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Abstract

We study 3-dimensional manifolds endowed with oriented contact
sub-Riemannian structures. The Euler characteristic class of the con-
tact structure is presented as the rotation class of a volume preserving
vector field constructed in terms of fundamental differential invariants
of the sub-Riemannian metric.

1. Let M be a smooth 3-dimensional manifold. A contact sub-Riemannian
structure is a pair ∆, 〈·|·〉, where ∆ = {∆q}q∈M , ∆q ⊂ TqM, is a contact
structure on M and 〈·|·〉 = {〈·|·〉q}q∈M is a smooth with respect to q family
of Euclidean inner products

(v1, v2) 7→ 〈v1|v2〉q, v1, v2 ∈ ∆q,

defined on ∆q. A Lipschitzian curve ξ : [0, 1] → M is called admissible for

∆ if dξ(t)
dt ∈ ∆ξ(t) for almost all t ∈ [0, 1]. The length of an admissible curve

ξ is the integral
1∫
0

|dξdt | dt, where |v| =
√
〈v|v〉q ∀v ∈ TqM. The infimum

of the lengths of admissible curves connecting two points is the Carnot–
Caratheodory distance between these points.

An important class of the sub-Riemannian structures is provided by mag-
netic fields on Riemannian surfaces. In this case M is the total space of a
principal U(1)-bundle over a Riemannian surface N and ∆ is a connection
on the principal bundle. In other words, ∆ is a transversal to fibers U(1)-
invariant rank 2 distribution on M . The distribution is contact if and only
if the curvature of the connection doesn’t vanish. The inner product of a
pair of vectors in ∆q equals the scalar product of their projections in TqN .
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The length minimization problem for admissible curves is equivalent to the
least action principle for the charged particles in the magnetic field (see [5]
for details). The special case of the constant magnetic field (when the cur-
vature of the connection is the area form multiplied by a constant) is locally
equivalent to the classical Dido isoperimetric problem on the Riemannian
surface.

The local structure of the Carnot–Caratheodory metric was studied in
detail in the papers [1, 2, 3, 4]; it was shown that this structure is controlled
by some fundamental differential invariants. In this note the same local
invariants serve to express a global one: the Euler characteristic class of ∆.

2. We assume that ∆ is an oriented contact structure. Then there exists a
unique contact form ω on M such that ∆ is the annihilator of ω, ∆q = ω⊥q
∀q ∈ M and the form dω|∆q coincides with the area form on the oriented
Euclidean plane ∆q. Let X0 be the characteristic (or Reeb) vector field of
ω; it is defined by the relations X0cdω = 0, X0cω = 1.

Let δ(q0, q1) be the Carnot–Caratheodory distance between q0 and q1

and

Cq0 = {q1 ∈M : the function q 7→ δ(q0, q) is not C1 at q1}.

One can show that the line RX0(q) is the tangent cone1 to the Cq at q,
RX0(q) = TqCq.

The curve t 7→ etX0(q) is transversal to the distribution ∆. Let Nq ⊂M
be (a germ of) a 2-dimentional submanifold such that ∆q = TqN ; then a
neighborhood of q is sliced by the submanifolds etX0(Nq). One of the basic
invariants of the sub-Riemannian structure arises from the asymptotics of
the distance between q and etX0(Nq) ∩ Cq) as t −→ 0:

δ(q, etX0(Nq) ∩ Cq) = (2− κ(q)t)|πt|1/2 +O(t2),

where κ is a smooth function on M .
Let X1(q), X2(q) be an orthonormal frame in ∆q. The explicit expression

of κ in terms of the moving frame X0, X1, X2 is as follows:

κ = X1c
2
12 −X2c

1
12 − (c1

12)2 − (c2
12)2 +

1

2
(c1

02 − c2
01),

where [Xi, Xj ] =
∑
k

ckijXk.

1There are many definitions of the tangent cone to the closed set; all of them provide
one and the same cone in this particular case.
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In the special case of the constant magnetic field on the Riemannian
surface (see Sec. 1) X0 is a generator of the structural group of the principle
bundle, κ is constant on the fibers of the bundle and is actually the pullback
of the Gaussian curvature of the Riemannian surface.

3. Now we take the dual object to the sub-Riemannian structure, the Hamil-
tonian h on the cotangent bundle T ∗M :

h(λ) =
1

2
(max{〈λ, v〉 : v ∈ ∆q, |v| = 1})2, λ ∈ T ∗qM, q ∈M.

This Hamiltonian serves to describe sub-Riemannian geodesics, i.e. admis-
sible curves whose small pieces are length minimizers. It follows from the
Pontryagin Maximum Principle that geodesics are exactly projections to M
of the trajectories of the Hamiltonian system in T ∗M associated with h.

