of the flow eth‘hfl(c). O

This theorem generalizes a classical result about geodesic flows on com-
pact Riemannian manifolds with negative sectional curvatures. Indeed, if N
is the cotangent bundle of a Riemannian manifold and e is the geodesic
flow, then negativity of the reduced curvature of h means simply negativ-
ity of the sectional Riemannian curvature. In this case, the Hamiltonian h
is homogeneous on the fibers of the cotangent bundle and the restrictions

th‘ h1(e) Are equivalent for all ¢ > 0.

The situation changes if h is the energy function of a general natural
mechanical system on the compact Riemannian manifold. In this case, the
flow and the reduced curvature depend on the energy level. Still, negativity of
the sectional curvature implies negativity of the reduced curvature at h=1(c)
for all sufficiently big c¢. In particular, etﬁ‘hfl © is an Anosov flow for any
sufficiently big ¢; this can be easily derived from formula (22).

Theorem 2 concerns only the reduced curvature while the next result

deals with the (not reduced) curvature of A.

Theorem 3 Let h be a regular monotone Hamiltonian and W a compact
invariant set of the flow e™. If h has a negative curvature at any point of

W, then W is a finite set and each point of W is a hyperbolic equilibrium of
the field h.

Proof. Let z € W; the trajectory z; = etﬁ(z), t € R, satisfies conditions
of Proposition 9. Take the correspondent splitting T.,,N = AT @ AZ. In

particular, h(zt) = h*(zt) + h (), where h*(z) € AL,
We have eThh(zt) h(z.). Hence

1h(zen) [l = lleZ*h(z0)ll = lleX*hF (o)l = lleZ"h™ (z0)l]

> T |[BF ()| — e T [[h7 ()], VT > 0.
Compactness of {z:t¢€ R} implies that 2+ (z) is uniformly bounded; hence
ht(z) = 0. Similarly, 1h(z—r || > eO‘THh (z)|| = e*7||h*(2)]|| that implies
the equality h~ ( 1) = 0. Finally, h(z) = 0. In other words, z = z is an
equilibrium of hand T,N = AT @A is the splitting of T, N into the repelling
and attracting invariant subspaces for the linearization of the flow eth at 2.
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Hence z is a hyperbolic equilibrium; in particular, z is an isolated equilibrium
of h. O

We say that a subset of a finite dimensional manifold is bounded if it has
a compact closure.

Corollary 6 Assume that h is a reqular monotone Hamiltonian and h has
everywhere negative curvature. Then any bounded semi-trajectory of the sys-
tem z = E(z) converges to an equilibrium with the exponential rate while
another semi-trajectory of the same trajectory must be unbounded. [

Typical Hamiltonians which satisfy conditions of Corollary 6 are energy
functions of natural mechanical systems in R” with a strongly concave poten-
tial energy. Indeed, in this case, the second derivative of the potential energy
is equal to the matrix of the curvature operator in the standard Cartesian
coordinates (see Sec. 9).

12 Entropy

It is easy to see from what was done in the previous section that structural
equation (23) allows to almost automatically generalize the arguments nor-
mally applied to Riemannian geodesic flows and to make them working for
the flows generated by an arbitrary monotone Hamiltonian fields. This is
true not only for the hyperbolicity property but also for the measure the-
oretic entropy. We finish the paper with an estimate for the entropy that
is a direct generalization of the result obtained in [8]; see paper [9] for the
detailed proof of this generalization.

Assume that £ is a monotone Hamiltonian field, h=(c) is a compact
level set and h(z) ¢ A,, Vz € h™'(c). The normalized Liouville measure
on h~1(c) is defined by the form u = éixan‘h,l(c), where (dh, X) = 1 and
C = [ ixo™ Itis easy to check that u does not depend on the freedom

h=1(c
in the cl(l())ice of the vector field X.
_ The Hamiltonian flow e preserves symplectic form o while the flow
eth‘ h-1() Preserves fi. Let b, be the measure theoretic entropy of the last
flow.

Theorem 4 (Ballmann—Wojtkowski—Chittaro) Assume that the reduced
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curvature operator RZ is nonpositive for any z € h='(c). Then

b, > /tr —RM (2). (29)

h1(0)

Remark. The estimate is sharp: inequality (29) turns into the equality

if all reduced Jacobi curves J(-) are symmetric curves (see Definition 7);
the flows generated by such “symmetric” Hamiltonians provide a natural
generalization of the geodesic flows of symmetric Riemannian manifolds.
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