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Recall that the geodesic flow on a Riemannian manifold M
treated as a flow on T*M is the Hamiltonian flow for the Hamil-
tonian function

1

h(p,q) = UFEHTE%(@M —5lvle), aeM, pe T, M.
q

Specification of our curvature to the geodesic flow is just the
Riemannian sectional curvature.

The curvature is going to be a differential symplectic invariant.
Invariant of what? Indeed, a Hamiltonian systems without equi-
libria can be locally rectified and they do not have differential
invariants.



The curvature is an invariant of the couple: a Hamiltonian sys-
tems and a Lagrangian vector distribution. Let (IV,0) be a sym-
plectic manifold, 'l C T'N a Lagrangian distribution: NN = (J TIl;,

zeN
M, € L(T-N), where

L(T:N) = {AC TN : A“ = A}

is the Lagrange Grassmannian.

In the case of the cotangent bundle, standard Lagrangian distri-
bution is tangent to the fibers:

T*M:{(p,q) ZpETq*M, q€ M}, rl(p,q) :T(p,q)(T;M).



Given a Hamiltonian h : N — R, we consider the action of the
flow et : N — N on M. Let

AL = (e™n) . AL e L(T:N).

z

The curvature at z € N is a basic differential invariant of the
curve t — /\g in the Lagrange Grassmannian.

In this talk, we deal with regular monotone curves. What is it7

Let (X, o) be a 2n-dimensional symplectic space and L(X) be
the Lagrange Grassmannian, L(X) C Grp(X).

We have TaAGr(X) = Hom(NA,>/N\). Moreover, > /AN = A* and
TAL(X) = Sym(N,A\N*) C Hom(A, \*).



In other words, TAL(X) is naturally isomorphic to the space of
quadratic forms on A.

The curve t — A(t) is regular if A(t) are nondegenerate quadratic
forms and is monotone if A(t) are sign-definite quadratic forms.

If A(t) = (e*_thl_l) where M = T(TM), h:T*M — R, then

(ro,20)"
. 02h o7
A(t) = _a—p2(pta%)> where (p¢, qt) = e (po,q0)-



Let AA e L(XZ), A\ NA =0, then Z =A® A and A = A*.

Let £ € TAL(X) = Sym(N\,N*), n € TAL(X) = Sym(A*,N\); then
no&: N— A

is a linear operator, the cross-ratio of the “double points” &,n.

If £ is a sign-definite quadratic form, then no & is symmetric for
the Euclidean structure on A defined by &.



Differential geometry of a regular curve in L(X).

Let AN = {A € L(X): ANnA = 0}, this is an affine subspace of
the vector space Sym(A*,N\).

Indeed, A* = X /A; the “difference” A1 — Ag of two elements of
AM is identified with the linear map (A1 — Ag) : /A — A, which
send the residue class s+ A to the vector (s4+A)NA1—(s+A)NAQ.

If A(-) is a regular curve, then A(7) NA(t) = 0 for 7 close to ¢,
T % t. Moreover, the curve 7 — A(7) in the affine space A™ has
a simple pole as ™ — t.



In the coordinates: >~ = {(p,q)}, 0 = dp Adq, N(t) = {(p,0)};
then A(7) = {(p, Srp}, where S = 5% Sy = 0. The curve A(:) is
regular if and only if S; is invertible.

Coordinate presentation of the curve A(-) in the affine space
A(t)™ is the matrix curve 7 — S-1 + B, where B is a constant

symmetric matrix whose choice fix the origin in the affine space.
Moreover,

: 1. o
S;l=(—t)71s1 - 55;15,55;1 + O(r —t).



Free term of the Laurent expansion is a point of the affine
space /\(t)m, all other terms are elements of the vector space

Sym (N}, \¢). We have
A(T) = (7 — ) TA@) T+ A°(t) + O(r — ).

The curve t — A°(t) in L(X) is the derivative curve of the curve
A(-). Recall that A(t) N A°(t) = 0.

The curvature:

RL D A() = A(t), R4 = A°(t) o A().



Coordinate expression:

Rh =~
2
the matrix Schwartzian.

T 3 . 1.
st s — (& 15,2,

We also have:

A(r) o A(t) = (r — )21 + %RtA +O(r —1).
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Let 2 = T(p,q) (T*M),

M) = T (Tg M), N (8) = <€*_thn

then the Lagrangian distribution

Ap = U (r.a)(0)
(p,q)€T*M

is a complement to the ‘“vertical” distribution I in T*M.

) (p,9)’

In other words, /\;JL iIs an Ehresmann connection on the cotangent
bundle T*M.
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Assume that M is equipped with a Riemannian structure
Gq: TyM — T; M, v]? = (Gqu,v), |p|? = (p, Gq_lp>, and

b, @) = S1pl? + V(@);

then G : TM — T*M transforms the Levi-Civita connection in
the connection /\fl.

