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ENSEMBLE CONTROLLABILITY BY LIE ALGEBRAIC METHODS

Andrei Agrachev1, Yuliy Baryshnikov2 and Andrey Sarychev3

Abstract. We study possibilities to control an ensemble (a parameterized family) of nonlinear control
systems by a single parameter-independent control. Proceeding by Lie algebraic methods we establish
genericity of exact controllability property for finite ensembles, prove sufficient approximate control-
lability condition for a model problem in R3, and provide a variant of Rashevsky-Chow theorem for
approximate controllability of control-linear ensembles.
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1. Introduction

1.1. Motivation

Over the last decade there has been a rise of interest regarding controllability of ensembles - parameterized
families - of nonlinear control systems

ẋ = fθ(x, u), θ ∈ Θ,

by a single θ-independent control u(·). Such problems arise for example, from a necessity to control a system
with a ”structured uncertainty”, when some parameters of the system are subject to ”dispersion”.

The problems of designing a control, which compensates the dispersion, appear for example in NMR spec-
troscopy. Study of the control of Bloch equation under various types of dispersion has been initiated by S. Li
and N. Khaneja ( [11–13]). The state space of Bloch equation is a (matrix) Lie group, and therefore Lie algebraic
notions and tools, such as e.g. Campbell-Hausdorff formula, appeared in its study naturally. The core of the
approach of S. Li and N. Khaneja is ”generating higher order Lie brackets by use of the control vector fields
which carry higher order powers of the dispersion parameters to investigating ensemble controllability”. More
recent publication by K. Beauchard-J.-M. Coron-P. Rouchon ( [6]), also dedicated to the Bloch equations with
dispersed parameter, invoked analytic methods to obtain finer results on ensemble controllability.

In the current presentation we search for an extension of the Lie algebraic approach of geometric control
theory onto ensembles of nonlinear systems.

Continual ensemble is an infinite-dimensional control system with finite-dimensional space of control pa-
rameters. Therefore exact controllability would in general fail, a mechanism for such failure is explained in
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another context in [5]. We concentrate on approximate ensemble controllability by means of controls of fixed
finite dimension.

On the contrast to the above mentioned publications we do not use any expansion in the parameter θ, nor do
we assume any smoothness of ensembles in θ. Instead we advocate an approach, which combines use of iterated
Lie brackets and hence Taylor series in state variables, and Fourier-type series in the parameter θ.

We start with finite ensembles. For such ensembles the Lie rank criteria of exact controllability of a single
system can be reformulated in a rather direct way. We prove in Section 3 that the property of global con-
trollability for a finite ensemble of control-linear systems is generic (Theorem A). In Section 4 we establish
(Theorem B) global controllability by means of a single scalar control for a finite ensemble of rigid bodies with
generic inertial parameters.

Two examples of continual ensembles are studied in Sections 5,6.
The first one is a model example of an ensemble in R3. We seek for a control, which generates a loop in R2 and

makes the third coordinate to trace approximately a prescribed target (say, a curve or a surface). Theorem C
provides sufficient and necessary condition for the approximate controllability.

In Section 6 we study general ensemble of control-linear systems on a manifold. Theorem D provides sufficient
approximate controllability criterion; it is an ensemble version of Rashevsky-Chow theorem.

Both criteria are formulated in terms of Lie algebraic span.
A number of publications (see [9,10,16]) contain variants of Rashevsky-Chow theorem in infinite dimension.

We explain in Section 6 the difference between our criteria and the results of the publications cited.

1.2. Definitions of ensemble controllability

Let M be a C`-manifold1; U ⊂ Rr; Θ - compact subset of a Lebesgue measure space.
We consider ensembles of control systems parameterized by θ ∈ Θ

dxθ

dt
= fθ(x, u), xθ ∈M, u ∈ U, θ ∈ Θ. (1)

Ensemble is finite, whenever Θ is finite and is infinite otherwise. Note that the control u(·) in (1) is assumed
to be θ-independent, i.e. all the systems of the ensemble are driven by the same control.

We are going to study approximate controllability of ensembles (1).

Definition 1.1 (cf. [11]). Let α(θ) be an ensemble of initial data

xθ(0) = α(θ), (2)

and ω(θ) be a target ensemble.
We say that ensemble (1) is Lp-approximately steerable from α(θ) to ω(θ) in time T > 0, if for any δ > 0

there exists a θ-independent control ū(t), t ∈ [0, T ] (depending on δ) such that for the trajectories of the ensemble

dxθ

dt
= fθ(xθ, ū(t))

with the initial data (2), there holds:

‖xθ(T )− ω(θ)‖Lp(Θ) < δ.

Ensemble (1) is Lp-approximately controllable (in time T ) if for each pair of measurable bounded maps
α(θ), ω(θ) it is Lp-approximately steerable from α(θ) to ω(θ) (in time T ). �

Another definition of controllability, which in some cases is slightly stronger, than approximate controllability,
can in our view be useful.

1In our presentation we consider analytic case ` = ω; infinitely smooth case ` = ∞ is commented in Remark 6.5
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For the ensemble (1) we define a moment corresponding to a probability density p(θ) on the space of param-
eters Θ:

〈p, xθ(t)〉 =

∫
Θ

〈p(θ), xθ(t)〉dθ.

Definition 1.2. The ensemble (1) is controllable in momenta if for any finite ensemble of probability densities
p1(θ), . . . , pm(θ), for any initial data (2) and each m-ple (π1, . . . , πm) ∈ Rm there exists a control ū(t), t ∈ [0, T ],
which steers the ensemble of initial data (2) to a terminal ensemble xθ(T ), for which 〈pj , xθ(T )〉 = πj , j =
1, . . . ,m. �

The criteria of controllability in the momenta can be obtained by the methods, introduced below. Still the
technicalities differ and we leave the presentation for another occasion.

Also for continual ensembles we restrict our attention to the case, where the parameter θ enters the right hand
side of (1), while the initial data does not depend on θ : α(θ) ≡ x̃. An interesting question of controllability
of continual ensembles of initial data (interpreted as controllability in the spaces of surfaces/curves) will be
treated elsewhere.

1.3. On Lie algebraic or geometric control approach

The geometric control theory approaches controllability, observability and optimality properties of nonlinear
control systems investigating the structure of the Lie algebra, generated by the set of vector fields, which
”constitute” a control system. Nagano’s theorem puts it in strict terms, stating that two control systems,
satisfying the same Lie relations, are equivalent up to a coordinate change. Identification of the complete set of
Lie relations is in general not possible, but often a finite subset of this set suffices for establishing controllability
(see [2] for details).

