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Abstract

In this paper we prove Morse index theorems for a big class of constrained variational problems on
graphs. Such theorems are useful in various physical and geometric applications. Our formulas compute the
difference of Morse indices of two Hessians related to two different graphs or two different sets of boundary
conditions. Some applications such as the iteration formulas and lower bounds for the index are proved.

1 Introduction

1.1 Motivation

The aim of this paper is to derive effective ways of computing the Morse index of second variation of constrained
variational problems on graphs. Such problems can be conveniently formulated as optimal control problems.
The results of this article can be used to study minimality and stability in a variety of geometrically and
physically interesting problems.

Let us start with some examples which motivate the overall set-up in which we are working. Given three
points a, b, c on a plane R2, place a point d ∈ R2 such that the sum of the distances between d and each of the
points a, b, c is minimal. It is well known that d should be placed at the Fermat point. In particular, each of
the angles ∠adb, ∠adc, ∠bdc should be of 120◦.
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Figure 1: The graph G associated to the Fermat problem and two possible embeddings in R2.

We can formulate the same problem in a slightly different but equivalent way. Consider the tree graph G
in Figure 1 and denote by G0 = {A,B,C,D} the set of its vertices and by G1 the set of its edges. We can
parametrize each edge by the interval [0, 1], an operation which also assigns orientations to each of them. Then
the goal is to find a continuous map F : G → R2 with smooth restrictions to each edge such that

F (A) = a,

F (B) = b,

F (C) = c

and ∑
e∈G1

l(F (e))→ min,
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where l is the Euclidean length. So, we have reformulated our problem as a minimal immersion of the graph G
into the Euclidean subspace R2.

Let us consider another example. Assume that we have a set of elastic rods and rigid beams soldered together
to form a graph-like structure. Some vertices of this graph are assumed to be fixed, while others are free. What
shapes can it take? This question arises often in civil engineering, for example in the construction of bridges,
towers and various other structures (Figure 2). Such structures have some parts firmly fixed on the ground,
which correspond to fixed vertices, while others are free to move in the space. It is known that the elastic rods
are extremal curves in certain constrained variational problems and stable configurations correspond to local
minimizers of the bending energy [14].

Figure 2: An example of a truss bridge, which can be viewed as a number of connected elastic beams forming
a graph.

We can generalize the previous examples in several ways in order to encompass a great variety of situations
commonly encountered in applications. For example, we can consider more general metric graphs G, a manifold
M instead of R2, we can choose a different functional to minimize and, most importantly, we can assume that
each edge satisfies a differential constraint.

In this reformulation the following well-known notion plays a central role.

Definition 1. A metric graph is a graph G = (G0,G1), where G0 is the set of vertices and G1 is the set of
parametrized edges. Each edge e ∈ G1 is parametrized either by a finite interval [0, le] for some le > 0 or by
[0,+∞).

In this paper we will discuss necessary optimality conditions for the following class of problems:

Definition 2. Given a metric graph G = (G0,G1) and a manifold M , consider the following data:

1. Control constraints Ue, e ∈ G1, which are subsets Ue ⊂ Rke for some ke ∈ N;

2. Families of time-dependent complete vector fields fet,u ∈ V ec(M), where e ∈ G1 and u ∈ Ue;

3. Lagrangians `e : [0, le]×M × Ue → R, where e ∈ G1.

4. Boundary conditions given by a subset N ⊂M |G0|.

A graph-parametrized optimal control problem is the problem of finding a control u and a continuous map
q : G → M with almost everywhere differentiable restrictions to edges qe : [0, le] → M , such that it minimizes
the following functional

ϕ[u] =
∑
e∈G1

∫ le

0

`e(qe(t), ue(t))dt→ min (1)

subject to constraints
q̇e = fet,ue(t)(qe), ue ∈ L∞([0, le], Ue), (2)

(q(v1), q(v2), . . . , q(v|G0|) ∈ N. (3)

where v1, . . . , v|G0| are vertices in G0.

Let us illustrate the definition with another interesting example coming from quantum mechanics. A quan-
tum graph is a metric graph G with a possibly non-linear Schrödinger equation defined on it. A ground state
ψ : G → C of a quantum graph is a global minimizer of the functional

∑
e∈G1

∫ le

0

|ψ̇e|2

2
− |ψe|

α

α
dt→ min, (4)
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under the constraint of fixed total mass µ:

∑
e∈G1

∫ le

0

|ψe|2dt = µ, (5)

together with a regularity condition ψ ∈ H1(G):

∑
e∈G1

∫ le

0

|ψe|2 + |ψ̇e|2dt <∞, (6)

and certain boundary condition on the value of ψ at the vertices G0 which are usually taken to be Dirichlet,
Neumann or Kirkchoff (or a combination of the above). Here ψe are restrictions of ψ to the edge e, le is the
length of edge and 2 ≤ α ≤ 6 is a constant.

We can reformulate it as an optimal control parametrized by G taking as cost

∑
e∈G1

∫ le

0

|ue|2

2
− |ψe|

α

α
dt→ min

under the differential constraints {
ψ̇e = ue,
ṁe = |ψe|2,

with additional condition at the boundary ∑
e∈G1

me(le) = µ,

and the same continuity conditions for values of ψe at the vertices. In Section 2.5 we study numerically some
critical points of the NLS energy on binary trees in greater detail.

There is an extensive literature concerning quantum graphs. In particular regarding existence of global
minimizers for the NLS energy with fixed total mass, see for example [5], [6], [4], [22] (or [20] and [2] for
overviews of the results) and references therein. Or [19, 3, 35] for more recent result and variations of the
problem. Situation that do not fit in our current framework have been investigated too, see for example [27]
where the same problem is discussed on a graph with an infinite number of edges. For the linear case, i.e. when
α = 2, see [18].

Another important application comes from quantum physics. In the perturbative approach to quantum
mechanics and quantum field theory via the path integral method, a formal analogue of the stationary phase
method is used. This formula requires to know the index and a suitable generalization of the determinant of the
second variation at a critical point [29, 32]. The index is computed in the current paper, while the determinant
is investigated in [16].

1.2 General setting and problem statement

All of the examples from Section 1.1 can be formulated as graph-parametrized optimal control problems. The
goal of this article is to study the second variation of such minimization problems and characterize local min-
imizers. Local minimizers play an important role in modelling various physical phenomena, since they usually
correspond to stable configurations observable in nature, which makes them relevant even if there are no global
minima. In order to transmit better the ideas and simplify the proofs we will make several technical assumptions,
starting with the following ones.

Assumption 1. 1. The graph G has a finite number of edges;

2. N is an embedded submanifold;

3. Ue = Rk for some k ∈ N and all e ∈ G1;

4. Vector fields feu and functions `e are jointly smooth in the space variables q and in the control variables
u, piecewise smooth in t for all e ∈ G1.

We can reformulate a graph-parametrized optimal control problem (1)-(3) as an equivalent standard optimal
control problem with non-fixed boundary conditions of the form:

q̇ = f tu(t)(q), q ∈M, u ∈ L∞([0, 1],Rk); (7)

(q(0), q(1)) ∈ N ⊂M ×M ; (8)
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ϕ[u] =

∫ 1

0

`(t, q(t), u(t))dt→ min . (9)

We will show the precise algorithm to reformulate problem (1)-(3) as problem (7)-(9) later on, in Subsection 2.1.
Note that (7)-(9) by itself is a special case of a graph-parametrized optimal control problem where the metric
graph G is the interval [0, 1].

We recall now some definitions concerning problem (7)-(9).

Definition 3. 1. Let u ∈ L∞([0, 1],Rk) be a control and q′ ∈ M . We say that (q′, u) is admissible if the
solution to the Cauchy problem: {

q̇ = f tu(t)(q),

q(0) = q′
(10)

is defined up to time t = 1.

2. We say that a curve γ : [0, 1]→M is admissible if there exists a control u such that (γ(0), u) is admissible,
i.e.:

γ̇ = f tu(t)(γ), for a.e. t ∈ [0, 1].

3. Suppose that (q′, u) is admissible and define the map (q′, u) 7→ qu(t), where qu(t) is the solution of (10)
evaluated at time t ∈ [0, 1]. We will refer to this map as Evaluation map and denote it by F t(q′, u) when
final time is implicit. We will call the restriction of F 1 to {(q′, u) : q′ = q0} for a fixed q0 ∈ M the
Endpoint map and denote it by Eq0 .

4. An admissible curve γ is said to be an admissible variation if it satisfies the boundary conditions (γ(0), γ(1)) ∈
N. In terms of the Evaluation map, admissible variations are elements of the set (F 0 × F 1)−1(N).

Denote by U the collection of admissible controls (q0, u). It is an open set of M × L∞([0, 1],Rk) (see for
instance [13, 10]). Moreover, it is a smooth Banach manifold modelled over Rdim(M) × L∞([0, 1],Rk). It turns
out that the map (q′, u) 7→ qu(1) defined on U is smooth and a submersion. On the contrary, the differential of
the Endpoint map may fail to be surjective.

Admissible curves are, in particular, Lipschitz continuous under Assumption 1. Thus, the space of admissible
curves is the subset of Lipschitz paths γ satisfying γ̇t ∈ ∪u∈Uf tu(γ) for almost every t ∈ [0, 1].

When an admissible curve γ = qu, satisfying (γ(0), γ(1)) ∈ N is fixed and the differential of the Endpoint
map Eq0 at u is surjective, the space (F 0 × F 1)−1(N) admits a structure of Banach manifold. In particular we
can talk about its tangent space V, which is a finite codimension subspace of Rdim(M) × L∞([0, 1],Rk).

Let us turn now to our minimization problem. The usual approach for identifying local minimizers can be
roughly described as follows. First one applies first order minimality conditions and identifies critical points of
the functional ϕ. These critical points are called extremal curves.

They have a relatively simple characterisation, known as the Ponrtyagin maximum principle (PMP). In
order to describe the PMP in this setting we introduce a family of Hamiltonian functions on T ∗M

htu(λ) = 〈λ, f tu(q)〉 − ν`t(q, u), q = π(λ),

where ν ∈ {0, 1} and u ∈ Rk. For any submanifold N ⊆M ×M define

A(N) = {(λ0, λ1) ∈ T ∗M × T ∗M : 〈λ0, X0〉 = 〈λ1, X1〉, ∀(X0, X1) ∈ Tπ(λ0,λ1)N}, (11)

called the annihilator of N .