Moreover, the curvature operator R’(lp )= RY has a form:
) b,q

Gy 'R, p¢ = Rv,w)w + (ViV)v, €€ N, 0,

where R is the Riemannan curvature and v = G, 1¢, w = G, !p.
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The curvature is an indicator of the loss of information on the
initial state when moving along the flow. Bigger curvature - the
information is better preserved. Indeed:

e Hamiltonian reduction of the system to a level of a first
integral increases the curvature.

e If the curvature of reduction of the system to the compact
energy level h = ¢ is negative, then the system is hyperbolic
on the energy level. Moreover, the entropy of the system
with respect to the normalized Liouville measure p satisfies

the inequality
n Z / tr\/ _R(p,q) d:u(p7 Q)

h=1(c)
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Isotropic friction.

Let e be the Euler vector field on T*M, e = (p, a%>' and a > 0

be the friction coefficient. The field ﬁf‘ — h — ae is conformally
Hamiltonian. In particular, the flow et transforms Lagrangian
submanifolds in the Lagrangian ones and we may define the
Ehresmann connection /\;’La and the curvature R as we did it
for Hamiltonian systems.

It happens that the curvature is negative for big enough o and
tends to —oco0 as a« — oo. Moreover, at least in the case of
a mechanical Hamiltonian h(p,q) = 5|p|?> + V(q), negativity of
the curvature implies that, in the long time scale, the system
(p,q) = h%(p,q) on T*M behaves like a system on M; the “sec-
ond order” system tends to a first order one.
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The simplest case: M =R, V(g) = —bg. If we apply a constant
force, then we are eventually moving with a constant velocity.

k\\m

h
7z

This is a universal phenomenon: if the friction is strong enough
to guaranty negativity of the curvature, then we are eventually
moving with a prescribed velocity profile. The profile depends
on the Hamiltonian; it is not constant, in general.
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In what follows, h = %|p|? + V(g); the connection A9, and the
curvature R" depend on « in a very simple way in this case.

We have T(p,q) (T*M) = T;M@(/\za)(p,q)' Let 7 : (p, q) — q be the
standard projection and v € T;M. We denote by J the horizontal
lift of v induced by the connection: J%(p,q) € (/\2@>(p,q> and
T« J¥(p,q) = v. Then

o2

(@ 1 R hO
J5‘=J§+§Gq v, RU=R"-"-I

Given u € C?(M), we say that the gradient vector field Vu is
a potential stationary flow for h® if {dgu : ¢ € M} C T*M is an
invariant submanifold of the system (p,q) = h%(p,q). Note that
restriction of the system to this invariant submanifold projects
to the gradient system q = V4u.
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Assume that M is a complete Riemannian manifold, ‘R and \VAVS
are uniformly bounded and Q2. = {(p,q) € T*M : |p| < c}.

Theorem. If R’(l;‘q) <0, V(p,q) s.t. H(p,q) < maxV, then 3 a

potential stationary flow Vu s.t.
e (Qe) — {dqu:q € M} as t - 400

with an exponential rate, V¢ > 0.

dou . q € M} is a normally stable submanifold of etﬁa.
q

o _ 2
If M is compact and R?p O < (%) I, then u € Ck(M).

The map (h,a) — u is continuous in the C?-topology.
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The least action principle:

0
u() =—inf{ [ e (SHOPR - V) dt:(0) =g

— OO

The modified Hamilton—Jacobi equation:

H(dqua q) + OAU(Q) = 0.
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Why negative curvature implies (partial) hyperbolicity?

Let A(-) be a regular monotone curve in L(X) and A°(-) be its
derivative curve; then A(t) NA°(t) = 0. Recall that

RL = A°(t) o A(t).

The curvature Rﬁ\ is nonpositive if and only if A°(t) is a monotone
curve whose monotonicity direction is opposite to one of /\(t).
Nonpositivity of the curvature implies the existence of

N(£oo) = t_ljgrnoo/\(t), where A(4o0c0) NA(—o0) = 0.
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Assume that A(-) is increasing and A°(-) is decreasing and take
to € R. Symplectic group acts transitively on the pairs of transver-
sal Lagrangian subspaces and we may assume that

A(to) = {(p,0)}, A°(to) ={(p,p)}-
Let

/\(t) — {<p7 St)}7 /\O(t) — {(p7 S;f)p)}7
then Sy >0, SP <0, and S; — Sy is nondegenerate for any t.

We see that S; is a monotone increasing family of quadratic

forms and S; < I, Vt > tg. Hence there exists S, = lim S;.
t——+o0

Similarly for t — —oo.
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Let f be a conformally Hamiltonian vector field on a symplectic
manifold N equipped with a Lagrangian distribution l. We set
A = (ex'N) , z€ N, and AL(£o0) = lim AL(t); then

z t—+o0

N (£o0) = |J AL(F00)
zeN

are et/-invariant Lagrangian distributions on N and

TN = A (4+00) & A (—0).

In other words, T'N splits in a kind of “expanding” and ‘“con-
tracting” invariant distributions.
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All details see in my papers:

e [ he curvature and hyperbolicity of Hamiltonian systems. Pro-
ceed. Steklov Math. Inst., 2007, v.256, 26—46

e Well-posed infinite horizon variational problems. Proceed.
Steklov Math. Inst., 2010, v.268, 17—31

e Invariant Lagrange submanifolds of dissipative systems. Rus-
sian Math. Surveys, 2010, v.65, 222—223

Updated files are in the webpage: https://people.sissa.it/ agrachev/
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