It is rather straightforward to extend the geometric control approach to controllability of a single system onto
the case of finite ensembles: |Θ| = N . One can just see the ensemble as a single system on a carthesian product
of N copies2 of the state space M and apply Lie algebraic (Lie rank) methods to establish controllability of this
system. Two observations are due: i) for finite ensembles approximate controllability ”usually” implies exact
controllability; ii) the Lie rank and hence the number of iterated Lie brackets, needed for the verification of
controllability, grows and tends to infinity with N →∞.

When dealing with infinite and in particular with continual ensembles tempting is the idea, firt, to discretize
Θ, then to establish (when possible) exact controllability of the discretized finite ensemble and finally refine the
discretization (increasing the number of ”nodes”) and conclude the approximate controllability of the continual
ensemble.

Unfortunately this artless idea seems to fail. The reason is that with the refinement of the discretization
the number of the iterated Lie brackets, involved, and hence the complexity of the corresponding controls grow
unboundedly. The ’nodal’ systems are driven by the control of high complexity to the target, but one looses
control of what happens with the systems ”between the nodes”.

Leaving this idea out we instead view the ensemble (1) as a system in an infinite-dimensional space of
functions, defined on Θ, and seek for an infinite-dimensional variant of the method of Lie extensions. In the
next few paragraphs we describe the idea informally.

The classical Lie extensions method deals with the vector fields, which are the sections of the tangent
bundle TM . Below we consider instead the fiber bundles over the base M with the infinite-dimensional fibers
Lp(Θ, TxM) over each x ∈M . Analogues of vector fields are the sections of the fiber bundle. We introduce kind
of Lie structure for these sections by taking Lie brackets on M for each θ ∈ Θ. We define the Lie extensions
and iterating them seek for an analogue of Lie rank condition.

Note that if Θ is finite then the fiber is just a Carthesian product of a finite number of copies of TxM and
we come back to the above described approach to finite ensembles.

2Minor modification of the approach allows to deal with control systems defined on different C∞ manifolds M1, . . . ,MN .
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Infinite dimensionality intervenes in two ways. First, since we take a large but finite number of iterated Lie
brackets, we end up with approximate controllability. Second, the usual notions of rank, dimension and linear
independence should be treated with more care in the infinite-dimensional situation. For model example in
Section 5 we invoke Fourier series in θ; in general it is useful in constructing appropriate controls.

A natural extension of the notion of ensemble controllability would be the study of controllability in the
space of curves or surfaces, or more generally, on the group of diffeomorphisms Diff M . A criterion of exact
controllability, presented in [1], required the set of controls to be rich enough to allow for multiplying vector
fields of the system by any smooth functional multiplier. We look forward to obtaining results on approximate
controllability on Diff M by means of finite-dimensional control.

2. Basic assumptions

The following two assumptions for the dynamics of (1) hold for the continual ensembles, treated in Sec-
tions 5,6.

Let M be a real analytic (Cω) manifold.

Assumption 2.1 (Uniform analyticity in x). For each θ ∈ Θ the vector fields Xθ(x), x ∈ M can be extended
to (complex)-analytic vector fields Xθ(z), z ∈ Bρ(M) - a complex ρ-neighborhood of the manifold M . �

Assumption 2.2 (Dependence on parameter θ). The set of parameters Θ is a separable compact Hausdorff
space equipped with a Borel measure. For each z ∈ Bρ(M) the map θ → Xθ(z) is continuous. �

3. Elementary case I: control of a finite ensemble of control-linear systems

For finite ensembles the controllability in momenta and approximate controllability are equivalent3 to exact
controllability.

We consider finite ensembles of control-linear systems and prove that exact controllability property is generic.
Finite ensemble of N control-linear systems on a C∞ manifold M is:

ẋθ =

r∑
j=1

Xθj(xθ)uj(t), x
θ ∈M, (u1, . . . , ur) ∈ R, θ = 1, . . . , N. (3)

Once again the control u(t) = (u1(t), . . . , ur(t)) is θ-independent.
For a single system of ensemble (3), defined by a r-tuple (r ≥ 2) of vector fields

(
Xθ1, . . . , Xθr

)
, classical

result by C.Lobry [14] states, that global controllability property is generic, i.e. holds for each
(
Xθ1, . . . , Xθr

)
from a subset of (Vect∞(M))

r
, which is open and dense in Cν-metric with ν sufficiently large.

We extend this result to the case of ensembles.

Theorem A. There exists a natural number ν and a subset C ⊂(
(Vect∞(M))

N
)r
, which is open and dense in Cν(M)-metric and such that for each rN -tuple of vector fields(

Xθj
)
, θ = 1, . . . N, j = 1, . . . , r from C the ensemble (3) is globally exactly controllable. �

Proof. It suffices to provide a proof for r = 2 in (3), or the same, for the ensemble

ẋθ = Xθ(xθ)u(t) + Y θ(xθ)v(t), xθ ∈M, θ = 1, . . . , N. (4)

We make an obvious step considering on MN the cartesian product of the systems of the ensemble (4). Ob-

viously the vector fields X = (X1, . . . , XN ), Y = (Y 1, . . . , Y N ), belong to
(

(Vect∞(M))
N
)2

⊂
(
Vect∞(MN )

)2
.

The following technical lemma is immediate consequence of Rashevsky-Chow theorem.

3under full Lie rank condition
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Lemma 3.1. If the pair (X,Y ) is bracket generating at each point of MN , then ensemble (4) is globally
controllable. �

It rests to prove that the bracket generating property is generic in(
(Vect∞(M))

N
)2

in Cν-metric for some ν.

C.Lobry’s theorem, applied to the couple (X,Y ), guarantees existence and density of globally controllable

couples of vector fields from
(
Vect∞(MN )

)2
, while we need them to belong to a smaller set

(
(Vect∞(M))

N
)2

.

Still one can modify the original idea of C.Lobry in order to cover this case. This is done in Appendix. �

4. Elementary case II: Controllability of a finite ensemble of rigid bodies

Consider an ensemble of N rigid bodies, with the evolution of the momenta, described by an ensemble of
Euler equations

K̇θ = Kθ × JθKθ + Lu, θ = 1, . . . , N, u ∈ U ⊂ R, int conv(U) 3 0; (5)

with the scalar control torque u(t) (in body), applied along one and the same direction L to all bodies.
Here Jθ ∈ J are the (inverses of the) inertia tensors of the bodies; J is a closed subset with nonempty interior

of the set of symmetric positive definite (3× 3)-matrices.
We restrict ourselves to an open subset of dynamically asymmetric bodies, or equivalently, the matrices Jθ

with distinct positive eigenvalues in int J.
Without loss of generality we may take as U = [−β, β], β > 0. Admissible controls u(t) are arbitrary

measurable functions, but piecewise-continuous and piecewise constant u(t) suffice for controllability.
Consider the cartesian product of the systems (5) defined on (R3)N . We provide (R3)N with the euclidean

structure and with the standard volume measure of the cartesian product.
Putting K = (K1, . . . ,KN ), bL = (L, . . . , L), J = diag(J1, . . . JN ) the (3N × 3N) block diagonal matrix, we

get a control-affine system on (R3)N :

K̇ = K × JK + bLu,

(the cross product is applied componentwise).
We denote by EJ(K) the Euler term: EJ(K) = K × JK.

