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Recall that the geodesic flow on a Riemannian manifold M

treated as a flow on T ∗M is the Hamiltonian flow for the Hamil-

tonian function

h(p, q) = max
v∈TqM

(⟨p, v⟩ −
1

2
|v|q), q ∈ M, p ∈ T ∗

qM.

Specification of our curvature to the geodesic flow is just the

Riemannian sectional curvature.

The curvature is going to be a differential symplectic invariant.

Invariant of what? Indeed, a Hamiltonian systems without equi-

libria can be locally rectified and they do not have differential

invariants.
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The curvature is an invariant of the couple: a Hamiltonian sys-

tems and a Lagrangian vector distribution. Let (N, σ) be a sym-

plectic manifold, Π ⊂ TN a Lagrangian distribution: Π =
⋃

z∈N
Πz,

Πz ∈ L(TzN), where

L(TzN) = {Λ ⊂ TzN : Λ∠ = Λ}

is the Lagrange Grassmannian.

In the case of the cotangent bundle, standard Lagrangian distri-

bution is tangent to the fibers:

T ∗M = {(p, q) : p ∈ T ∗
qM, q ∈ M}, Π(p,q) = T(p,q)(T

∗
qM).
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Given a Hamiltonian h : N → R, we consider the action of the

flow et⃗h : N → N on Π. Let

Λt
z =

(
e−t⃗h
∗ Π

)
z
, Λt

z ∈ L(TzN).

The curvature at z ∈ N is a basic differential invariant of the

curve t 7→ Λt
z in the Lagrange Grassmannian.

In this talk, we deal with regular monotone curves. What is it?

Let (Σ, σ) be a 2n-dimensional symplectic space and L(Σ) be

the Lagrange Grassmannian, L(Σ) ⊂ Grn(Σ).

We have TΛGr(Σ) ∼= Hom(Λ,Σ/Λ). Moreover, Σ/Λ ∼= Λ∗ and

TΛL(Σ) ∼= Sym(Λ,Λ∗) ⊂ Hom(Λ,Λ∗).
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In other words, TΛL(Σ) is naturally isomorphic to the space of

quadratic forms on Λ.

The curve t 7→ Λ(t) is regular if Λ̇(t) are nondegenerate quadratic

forms and is monotone if Λ̇(t) are sign-definite quadratic forms.

If Λ(t) =
(
e−t⃗h
∗ Π

)
(p0,q0)

, where Π = T (T ∗
qM), h : T ∗M → R, then

Λ̇(t) ≈ −
∂2h

∂p2
(pt, qt), where (pt, qt) = et⃗h(p0, q0).
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Let Λ,∆ ∈ L(Σ), Λ ∩∆ = 0, then Σ = Λ⊕∆ and ∆ ∼= Λ∗.

Let ξ ∈ TΛL(Σ) = Sym(Λ,Λ∗), η ∈ T∆L(Σ) = Sym(Λ∗,Λ); then

η ◦ ξ : Λ → Λ

is a linear operator, the cross-ratio of the “double points” ξ, η.

If ξ is a sign-definite quadratic form, then η ◦ ξ is symmetric for

the Euclidean structure on Λ defined by ξ.
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Differential geometry of a regular curve in L(Σ).

Let Λ⋔ = {∆ ∈ L(Σ) : Λ ∩ ∆ = 0}; this is an affine subspace of

the vector space Sym(Λ∗,Λ).

Indeed, Λ∗ ∼= Σ/Λ; the “difference” ∆1 −∆0 of two elements of

Λ⋔ is identified with the linear map (∆1−∆0) : Σ/Λ → Λ, which

send the residue class s+Λ to the vector (s+Λ)∩∆1−(s+Λ)∩∆0.

If Λ(·) is a regular curve, then Λ(τ) ∩ Λ(t) = 0 for τ close to t,

τ ̸= t. Moreover, the curve τ 7→ Λ(τ) in the affine space Λ⋔ has

a simple pole as τ → t.
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In the coordinates: Σ = {(p, q)}, σ = dp ∧ dq, Λ(t) = {(p,0)};
then Λ(τ) = {(p, Sτp}, where Sτ = S∗

τ , St = 0. The curve Λ(·) is

regular if and only if Ṡτ is invertible.