Theorem. Suppose that u ∈ L∞([0, 1],Rk) is an optimal control and let q : [0, 1] → M the corresponding
trajectory. Then, there exists a curve λ : [0, 1]→ T ∗M and ν ≥ 0 such that for almost all t ∈ [0, 1]

1. the curve q is the projection of λ:
q(t) = π(λ(t));

2. λ satisfies the following Hamiltonian system:

dλ

dt
= ~htu(t)(λ); (12)

3. the control u is determined by the maximum condition:

htu(t)(λ(t)) = max
u∈Rk

htu(λ(t));

4. the non-triviality condition holds: (λ(t), ν) 6= (0, 0);
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5. and the transversality conditions holds:

(λ(0), λ(1)) ∈ A(N). (13)

A solution to the Hamiltonian system (12) is called an extremal. It is known that extremal curves in optimal
control problems can have very different behaviour. They are usually separated into several classes, such as
regular, singular, bang-bang and others [37, 34, 15, 12].

After critical points are identified, one proceeds to study second order conditions.

Definition 4. Suppose that (q0, u) is a critical point of the functional ϕ restricted to (F 0×F 1)−1(N). Suppose
that the differential of the Endpoint map Eq0 is surjective at u. The Hessian (or the second variation) is
a quadratic form Q defined on the tangent space V to the space of admissible variations. It is given by the
(intrinsic) second derivative of the functional ϕ (see section 3.2 and equation (37) for an explicit representation).

Often, in constrained variational problems, the space of admissible variations is not a manifold. For this
reason we have to make additional assumptions on the Endpoint map in order to guarantee that this space is
at least locally smooth, in a neighbourhood of a critical point.

The quadratic form Q encodes information about minimality of a given extremal curve through the dimension
of its kernel and its negative inertia index ind−Q. In the classical theory of calculus of variations, a necessary
and sufficient condition for an extremal curve to be a local minimizer is ind−Q = 0, whenever the second
variation is non-degenerate. Note that this is not always true for constrained variational problems. Sometimes
a critical point stops being a local minimizer only when the inertia index of Q exceeds a certain threshold (see
[11, Theorem 20.3]). Thus we need to find good algorithms for computing ind−Q. This paper provides several
efficient ways of doing this in the context of graph-parametrized problems.

We will now list the last pair of assumptions that will allow us to focus on a rather broad class of extremals
for which a good geometric description of the second variation is possible.

Assumption 2. The maximized Hamiltonian

Ht(λ) = max
u∈U

htu(λ), λ ∈ T ∗M

is well-defined and C2 on T ∗M × [0, 1].

Assumption 3. If λ : [0, 1] → T ∗M is an extremal satisfying PMP with control u ∈ L∞([0, 1],Rk), then it
satisfies the strong Legendre condition. Which means that there exists a constant c > 0 such that

∂2htu
∂u2

(v, v)

∣∣∣∣
u=u(t)

≤ −c‖v‖2. (14)

Assumption 2 allows us to state the results in a simple form using the Hamiltonian flow of ~Ht, while Assumption 3
guarantees that the quadratic form Q in Definition 4 has finite negative index, and that small arcs of a given
extremal curve are local minimizers [11, Theorem 20.1].

1.3 Main results and structure of the paper

We are now ready to formulate and discuss the main results of this paper. Consider an extremal λ of an optimal
control problem (7)-(9), which satisfies a Hamiltonian system

λ̇ = ~Ht(λ) (15)

under the Assumption 2. ~Ht generates the flow Ψt : T ∗M → T ∗M . Denote by

Γ(Ψt) = {(λ,Ψt(λ)) : λ ∈ T ∗M} ⊂ T ∗M × T ∗M

its graph, which is a smooth submanifold of the product space T ∗M × T ∗M . We will simply write Γ(Ψ) to
denote Γ(Ψ1). We have the following main index theorem for the optimal control problem on the interval.

Theorem 1. Let λ : [0, 1] → T ∗M be an extremal for (7), (9) and simultaneously for two different boundary
conditions N and Ñ in (8). Let QN and QÑ be the two quadratic forms for the second variation corresponding
to the two boundary conditions. Denote λ = (λ(0), λ(1)). Then, under the Assumptions 1-3, the negative
inertia indices ind−QN , ind−QÑ are finite and

ind−QÑ − ind−QN = i
(
TλA(N), TλΓ(Ψ), TλA(Ñ)

)
+ dim(TλN ∩ TλÑ)− dimTλN + k0 (16)

where k0 = dim(TλA(N) ∩ TλΓ(Ψ))− dim(TλA(N) ∩ TλΓ(Ψ) ∩ TλA(Ñ)).
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Only one term on the right hand-side still requires an explanation. The term i(TλA(N), TλΓ(Ψ), TλA(Ñ))
denotes the negative Maslov index of the triple of Lagrangian subspaces. Roughly speaking this number measures
the relative position of three Lagrangian subspaces of a common symplectic space, in this case the symplectic
space is Tλ(0)(T

∗M)× Tλ(1)(T
∗M) with the form

(
− σλ(0)

)
⊕ σλ(1). A precise definition of Lagrangian spaces

and of the Maslov index can be found in Appendix A.2. For now it is enough to know that it is a certain
symplectic invariant of the triple of subspaces, which can be computed in an explicit algebraic way.

A relevant example to keep in mind is when N ⊂ Ñ . In this case if λ satisfies the transversality conditions
for Ñ , then it satisfies the transversality conditions for N too. In particular, N can be just the product of two
points N = {q0} × {q1}, for which transversality conditions are trivially satisfied.

Theorem 1 has many interesting applications and allows us to have a fresh view on some classical results.
When we consider a graph-parametrized problem (1)-(3) and reformulate it as problem on an interval (7)-(9),
the structure of the graph G is completely encoded in the boundary conditions N . It is often the case that a
single critical point satisfies two graph-parametrized problems with different boundary constraints or even with
different underlying graphs.

For example, we can introduce an extra vertex on an edge of a graph, and assume that this vertex is free.
This obviously does not change the possible critical points. However, now, we can compare it to a problem
where the new vertex is fixed. A possible (and simple) application of this technique would be to consider a fixed
boundary optimal control problem on an interval (1)-(3) with N = {q0} × {q1}. Then introduce several free
vertices in the interior of the interval and compare it with a problem where each one of the vertices is fixed, as
depicted in Figure 3.

M M

fixed fixed
fixedfree

γ
γ

Figure 3: Variation of γ in the original problem and a problem with extra fixed vertices.

In order to formulate the next result, we need the definition of conjugate times and conjugate points. Given
µ ∈ T ∗M , denote by Πµ := Tµ(T ∗π(µ)M), the tangent space to the fibre over π(µ). We will often refer to it as
the vertical subspace.

Definition 5. Given an extremal λ : [0, 1]→ T ∗M of an optimal control problem (7)-(9), we say that t ∈ [0, 1]
is a conjugate time if the linear map

π∗ ◦ (Ψt)∗|Πλ(0)
has a kernel. The corresponding point q(t) = π(λ(t)) is said to be a conjugate point.

To simplify notation we will denote by Θt = (Ψt)∗ the differential of the extremal flow. It is straightforward
to check that the tangent space TλΓ(Ψ) is actually the graph of the linear map Θt : TλT

∗M → TΨt(λ)T
∗M . We

will denote by Γ(Θt) said graph and by Γ(Θ) the graph at time t = 1.
A consequence of Theorem 1 is the following result.

Theorem 2 (Discretization). Let λ : [0, 1] → T ∗M be an extremal for (7)-(9) with N = {q0} × {q1} and let
Ξ = {t0, . . . , tn} be a partition of [0, 1]. Denote by Θi+1,i the restriction to the interval [ti, ti+1] of the differential
of the extremal flow in (15). The following formula holds:

ind−Q ≥
n−1∑
i=0

i
(
Θ−1
i+1,i(Πi+1),Πi,Θi,i−1 ◦ · · · ◦Θ1,0(Π0)

)
, (17)

where Πi = Tλ(ti)(T
∗
π(λ(ti))

M) ' T ∗π(λ(ti))
M . Moreover, equality holds if maxi |ti+1− ti| is sufficiently small and

no ti is a conjugate time.
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As previously discussed a necessary condition for minimality under Assumptions 1-3 is ind−Q = 0. For this
reason a necessary condition for minimality of a critical point is that the right hand side of (17) equals zero. In
practice, this allows us to determine non-optimal solutions and greatly reduce the number of candidates for the
minimal solution.

Another example of this type is given by the k-th iterate γk of a periodic extremal trajectory γ. If γ has
period T , we can view γk as a periodic trajectory of period kT . Hence it is a graph-parametrized problem
with the graph having one edge of length kT and a single vertex. We can add k more equispaced vertices and
compare the problem to the k copies of smaller circle graphs which correspond to γ as depicted in Figure 4.
We denote by Θ the linearization of the flow given in equation (15) along γ at t = T . Again an application of

M M

free

free free

free

γ γ

Figure 4: Variations of a periodic extremal trajectory γ as a periodic trajectory ran twice (left) and as two
separate periodic trajectory (right).

Theorem 1 gives us the following iteration formulae:

Theorem 3 (Iteration Formulae). Let k > 1 and γ be an extremal curve for the problem (7)-(9) with N = ∆,
where ∆ ⊂M ×M is the diagonal of M . It holds:

ind−Qγk − k ind−Qγ =

k∑
j=1

i
(
Γ(Θj−1), TλA(∆),Γ(Θj)

)
− dim(M) + dim(ker(Θj−1 − 1)) (18)

=

k−1∑
j=1

dim(M)− dim(ker(Θ− ωj))− i
(
Γ(Θ), TλA(∆),Γ(ωjΘ)

)
. (19)

Where ω is a primitive k-th root of unity.

Equality 18 is much in the spirit of [25] and [28]. Formula 19 is obtained using a complexified version of
Maslov index described in Appendix A.2, yielding a result very similar to Bott’s original approach given in [21].

The theorems above are examples of index formulas, which try to encode the information about the index
of the second variation of variational problems in terms of geometric quantities such as the Maslov index. In
the context of variational problems on 1D objects such as curves or graphs, it is possible to reduce the problem
of studying index of a linear operator on an infinite-dimensional space to the study of non-autonomous linear
ODEs in finite dimensional spaces. There exist various analogues of this result. For example, in the context
of classical calculus of variations an infinite-dimensional version of Morse index formulas was proven by several
groups in works [28, 38, 23, 24]. In the case of strongly indefinite problems the index formulas are replaced
by spectral flow theorems, which are valid both in finite [33, 30, 39] and infinite dimensions [36]. There are
also various approaches to infinite-dimensional Morse homology [1]. A very general index theorem for optimal
control problems was proven by the first and third author in [9], which encompasses many separate classical
constructions for various types of extremals [37, 34, 15, 12, 8].