4.1. Recollection: controllability result for a single rigid body

For (5) with N = 1 controllability result has been established by two different methods in [3, 8], see also [2,
Ch.6,8]).

Proposition 4.1. For an asymmetric J1 and generic L, the single body is globally controllable. �

Global controllability of single equation (5) can be derived from the bracket generating property (see Propo-
sition 4.4), satisfied by the pair of vector fields (EJ1(K), bL(K)) and the recurrence property of EJ1(K).

In the next Subsection we establish controllability of a generic ensemble of N rigid bodies. Proposition 4.1
is a special case of this result.

4.2. Controllability of ensemble of rigid bodies

Theorem B. Given L ∈ R3 \ 0, and integer N ≥ 1 there exists an open dense subset D ⊂ JN , such that for
each (J1, . . . , JN ) ∈ D the finite ensemble of rigid bodies (5) is globally exactly controllable by a torque along
L. Besides for each compact subset C ⊂ D there exists an upper bound TC > 0 for minimal attainability times.
�

Remark 4.2. The set JN = J× · · · × J is an open subset of the linear space
(
Sym(R3)

)N
�.

A more interesting question to be answered is
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Question 1. Given an N -tuple (J1, . . . , JN ), with Jθ pairwise distinct (or belonging to a sphere in J and
pairwise distinct, or a generic N -tuple) and possessing simple eigenvalues, does there exist an open dense subset
L ⊂ R3, such that ∀L ∈ L the finite ensemble of rigid bodies (5) is globally controllable? �

We start proving Theorem B.
A vector field on a manifold M is recurrent if ∀x ∈ M , each neighborhood Wx of x and each t > 0, there

exists a point x̂ ∈Wx and time t̂ > t such that et̂f (x̂) ∈Wx.
Poincare recurrence theorem establishes this property for a broad class of vector fields, which includes EJ1(K).

Proposition 4.3 (Poincare recurrence theorem). If a complete vector field f on a manifold M preserves the
volume form (that is, divergence free) and leaves a set A of finite volume invariant. Then the restriction of f
to A is recurrent. �

It is immediate to see, that the drift vector field EJ(K) = K × JK is divergence free and preserves ‖K‖2 =∑r
i=1 ‖Ki‖2. Hence the sets Br = {K| ‖K‖2 =

∑r
i=1 ‖Ki‖2 ≤ r2} of finite volume are invariant for the volume

preserving vector field EJ(K), wherefrom the recurrence property follows.
The following result states that bracket generating property of a system of vector fields plus the recurrence

property of one of them suffices for controllability of the respective control-affine system

Proposition 4.4 ( [7], [15]). Let f0 possess recurrence property on M and the bracket generating condition
Lie(f0, . . . , fr)(x) = TxM hold at each point x ∈M . Then the control-affine system ẋ = f0(x) +

∑r
i=1 f

i(x)ui,
(u1, . . . , ur) ∈ U , (where int conv(U) 3 0) is globally controllable on M . �

Given the recurrence property of EJ(K) it remains only to verify the bracket generating property for the pair

of vector fields {EJ(K), bL} on
(
R3
)N

.
Given that the vector field EJ(K) is a polynomial of second degree in K and the vector field bL is constant,

it is convenient to take into account those iterated Lie brackets, which result in constant vector fields. These
are for example

V 0
J,L = bL(K) = L, V 1

J,L =
[
V 0
J,L, [EJ , V 0

J,L]
]

= 2L× JL, V m+1
J,L =

[
V mJ,L, [EJ , V 0

J,L]
]
, m ≥ 1. (6)

We form (3N × 3N)-matrix

RN
(
J1, . . . , JN ;L

)
=


V 0
J1,L V 1

J1,L · · · V 3N−1
J1,L

V 0
J2,L V 1

J,L · · · V 3N−1
J2,L

· · · · · · · · · · · ·
V 0
JN ,L V 1

JN ,L · · · V 3N−1
JN ,L

 . (7)

Bracket generating property for fixed J and L would be implied by the non-nullity of the determinant
detRN

(
J1, . . . , JN ;L

)
.

For fixed L (7) is a polynomial with respect to (the elements of) J , its nullity determines an algebraic variety

in
(
Sym(R3)

)N
. If the determinant does not vanish identically on

(
Sym(R3)

)N
, i.e. the variety is proper; then

its complement, intersected with JN , contains an open dense subset of JN .

Lemma 4.5. For each L from an open dense subset of R3 and for each N ≥ 1 the determinant detRN (J1, . . . , JN ;L)

does not vanish identically on
(
Sym(R3)

)N
. �

The proof of the Lemma goes by induction in N . We provide the initial inductive step; the rest of the

proof can be found in Appendix.
The set of zeros of the determinant

R1

(
J1;L

)
= det

(
V 0
J1,L

∣∣V 1
J1,L

∣∣V 1
J1,L

)
6



can be characterized. Direct computation shows (see [2]) that for a dynamically asymmetric J1 and for L, lying

in a complement to the union L̃ of 3 straight lines (principal axes) and two (separatrix) planes, the determinant
R1

(
J1;L

)
6= 0.

This fact together with Proposition 4.4, implies the statement of Proposition 4.1. �

Remark 4.6. One should be selective in choosing iterated Lie brackets, when establishing bracket generating
property. For example the constant vector field Ṽ 2

J,L =
[
V 1
J,L, [EJ , V 1

J,L]
]

is collinear to V 0
L = L for any J . �

4.3. A remark on the bounds for the attainability time

We will provide the following reinforcement of the previous statement.