Coordinate presentation of the curve Λ(·) in the affine space

Λ(t)⋔ is the matrix curve τ 7→ S−1
τ + B, where B is a constant

symmetric matrix whose choice fix the origin in the affine space.

Moreover,

S−1
τ = (τ − t)−1Ṡ−1

t −
1

2
Ṡ−1
t S̈tṠ

−1
t +O(τ − t).
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Free term of the Laurent expansion is a point of the affine

space Λ(t)⋔, all other terms are elements of the vector space

Sym(Λ∗
t ,Λt). We have

Λ(τ) = (τ − t)−1Λ̇(t)−1 +Λ◦(t) +O(τ − t).

The curve t 7→ Λ◦(t) in L(Σ) is the derivative curve of the curve

Λ(·). Recall that Λ(t) ∩ Λ◦(t) = 0.

The curvature:

Rt
Λ : Λ(t) → Λ(t), Rt

Λ = Λ̇◦(t) ◦ Λ̇(t).
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Coordinate expression:

Rt
Λ =

1

2
Ṡ−1
t

...
St −

3

4
(Ṡ−1

t S̈t)
2,

the matrix Schwartzian.

We also have:

Λ̇(τ) ◦ Λ̇(t) = (τ − t)−2I +
1

3
Rt
Λ +O(τ − t).
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Let Σ = T(p,q)(T
∗M),

Π(p,q) = T(p,q)(T
∗
qM), Λ(p,q)(t) =

(
e−t⃗h
∗ Π

)
(p,q)

,

then the Lagrangian distribution

Λ◦
h =

⋃
(p,q)∈T ∗M

Λ◦
(p,q)(0)

is a complement to the “vertical” distribution Π in T ∗M .

In other words, Λ◦
h is an Ehresmann connection on the cotangent

bundle T ∗M .
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Assume that M is equipped with a Riemannian structure

Gq : TqM → T ∗
qM, |v|2 = ⟨Gqv, v⟩, |p|2 = ⟨p,G−1

q p⟩, and

h(p, q) =
1

2
|p|2 + V (q);

then G : TM → T ∗M transforms the Levi-Civita connection in

the connection Λ◦
h.

Moreover, the curvature operator Rh
(p,q)

.
= R0

Λ(p,q)
has a form:

G−1
q Rh

(p,q)ξ = R(v, w)w + (∇2
qV )v, ξ ∈ Π(p,q),

where R is the Riemannan curvature and v = G−1
q ξ, w = G−1

q p.
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The curvature is an indicator of the loss of information on the
initial state when moving along the flow. Bigger curvature - the
information is better preserved. Indeed:

• Hamiltonian reduction of the system to a level of a first
integral increases the curvature.

• If the curvature of reduction of the system to the compact
energy level h = c is negative, then the system is hyperbolic
on the energy level. Moreover, the entropy of the system
with respect to the normalized Liouville measure µ satisfies
the inequality

η ≥
∫

h−1(c)

tr
√
−R(p,q) dµ(p, q).
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Isotropic friction.

Let e be the Euler vector field on T ∗M, e = ⟨p, ∂
∂p⟩, and α > 0

be the friction coefficient. The field h⃗α = h⃗ − αe is conformally

Hamiltonian. In particular, the flow et⃗h
α
transforms Lagrangian

submanifolds in the Lagrangian ones and we may define the

Ehresmann connection Λ◦
hα and the curvature Rhα as we did it

for Hamiltonian systems.

It happens that the curvature is negative for big enough α and

tends to −∞ as α → ∞. Moreover, at least in the case of

a mechanical Hamiltonian h(p, q) = 1
2|p|

2 + V (q), negativity of

the curvature implies that, in the long time scale, the system

(p, q)· = h⃗α(p, q) on T ∗M behaves like a system on M ; the “sec-

ond order” system tends to a first order one.
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The simplest case: M = R, V (q) = −bq. If we apply a constant
force, then we are eventually moving with a constant velocity.

p b= /®

This is a universal phenomenon: if the friction is strong enough
to guaranty negativity of the curvature, then we are eventually
moving with a prescribed velocity profile. The profile depends
on the Hamiltonian; it is not constant, in general.

15



In what follows, h = 1
2|p|

2 + V (q); the connection Λ◦
hα and the

curvature Rhα depend on α in a very simple way in this case.