A variant of Theorem 1 was proven by Baryshnikov in [17]. His formula is true in the generic case for graph-
parametrized problems in classical calculus of variations with separated boundary conditions. In the generic
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picture, the various intersection terms in (16) disappear. Our formula holds without the genericity assumption
and extends to a large class of optimal control problems with arbitrary boundary conditions. The authors
of [31] study the Morse index of Schrödinger operators on graphs. After reducing the problem to an interval,
they provide a Morse index formula involving intersection theory. The Morse index is computed as the Maslov
index of a curve in a Lagrangian Grassmanian of a sufficiently big dimension. Instead our formulas separate the
contribution to the index coming from varying the edges and the contribution to index coming from varying
vertices. This allows us to perform various manipulations on graphs to reduce dimensions and simplify final
formulas.

The paper has the following structure. In Section 2 we focus on applications for the graph-parametrized
problems. We prove our main applications, Theorems 2 and 3, as well as a formula to reduce the dimensionality
in Theorem 1 using a filtration of the vertices. In Section 2.5 we discuss some numerical application of our
formula to NLS equation on graphs. This section relies only on Theorem 1 and properties of the Maslov index.
The reader who only wants to understand how to compute the index and apply the main theorems can focus
just on Section 2 and Appendix A, which contains all the necessary information regarding symplectic geometry,
Lagrangian spaces and Maslov index. In Section 3 we prove Theorem 1.

2 Applications and proofs of Theorem 2 and Theorem 3

2.1 Reduction of the problem on a graph to a problem on an interval

It will be convenient to assume that, in problem (1)-(3), all edges are parametrized on the interval [0, 1]. When
le < +∞, we can rescale time appropriately. If le = +∞ we can compactify the semi-line [0,+∞) via a suitable
change of coordinates in the time variable, provided that the compactification satisfies Assumption 3, fact that
may depend on the choice of change of variables. This will merely change the Lagrangians `e and the vector
fields fet,u which can be redefined accordingly.

Let us ignore for the moment the boundary conditions (3) and treat the restriction of the optimal control
problem to every edge as an independent problem. Define the map πe : MG1 → Me as the projection onto the
copy of M relative to edge e. The functional J [u] and the control system can be seen as an optimal control
problem on MG1 . We define the new Lagrangian ` : [0, 1]×MG1 × (Rk)G1 as

`(t, q, u) =
∑
e∈G1

`e(t, qe, ue)

and a new family of time dependent vector fields f tu ∈ V ec(MG1) such that for a fixed edge e ∈ G1

(πe)∗(f
t
u) = fet,ue .

Let us consider the boundary conditions (3). In order to make this construction cleaner, we need the
following definitions.

Definition 6. Let I = {i1, i2, . . . , im} be a finite set and W an arbitrary set. A I-parametrized direct product
of W is

W I = Wi1 × · · · ×Wim ,

where Wij = W for all j = 1, . . . ,m.

Since we use I as an index set, for a given subset J ⊂ I we can define the projection map

πJ : W I →W J

by forgetting the copies of W indexed by the elements of I \ J .

Definition 7. Let I, J be two finite index sets, W an arbitrary set and f : I → J a surjective map. Then the
pull-back product f∗(W J) is a subset of W I characterized by the property that for every j ∈ J

πf−1(j)(f
∗(W J)) =

{
(q, q, . . . , q) ∈W f−1(j) : q ∈Wj

}
.

Similarly if X ⊂W J , then the pull-back f∗(X) is a subset of W I defined by the property that for every j ∈ J .

πf−1(j)(f
∗(X)) =

{
(q, q, . . . , q) ∈W f−1(j) : q ∈ πj(X)

}
.
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Let us look at an example when I = {1, 2} and J = {1} and f(1) = f(2) = 1. In this case the preimage of
1 is all of I, hence

f∗(W J) = πf−1(1)(f
∗(W J)) = {(q, q) ∈W I : q ∈W},

which is just the diagonal. Similarly, if X ⊂ W then f∗(X) is the intersection of the diagonal with X ×X ⊂
W ×W .

Now we can describe the reduction procedure. The idea is intuitive. We want to use the orientations on
edges of G and pull-back the set of boundary constraints N , a priori defined just on the vertex set G0, to a new
manifold embedded in (M ×M)G1 . This allows us to separate the dynamic on each edge from the boundary
conditions, exactly as we did a few lines above.

Saying that each edge e ∈ G1 is oriented is equivalent to having source and target maps s, t : G1 → G0. The
image of the source and the target of an edge e are

(qe(0), qe(1)) ∈Me ×Me 'M ×M.

Taking a product indexed by G1 we obtain that

(q(0), q(1)) ∈ (M ×M)G1 'MG1tG1 ,

where G1 t G1 is a disjoint union of two copies of G1. The source and the target maps induce a surjective map
s t t : G1 t G1 → G0. This allows us to pull-back the boundary conditions to

Ñ = (s t t)∗(N).

Hence we have reduced the optimal control problem (1)-(3) to an optimal control problem (7)-(9) with the
configuration space MG1 and the boundary conditions (s t t)∗(N), which encode all the information about the
graph structure.

The final remark concerns the symplectic form on (T ∗M × T ∗M)G1 that will be used for the calculation of
the Maslov index. We will assume that each copy of T ∗M corresponding to a source vertex carries minus the
standard symplectic form −σ, while every target copy T ∗M carries σ, the standard one.

2.2 Discretization

In this subsection we prove Theorem 2. Fix a partition Ξ = {ti : t0 = 0, tn = 1, ti < ti+1} of the unit interval.
We will work with an optimal control problem and Assumptions 1−3. In particular, Assumption 3, ensures

that the Morse index is finite and that the conjugate points form a discrete set. This will guarantee that,
under mild conditions and after enough successive refinements of the partition, formula (17) will give exactly
the Morse index of the extremal.

Let us first prove the formula when only one extra vertex is introduced. Let γ = π(λ) be an extremal curve
in a problem with fixed end-points. Take a point t∗ ∈ (0, 1). Let us call γ1 = γ|[0,t∗] and γ2 = γ|[t∗,1] the
restrictions. Qγi will denote the second variation of the segment as an extremal curve with fixed points. Recall
that Πi = Tλ(ti)(T

∗
π(λ(ti))

M) ' T ∗π(λ(ti))
M is the vertical subspace over the point γ(ti).

Proposition 1. The index of the second variation Qγ satisfies:

ind−Qγ = ind−Qγ1 + ind−Qγ2 + i
(
Θ−1

2 (Π2),Π1,Θ1(Π0)
)

+ k, (20)

where k = dim(Θ2(Π1) ∩Π2) + dim(Θ1(Π0) ∩Π1)− dim(Θ−1
2 (Π2) ∩Π1 ∩Θ1(Π0)).

Proof. Let us consider the following three points in M :

q0 = γ(0), q1 = γ(t∗), q2 = γ(1).

Variations of γ as a curve from q0 to q2 do not necessarily pass through the point q1 at time t∗. They satisfy
a continuity condition instead. We perform the reduction to a single interval as discussed in Subsection 2.1. To
do this we break up [0, 1] in two intervals and consider the dynamics separately (i.e. duplicate the variables).
The new boundary conditions which allow us to glue the two pieces together are of the form:

(γ1(0), γ2(t∗), γ1(t∗), γ2(1)) ∈ {q0} ×∆× {q2} = {(q0, q1, q1, q2)| q1 ∈M}.

Now we are going to compare the following two problems. The first one prescribes fixed end-points, we
impose that the curve starts from (q0, q1) and arrives to (q1, q2). The second one prescribes the constraints
given by the manifold N = {q0} ×∆× {q2} defined above.

Recall that γ is a projection of a solution λ : [0, 1]→ T ∗M of the Hamiltonian system. Let us consider the
tangent space to the annihilator of N at the point λ = (λ(0), λ(1), λ(1), λ(2)). Fix a system of coordinates, which
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determines a complement to the subspace kerπ∗ = Π1 which we call B. In these coordinates the annihilator
reads:

TλA(N) =




ν1

α+X
α+X
ν2

 : α, νi ∈ Π1, X ∈ B

 .

The other space appearing is the graph of the two symplectomorphisms Θ1 and Θ2 coming from the Hamil-
tonian flows of PMP on intervals [0, t∗] and [t∗, 1]. It will be denoted by Γ(Θ1 ×Θ2).

Let us look at the subspace on which the Maslov form m is defined, (TλA(N) + Π4) ∩ Γ(Θ1 × Θ2), where
Π4 = Π0 ×Π2

1 ×Π2. This is defined by the following equations,
ξ1
ξ2

Θ1(ξ1)
Θ2(ξ2)

 =


ν1

α+X
α+X
ν2

+


µ1

µ2

µ3

µ4

 ⇐⇒ ξ1 ∈ Π0,Θ2(ξ2) ∈ Π2, ξ2 −Θ1(ξ1) ∈ Π1,

where α, νi, for i = 1, 2 and µj for j = 1, . . . 4 lie in the vertical subspace over the respective points, whereas
X ∈ B is in the horizontal space. In particular Maslov form reads:

m(ξ1, ξ2) = σ(µ3 − µ2, X) = σ(Θ1(ξ1)− ξ2, ξ2) = σ(Θ1(ξ1), ξ2) = σ(ξ2,−Θ1(ξ1)).

So, if we call η = Θ2(ξ2) ∈ Π2 and ξ = ξ1 then we have ξ ∈ Π0, η ∈ Π2 and Θ−1
2 (η)−Θ1(ξ) ∈ Π1 and:

m(Π4,Γ(Θ1 ×Θ2), TλA(N)) = m(Θ−1
2 (Π2),Π1,Θ1(Π0)).

The additional terms popping up in Theorem 1 are

dim(Γ(Θ1 ×Θ2) ∩Π4) = dim(Θ1(Π0) ∩Π1) + dim(Θ−1
2 (Π2) ∩Π1)

and
dim(Γ(Θ1 ×Θ2) ∩Π4 ∩ TλA(N)) = dim(Θ−1

2 (Π2) ∩Θ1(Π0) ∩Π1)

as a quick calculation shows.

We can now prove Theorem 2.

Prood of Theorem 2. The statement follows from Proposition 1. First of all notice that in equation (20) all
terms are positive, hence ind−Q ≥ i

(
Θ−1

2 (Π),Π,Θ1(Π)
)

when the partition is Ξ = {0, t∗, 1}. For a general Ξ
apply Proposition 1 iteratively to {0, tj−1, tj} where j runs from 2 to n. This allows to express the index of the
second variation of γ|[0,tj ] as the sum of the index of the second variation of γ|[0,tj−1] and γj := γ|[tj−1,tj ] plus
other terms.

Iteratively replacing the terms ind− Qγ|[0,tj ] we obtain the following formula:

ind−Qγ =

n−1∑
j=0

ind−Qγj + i
(
Θ−1
j+1,j(Πj+1),Πj ,Θj,j−1 ◦ · · · ◦Θ1,0(Π0)

)
+ dim(Θj,0(Π0) ∩Πj) + dim(Θj+1,j(Πj) ∩Πj+1)− dim(Θj,0(Π0) ∩Πj ∩Θ−1

j+1,j(Πj+1)).