Proposition 4.7. Let C ⊂
(
R3
)N

be compact. Under the conditions of Theorem B there exists uniform upper

bound TC > 0, such that ∀K̃, K̂ ∈ C ensemble (5) can be steered from K̃ to K̂ in time T ≤ TC. �

Proof. Existence of minimal attainability T (K̃, K̂) time for each couple K̃, K̂ is part of classical Filippov

theorem. Being the system globally controllable one can conclude that K̂ is normally attainable ( [17]) from K̃

in the greater time T (K̃, K̂) + 1. Then each point of a small neighborhood of K̂ is attainable from any point

in small neighborhood of K̃, or, equivalently, that for any (x, y) in a small neighborhood of (K̃, K̂), y can be

reached from x in time T (K̃, K̂) + 1. By compactness, one can choose a finite cover by such neighborhoods of
C × C, implying the proposition. �

5. Continual ensemble of control-linear system: model example

We elaborate our approach to approximate controllability of continual ensembles on a simple model with 2
controls:

ẋ = u, ẏ = v, żθ = fθ(x)v, (8)

x(0) = y(0) = zθ(0) = 0. (9)

The ensemble is constituted by control-linear systems whose right-hand side is spanned by the vector fields

X =
∂

∂x
, Y θ =

∂

∂y
+ fθ(x)

∂

∂zθ
, θ ∈ Θ. (10)

One proceeds under Assumptions 2.1,2.2, in particular fθ(x) is analytic in x. We set a slightly modified
Approximate ensemble controllability problem. Given T > 0 and a target function ẑ(p) ∈ L∞(Θ) and
ε > 0 does there exist θ-independent controls u(·), v(·) ∈ L2[0, T ], such that for the trajectory, driven by u(·), v(·)
there holds:

x(T ) = y(T ) = 0,

∫
Θ

‖zθ(T )− ẑ(θ)‖2dθ ≤ ε. (11)

Note that, on the contrast to the previous problem setting, we ask for exact controllability in coordinates x, y.
For simple model (8)-(9) the trajectory can be computed explicitly:

x(t) = U(t) =

∫ t

0

u(τ)dτ, y(t) = V (t) =

∫ t

0

v(τ)dτ, zθ(t) =

∫ t

0

fθ(U(τ))v(τ)dτ =

∫ t

0

fθ(U(τ))dV (τ). (12)

Consider Taylor expansion for fθ in x at 0:

fθ(x) =

∞∑
m=1

am(θ)xm, am(θ) =
1

m!

∂mfθ

∂xm

∣∣∣∣
x=0

. (13)

The following condition is central for the controllability of the ensemble (8)-(9).
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Definition 5.1 (Lie algebraic span condition). The functions (am(θ))
∞
1 , defined by (13), span dense subspace

of L2(Θ):
span{am(θ), m = 1, . . .} = L2(Θ). � (14)

Remark 5.2. We talk about Lie algebraic condition, since the functions am(θ) are zθ-components of the eval-
uations at x = 0 of the iterated Lie brackets 1

m!

(
(adX)mY θ

)
of the vector fields (10). �

Theorem C. Ensemble (8) is time-T approximately controllable for each T > 0 if and only if the Lie algebraic
span condition (14) holds. �

Rescaling of the time and control t→ k−1t, (u, v)→ (ku, kv), k ∈ R+, leaves (8) invariant, therefore we can
assume T = 1.

By (12):

zθ(1) =

∫ 1

0

fθ(U(t))v(t)dt. (15)

One needs to construct functions U(t), v(t) such that U(1) = x(1) = V (1) = y(1) = 0 and zθ(1), defined by
(15), would satisfy the inequality (11) for T = 1.

To accomplish this we proceed by a variant of moments method.
From now on assume the magnitude of the function U(t) to be small, so that the series

fθ(U(t)) =

∞∑
m=1

am(θ)(U(t))m (16)

will be converging.

We will seek v(t) as a linear combination: v(t) =
∑R
r=1 yrvr(t); integer parameter R depends on the rate of

approximation and will be specified in a moment.
For the controls defined one derives from the expansion (16):

zθ(1) =

∞∑
m=1

am(θ)

R∑
r=1

γmryr. (17)

where

γmr =

∫ 1

0

(U(t))
m
vr(t)dt. (18)

If Lie algebraic span condition is satisfied, then for each ε1 > 0 one can find a finite linear combination∑R
r=1 cmam(θ), such that

‖ẑ(θ)−
R∑
r=1

crar(θ)‖L2(Θ) < ε1. (19)

This sets the number R, which depends on the rate of approximation ε1 : R = R(ε1).
Our goal is to choose U(t), vr(t) in such a way that the equation

∞∑
m=1

(
R∑
r=1

γmryr

)
am(θ) =

R∑
r=1

crar(θ)

with the coefficients γmr, defined by (18), would be approximately solvable with respect to yr.
This fact, proved in Appendix, completes the proof of sufficiency part of the Theorem C.
Now we prove the necessity. If the closure in (14) is a proper subspace in L2(Θ) take an element ν(θ)

orthogonal to the closure:
∫

Θ
ν(θ)am(θ)dθ = 0. By (17)

∫
Θ
ν(θ)zθ(1)dθ = 0 and hence the system can not be

approximately steered to any target function ẑ(·), which is not orthogonal to ν(·). �
8



6. Controllability of ensembles of driftless (control-linear) systems.
Ensemble version of Rashevsky-Chow theorem

6.1. Formulation of the result

Consider the ensemble of control-linear systems

d

dt
xθ(t) =

r∑
j=1

fθj (xθ)uj(t). (20)

We study controllability of the ensemble for the case where the parameter θ enters the dynamics, while the
initial data x̃ and the target x̂ are θ-independent. Let d(x, y) be a Riemannian distance on M .

Definition 6.1. The ensemble (20) is time-T L1-approximately steerable from x̃ to x̂, if ∀ε > 0 there exists a
control u(·), which steers in time T the ensemble (20) from x̃ to xθ(T ), and:∫

Θ

d(xθ(T ), x̂)dθ < ε. �. (21)

Remark 6.2. For technical reasons we opt here for L1(Θ)-approximations of the target on the contrast to
L2(Θ)-approximations invoked in Section 5. �

Let assumptions 2.1,2.2 hold.

Definition 6.3. Lie algebraic span condition holds for (20), if ∀x ∈M the evaluations at x of the iterated Lie
brackets of the vector fields fθα(x)

Xθ
α(x) = [fθα1

, [fθα2
, [. . . , fθαN ] . . .]](x), θ ∈ Θ, (22)

span dense subspace of the Banach space L1(Θ, TxM). �

Theorem D (ensemble controllability criterion). Let the assumptions 2.1,2.2 and the Lie algebraic span con-
dition hold for (20). Then for each couple (x̃, x̂) and each T > 0 the ensemble (20) is time-T L1-approximately
steerable from x̃ to x̂. �

Remark 6.4. For Θ being finite (|Θ| = N), the space L1(Θ, TxM) becomes finite-dimensional, isomorphic to
TxM

N , and the Lie algebraic span condition is equivalent to the bracket generating condition on MN . In this
case stronger result on exact ensemble controllability holds (see Section 3).

