A "Gauss-Bonnet Formula" for Contact Sub-Riemannian Manifolds

A. A. Agrachev*

Abstract

We study 3-dimensional manifolds endowed with oriented contact sub-Riemannian structures. The Euler characteristic class of the contact structure is presented as the rotation class of a volume preserving vector field constructed in terms of fundamental differential invariants of the sub-Riemannian metric.

1. Let M be a smooth 3 -dimensional manifold. A contact sub-Riemannian structure is a pair $\Delta,\langle\cdot \mid \cdot\rangle$, where $\Delta=\left\{\Delta_{q}\right\}_{q \in M}, \Delta_{q} \subset T_{q} M$, is a contact structure on M and $\langle\cdot \mid \cdot\rangle=\left\{\langle\cdot \mid \cdot\rangle_{q}\right\}_{q \in M}$ is a smooth with respect to q family of Euclidean inner products

$$
\left(v_{1}, v_{2}\right) \mapsto\left\langle v_{1} \mid v_{2}\right\rangle_{q}, \quad v_{1}, v_{2} \in \Delta_{q}
$$

defined on Δ_{q}. A Lipschitzian curve $\xi:[0,1] \rightarrow M$ is called admissible for Δ if $\frac{d \xi(t)}{d t} \in \Delta_{\xi(t)}$ for almost all $t \in[0,1]$. The length of an admissible curve ξ is the integral $\int_{0}^{1}\left|\frac{d \xi}{d t}\right| d t$, where $|v|=\sqrt{\langle v \mid v\rangle_{q}} \quad \forall v \in T_{q} M$. The infimum of the lengths of admissible curves connecting two points is the CarnotCaratheodory distance between these points.

An important class of the sub-Riemannian structures is provided by magnetic fields on Riemannian surfaces. In this case M is the total space of a principal $\mathbb{U}(1)$-bundle over a Riemannian surface N and Δ is a connection on the principal bundle. In other words, Δ is a transversal to fibers $\mathbb{U}(1)$ invariant rank 2 distribution on M. The distribution is contact if and only if the curvature of the connection doesn't vanish. The inner product of a pair of vectors in Δ_{q} equals the scalar product of their projections in $T_{q} N$.

[^0]The length minimization problem for admissible curves is equivalent to the least action principle for the charged particles in the magnetic field (see [5] for details). The special case of the constant magnetic field (when the curvature of the connection is the area form multiplied by a constant) is locally equivalent to the classical Dido isoperimetric problem on the Riemannian surface.

The local structure of the Carnot-Caratheodory metric was studied in detail in the papers $[1,2,3,4]$; it was shown that this structure is controlled by some fundamental differential invariants. In this note the same local invariants serve to express a global one: the Euler characteristic class of Δ.
2. We assume that Δ is an oriented contact structure. Then there exists a unique contact form ω on M such that Δ is the annihilator of $\omega, \Delta_{q}=\omega_{q}^{\perp}$ $\forall q \in M$ and the form $\left.d \omega\right|_{\Delta_{q}}$ coincides with the area form on the oriented Euclidean plane Δ_{q}. Let X_{0} be the characteristic (or Reeb) vector field of ω; it is defined by the relations $\left.\left.X_{0}\right\rfloor d \omega=0, X_{0}\right\rfloor \omega=1$.

Let $\delta\left(q_{0}, q_{1}\right)$ be the Carnot-Caratheodory distance between q_{0} and q_{1} and

$$
\mathcal{C}_{q_{0}}=\left\{q_{1} \in M: \text { the function } q \mapsto \delta\left(q_{0}, q\right) \text { is not } C^{1} \text { at } q_{1}\right\} .
$$

One can show that the line $\mathbb{R} X_{0}(q)$ is the tangent cone ${ }^{1}$ to the \mathcal{C}_{q} at q, $\mathbb{R} X_{0}(q)=T_{q} \mathcal{C}_{q}$.