Here as described in the statement the maps Θj,j−1 are the linearisation of the Hamiltonian flow of equa-
tion (15). The notation comes from the composition law of non autonomous flows, we have Θj,k ◦Θk,l = Θj,l.

The index is presented as sum of three positive terms: the first one ind−Qγi is zero when each segment
γ|[ti,ti+1] is minimizing [11, Theorem 21.3]. Under Assumption 3 this is the case when supi |ti − ti−1| is small

enough (see [11] for instance). The same goes for dim(Θi+1,i(Πi) ∩Πi+1)− dim(Θi,0(Π0) ∩Πi ∩Θ−1
i+1,i(Πi+1)).

Moreover dim(Θi,0(Π0) ∩Πi) is zero precisely when ti is not a conjugate time for γ.
Thus equality holds exactly when our hypotheses on the partition are satisfied.

Remark 1. The hypothesis on the partition Ξ can be weakened if we change a bit our way of counting. If we
add to the dimension of the negative space the dimension of the null space of the Maslov form we can essentially
forget about avoiding conjugate points of γ.

You can see that the correction term k in Proposition 1 is in fact the dimension of the kernel of the Maslov

form m
(
Θ−1

2 (Π2),Π1,Θ1(Π1)
)
. The quantity

∑n−1
i=1 (ind−+ ker)

(
m
(
Θ−1
i+1,i(Πi+1),Πi,Θi,i−1 ◦ · · · ◦ Θ1,0(Π0)

))
still approximates from below the negative index and includes the contribution of conjugate points of γ that
are possibly present in the partition.

Remark 2. If we combine Theorem 1 and Theorem 2 we can obtain a formula for the index involving just the
Maslov index i and dimension of intersections for arbitrary boundary conditions.
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2.3 Filtration formula

In the previous subsection we have proven a discretization formula for the fixed end-point problem on an interval.
The idea was to introduce extra vertices inside the single edge and apply an iterative procedure consisting in
fixing each of the new vertices one by one. Note that, if we had fixed all of the vertices at the same time, a
direct application of (16) would have resulted in a computation of the Maslov index in a very big symplectic
space. Instead, the recursive nature of the proof allows us to reduce greatly the dimensionality of the problem.

A way of reducing the dimensionality in formula (16) for problems with separated boundary conditions is
discussed in [17]. The argument works when all of the Lagrangian spaces in the final formula are transversal.
We can reproduce this argument in a greater generality using Theorem 1.

Assume that each vertex v ∈ G0 is constrained to lie on a separate submanifold Nv ⊂ M . We denote by N
the boundary conditions, which are obtained after the reduction of the problem to an interval. We can introduce
a filtration of vertices

∅ = G0
0 ⊂ G1

0 ⊂ · · · ⊂ G
|G0|
0 = G0,

such that
|Gj0| = |G

j−1
0 |+ 1, i = 1, . . . , |G0|.

To each set Gj0 we associate boundary conditions Nj ⊂ N in the following way. We assume that vertices v ∈ Gj0
vary on Nv, while vertices v ∈ G0 \ Gj0 are assumed to be fixed. Thus we activate variations of each individual
vertex at a time and track how the index changes as we do so.

We now apply Theorem 1 to compute ind−QNj+1
− ind−QNj . Let us introduce some simplifying notations.

Recall that s, t : G1 → G0 are the source and the target maps. Let vj ∈ Gj+1
0 \ Gj0 be the activated vertex. We

introduce a separate notation for the set of edges that are incident to vj :

Gj1 = s−1(vj) ∪ t−1(vj).

A naive guess would be that, when we activate a vertex, the only relevant contributions come from the edges
incident to a given vertex. Thus we define forgetful projections πGj1

which forget all the edges except the ones

incident to vj :

πGj1
: Tλ̄(T ∗M)G1 × Tλ̄(T ∗M)G1 → Tλ̄(T ∗M)G

j
1 × Tλ̄(T ∗M)G

j
1 .

Subspaces Tλ̄A(Nj−1) and Tλ̄A(Nj) can have a big intersection. For sure this intersection contains the
subset Vj = π−1

Gj1
(0), which is an isotropic subspace. This means that we can perform a symplectic reduction to

the space V ⊥j /Vj . Let

πj : Tλ̄(T ∗M)|G1| × Tλ̄(T ∗M)|G1| → V ⊥j /Vj

be the projection maps for each j = 1, . . . , |G1|. We can then define shortened notations for the images:

Ajj−1 = πj(Tλ̄A(Nj−1)),

Ajj = πj(Tλ̄A(Nj)),

Γ(Θj) = πj(Γ(Θ)).

By property (54), we can factor out Vj in the definition of the Maslov index and get

i(Tλ̄A(Nj−1),Γ(Θ), Tλ̄A(Nj)) = i(Ajj−1,Γ(Θj), A
j
j)

and for the same reason

dim (Tλ̄A(Nj−1) ∩ Γ(Θ))−dim (Tλ̄A(Nj) ∩ Γ(Θ) ∩ Tλ̄A(Nj−1)) = dim
(
Ajj−1 ∩ Γ(Θj)

)
−dim

(
Ajj−1 ∩ Γ(Θj) ∩Ajj

)
.

Finally, since Nj−1 ⊂ Nj , we have that

dim(Tπ(λ̄)Nj−1 ∩ Tπ(λ̄)Nj)− dim(Tπ(λ̄)Nj−1) = 0.

Now we collect all of the terms and sum by the index j = 1, . . . , |G0|. As a result, we obtain a formula that
expresses the difference between the index of the second variation Q of the original problem with the index of
the second variation Q0 := QN0

of the problem with the same graph and fixed vertices:

ind−Q− indQ0 =

|G0|∑
j=1

ind−QNj − ind−QNj−1
=

=

|G0|∑
j=1

i(Ajj−1,Γ(Θj), A
j
j) + dim

(
Ajj−1 ∩ Γ(Θj)

)
− dim

(
Ajj−1 ∩ Γ(Θj) ∩Ajj

)
.
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This is the same formula as in [17] modulo terms containing dimensions of intersections.
We end this subsection with a couple of remarks regarding this formula. First of all, in practice, the

dimensions are reduced even more because Ajj−1 ∩ A
j
j 6= ∅. Nevertheless further reductions depend on the

structure of the graph and the filtration chosen. Secondly, at first sight it may seem that the formula is a sum
of local contributions, because we have used only edges incident to a given vertex in the derivation. However,
this is not the case. The non-locality is hidden in the reduced space V ⊥j /Vj and the corresponding projection
πj .

For example, in the case when G1 is a tree, we can define a partial order ≤ on G0 by saying that v ≤ w if
the minimal path from v to the root crosses less or equal number of vertices than the minimal path from w to
the root. If we choose a filtration, which orders vertices one by one compatible with the partial ordering, one
can identify the set Gj0 with a sub-tree of G. Then the formula for the indices i(Ajj−1,Γ(Θj), A

j
j) will contain

terms involving symplectomorphisms of all of the edges in the sub-tree determined by Gj0 and not only of the
incident edges. This can be checked via a long but straightforward calculation.

2.4 Iteration Formulae

Now we prove Theorem 3. For clarity we prove separately the two formulas since the strategies in the two cases
are a bit different.

Suppose that γ is a closed periodic extremal trajectory. It is straightforward to see that iterations (i.e.
concatenation of γ with itself) are still critical points.

We will use the following notation: γk will denote the k−th iteration of γ whereas ind−Qγ and ind−Qγk the

Morse index of γ and γk respectively as periodic trajectories. We want to compute the difference ind−Qγk −
k ind−Qγ .

First of all we compute the difference ind−Qγk − ind−Qγk−1 . Let us consider the following manifolds of
constraints:

∆� := {(q1, q2, q2, q1) : qi ∈M, } ⊂M2 ×M2,

∆2 = {(q1, q2, q1, q2) : qi ∈M} ⊂M2 ×M2.

When we restrict to variations satisfying the boundary conditions given by ∆�, we consider variations of γk

as a periodic trajectory, whereas when we take boundary conditions ∆2, we consider independent variations of
γk−1 and γ as periodic trajectories. See Figure 4 for a visual explanation. Now we prove the following lemma:

Lemma 1. Let Γj = Γ(Θj) the graph of Θj. Then:

ind−Qγk − ind−Qγk−1 = ind−Qγ + i
(
Γk−1, TλA(∆),Γk)− dim(M) + dim

(
ker(Θk−1 − 1)

)
.

Proof. The statements follows applying Theorem 1. We take as N1 = ∆� and as N2 = ∆2. The part coming
from the dimension is straightforward, the intersection of the tangent spaces has dimension dim(M) while the
dimension of ∆2 is 2 dim(M). So we get a − dim(M).

For the part concerning the intersection between annihilators and graphs, one can check that T(λ(0),λ(0))A(∆2)∩
Γ(Θk−1×Θ) is isomorphic to the sum ker(Θk−1− 1)⊕ker(Θ− 1). The triple intersection consists of ker(Θ− 1)
and thus the term in the statement.

From the definitions it follows that, when we impose the boundary conditions ∆2, we have ind−QN2
=

ind−Qγk−1 + ind−Qγ , so the only thing to check is the Maslov index part.
The equation defining the subspace are the following:

ξ1
ξ2

Θk−1(ξ1)
Θ(ξ2)

 =


X1 + Y1

X2 + Y2

X2 + Y1

X1 + Y2

 Xi, Yi, ξi ∈ Tλ(0)(T
∗M).

By subtracting the second and the third equations, and then the first and the fourth we find

ξ2 −Θk−1(ξ1) = Y2 − Y1,

Θk−1(ξ1)−Θk(ξ2) = Θk−1(Y1 − Y2).

Changing coordinates and setting η = Θk−1(ξ1), Y1 − Y2 = η1 and η2 = ξ2 we get:

(η, η) ∈ TλA(∆) ∩ (Γk−1 + Γk) ⇐⇒
(
η
η

)
=

(
η1 + η2

Θk−1(η1) + Θk(η2)

)
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So the Maslov form reduces to a form on ∆ ∩ (Γk−1 + Γk). It reads:

m(ξ1, ξ2) = σ(X2, Y1 − Y2)− σ(X1, Y1 − Y2) = σ(ξ2 −Θ(ξ2), Y1 − Y2)

= σ(η2 −Θ(η2), η1)

= σ(η2, η1)− σ(Θ(η2), η1)

= −σ(η1, η2) + σ(Θk−1(η1),Θk(η2)).

Which is exactly m(Γk−1, TλA(∆),Γk) in the coordinates just introduced. And thus the formula is proved.