Let ui(λ) = 〈λ,Xi(q)〉, i = 1, 2; then h(λ) = 1
2

(
u1(λ)2 + u2(λ)2

)
, λ ∈

T ∗qM . The Hamiltonian keeps all the information on the sub-Riemannian
structure: both ∆ and the inner product are easily recovered from h.

We denote: u0(λ) = 〈λ,X0(q)〉, λ ∈ T ∗qM , q ∈ M , and ∆∗ = u−1(0).
Then ∆∗ is a rank 2 linear subbundle of T ∗M with the fibers ∆∗q = ∆∗∩T ∗qM .
Obviously, (λ, ξ) 7→ 〈λ, ξ〉, λ ∈ ∆∗q , ξ ∈ ∆q, is a nondegenerate pairing.
Moreover, quadratic form 2h|∆∗

q
defines the Euclidean structure on ∆∗q dual

to the given Euclidean structure on ∆q.
We’ll deal with homogeneous polynomials on the plane ∆∗q . The group

SO(∆∗q) acts on the polynomials by the changing of variables. Irreducible
components of this (real) action are 2-dimensional spaces of polynomials
having the following expression in polar coordinates (r, θ):

span{rn cos(kθ), rn sin(kθ)}, (1)

where n − k is a nonnegative even number. Note that r2 = 2h|∆∗
q
. So

any homogeneous degree n polynomial φ has a unique presentation as a

sum of isotopic components: φ =
[n/2]∑
i=0

φn−2i, where φk belongs to the space

(1). This presentation is actually equivalent to the Fourier expansion of the
restriction of φ to the unit circle.

4. Recall that h, u0 are functions on the cotangent bundle T ∗M , where
restrictions of h to the fibers T ∗qM are quadratic forms and restrictions of u0

to the fibers are linear forms. Hence the Poisson bracket {h, u0} is quadratic
and the double Poisson bracket {h, {h, u0}} is cubic on the fibers. Let φq =
{h, {h, u0}}|∆∗

q
; then φq = φ1

q + φ3
q , where φ1

q is the product of h|∆∗
q

and a
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linear form on ∆∗q , according to (1). In other words, φ1
q(λ) = h(λ)〈λ, f(q)〉

for some f(q) ∈ ∆q.
We thus obtain an intrinsically defined vector field f with values in ∆

in addition to the transversal to ∆ field X0.

Theorem 1 The 2-form on M(
κ

2π
X0 −

1

π
f

)⌋
ω ∧ dω (2)

is closed and represents the Euler characteristic class of the oriented linear
bundle ∆.

Remark 1. The statement of the theorem can be also formulated as follows:
The flow generated by the field(

κ

2π
X0 −

1

π
f

)
(3)

preserves the volume form ω∧ dω and the rotation class (see [6]) of the field
(3) is equal to the Euler class of ∆.

Remark 2. In the case of the principal bundle M
U(1)−→ N and the sub-

Riemannian structure defined by a constant magnetic field (see sec.1) we
have {h, u0} = 0 and hence f = 0. Then (2) takes the form : κ

2πX0cω∧dω =
κ
2πdω. Moreover, dω and κ are the pullbacks of the area form and of the
Gaussian curvature on N so that the form (2) turns into the pullback of the
Gauss–Bonnet form on N .

The proof of Theorem 1 consists of a calculation with moving frames
in T ∗M . The idea is to construct an appropriate linear connection on the
bundle ∆∗ ⊂ T ∗M via the Hamiltonian vector fields associated with h and
u0 and a vertical vector field generating rotations of the fibers ∆∗q . The form
(2) is the curvature form of the correspondent linear connection.
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Proc. ICM-94, Zürich. Birkhauser, 1995, 1473–1483

[2] A. A. Agrachev, Exponential mappings for contact sub-Riemannian
structures. J. Dynamical and Control Systems, 1996, v.2, 321–358

4



[3] Ch. El-Alaoui, J.-P. Gauthier, I. Kupka, Small sub-Riemannian balls on
R3. J. Dynamical and Control Systems, 1996, v.2, 359–421

[4] A. A. Agrachev, Ch. El-Alaoui, J.-P. Gauthier, Sub-Riemannian metrics
on R3. Proc. Canadian Math. Soc., 1998, v.25, 29–78

[5] R. Montgomery, Isoholonomic Problems and Some Applications. Comm.
Math. Phys., 1990, v.128, 565–592

[6] S. Swartzman, Ann. Math.,1957, v.66, 270–289

5