The curve $t \mapsto e^{t X_{0}}(q)$ is transversal to the distribution Δ. Let $N_{q} \subset M$ be (a germ of) a 2-dimentional submanifold such that $\Delta_{q}=T_{q} N$; then a neighborhood of q is sliced by the submanifolds $e^{t X_{0}}\left(N_{q}\right)$. One of the basic invariants of the sub-Riemannian structure arises from the asymptotics of the distance between q and $\left.e^{t X_{0}}\left(N_{q}\right) \cap \mathcal{C}_{q}\right)$ as $t \longrightarrow 0$:

$$
\delta\left(q, e^{t X_{0}}\left(N_{q}\right) \cap \mathcal{C}_{q}\right)=(2-\kappa(q) t)|\pi t|^{1 / 2}+O\left(t^{2}\right)
$$

where κ is a smooth function on M.
Let $X_{1}(q), X_{2}(q)$ be an orthonormal frame in Δ_{q}. The explicit expression of κ in terms of the moving frame X_{0}, X_{1}, X_{2} is as follows:

$$
\kappa=X_{1} c_{12}^{2}-X_{2} c_{12}^{1}-\left(c_{12}^{1}\right)^{2}-\left(c_{12}^{2}\right)^{2}+\frac{1}{2}\left(c_{02}^{1}-c_{01}^{2}\right)
$$

where $\left[X_{i}, X_{j}\right]=\sum_{k} c_{i j}^{k} X_{k}$.

[^1]In the special case of the constant magnetic field on the Riemannian surface (see Sec. 1) X_{0} is a generator of the structural group of the principle bundle, κ is constant on the fibers of the bundle and is actually the pullback of the Gaussian curvature of the Riemannian surface.
3. Now we take the dual object to the sub-Riemannian structure, the Hamiltonian h on the cotangent bundle $T^{*} M$:

$$
h(\lambda)=\frac{1}{2}\left(\max \left\{\langle\lambda, v\rangle: v \in \Delta_{q},|v|=1\right\}\right)^{2}, \quad \lambda \in T_{q}^{*} M, q \in M .
$$

This Hamiltonian serves to describe sub-Riemannian geodesics, i.e. admissible curves whose small pieces are length minimizers. It follows from the Pontryagin Maximum Principle that geodesics are exactly projections to M of the trajectories of the Hamiltonian system in $T^{*} M$ associated with h.

Let $u_{i}(\lambda)=\left\langle\lambda, X_{i}(q)\right\rangle, i=1,2$; then $h(\lambda)=\frac{1}{2}\left(u_{1}(\lambda)^{2}+u_{2}(\lambda)^{2}\right), \lambda \in$ $T_{q}^{*} M$. The Hamiltonian keeps all the information on the sub-Riemannian structure: both Δ and the inner product are easily recovered from h.

We denote: $u_{0}(\lambda)=\left\langle\lambda, X_{0}(q)\right\rangle, \lambda \in T_{q}^{*} M, q \in M$, and $\Delta^{*}=u^{-1}(0)$. Then Δ^{*} is a rank 2 linear subbundle of $T^{*} M$ with the fibers $\Delta_{q}^{*}=\Delta^{*} \cap T_{q}^{*} M$. Obviously, $(\lambda, \xi) \mapsto\langle\lambda, \xi\rangle, \lambda \in \Delta_{q}^{*}, \xi \in \Delta_{q}$, is a nondegenerate pairing. Moreover, quadratic form $\left.2 h\right|_{\Delta_{q}^{*}}$ defines the Euclidean structure on Δ_{q}^{*} dual to the given Euclidean structure on Δ_{q}.

We'll deal with homogeneous polynomials on the plane Δ_{q}^{*}. The group $\mathrm{SO}\left(\Delta_{q}^{*}\right)$ acts on the polynomials by the changing of variables. Irreducible components of this (real) action are 2-dimensional spaces of polynomials having the following expression in polar coordinates (r, θ) :

$$
\begin{equation*}
\operatorname{span}\left\{r^{n} \cos (k \theta), r^{n} \sin (k \theta)\right\}, \tag{1}
\end{equation*}
$$