The first iteration formula is now a direct consequence of the Lemma just proved:

Theorem (Iteration Formulae I). The index of the k−th iteration of γ as a periodic trajectory satisfies:

ind−Qγk − k ind−Qγ =

k∑
j=1

i
(
Γ(Θj−1), TλA(∆),Γ(Θj)

)
− dim(M) + dim(ker(Θj−1 − 1)). (21)

Proof. We will use an inductive procedure in a similar spirit as in the proof of Theorem 2. First we will look at
γk as the concatenation of γk−1 and γ and express the difference ind−Qγk − ind−Qγ in terms of ind−Qγk−1 .

This is the first step of the scheme and was proved in Lemma 1. Then, we apply the argument iteratively
to obtain (21).

Now we prove the second iteration formula.

Theorem (Iteration Formulae II). The index of the k−th iteration of γ as a periodic trajectory satisfies:

ind−Qγk − k ind−Qγ =

k−1∑
j=1

dim(M)− dim(ker(Θ− ωj))− i(Γ(Θ),∆,Γ(ωjΘ)). (22)

Where ω is a primitive k−th root of the unity.

Proof. We work on the space Mk = M ×· · ·×M . The first set of boundary conditions we are going to consider
is the following:

∆� := {(q1, . . . , qk, r1 . . . rk) : ri, qi ∈M, qi = ri−1} ⊂Mk ×Mk.

Set q0 = γ(0) = γ(1). Any curve satisfying the boundary conditions ∆� gives a variation of the k−th iterate
of γ seen as periodic trajectory.

The other sets of constraints we are going to introduce are the following:

∆k = {(q1, . . . , qk, q1, . . . , qk) : qi ∈M} ⊂Mk ×Mk,

q
0

= {(q0, . . . , q0) : q0 = γ(0) = γ(1)}.

The first boundary condition is the product of 2k copies of the diagonal. Any curve satisfying this set
of constraints at point (q0, . . . , q0) is a variation of γk as k independent periodic trajectories γ. The second
boundary condition corresponds to k copies of a single point q0. Variations of γk satisfying these latter conditions
are k independent variations of γ as a trajectory with fixed points.

To simplify notation, set ∆k = TλA(∆k), ∆� = TλA(∆�) and Γ = Γ(Θ × · · · × Θ) to be the product of k
copies of Γ(Θ). We have TλA(q

0
) = Π2k

λ(0) = Π2k where λ(0) is the initial covector of the lift to the cotangent
bundle.

First of all we compute directly ind−Qγk using Theorem 1, comparing with the fixed endpoints problem.
We get:

ind−Qγk = k ind−Q0 + i
(
Π2k,Γ,∆�

)
+ dim(Γ ∩Π2k)− dim(Γ ∩Π2k ∩A(∆�)).

Here the notation ind−Q0 stands for the index of Q at γ seen as a trajectory with fixed end points. We
analyse first the term i

(
Π2k,Γ,∆�

)
. To compute it, we present the Maslov form as the direct sum of k forms

defined on a dim(M)−dimensional subspace. This is done in Lemma 2, where we use the complexified version
of Maslov index. The term i

(
Π2k,Γ,∆�

)
is thus the sum of contributions of the type i

(
Π2,Γ(ωjΘ),∆

)
where

ω is a primitive root of unity.

i
(
Π2k,Γ,∆�

)
=

k−1∑
j=0

i
(
Π2,Γ(ωjΘ),∆

)
.

Now we apply Theorem 1 to the second set of boundary conditions, i.e. ∆k. We find that:

k ind−Qγ = k ind−Q0 + i
(
Π2k,Γ,∆k

)
+ dim(Γ ∩Π2k)− dim(Γ ∩Π2k ∩∆k).
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Exactly as in the previous case the piece i
(
Π2k,Γ,∆k

)
splits as a sum. But this time the reason is more apparent:

we are considering independent variation on each iteration. It follows that i
(
Π2k,Γ,∆k

)
= k i

(
Π2,Γ(Θ),∆

)
Now we subtract the two equations and we are left with the following expression for ind−Qγk − k ind−Qγ :

ind−Qγk − k ind−Qγ =

k−1∑
j=0

(
i
(
Π2,Γ(ωjΘ),∆�

)
− i
(
Π2,Γ(Θ),∆

))
+ dim(Γ∩Π2k ∩∆k)− dim(Γ∩Π2k ∩∆�).

Let’s rewrite the term involving the intersections. It is straightforward to see that dim(Γ ∩ Π2k ∩ ∆k) =
k dim(Γ(Θ) ∩Π2 ∩∆). In turn, this rewrites as k dim(ker(Θ− 1) ∩Π).

For the second piece it holds that:

dim(Γ ∩Πk ∩∆�) =

k−1∑
j=0

dim(ker(Θ− ωj) ∩Π).

We prove this below, in Proposition 2. Putting all together we get:

dim(Γ ∩Π2k ∩∆k)− dim(Γ ∩Πk ∩∆�) =

k−1∑
j=0

dim(Γ(Θ) ∩Π2 ∩∆)− dim(ker(Θ− ωj) ∩Π). (23)

Now we can use the cocycle property given in equation (55) with the subspaces Π,Γ(ωjΘ),Γ(Θ) and ∆ to
rewrite the difference of Maslov indexes using the subspaces Γ(ωjΘ) and ∆. These computations are collected
in Proposition 2. What we find is that:

i
(
Π2,Γ(ωjΘ),∆

)
− i
(
Π2,Γ(Θ),∆

)
= −i

(
Γ(Θ),∆,Γ(ωjΘ)

)
+ dim(M)

− dim(ker(Θ− 1) ∩Π) + dim(ker(Θ− ω−j) ∩Π)− dim ker(Θ− ω−j).

Since we are summing over j = 0, . . . , k−1 and ω is a primitive k-th root of unity, we have that
∑k−1
j=0 dim(ker(Θ−

ω−j) ∩Π) =
∑k−1
j=0 dim(ker(Θ− ωj) ∩Π) and thus the intersection of the eigenspaces with the fibre cancel out

with the part coming from triple intersection given in equation (23). Summing up we finally obtain (21).

Lemma 2. Let ω ∈ C be a primitive k−th root of the unity. The Maslov form m(Π2k,Γ,∆�) =
⊕k−1

i=0 mi

where:
mi = m(Π2,Γ(ωiΘ),∆).

Proof. We will use the Hermitian version of Maslov index. Any real subspace V appearing in the proof will
stand for its complexification V ⊗ C without any mention to the tensor product operation. Let us write down
the equation defining the space (Π2k + ∆�) ∩ Γ.

v ∈ Γ ⇐⇒ v = (ξ1, . . . , ξk,Θ(ξ1), . . . ,Θ(ξk)), ξj ∈ Tλ0(T ∗q0M).

On the other hand belonging to Π2k + ∆� means:

v ∈ Π2k + ∆� ⇐⇒ v = (µ1, . . . , µk, ν1, . . . , νk), µi+1 − νi ∈ Π,

where µk+1 = µ1. So the space (Π2k + ∆�) ∩ Γ is given by {(ξ1, . . . , ξk) : ξi+1 −Θ(ξi) ∈ Π}.
Maslov form is computed in the following way. Let

ξi = Xi + αi,

Θ(ξi) = Xi+1 + βi,

where αi, βi ∈ Π, Xi ∈ Tλ0
(T ∗M). Then we have

m(ξ) =

k∑
i=1

−σ(ᾱi, Xi) + σ(β̄i, Xi+1) =

k∑
i=1

−σ(ᾱi, Xi) + σ(β̄i−1, Xi) =

k∑
i=1

σ(−ᾱi + β̄i−1, Xi)

=

k∑
i=1

σ(−ᾱi + β̄i−1, ξi) =

k∑
i=1

σ(Θ(ξ̄i−1)− ξ̄i, ξi) =

k∑
i=1

σ(Θ(ξ̄i−1), ξi)− σ(ξ̄i, ξi).

Where in the third equality we simply shifted the second index cyclically.
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Suppose that ω is a primitive k−th root of the identity and make the following change of variables.

ξ = (ξ1, . . . , ξk) 7→

(
k∑
i=1

ξi, . . . ,

k∑
i=1

ωj(i−1)ξi, . . . ,

k∑
i=1

ω(k−1)(i−1)ξi

)
=: η,

which, essentially, is just the Kronecker product of the identity with the transpose of Vandermonde’s matrix
obtained with {1, ω, . . . , ωk−1}. In the new coordinates the equation reads:

ηl − ωl−1Θ(ηl) =

k∑
i=1

ω(l−1)(i−1)ξi −
k∑
i=1

ω(l−1)iΘ(ξi)

=

k∑
i=1

ω(l−1)iξi+1 − ω(l−1)iΘ(ξi)

=

k∑
i=1

ω(l−1)i(ξi+1 −Θ(ξi)) ∈ Π.

So in the new coordinates the space (Π2k + ∆�) ∩ Γ splits as the direct sum
⊕k

l=1{η : η − ωlΘ(η) ∈ Π}.
The inverse transformation is given by the following rule:

ξi =
1

k

k∑
l=1

ω−(i−1)(l−1)ηl.

If we plug it in the second term of the Maslov form we have:

k∑
i=1

σ(Θ(ξi), ξi+1) =
1

k2

k∑
i,l,s=1

σ(Θ(ω(i−1)(s−1)η̄s), ω
−i(l−1)ηl)

=
1

k2

k∑
i,l,s=1

ωi(s−l)ω−(s−1)σ(Θ(η̄s), ηl) =
1

k2

k∑
l,s=1

( k∑
i=1

(ωi(s−l))ω1−sσ(Θ(η̄s), ηl)
)
.

In particular, the only non zero terms are those for which s = l since the sum of powers of any primitive
root (up to k) is zero.

We can handle similarly the first term. In this way we find that the Maslov form on our subspace splits in
the following way:

m(η) =
1

k

k∑
s=1

σ(ωs−1Θ(ηs), ηs)− σ(η̄s, ηs).

The factor 1
k is irrelevant for us and comes just from the change of coordinates. The last step is to identify the

summands with m(Π2,Γ(ωs−1Θ),∆). Let’s write down the kernel for these forms. The space we have to look
at is (Π2 + ∆) ∩ Γ(ωs−1Θ). It is defined by:

η = α+X ωs−1Θ(η) = β +X α, β ∈ Π.

By the definition the Maslov form is given by

m(η) = −σ(ᾱ,X) + σ(β̄,X) = σ(ωs−1Θ(η)− η̄, η).

Proposition 2. The following relation holds:

i
(
Π2,Γ(ωjΘ),∆

)
− i
(
Π2,Γ(Θ),∆

)
= −i

(
Γ(Θ),∆,Γ(ωjΘ)

)
+ dim(M) + dj , (24)

where dj = −dim(ker(Θ−1)∩Π)+dim(ker(Θ−ω−j)∩Π)−dim ker(Θ−ω−j). Moreover the space Γ∩Π2k∩∆�

splits as a direct sum and its dimension is given by:

dim(Γ ∩Π2k ∩∆�) =

k−1∑
j=0

dim(ker(Θ− ωj) ∩Π).