For |Θ| = 1, i.e. for single system, one gets Rashevsky-Chow theorem. �

Remark 6.5. While in this paper we mainly work with the analytic systems, the results of Theorem D remain
true for the vector fields fθj , which are merely C∞-smooth in x. This can be achieved by modification of some
technical details of the arguments below.

We believe that the requirement of continuity of fθj in θ can also be loosened. �

Remark 6.6. There was a number of publications ( [9, 10, 16]) which presented variants of approximate
Rashevsky-Chow theorem in infinite dimension. All those results regard control-linear systems ẏ =

∑r
i=1 g

i(y)ui(t),
y ∈ E in infinite-dimensional vector space E and, roughly speaking, state that whenever approximate bracket
generating property holds, i.e. the iterated Lie brackets of the vector fields g1, . . . , gr evaluated at each point of
the infinite-dimensional space span a dense subspace of E, then the system is approximately controllable.

The controlled ensemble (20) can be seen as a control-linear system in a space E of the functions x(θ) = xθ.
One can introduce vector fields on this space, define the Lie brackets in standard way, and apply the results, just
mentioned, to get a controllability criterion.
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This would require verification of the approximate bracket generating property, or the same, density of the
span of the iterated Lie brackets (22), evaluated at each ”point” x(θ) of the functional space E. This is a vast
set of conditions, ”indexed” by the elements of the functional space E.

On contrast to it Theorem D just requires verification of the approximate bracket generating property at the
points of finite-dimensional manifold M , or , in other words, at the constant functions x(θ) ≡ x̄. �

The rest of the Section is dedicated to the proof of Theorem D, which is based on an infinite-dimensional
version of the method of Lie extensions.

According to the method we first establish the possibility to steer an extended ensemble

d

dt
xθ(t) =

∑
α∈A

Xθ
α(x)vα(t), (23)

which involves the vector fields Xθ
α(x), defined by (22), and a high-dimensional extended control (vα). Then we

demonstrate how the action of the extended control can be approximated by the action of a small-dimensional
original control.

Remark 6.7. Without lack of generality we assume that all the extended ensembles, we invoke, contain the
vector fields fθj (x), which define the dynamics of the original ensemble (20). �

6.2. Steering an extended ensemble

Proposition 6.8. Under the assumptions of the Theorem for each x̃, x̂ ∈M , and each ε > 0, T > 0 there exists
a finite set of multi-indices Aε = {(α1, . . . , αN )}, and an extended control (vα(t))α∈A , which steers in time T

the extended ensemble (23) from x̃ to xθ(T ), so that (21) holds. �

Time and control rescaling t → k−1t, vα → kvα, α ∈ A, k ∈ R+ leaves the control-linear ensemble (23)
invariant; therefore whenever controllability property holds for some T0 > 0, then it holds for any T > 0.

Now let us choose any C∞-smooth vector field Y (x) on M with a trajectory x̄(t), which satisfies the boundary
conditions

x̄(0) = x̃, x̄(1) = x̂.

Denote γ̄ = {x̄(t)| t ∈ [0, 1]} ⊂M .
We prove the following technical Lemma.

Lemma 6.9. Under the assumptions of Theorem D there exists a pair of compact neighborhoods Ṽ , V of γ̄
(Ṽ ⊃ V̄ ) and for each ε > 0 a finite set of smooth functions (vα(x)) , α ∈ Aε with supports, contained in Ṽ and
such that ∀x ∈ V̄ : ∥∥∥∥∥Y (x)−

∑
α∈Aε

vα(x)Xθ
α(x)

∥∥∥∥∥
L1(Θ)

< ε. (24)

Remark 6.10. The vector Y (x) in (24) is seen as constant vector-function of θ ∈ Θ.

To prove Lemma 6.9 we fix a compact neighborhood V̄ of γ such that at each point x ∈ V̄ the Lie algebraic
span condition (6.3) is satisfied. Then for each ε > 0 and each x0 ∈ V̄ there exists a neighborhood Ux0 3 x0

such that inequality (24) remains valid for each point x ∈ Ux0 . We can arrange a finite covering of V̄ by the
neighborhoods Ui = Uxi , i = 1, . . . , N , such that

∀x ∈ Ui :

∥∥∥∥∥Y (x)−
∑
αi∈Ai

viαi(xi)X
θ
αi(x)

∥∥∥∥∥
L1(Θ)

< ε, i = 1, . . . , N.

Choose a smooth partition of unity {λi(x)} subject to the covering {Ui} of V̄ . Take the union Ṽ of the

supports of λi, i = 1, . . . , N and Aε =
⋃N
i=1Ai. Put for each α ∈ Aε : vα(x) =

∑
[i,αi=α] λi(x)viαi(xi). �
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Coming back to the proof of Proposition 6.8 we consider the trajectory x̄(·) of the vector field Y (x),
which joins x̃ and x̂. Denote v̄α(t) = vα(x̄(t)), α ∈ Aε and consider the time-variant differential equation

ẋθ = Xθ
t (x) =

∑
α∈Aε

v̄α(t)Xθ
α(x)

Note that v̄α(t) are smooth and the vector field Xθ
t (x) is locally Lipschitzian in x.

Let xθ(t) be the trajectory of this equation starting at x̃.
Without lack of generality we may act as if M were a bounded connected subset of Rn.
To find a bound for ‖xθ(T )− x̂‖ we compute

xθ(T )− x̂ = xθ(T )− x̄(T ) =

∫ T

0

(
Xθ(xθ(τ))− Y (x̄(τ))

)
dτ,

and proceed with the estimates for the norms in Rn.

‖xθ(t)− x̄(t)‖ =

∥∥∥∥∫ t

0

(
Xθ
t (xθ(τ))− Y (x̄(τ))

)
dτ

∥∥∥∥ ≤ ∫ t

0

∥∥Xθ
t (xθ(τ))−Xθ

t (x̄(τ))
∥∥ dτ +

+

∫ t

0

∥∥Xθ
t (x̄(τ))− Y (x̄(τ))

∥∥ dτ ≤ LX ∫ t

0

∥∥xθ(τ)− x̄(τ)
∥∥+

∫ t

0

∥∥Xθ
t (x̄(τ))− Y (x̄(τ))

∥∥ dτdτ,
as long as xθ(·) does not leave V̄ . Here LX is Lipschitz constant for Xθ

t (x) on V̄ .
Then integrating with respect to θ and applying Fubini theorem we get∫

Θ

‖xθ(t)− x̄(t)‖dθ ≤
∫ t

0

∫
Θ

∥∥Xθ
t (x̄(τ))− Y (x̄(τ))

∥∥ dθdτ + LX

∫ t

0

∫
Θ

∥∥xθ(τ)− x̄(τ)
∥∥ dθdτ.