where $n-k$ is a nonnegative even number. Note that $r^{2}=\left.2 h\right|_{\Delta_{q}^{*}}$. So any homogeneous degree n polynomial ϕ has a unique presentation as a sum of isotopic components: $\phi=\sum_{i=0}^{[n / 2]} \phi^{n-2 i}$, where ϕ^{k} belongs to the space (1). This presentation is actually equivalent to the Fourier expansion of the restriction of ϕ to the unit circle.
4. Recall that h, u_{0} are functions on the cotangent bundle $T^{*} M$, where restrictions of h to the fibers $T_{q}^{*} M$ are quadratic forms and restrictions of u_{0} to the fibers are linear forms. Hence the Poisson bracket $\left\{h, u_{0}\right\}$ is quadratic and the double Poisson bracket $\left\{h,\left\{h, u_{0}\right\}\right\}$ is cubic on the fibers. Let $\phi_{q}=$ $\left.\left\{h,\left\{h, u_{0}\right\}\right\}\right|_{\Delta_{q}^{*}}$; then $\phi_{q}=\phi_{q}^{1}+\phi_{q}^{3}$, where ϕ_{q}^{1} is the product of $\left.h\right|_{\Delta_{q}^{*}}$ and a
linear form on Δ_{q}^{*}, according to (1). In other words, $\phi_{q}^{1}(\lambda)=h(\lambda)\langle\lambda, f(q)\rangle$ for some $f(q) \in \Delta_{q}$.

We thus obtain an intrinsically defined vector field f with values in Δ in addition to the transversal to Δ field X_{0}.

Theorem 1 The 2-form on M

$$
\begin{equation*}
\left.\left(\frac{\kappa}{2 \pi} X_{0}-\frac{1}{\pi} f\right)\right\rfloor \omega \wedge d \omega \tag{2}
\end{equation*}
$$

is closed and represents the Euler characteristic class of the oriented linear bundle Δ.

Remark 1. The statement of the theorem can be also formulated as follows: The flow generated by the field

$$
\begin{equation*}
\left(\frac{\kappa}{2 \pi} X_{0}-\frac{1}{\pi} f\right) \tag{3}
\end{equation*}
$$

preserves the volume form $\omega \wedge d \omega$ and the rotation class (see [6]) of the field (3) is equal to the Euler class of Δ.

Remark 2. In the case of the principal bundle $M \xrightarrow{\mathbb{U}(1)} N$ and the subRiemannian structure defined by a constant magnetic field (see sec.1) we have $\left\{h, u_{0}\right\}=0$ and hence $f=0$. Then (2) takes the form : $\left.\frac{\kappa}{2 \pi} X_{0}\right\rfloor \omega \wedge d \omega=$ $\frac{\kappa}{2 \pi} d \omega$. Moreover, $d \omega$ and κ are the pullbacks of the area form and of the Gaussian curvature on N so that the form (2) turns into the pullback of the Gauss-Bonnet form on N.

The proof of Theorem 1 consists of a calculation with moving frames in $T^{*} M$. The idea is to construct an appropriate linear connection on the bundle $\Delta^{*} \subset T^{*} M$ via the Hamiltonian vector fields associated with h and u_{0} and a vertical vector field generating rotations of the fibers Δ_{q}^{*}. The form (2) is the curvature form of the correspondent linear connection.

References

[1] A. A. Agrachev, Methods of control theory in nonholonomic geometry. Proc. ICM-94, Zürich. Birkhauser, 1995, 1473-1483
[2] A. A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dynamical and Control Systems, 1996, v.2, 321-358
[3] Ch. El-Alaoui, J.-P. Gauthier, I. Kupka, Small sub-Riemannian balls on R^{3}. J. Dynamical and Control Systems, 1996, v.2, 359-421
[4] A. A. Agrachev, Ch. El-Alaoui, J.-P. Gauthier, Sub-Riemannian metrics on R^{3}. Proc. Canadian Math. Soc., 1998, v.25, 29-78
[5] R. Montgomery, Isoholonomic Problems and Some Applications. Comm. Math. Phys., 1990, v.128, 565-592
[6] S. Swartzman, Ann. Math.,1957, v.66, 270-289

[^0]: *Steklov Mathematical Institute, ul. Gubkina 8, Moscow 117966, Russia and SISSA, via Beirut 2-4, 34013 Trieste, Italy; email: agrachev@mi.ras.ru

[^1]: ${ }^{1}$ There are many definitions of the tangent cone to the closed set; all of them provide one and the same cone in this particular case.