15



Proof. The second part can be deduced by the proof of Lemma 2. In fact the space Π2k ∩Γ∩∆� is isomorphic
to
⊕

i ker(Θ − ωi) ∩ Π. This can be either directly computed from the definition of the spaces or deduced in
the following way.

Let P represent the standard k−cycle which maps ξi → ξi+1 and ξk → ξ1. A direct calculation shows that
∆� = Γ(P ). Thus any element of ∆� ∩ Γ can be written as(

ξ
Pξ

)
=

(
ξ

diag(Θ)(ξ)

)
⇐⇒ P−1diag(Θ)(ξ) = ξ ⇐⇒ diag(Θ)P−1(η) = η, where η = Pξ.

i.e. an eigenvalue problem.
The core of the proof of Lemma 2 consisted in the diagonalization of the following matrix:Θ

.. .

Θ

P−1 ∼

ω
0Θ

.. .

ωk−1Θ


with the remaining elements understood to be zero. The transformation diagonalizing the matrix we used
preserves the fibre. So it follows that Π2k ∩ Γ ∩∆� is the sum of the eigenspaces ker(Θ− ωj) intersected with
the fibre Π.

Now we prove the first part of the proposition. Let us apply the cocycle property to Π2,Γ(ωjΘ),Γ(Θ) and
∆.

i
(
Π2,Γ(ωjΘ),∆

)
− i
(
Π2,Γ(Θ),∆

)
= i
(
Γ(Θ),Π2,Γ(ωjΘ)

)
− i
(
Γ(Θ),∆,Γ(ωjΘ)

)
+ ci,

ci = dim(Θ(Π) ∩Π)− dim(ker(Θ− 1) ∩Π) + dim(ker(Θ− ω−j) ∩Π)+

− dim ker(Θ− ω−j).

The formula is almost the one given in the statement except for the terms dim(Θ(Π)∩Π) and i
(
Γ(Θ),Π2,Γ(ωjΘ)

)
and a lacking dim(M).

We can compute the Maslov index term in the following way. Notice that Γ(ωjΘ) and Γ(ωlΘ) are transversal
if the index j is different form l. It follows that the space on which the form is defined is Π2. Moreover the
equations are ξ1 + ξ2 = ν1 ∈ Π and Θ(ξ1 + ωjξ2) = ν2 ∈ Π. Thus Maslov form reads:

m(ν1, ν2) = −σ(ξ̄1, ξ2) + ωjσ(Θ(ξ̄1),Θ(ξ2)) = (ωj − 1)σ(ξ̄1, ξ2).

We can invert the equations to write them on Π2. We get ξ2 = 1
1−ωj (ν1−Θ−1(ν2)) and ξ1 = 1

1−ωj (Θ−1(ν2)−
ωjν1) and thus the form is equivalent to:

m(ν1, ν2) =
1

ω̄j − 1
(σ(ν̄2,Θ(ν1)) + ω−jσ(ν̄1,Θ

−1(ν2))).

This form has zero signature and kernel isomorphic to two copies of Θ(Π) ∩ Π. This is a general fact and
can be seen as follow. Suppose the matrix representing the quadratic form has the following expression:

M =

(
0 X
X̄∗ 0

)
m(ν1, ν2) = 〈ν̄1, Xν2〉+ 〈ν̄2, X̄

∗ν1〉.

Let be Q and R unitary matrices which gives the singular values decomposition for X, i.e. QXR = D for
D = diag(d2

i ), diagonal and with non negative entries.
Apply the following change of coordinates to M:(

Q 0
0 R̄∗

)(
0 X
X̄∗ 0

)(
Q̄∗ 0
0 R

)
=

(
0 D
D 0

)
.

And then apply another change:(
1 −1
1 1

)(
0 D
D 0

)(
1 1
−1 1

)
=

(
−2D 0

0 2D

)
.

Thus the non zero eigenvalues of the matrixM are ±d2
i , where d2

i > 0 are the positive singular values of X.
The kernel of M has dimension 2 dim ker(X).

This is precisely our situation: fix a Lagrangian complement to the fibre Π, and consider the matrices

associated to Θ and ω−j

ω−j−1JΘ−1. In blocks they can be written as:

Θ =

(
A B
C D

)
, JΘ−1 =

(
C∗ −A∗
D∗ −B∗

)
, JΘ =

(
−C −D
A B

)
.

16



We are using coordinates in which the fibre Π is the span of the first n coordinates. Thus the block we have to
consider is always the upper left one. Our form, with this conventions, is written as:

m(ν1, ν2) =

〈
ν̄2,

1

1− ω−j
Cν1

〉
+

〈
ν̄1,

ω−j

ω−j − 1
C∗ν2

〉
.

So for us X = ω−j

1−ω−jC
∗. Thus our form has zero signature, is defined on a 2 dim(M) dimensional vector space

and the kernel is isomorphic to two copies of the kernel of X. The latter is easily seen to be Θ(Π) ∩Π.
Thus it follows that i

(
Γ(Θ),Π2,Γ(ωjΘ)

)
= dim(M)− dim(Θ(Π) ∩Π). Inserting above we get (24).

In order to give a complete discussion, we consider the function S1 3 z 7→ i(Γ(Θ),∆,Γ(zΘ)) and study its
properties. We give an explicit description in terms of the monodromy matrix Θ and its spectrum. These ideas
are collected in the following proposition.

Proposition 3. The number i
(
Γ(Θ),∆,Γ(ωjΘ)

)
corresponds to the number of negative eigenvalues of the

following matrix:

Mωj =
1

1− ω−j
J
(
ω−j + 1− ω−jΘ−Θ−1

)
.

If we consider the function S1 3 z 7→ i
(
Γ(Θ),∆,Γ(zΘ)

)
, it is locally constant with at most 2n jumps at

eigenvalues of Θ. Moreover the jumps are bounded in amplitude by dim(ker(Θ− z)) where z ∈ S1.

Proof. The first part is just a straightforward computation. Take for any α ∈ S1:(
ξ1

Θ(ξ1)

)
+

(
ξ2

αΘ(ξ2)

)
=

(
X
X

)
⇒

{
(1− α)ξ2 = X −Θ−1(X),

(α− 1)ξ1 = αX −Θ−1(X).

If α 6= 1 the two graphs are always transversal and the Maslov quadratic form can be written in terms of
the variable X:

m(X) = −σ(ξ̄1, ξ2) + ασ(Θ(ξ̄1),Θ(ξ2)) = (α− 1)σ(ξ̄1, ξ2)

=
1

1− ᾱ
σ
(
ᾱX̄ −Θ−1(X̄), X −Θ−1(X)

)
=
ᾱ+ 1

1− ᾱ
σ(X̄,X)− 1

1− ᾱ
σ((ᾱΘ + Θ−1)(X̄), X).

It follows that the kernel is Mα = 1
1−ᾱJ

(
ᾱ+ 1− ᾱΘ−Θ−1

)
.

For the second part notice that the map α 7→ Mα is continuous away from 1 with values in the space of
Hermitian matrices.

A change of index can occur only at those points in which the determinant of Mz is zero, thus at most 2n
times. Moreover the jumps are the following:

det(Mα) = 0 ⇐⇒ det(ᾱ+ 1− ᾱΘ−Θ−1) = 0, α 6= 1.

In particular, notice that Θ and Θ−1 can be put in the same block triangular form. For example one can
choose to put Θ in its Jordan form. On the diagonal, at a block corresponding to eigenvalue λ of Θ, the elements
are ᾱ+ 1− ᾱλ− 1

λ . This quantity is zero if and only if α = λ
|λ|2 i.e. if α is an eigenvalue of Θ that lies on the

circle.
Thus the jumps are at most 2n. The part on the bound follows by this observation: take a Jordan block of

Θ with eigenvalue λ. Then the corresponding block of Θ−1 will have λ̄ on the diagonal and (−1)kλ̄k+1 on the
k−th upper diagonal. This implies that on the first upper diagonal of the λ block of λ̄Θ + Θ−1 we considered
you end up with −λ̄+ λ̄2, which is different from zero. Thus each λ−block contributes with a single eigenvalue
and so the jumps are controlled by dim(ker(Θ− λ)).

2.5 Numerical study of NLS on trees

Formulas (16), (17), (18) and (19) are used to determine whether a given extremal is a local minimum. These
formulas can be difficult to apply because of a complicated parametrization of critical points or a complex
graph structure. Nevertheless, we can always use them to construct reliable numerical algorithms for studying
stability or testing theoretical hypothesis. In this subsection we illustrate this claim by examining numerically
solutions of the NLS on a symmetric rooted tree graph with a finite number of edges.

More precisely, consider a rooted tree whose finite edges have all length l. Each vertex is of degree d except
the root, and there are ds vertices in total. We denote such a tree by Tl,d,s. We look for a minimizer of the
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functional (4) under the constraints (5) and (6) with G1 = Tl,d,s and Neumann condition at the root. This
problem has a discrete symmetry given by exchanging various branches. Hence a very natural question is to
understand whether the global minima have this symmetry as well. If this is the case, then the value of a
minimizer at a given point only depends on the distance to the root. We call such minimizers symmetric. It is
known that for the tree with only one branching the minimizers are indeed symmetric [5, Theorem 2.7]. For trees
with several branchings this is unknown. Let us consider numerically the local minimality of an asymmetric
critical point in the simplest case with the non-linearity power α = 4 and a rooted tree with s = 2 and d = 2
depicted in Figure 5.

1

2

3

4

5

6

7

Figure 5: Symmetric tree Tl,2,2. Numbers correspond to the numbering of the edges in the text.

The algorithm follows the following steps, which are universal for any graph-parametrized problem:

Step 1: Reformulate the considered problem on a graph as an optimal control problem on a subset of the
line;

Step 2: Write down the Hamiltonian system for each edge and transeversality conditions;
Step 3: Identify an extremal of interest using numerical integration;
Step 4: Linearize the Hamiltonian system and integrate it numerically to obtain the graph of the flow Ψt.

One needs to integrate it until the end of the edge or the first conjugate point, i.e., until Ψt(Π) ∩ Π 6= ∅. One
can encode this condition as vanishing of the determinant of a submatrix of Ψt.

Step 5: If there are no internal conjugate points, write down the Maslov form from (16) and compute
numerically its eigenvalues.

In Step 1 we transform the problem (4), (5), (6) into an optimal control problem by introducing new variables:

qe = ψe, ue = q̇e, me(t) =

∫ t

0

|ψe(s)|2ds.

This gives us the functional
7∑
e=1

∫ le

0

|ue|2

2
− |qe|

4

4
dt→ min,

and differential constraints {
q̇e = ue,
ṁe = |qe|2.

