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Abstract

We study 3-dimensional manifolds endowed with oriented contact
sub-Riemannian structures. The Euler characteristic class of the con-
tact structure is presented as the rotation class of a volume preserving
vector field constructed in terms of fundamental differential invariants
of the sub-Riemannian metric.

1. Let M be a smooth 3-dimensional manifold. A contact sub-Riemannian
structure is a pair A, (-|-), where A = {Ag}genm, &g C T, M, is a contact
structure on M and (:|-) = {(-|-)q}qem is a smooth with respect to ¢ family
of Euclidean inner products

(v1,v2) = (vi|va)g, v1,v2 € Ay,

defined on A,. A Lipschitzian curve £ : [0,1] — M is called admissible for
A if %(tt) € Agy) for almost all ¢ € [0, 1]. The length of an admissible curve

1
¢ is the integral [ ]%\dt, where |v| = /(v|v)y Vv € T,M. The infimum

of the lengths ofoadmissible curves connecting two points is the Carnot-
Caratheodory distance between these points.

An important class of the sub-Riemannian structures is provided by mag-
netic fields on Riemannian surfaces. In this case M is the total space of a
principal U(1)-bundle over a Riemannian surface N and A is a connection
on the principal bundle. In other words, A is a transversal to fibers U(1)-
invariant rank 2 distribution on M. The distribution is contact if and only
if the curvature of the connection doesn’t vanish. The inner product of a
pair of vectors in A, equals the scalar product of their projections in 7;N.
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The length minimization problem for admissible curves is equivalent to the
least action principle for the charged particles in the magnetic field (see [5]
for details). The special case of the constant magnetic field (when the cur-
vature of the connection is the area form multiplied by a constant) is locally
equivalent to the classical Dido isoperimetric problem on the Riemannian
surface.

The local structure of the Carnot—Caratheodory metric was studied in
detail in the papers [1, 2, 3, 4]; it was shown that this structure is controlled
by some fundamental differential invariants. In this note the same local
invariants serve to express a global one: the Euler characteristic class of A.

2. We assume that A is an oriented contact structure. Then there exists a
unique contact form w on M such that A is the annihilator of w, A, = wa
Vq € M and the form dw|a, coincides with the area form on the oriented
Euclidean plane A,. Let Xy be the characteristic (or Reeb) vector field of
w; it is defined by the relations Xg|dw =0, Xo|w = 1.

Let 6(qo,q1) be the Carnot—Caratheodory distance between ¢y and ¢
and

Cq = {q1 € M : the function ¢ — 6(qo, q) is not Ct at q1}.

One can show that the line RX(g) is the tangent cone! to the C, at ¢,
RXo(q) = T,C,.

The curve t — eX0(q) is transversal to the distribution A. Let N, C M
be (a germ of) a 2-dimentional submanifold such that A, = T,N; then a
neighborhood of ¢ is sliced by the submanifolds e/X0(N,). One of the basic
invariants of the sub-Riemannian structure arises from the asymptotics of
the distance between ¢ and e!*°(N,) N C,) as t — 0:

8(g, X0 (Ng) NCq) = (2 = wlg)t)|mt]"* + O(?),

where k is a smooth function on M.
Let X1(q), X2(g) be an orthonormal frame in A,. The explicit expression
of k in terms of the moving frame X, X1, Xo is as follows:
1

2 1 12 212 1 2
k= Xicig — Xacjy — (c19)" — (c12)” + 5(002 — Co1)s

where [X;, X;] = Zcijk.
k

IThere are many definitions of the tangent cone to the closed set; all of them provide
one and the same cone in this particular case.



In the special case of the constant magnetic field on the Riemannian
surface (see Sec. 1) X is a generator of the structural group of the principle
bundle, k is constant on the fibers of the bundle and is actually the pullback
of the Gaussian curvature of the Riemannian surface.

3. Now we take the dual object to the sub-Riemannian structure, the Hamil-
tonian h on the cotangent bundle T*M:

1
h(\) = i(max{()\,w v €A, Ju =112 A€ T, M, q€ M.

This Hamiltonian serves to describe sub-Riemannian geodesics, i.e. admis-
sible curves whose small pieces are length minimizers. It follows from the
Pontryagin Maximum Principle that geodesics are exactly projections to M
of the trajectories of the Hamiltonian system in T%M associated with h.

Let ui(A) = (X, X;(q)), i = 1,2; then h(X) = § (u1(N)? +uz(N)?), A €
T;M. The Hamiltonian keeps all the information on the sub-Riemannian
structure: both A and the inner product are easily recovered from h.

We denote: ug(X) = (X, Xo(q)), A € Ty M, g € M, and A* = u~1(0).
Then A* is arank 2 linear subbundle of 7* M with the fibers A7 = A*NT; M.
Obviously, (A,&) = (A,§), A € Ay, £ € Ay, is a nondegenerate pairing.
Moreover, quadratic form 2h| A defines the Euclidean structure on Aj dual
to the given Euclidean structure on A,.

We'll deal with homogeneous polynomials on the plane Aj. The group
SO(A}) acts on the polynomials by the changing of variables. Irreducible
components of this (real) action are 2-dimensional spaces of polynomials
having the following expression in polar coordinates (r,6):

span{r"™ cos(kf), r" sin(k0)}, (1)

where n — k is a nonnegative even number. Note that r? = 2h]A;;. So

any homogeneous degree n polynomial ¢ has a unique presentation as a
[n/2] .

sum of isotopic components: ¢ = > ¢" 2! where ¢* belongs to the space
i=0

(1). This presentation is actually equivalent to the Fourier expansion of the

restriction of ¢ to the unit circle.

4. Recall that h,ug are functions on the cotangent bundle T M, where
restrictions of h to the fibers Ty M are quadratic forms and restrictions of ug
to the fibers are linear forms. Hence the Poisson bracket {h,ug} is quadratic
and the double Poisson bracket {h, {h,uo}} is cubic on the fibers. Let ¢y =
{h,{h,uo}}|az; then ¢ = ¢y + @3, where ¢} is the product of hlaz and a



linear form on A%, according to (1). In other words, ¢4(A) = h(A)(, f(q))
for some f(q) € A,.
We thus obtain an intrinsically defined vector field f with values in A

in addition to the transversal to A field Xj.

Theorem 1 The 2-form on M

<2’er0—71Tf)JwAdw 2)

18 closed and represents the Euler characteristic class of the oriented linear
bundle A.

Remark 1. The statement of the theorem can be also formulated as follows:
The flow generated by the field

(;TXO - f> (3)

preserves the volume form w A dw and the rotation class (see [6]) of the field
(3) is equal to the Euler class of A.

Remark 2. In the case of the principal bundle M Hﬂ N and the sub-
Riemannian structure defined by a constant magnetic field (see sec.1) we
have {h,up} = 0 and hence f = 0. Then (2) takes the form : 5= Xo]wAdw =
5-dw. Moreover, dw and k are the pullbacks of the area form and of the
Gaussian curvature on N so that the form (2) turns into the pullback of the
Gauss—Bonnet form on N.

The proof of Theorem 1 consists of a calculation with moving frames
in T*M. The idea is to construct an appropriate linear connection on the
bundle A* C T*M via the Hamiltonian vector fields associated with A and
up and a vertical vector field generating rotations of the fibers Aj. The form
(2) is the curvature form of the correspondent linear connection.
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