By virtue of (24) the last inequality becomes∫
Θ

‖xθ(t)− x̄(t)‖dθ ≤ εt+ LX

∫ t

0

∫
Θ

∥∥xθ(τ)− x̄(τ)
∥∥ dθdτ,

and by virtue of Gronwall lemma ∫
Θ

‖xθ(T )− x̄(T )‖dθ ≤ ε

LX

(
eLXT − 1

)
,

wherefrom the claim of Proposition 6.8 follows. �

6.3. Lie extension

We have just proved approximate controllability for an extended ensemble by means of a high-dimensional
extended control. Now we have to prove, that the same goal is achievable by means of lower-dimensional control.
This is done in iterative way via so-called Lie extensions.

The following result shows, that the control-linear 2-input ensemble

d

dt
xθ(t) = Xθ(x)u(t) + Y θ(x)v(t), (25)

and the extended 3-input ensemble

d

dt
xθ(t) = Xθ(x)ue(t) + Y θ(x)ve(t) + [Xθ, Y θ](x)we(t), (26)
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have (approximately) the same steering capacities, according to Definition 6.1.

Proposition 6.11. If the ensemble (26) can be steered in time T from x̃ to x̂ approximately, then the same is
valid for the ensemble (25). �

Using the statement one can easily complete the proof of Theorem D. Proposition 6.8 demonstrates that an
extended ensemble (23) can be steered from x̃ to xθ(T ) with (21) satisfied. By Proposition 6.11 the same result
can be achieved with a diminished (by 1) dimension of controls. Proceeding by (inverse) induction we prove,
that the original ensemble (20) can be steered approximately from x̃ to x̂. �

6.4. Proof of Proposition 6.11

The construction is based on fast-oscillating functions and on techniques adopted for relaxed controls; see [4]
for an application of these ideas to the control of Navier-Stokes equation.

Let ue(t), ve(t), we(t) be the controls, which steer the system (26) approximately to x̂, acording to Defini-
tion 6.1. It suffices to establish the statement for smooth we(t), as far as smooth functions are dense in the
space of measurable functions in L1-metric.

We will use the formula, which is a nonlinear version of the ’variation of constants’ method. Its more general
form - variational formula for time variant vector fields can be found in [2, Ch.2].

Let −→exp
∫ t

0
Xτdτ denote the flow generated by a time variant vector field Xt, F0 = Id, while etY be the flow,

generated by a time-invariant vector field Y .

Lemma 6.12. Let fτ (x), g(x) be real analytic in x, fτ integrable in τ . The flow Pt = −→exp
∫ t

0
fτ (x)+g(x)u(τ)dτ ,

corresponding to the differential equation

ẋ = ft(x) + g(x)u(t), U(0) = 0, (27)

can be represented as a composition of two flows

−→exp

∫ t

0

(fτ (x) + g(x)u(τ)) dτ = −→exp

∫ t

0

eU(τ)adgfτdτ ◦ egU(t), (28)

where U(t) =
∫ t

0
u(τ)dτ. �

The operator adZ , determined by the vector field Z, acts on vector fields as: adZZ1 = [Z,Z1] - the Lie

bracket of Z and Z1, while the operator exponential eadZ =
∑∞
j=0

(adZ)j

j! .

Note that eU(t)g(x) is time-U(t) element of the flow of the time-invariant vector field g.
To relate the formula (28) to fast-oscillating functions we choose a

1-periodic measurable bounded function v(t) with
∫ 1

0
v(t)dt = 0. Feeding into (27) a fast-oscillating, possi-

bly high-gain, control uε(t) = ε−αv(t/εβ), 0 ≤ α < β, we get by (28)

−→exp

∫ t

0

(fτ (x) + g(x)uε(τ)) dτ = −→exp

∫ t

0

eε
β−αV (τ/εβ)adgfτdτ ◦ eε

β−αV (t/εβ)g,

where V (t) =
∫ t

0
v(τ)dτ is 1-periodic Lipschitzian function.

Expanding the exponential eε
β−αV (τ/εβ)adg we get

−→exp

∫ t

0

(fτ (x) + g(x)uε(τ)) dτ =−→exp

∫ t

0

(
fτ (x) +O(εβ−α)

)
dτ ◦

(
I +O(εβ−α)

)
=

=−→exp

∫ t

0

fτ (x)dτ ◦ (I +O(εβ−α)).

This demonstrates that the effect of fast-oscillating perturbation g(x)uε(τ) tends to 0 as ε→ 0.
12



Remark 6.13. The expression O(εβ−α) above regards each of the seminorms ‖X(x)‖s,K , ‖P‖s,K , which define
the convergence of the derivatives of order ≤ s on a compact K �.

Remark 6.14. Similar conclusion holds if one takes uε(t) = w(t)ε−αv(t/εβ), where w(·) is, say, Lipschitzian
function. The conclusion is achieved by similar reasoning, given the fact that the primitive of uε(t) in this case

is εβ−α
(
w(t)V (t/εβ)−

∫ t
0
V (τ/εβ)ẇτdτ

)
= O(εβ−α), as ε→ +0.

Coming back to the 2-input system (25) we choose the controls uε(t), vε(t) of the form

uε(t) = ue(t) + εU̇ε(t), vε(t) = ve(t) + ε−1v̂ε(t), (29)

where Uε(t) is function, Uε(0) = 0. Both Uε(t) and v̂ε(t) will be specified in a moment.
Feeding the controls (29) into the system (25) we get

d

dt
xθ(t) = Xθ(x)ue(t) + Y θ(x)

(
ve(t) + ε−1v̂ε(t)

)
+Xθ(x)εU̇ε(t). (30)

Applying (28) we represent the flow of (30) as a composition of flows

−→exp

∫ t

0

Xθ(x)ue(t) + eεUε(t)adXθY θ(x)(ve(t) + ε−1v̂ε(t))dt ◦ eεUε(t)X
θ(x). (31)

We impose the condition Uε(T ) = 0, so that eεUε(T )Xθ(x) = I and we can restrict our attention to the first
factor of the composition (31).

Proceeding with the expansion of the exponential eεUε(t)adXθ(x) we represent (31) as

−→exp

∫ t

0

(Xθ(x)ue(t) + Y θ(x)ve(t) + Y θ(x)ε−1v̂ε(t) + [Xθ, Y θ](x)Uε(t)v̂ε(t) +O(ε))dt. (32)

We wish the flow (32) to approximate the flow generated by the equation (26). To achieve this we take the
functions

Uε(t) = 2 sin(t/ε2)we(t), v̂ε(t) = sin(t/ε2); (33)

we choose ε from the sequence

εn = (T/πn)1/2, n = 1, 2, . . . , (34)

so that Uε(T ) = 0. Then

Uε(t)v̂ε(t) = we(t)− we(t) cos(2t/ε2),

so that feeding Uε(t), v̂ε(t) into (32) gives us

−→exp

∫ t

0

(
Xθ(x)ue(t) + Y θ(x)ve(t) + [Xθ, Y θ](x)we(t) + Y θ(x)ε−1 sin(t/ε2) − (35)

− [Xθ, Y θ](x)we(t) cos(2t/ε2) +O(ε)
)
dt.