Usually ψe are taken to be complex-valued. However, it is known that the minimizer can be assumed to be
real [5]. For this reason we minimize only among real-valued functions and avoid writing the absolute values
any further. In addition (5) is equivalent to

7∑
e=1

me(le) = µ, (25)

equation (6) implies that qe(∞) = 0 for the infinite edges e = 4, 5, 6, 7 of the tree and the Neumann condition
at the root is equivalent to assuming that the value of q1(0) is free. Finally we have the continuity condition of
q at each vertex.

Next we apply the Pontryagin maximum principle and deduce that at each edge restrictions of a critical
point must satisfy the Hamiltonian system 

q̇e = pe,
ṁe = q2

e ,
ṗe = −2λeqe − q3

e ,

λ̇e = 0.

(26)
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The transversality conditions gives us conditions on pe and λe at various vertices. From (25) we get that all λe
must be equal to some fixed λ, that at the root p1(0) = 0, and that

p1(l) = p2(0) + p3(0),

p2(l) = p4(0) + p5(0), (27)

p3(l) = p6(0) + p7(0).

Those are just the standard Kirkchoff boundary conditions. Finally, if we are interested in minimizers in
H1(Tl,2,2), we need to put an extra condition that pe(∞) = 0 for infinite edges of the graph.

Now we can start constructing possible extremal solutions. The phase portrait of (26) is depicted in Figure 6
and qualitatively it is the same for all negative λ.

qe

p
e

Figure 6: Phase portrait of the subsystem (qe, pe) of (26).

Since pe(∞) = qe(∞) = 0, the restrictions to the last edge are either trivial or pieces of the separatrix
solution also called the soliton. For positive λ there are no soliton solutions. In [5] the authors prove, using the
decreasing rearrangement technique, that at the very last branching the solitons must be symmetric, i.e. pe(0)
of the two edges attached to one of the last vertices must coincide. Hence we need to choose values of q for each
soliton piece at the final vertices.

After those values are chosen, we solve numerically equations (26) backward in time for each edge using
Kirkchoff conditions (27). Unfortunately, the solutions may fail to satisfy the Neumann condition at the root
and continuity conditions at other vertices. We need to find the initial values of the solitons that would
guarantee that those conditions are met. This can be done using any quasi-Newtonian method. There are
always symmetric critical points. However, one can also find some asymmetric candidates. Figure 7 shows the
plot of such a critical point as a multivalued function for λ = −1 and l = 1. In this case the two inital values
of q of the soliton are approximately 1.77094 and 0.243391.

Once an extremal solution is found, we linearize system (26) and add them to the original system. This
gives 

q̇e = pe,
ṁe = q2

e ,
ṗe = −2λeqe − q3

e ,

λ̇e = 0.


Ẋe = Ye,

Ṁe = 2qeXe,

Ẏe = −2λeXe − 2Λeqe − 3q2
eXe,

Λ̇e = 0.

(28)

From here we can compute numerically the fundamental solution Ψt of the linearized system for each edge and
check that the minimum candidate depicted in Figure 7 do not contain conjugate points.

Remark 3. One should be careful when integrating (28) along the soliton. It is difficult to follow numerically
the separatrix solution for long times, since a small error will result in a solution inside or outside the region
bounded by this solution. Thus one should take only a finite piece of a soliton, where the numerical error is
sufficiently small.
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Figure 7: Graphs of q(t) and p(t) of an assymetric extremal point as the distance to the root. The dotted lines
indicate branchings .

It only remains to check whether the index of the Maslov form in (16) is positive. Now we explain in detail
how to write down explicitly its associated symmetric matrix. The symplectic form is the standard symplectic
form on the double space R4×R4. We denote its matrix by J . We write down the two orthogonal projectors πΠ

and πTN , where the first one is the projector to the vertical space and πTN is the projector to the tangent space
of the boundary constraints. Note that the whole projector to the tangent of the annihilator is not needed,
because the vertical part cancels out due to the skew-symmetry of the symplectic form. Now we need to find
the vectors which lie in the intersection (TλA(N)+Π)∩TλΓ(Ψ). We can do this by using the previously defined
orthogonal projections. In order to do this, find numerically the kernel of (1 − πΠ − πTN )Ψ. From here we
can construct the projector πmas onto the domain of the Maslov form. The matrix of the Maslov is now the
symmetrization of the matrix (πΠ ◦Ψ ◦ πmas)TJ(πTN ◦Ψ ◦ πmas).

For our example depicted in Figure 7, when we take the length of the soliton piece to be equal to one, one
of the eigenvalues is equal to -0.544933. Hence this critical point is not a local minimum. In exactly the same
manner one can study local minimality of any other critical state of the NLS on a rooted tree.

3 Index formulas and proof of Theorem 1

3.1 Reduction to a variational problem with fixed end-points

In this section we prove Theorem 1. We will consider first the case in which the boundary constraints in (8)
are separated. This means that we look for a minimizer γ with initial point γ(0) in N0 and final point γ(1) in
N1, where N0, N1 ⊂M are embedded submanifolds. The general case will be reduced to this one.

Given an extremal trajectory γ of the optimal control problem (7)-(9) with N = N0 × N1, we will now
construct a new optimal control problem with fixed end-points and interpret γ as the restriction of an extremal
γ̂. Moreover, we will show that the two problems are locally equivalent.

Denote qi = γ(i) ∈ Ni for i = 0, 1. We want to construct an extended control system in such a way that all
admissible curves α̂, connecting q0 with q1 and sufficiently close to γ, are concatenations α̂ = α1 ∗α ∗α0, where
αi are curves inside Ni and α connects N0 to N1.

To do so, fix neighbourhoods O(qi) ⊂ M , of the points qi. If O(qi) are sufficiently small, we can construct
regular foliations of O(qi) such that Ni ∩O(qi) are leaves passing through qi. Consider the union of all tangent
space to each leaf of the foliation. This gives two integrable distributions D0 and D1 in each neighbourhood.
After shrinking the neighbours if necessary, we can choose a set of vector fields f ji , j = 1, . . . ,dimNi defined on
O(qi), which generate these distributions:

span
{
f ji (q), j = 1, . . . ,dimNi

}
= Di(q), ∀q ∈ O(qi), i = 0, 1.

Using these vector fields, we extend our control system on [−1, 2], adding a part linear in the controls for
t ∈ [0, 1]c. Namely:

f̂ tu(q) =


f0(q)u0 :=

∑dimN0

j=1 f j0 (q)u0j , if t < 0,

f tu(q), if t ∈ [0, 1],

f1(q)u1 :=
∑dimN1

j=1 f j1 (q)u1j , if t > 1.
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where u0 ∈ RdimN0 and u1 ∈ RdimN1 . The space of the extended controls (u0, u, u1) is isomorphic to Û =
RdimN0 ⊕ L∞([0, 1],Rk) ⊕ RdimN1 and can be identified with functions which are constant on [−1, 0] and on
[1, 2] with values in RdimN0 and RdimN1 respectively.

γ

α̂N0 N1

q0
q1

Figure 8: An admissible extended variation α̂ of an extremal curve γ

In Figure 8 the construction is explained visually. The local foliations are depicted in grey scale with the
white surfaces being N0 and N1. An admissible curve α̂ of an extended system is confined to the leaf of the
starting point up to time 0, evolves with the law prescribed by the initial system and then continues inside the
leaf reached at time 1. In particular, if we restrict a curve α̂ connecting q0 and q1 to [0, 1], then we get a curve
that connect N0 to N1.

We define the new optimal control problem as

q̇ = f̂ tû(t)(q), û ∈ RdimN0 ⊕ L∞([0, 1],Rk)⊕ RdimN1 , (29)

q(−1) = q0, q(2) = q1, (30)

min
û∈Û

ϕ̂(û) = min
û∈Û

∫ 1

0

`(t, u(t), qu(t))dt. (31)

where u = û|[0,1].

Lemma 3. Optimal control problems (7)-(9) with N = N0 ×N1 and (29)-(31) are locally equivalent.

Proof. Suppose that α is an admissible curve of the original control system. Let u be its control and assume
that α(i) ∈ O(qi) ∩Ni for i = 0, 1. Then, α can be lifted to an admissible curve of the new system connecting
q0 and q1. Indeed, take the unique controls ui for which

exp (f0(·)u0) q0 = α(0), exp (f1(·)u1)α(1) = q1,

where exp denotes the flow of the vector field inside the brackets at time t = 1. Hence, the lift α̂ is defined as

α̂(t) =


exp (tf0(·)u0) q0, if t < 0,

α(t), if t ∈ [0, 1],

exp (tf1(·)u1)α(1), if t > 1,

û(t) =


u0, if t < 0,

u(t), if t ∈ [0, 1],

u1, if t > 1.

Conversely, if we have an admissible curve α̂ such that α̂(−1) = q0, α̂(2) = q1 and α(i) ∈ O(qi), then its
restriction α = α̂|[0,1] is a curve connecting N0 to N1. Thus we obtain a local bijection between the two spaces
of admissible curves.

Lastly, notice that ϕ̂(û) = ϕ(u). Hence, the two problems are locally equivalent.

3.2 Computation of first and second variation of the extended problem

Let λ : [0, 1]→ T ∗M be an extremal satisfying PMP for the problem (7)-(9) with N = N0 ×N1. Denote by ũ
the corresponding control and by γ(t) = π(λ(t)), t ∈ [0, 1] the extremal curve on the manifold M . As discussed
in the proof of Lemma 3, we can extend γ to an admissible curve of (29)-(31) as

γ̂ =


q0, if t < 0,

γ(t), if t ∈ [0, 1],

q1, if t > 1,

ˆ̃u(t) =


0, if t < 0,

ũ(t), if t ∈ [0, 1],

0, if t > 1.
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In order to simplify slightly the notations, we will omit in the future the hat symbol for ˆ̃u by essentially
identifying ũ with (0, ũ, 0).

In this section we compute the first and second variations of the problem (29)-(31) at a critical point ũ. In
order to so this, we use the already existing formulas for the fixed end-point problem which can be found in
several references such as [11].

For the reader’s convenience, we recall here the main ideas behind this differentiation process. The first
differential of Eq0 at a point u has an integral expression. This comes from an asymptotic expansion for flows,
known as Volterra series, used in Chronological Calculus [11]. Namely, assume that Xt is a smooth and complete
vector field. Its flow can be characterized using a differential or integral equation:{

Ṗt = Xt ◦ Pt
P0 = I

⇐⇒ Pt = 1 +

∫ t

0

Xτdτ +

∫ t

0

∫ τ

0

Xτ ◦Xsdτds+ . . .