We have T(p,q)(T
∗M) = T ∗

qM⊕(Λ◦
hα)(p,q). Let π : (p, q) 7→ q be the

standard projection and v ∈ TqM . We denote by Jα
v the horizontal

lift of v induced by the connection: Jα
v (p, q) ∈ (Λ◦

hα)(p,q) and
π∗Jα

v (p, q) = v. Then

Jα
v = J0

v +
α

2
G−1
q v, Rhα = Rh0 −

α2

4
I.

Given u ∈ C2(M), we say that the gradient vector field ∇u is
a potential stationary flow for h⃗α if {dqu : q ∈ M} ⊂ T ∗M is an
invariant submanifold of the system (p, q)· = h⃗α(p, q). Note that
restriction of the system to this invariant submanifold projects
to the gradient system q̇ = ∇qu.
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Assume that M is a complete Riemannian manifold, R and ∇2V

are uniformly bounded and Ωc = {(p, q) ∈ T ∗M : |p| ≤ c}.

Theorem. If Rhα

(p,q) < 0, ∀ (p, q) s.t. H(p, q) ≤ maxV , then ∃ a

potential stationary flow ∇u s.t.

et⃗h
α
(Ωc) → {dqu : q ∈ M} as t → +∞

with an exponential rate, ∀ c > 0.

{dqu : q ∈ M} is a normally stable submanifold of et⃗h
α
.

If M is compact and Rhα

(p,q) < −
(
(k−2)α

2k

)2
I, then u ∈ Ck(M).

The map (h, α) 7→ u is continuous in the C2-topology.
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The least action principle:

u(q) = − inf


0∫

−∞
eαt

(
1

2
|γ̇(t)|2 − V (γ(t))

)
dt : γ(0) = q

 .

The modified Hamilton–Jacobi equation:

H(dqu, q) + αu(q) = 0.
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Why negative curvature implies (partial) hyperbolicity?

Let Λ(·) be a regular monotone curve in L(Σ) and Λ◦(·) be its

derivative curve; then Λ(t) ∩ Λ◦(t) = 0. Recall that

Rt
Λ = Λ̇◦(t) ◦ Λ̇(t).

The curvature Rt
Λ is nonpositive if and only if Λ̇◦(t) is a monotone

curve whose monotonicity direction is opposite to one of Λ̇(t).

Nonpositivity of the curvature implies the existence of

Λ(±∞) = lim
t→±∞

Λ(t), where Λ(+∞) ∩ Λ(−∞) = 0.
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Assume that Λ(·) is increasing and Λ◦(·) is decreasing and take

t0 ∈ R. Symplectic group acts transitively on the pairs of transver-

sal Lagrangian subspaces and we may assume that

Λ(t0) = {(p,0)}, Λ◦(t0) = {(p, p)}.

Let

Λ(t) = {(p, St)}, Λ◦(t) = {(p, S◦
t p)},

then Ṡt > 0, Ṡ◦
t ≤ 0, and St − S◦

t is nondegenerate for any t.

We see that St is a monotone increasing family of quadratic

forms and St < I, ∀ t ≥ t0. Hence there exists S+∞ = lim
t→+∞

St.

Similarly for t → −∞.
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Let f be a conformally Hamiltonian vector field on a symplectic

manifold N equipped with a Lagrangian distribution Π. We set

Λf
z(t) =

(
e
−tf
∗ Π

)
z
, z ∈ N , and Λf

z(±∞) = lim
t→±∞

Λf
z(t); then

Λf(±∞) =
⋃

z∈N
Λf
z(±∞)

are etf-invariant Lagrangian distributions on N and

TN = Λf(+∞)⊕ Λf(−∞).

In other words, TN splits in a kind of “expanding” and “con-

tracting” invariant distributions.

21



All details see in my papers:

• The curvature and hyperbolicity of Hamiltonian systems. Pro-

ceed. Steklov Math. Inst., 2007, v.256, 26–46

• Well-posed infinite horizon variational problems. Proceed.

Steklov Math. Inst., 2010, v.268, 17–31

• Invariant Lagrange submanifolds of dissipative systems. Rus-

sian Math. Surveys, 2010, v.65, 222–223

Updated files are in the webpage: https://people.sissa.it/ agrachev/
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