One can apply formula (28) to the flow taking Y θ(x)ε−1 sin(t/ε2) as gu(t) and the rest of the vector field in the
exponential (35) as ft . Then we represent the flow (35) as a composition

−→exp

∫ t

0

(
Xθ(x)ue(t) + Y θ(x)ve(t) + [Xθ, Y θ](x)we(t)− [Xθ, Y θ](x)we(t) cos(2t/ε2) +O(ε)

)
dt ◦ e−ε cos(t/ε2).
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According to the Remark 6.14 we conclude that the flow of the equation (30) can be represented as

−→exp

∫ t

0

( Xθ(x)ue(t) + Y θ(x)ve(t) + [Xθ, Y θ](x)we(t)+O(ε) )dt ◦ (I +O(ε)) =

= −→exp

∫ t

0

( Xθ(x)ue(t) + Y θ(x)ve(t) + [Xθ, Y θ](x)we(t) )dt ◦ (I +O(ε)) .

Denote by xθe(t) the trajectory of the 3-input ensemble (26). We have proved that for the trajectories xεn(t)
of the 2-input ensemble (25), driven by the controls uεn(t), vεn(t), defined by (29)-(33)-(34), there holds for each
θ ∈ Θ:

lim
n→∞

‖xθe(T )− xθεn(T )‖ = 0. (36)

Recall that the real-analytic vector fields fθj of the ensemble (20) depend continuosly on θ; the same holds

for the Lie brackets of the vector fields. Then, since Θ is compact, one can easily check that xθe(T ) and xθεn(T )
are equibounded for all θ and n. Then by Lebesgue theorem we get from (36)

lim
n→∞

∫
Θ

‖xθe(T )− xθεn(T )‖dθ = 0. �

7. Appendix

7.1. Proof of Theorem A

We fix dimM = n.
It is enough to show that the linear ensemble control is generically bracket generating already for two families

of vector fields

X = (X1, X2, . . . , XN ), Y = (Y 1, Y 2, . . . , Y N ).

In the trivial ensemble (N = 1) case, it is easy to see that for a generic pair X,Y , the linear span of these
fields has rank at least one everywhere on M , hence we can always assume that either X or Y are non-vanishing
in a vicinity of a point of M . After that, the generic generating property follows almost immediately.

If, say X 6= 0 at a point p ∈ M , then the codimension of the subset of (S − 1)-jets of vector fields Y in M

at p such that S vectors adkXY (p), k = 1, . . . , S − 1, do not span TpM , is S − (n − 1). Hence, by R.Thom’s
transversality theorem, for S ≥ 2n this subset is avoided by an open dense set of vector fields Y in M .

In the nontrivial ensemble (finite |Θ| > 1) case, a similar approach works, but requires some modifications.
We still will choose a control generating a vector field X, and will argue that differentiating a vector field
corresponding to a different (constant) control iteratively will produce enough vectors to span TMN =

⊕
θ TMθ.

There is a small wrinkle here: as the vector fields, tangent to different components Mθ of the ensemble, do
not interact, we will need to have all of Xθ(pθ) 6= 0. We cannot however claim that that is true for either X or
Y : consider, as an example, a point (x1, x2, . . . , xN ) ∈MN , where Xθ(xθ) = 0 are non-degenerate zeros. Then
for any perturbation of Xθi ’s they will have a point in MN where all of the vector fields will vanish on one of
the ensemble factors.

To overcome this difficulty, we fix a generic collection of controls

{u1, . . . , uN+1}, uk = (uk,1, uk,2) ∈ R2,

such that any 2 of them are linearly independent. Then generically, at least for one of the indices k, Lθk(pθ) =
uk,1X

θ(pθ) +uk,2Y
θ(pθ) 6= 0 for all θ ∈ Θ. Indeed, otherwise, by pigeonhole principle, there will be at least one

of the factors Mθ, two of the vector fields Lθk, L
θ
l will vanish at pθ ∈ Mθ, and, by assumptions on u·,·’s, both

Xθ and Y θ would vanish at pθ. This cannot happen generically, as discussed above.
14



Hence we can assume that for any point p = (p1, . . . , pN ) ∈ MΘ, generically, Xθ := Lθk is non null at all
factors pθ (for a 1 ≤ k ≤ N + 1). Setting Y θ := Lθ(k+1) mod N , and forming S Lie derivatives

Y (p), adXY (p), . . . , adS−1
X Y (p),

we conclude that generically for S > 2Nn, these derivatives generate the whole tangent space TpM =
⊕

θ TpθM ,
at p and in its vicinity. Compactness of M implies that generically, X,Y are bracket generating, and hence the
system is fully controllable. �

7.2. Proof of Lemma 4.5

Continuing with the induction on N we introduce a linear map ΛJ,L : R3 → R3:

K 7→ [EJ , V 0
L ](K), [EJ , V 0

L ](K) = L× JK +K × JL.

Its matrix in the basis of principal axes of the body has form

ΛJ,L = DJ L̂, DJ = diag (J3 − J2, J1 − J3, J2 − J1) , L̂ =

 0 L3 L2

L3 0 L1

L2 L1 0

 .

Elements of ΛJ,L are homogeneous of first order in J . The constant vector fields in (6) can be represented as

V m+1
J,L = ΛJ,LV

m
J,L = ΛmJ,LV

1
J,L.

By direct computation det L̂ = 2L1L2L3 and hence given the asymmetry of the body, we conclude thet
det ΛL 6= 0, provided that L does not belong to any of coordinate planes Pi : Li = 0; i = 1, 2, 3.

Let L be the complement of the union of three principal axes of the body and the three planes P1, P2, P3.
According to the aforesaid

∀L ∈ L, m ≥ 1 : the vectors V mJ,L, V
m+1
J,L , V m+2

J,L are linearly independent. (37)

The determinant RN can be represented as 4

RN
(
J1, . . . , JN ;L

)
= det


L ΛJ1,LL · · · Λ3N−4

J1,L L Λ3N−3
J1,L L Λ3N−2

J1,L L Λ3N−1
J1,L L

L ΛJ2,LL · · · Λ3N−4
J2,L L Λ3N−3

J2,L L Λ3N−2
J2,L L Λ3N−1

J2,L L

· · · · · · · · · · · · · · · · · · · · ·
L ΛJN ,LL · · · Λ3N−4

JN ,L
L Λ3N−3

JN ,L
L Λ3N−2

JN ,L
L Λ3N−1

JN ,L
L

 .

We will prove that for L ∈ L, the determinant RN
(
J1, . . . , JN ;L

)
defines a nontrivial polynomial in

J1, . . . , JN . This is true for N = 1.
We write RN in a block form

RN =

(
R̃N−1 W1

W2 R̃

)
,

where R̃N−1 and R̃ are 3(N − 1) × 3(N − 1) and 3 × 3 blocks correspondingly, and W1,W2 have appropriate
dimensions.

By induction assumption det R̃N−1 6= 0, while det R̃ 6= 0 by (37).

4RN is (non-commutative) matrix version of Vandermond determinant. Any explicit computations for such determinant are
desirable, but we are not aware of any
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To verify that detRN does not vanish identically for all J1, . . . , JN , we substitute εJ1, . . . , εJN−1 in place
of J1, . . . , JN−1. This results in multiplication by εk−1 of the k-th column of the upper block (RN−1 |W1 ) , k =
1, . . . 3N .

Denote the resulting matrix by RN (ε):

RN (ε) =

(
R̃N−1(ε) W1(ε)

W2 R̃

)
,

with

(RN−1(ε),W1(ε)) =
(
R̃N−1,W1

)
Dε, Dε = diag

(
1, ε, . . . , ε3N−1

)
.

Multiplying the matrix RN (ε) from the left by a nonsingular matrix(
I −W1(ε)R̃−1

0 R̃−1

)
we arrive to the matrix

R̂N (ε) =

(
RN−1(ε)−W1(ε)R̃−1W2 0

R̃−1W2 I

)
.

The elements of W1(ε) are O(ε3N−3) as ε→ 0, so are the elements of W1(ε)R̃−1W2.

Multiplying the matrix R̂N (ε) from the right by a diagonal matrix

diag(1, ε−1, . . . , ε−(3N−4), 1, 1, 1)

we get the matrix

R̄N (ε) =

(
RN−1 + Y1(ε) 0

Y2(ε) I

)
,

where Y1(ε) = O(ε). The determinant det R̄N (ε) is close to det R̃N−1 6= 0, and hence differs from 0, whenever ε
is sufficiently small. Therefore RN (ε) = RN

(
εJ1, . . . , εJn−1, JN ;L

)
is nonsingular for sufficiently small ε > 0.

�

7.3. Proof of Theorem C

Introduce matrix Γ = (γmr), m = 1, . . . ,∞; r = 1, . . . , R, with γmr, defined by (18). Let Γ̂ be the upper

(R×R)-block of the (∞× r)-matrix Γ and Γ̃ be the resting infinite block.

We will choose the controls U(·), v1(·), . . . , vR(·) in such a way that the matrix Γ̂ would be (non singular)
lower triangular matrix with nonvanishing diagonal elements. At the same time we will be able to guarantee
smallness of ‖Γ̃y‖`2 .

We take Legendre polynomials: Pk(t) = 1
k!

dk

dtk

(
(t2 − t)k

)
orthogonal on [0, 1] and put

U(t) =

∫ t

0

P1(s)ds = (t2 − t), vr(t) = P2r(t), r = 1, . . . , R.

Note that U(1) = 0 and V (1) =
∫ 1

0
vr(s)ds = 0, r = 1, . . . , R, since P2r(t) is orthogonal to 1 = P0(t).

Evidently (U(t))m is polynomial of degree 2m, hence:

γmr =

∫ 1

0

(U(t))mvr(t)dt = 0, for m < r,
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while

γrr =

∫ 1

0

(U(t))rvr(t)dt =

∫ 1

0

t2rP2r(t)dt 6= 0, ∀r.

Note that γmr,m = 1, . . . , r = 1, . . . admit a common upper bound:

|γ̃mr| =
∣∣∣∣∫ 1

0

(t− t2)mP2r(t)dt

∣∣∣∣ ≤ (∫ 1

0

(t2 − t)2mdt

)1/2(∫ 1

0

(P2r(t))
2dt

)1/2

.

The first factor is ≤ 2−2 given that |t − t2| ≤ 1/4 on [0, 1]. The second factor equals 1√
4r+1

< 2−1 for each

r ≥ 1. Hence |γmr| < 2−3.
Now we introduce small parameter ε > 0 defining:

Uε(t) = εU(t) = ε(t− t2), vεr(t) = ε−rvr(t) = ε−rP2r(t).

Substituting Uε(t) and vεr(t) into (18) we get γεmr = εm−rγmr.
For chosen Uε(t), vε(t) the representation (17) for zθ(1) takes form

zθ(1) =

R∑
r=1

ar(θ)γrryr + ε

R∑
r=1

∞∑
m=r+1

εm−(r+1)am(θ)γmryr. (38)

Let us take yr = cr/γrr, r = 1, . . . , R, where cr are the coefficients in (19), so that∥∥∥∥∥∥ẑ(θ)−
R(ε1)∑
r=1

ar(θ)γrryr

∥∥∥∥∥∥
L2(Θ)

< ε1.

Obviously the coefficients yr depend on ε1.

Now it rests to estimate the second addend at the right-hand side of (38). Given that am(θ) =
(∫

Cρ

fθ(ζ)
ζm+1 dζ

)
,

we get the estimate

|am(θ)| =

∣∣∣∣∣
∫
Cρ

fθ(ζ)

ζm+1
dζ

∣∣∣∣∣ ≤ 2πµfρ
−m, µf = sup

(θ,ζ)∈Θ×Bρ

∣∣fθ(ζ)
∣∣ .

Then ∣∣∣∣∣
∞∑

m=r+1

εm−(r+1)am(θ)γmr

∣∣∣∣∣ ≤ 2−3

∣∣∣∣∣
∞∑
s=0

εs
2πµf

ρs+(r+1)

∣∣∣∣∣ ≤ πµf
4ρR(ρ− ε)

,

and the second addend in (38) admits an upper bound:

επµf
4ρR(ε1)(ρ− ε)

R(ε1)∑
r=1

|yr|. (39)

The term
∑R(ε1)
r=1 |yr| admits an upper bound by(ε1) > 0.

Now choose ε > 0 such that
επµf

2(ρ− ε)
<
ε1ρ

R(ε1)

by(ε1)
.

Then the estimate (39) of the ”perturbation term” in (38) is < ε1, and

‖ẑ(θ)− zθ(1)‖L2(Θ) < 2ε1. �
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