When the vector field Xt depends on a parameter ε we can use this expansion to compute the derivative
with respect to the parameter ε. Without loss generality set Xε

t and Xt = X0
t and let P εt be the flow of Xε

t .
Define gεt := (Pt)

−1
∗ (Xε

t −Xt) ◦ Pt and let Ψε
t be its flow. One can check that Pt ◦Ψε

t = P εt . Differentiating this
expression with respect to ε and using Volterra expansion yields:

∂εP
ε
t |ε=0 = (Pt)∗ ◦

∫ t

0

(P−1
τ )∗∂εX

ε
τ |ε=0 ◦ Pτdτ

Remark 4. We use gεt to differentiate the Endpoint map mainly for two reasons. The first one is that, since g0
t

is zero, only finitely many terms of the expansion appear. The second one is that, in this way, all the integrals
are performed in a fixed tangent space.

We can apply this procedure to the Endpoint map of our system at u = ũ. Let Pt be the flow generated by
f tũ(q) and qt = Pt(q0). As usual we denote P := P1. We obtain the following integral expression for the first
derivative:

dũEq0(v) = P∗

∫ 1

0

(P−1
t )∗∂uf

t
ũ(qt)v(t)dt. (32)

Differentiating twice yields an expression for the second derivative:

d2
ũEq0(v, w) = P∗

(∫ 1

0

(P−1
t )∗∂

2
uf

t
ũ(qt)(v(t), w(t))dt+

∫ 1

0

∫ t

0

(
(P−1
τ )∗∂uf

τ
ũ (qτ )w(τ)

)
◦ (
(
P−1
t )∗∂uf

t
ũ(qt)v(t)

)
dτdt

)
.

(33)

Remark 5. Notice that in (33) we have a quadratic mapping (i.e. vector valued). Moreover this expression is
coordinate dependent, unlike equation (32). The invariant second derivative of a smooth mapping F : M → N
is defined only at critical points, with values in the cokernel of the differential. Namely:

d2
pF : ker dF ⊆ TpM → TF (p)N/ im(dF ).

Recall now our setting. We have a smooth map Eq0 , the Endpoint map, defined on a open subset of
L∞([0, 1],Rk). We are assuming that the control ũ is a regular point of Eq0 . Hence, E−1

q0 (q1) is smooth around
ũ. We are looking for local minima of a functional ϕ on the level set E−1

q0 (q1). If ũ is a critical point, we
formulate second order optimality conditions in terms of the Hessian of the cost ϕ. To get an expression for this
quadratic form restricted to TũE

−1
q0 (q1) = ker dũEq0 , we differentiate a suitable modification of the Endpoint

map. We extend the state space to M ×R and we look for critical points of the Endpoint map of the following
system:

Xt
u(q, x) =

(
f tu(q)
`(t, u, q)

)
.

This is essentially the same idea behind Lagrange multipliers rule. Since we are assuming that dũEq0 is surjective,
there exists a unique covector (up to multiples) (λ, ν) such that λdũEq0 + νdũϕ = 0 and ν 6= 0. We take ν to
be negative since we are looking for minima and normalize it to −1. We obtain:

dũϕ(v) = λdũEq0(v), ∀v ∈ L∞([0, 1],Rk).

Thus the kernel of the new Endpoint map coincides with the kernel of the old one. Now we can apply equa-
tion (33) to get an expression for the second derivative of the Endpoint map and then project onto R using the
covector (λ, ν) (recall that the second derivative is well defined only as a map with values in the cokernel). We
will need a little bit of symplectic geometry to simplify the expression above. Denote by P̄t the flow generated
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by Xt
ũ(t)(q, x). Set η0 := P̄ ∗(λ, ν), the pull back of (λ, ν). One can check that η0 and (λ, ν) lie on the same

solution of the Hamiltonian system generated by the Hamiltonian

h̄tũ(λ, ν) = 〈(λ, ν), Xt
ũ(t)〉 = 〈λ, f tũ(t)〉+ ν`(t, ũ(t), q),

h̄tũ(λ, ν) = h̄tu(λ, ν)|u=ũ(t), h̄tu(λ, ν) = 〈λ, f tu〉+ ν`(t, u, q).

We denote the Hamiltonian flow by Φ̄t.
Notice that, if we project M ×R, the h̄tu(λ, ν) are precisely the Hamiltonians appearing in PMP. Using these

conventions, the first term in (33) reads:

η0

∫ 1

0

(P̄−1
t )∗∂

2
uX

t
ũ(qt)(v(t), w(t)) =

∫ 1

0

∂2
uh̄ũ((P̄−1

t )∗η0)(v(t), w(t))dt =

∫ 1

0

∂2
uh̄ũ ◦ Φ̄t(η0)(v(t), w(t))dt.

For the second one we have to work a little more. First of all one has the following identity for all v, w ∈
ker dũEq0 :

η0

∫ 1

0

∫ t

0

(
(P̄−1
τ )∗∂uX

τ
ũ(qτ )w(τ)

)
◦
(
(P̄−1
t )∗∂uX

t
ũ(qt)v(t)

)
dτdt =

=

∫ 1

0

∫ t

0

〈η0,
[
(P̄−1
τ )∗∂uX

τ
ũ(qτ )w(τ), (P̄−1

t )∗∂uX
t
ũ(qt)v(t)

]
〉dτdt.

We also have an useful identity, valid on all cotangent bundles, involving functions linear on fibres of the form
hX(η) = 〈η,X〉, for a smooth vector field X. It holds:

〈λ, [X,Y ]〉 = σ(~hX ,~hY ).

We can modify the integrand using this formula. Let us substitute the commutators with the symplectic
pairing of Hamiltonian fields of ∂u(h̄tũ ◦ P̄t)v(t) and ∂u(h̄τũ ◦ P̄τ )w(τ). We obtain:∫ 1

0

∫ t

0

ση0(∂u(~̄hτũ ◦ P̄τ )w(τ), ∂u(~̄htũ ◦ P̄t)v(t))dtdτ.

The expression of the second derivative of the Endpoint map now involves just the functions h̄tu(λ, ν) and
their derivatives. It is not hard to check that we can forget the R component and work on M directly. For more
details we always refer to [11, Chapter 2 and Section 20.3].

Remark 6. The quadratic form coincides indeed with d2
ũϕ restricted to ker dũEq0 . For a detailed discussion on

this equivalence and further reference one can check [11, Section 20.1] or [9]

Now, we specialize the formulas for the derivatives of the Endpoint mapping to the extended system (29)-
(31). The Hamiltonian of PMP, which is everything needed to compute the derivatives. It is given by:

ĥtû(λ) =


〈λ, f0u0〉 =: h0u0, if t < 0,

〈λ, f tu(π(λ))〉 − `(t, u, π(λ)), if t ∈ [0, 1],

〈λ, f1u1〉 =: h1u1, if t > 1.

According to PMP a minimal control must maximize ĥtû(λ). Given an extremal λ̂ : [−1, 2]→ T ∗M , let λ0 and
λ1 be its restrictions to the intervals [−1, 2] and [0, 1]. Since this family is linear in u0 and u1, λi must lie in
the annihilators A(Ni). In particular, if λ : [0, 1] → T ∗M was an extremal of the original problem such that

γ(t) = π(λ(t)), ∀t ∈ [0, 1], we can extend λ to an extremal λ̂ of problem (29)-(31) exactly as before:

λ̂(t) =


λ(0), if t < 0,

λ(t), if t ∈ [0, 1],

λ(1), if t > 1.

Denote by Φ̂t the flow generated by ĥtũ, or more precisely

Φ̂t =


I, if t < 0,

Φt, if t ∈ [0, 1],

Φ1 =: Φ, if t > 1.

Since the vector field associated to ũ is zero on [−1, 0]∪ [1, 2] the flow is a constant transformation. Composing
the Hamiltonian with the flow Φ̂t gives us
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b̂tû(λ) =
(
ĥû − ĥũ(t)

)
◦ Φ̂t(λ) =


〈λ, f0u0〉, if t < 0,

btu(λ), if t ∈ [0, 1],

〈 · , f1u1〉 ◦ Φ̂1(λ), if t > 1.

Then we can define

Ẑt = ∂û
−→
b̂ tû|λ=λ(0).

and denote Z0 and Z1 to be restrictions of Ẑt to the time intervals [−1, 0] and [1, 2] correspondingly, so that

Ẑt =


Z0, if t < 0,

Zt, t ∈ [0, 1],

Z1, if t > 1.

It is worth noting that Z0 and Z1 are constant, since btû(λ) is linear in u0 and u1 for t ∈ [0, 1]c. Finally we can
define the quadratic form

Ht =
∂2b̂tû
∂û2

∣∣∣∣∣
û=ũ

.

Note that since btû is linear in the control parameters for t ∈ [−1, 0]∪ [1, 2], we have Ht ≡ 0 on the two intervals.
Recall that Π := Πλ0 denotes the vertical subspace, namely the tangent space to fibre T ∗qM described in

equation (50). With the notation set above, the kernel of the differential of the endpoint mapping and the
second variation are:

ker dũE =

{
v̂ ∈ RdimN0 ⊕ L∞([0, 1],Rk)⊕ RdimN1 :

∫ 2

−1

Ẑtv̂(t)dt ∈ Π

}
, (34)

Q(v̂, ŵ) =

∫ 2

−1

[
−Ht(v̂(t), ŵ(t))−

∫ t

−1

σ(Ẑτ v̂(τ), Ẑtŵ(t))dτ
]
dt, (35)

where v̂, ŵ ∈ ker dũE. We can expand the expressions for the first and second variations knowing the particular
form of Ẑt. We split the integrals into three integrals over the intervals [−1, 0], [0, 1] and [1, 2] and simplify the
integrands using the skew-symmetry of σ:

They read as:

ker dũE =

{
v ∈ L∞[0, 1], vi ∈ RdimNi :

∫ 1

0

Ztv(t)dt+ Z0v0 + Z1v1 ∈ Π

}
, (36)

Q(v̂, ŵ) =

∫ 1

0

[
−Ht(v(t), w(t))−σ

(
Z0v0 +

∫ t

0

Zτv(τ), Ztw(t)

)
dτ
]
dt−σ

(
Z0v0 +

∫ 1

0

Ztv(t)dt, Z1w1

)
, (37)

where we have used the fact that Ẑt is constant for t ∈ [0, 1]c and its image lies in a Lagrangian subspace, and
hence σ(Ẑtv̂(t), Ẑτ ŵ(τ)) = 0 for all τ, t ∈ [−1, 0], all τ, t ∈ [1, 2] and any variations v̂, ŵ ∈ ker dũE.

We finish the discussion of the first and second variations with an important observation concerning Zivi,
i = 0, 1.

Lemma 4. For any v0 ∈ Rdim(N0) Z0v0 is tangent to A(N0) . Similarly, for any v1 ∈ Rdim(N1), Φ∗Z1v1 is
tangent to A(N1).

Proof. By PMP the initial (and final) covector annihilates N0 (resp. N1).
Recall that f0i generate the tangent space to N0 close to q0. We define the Hamiltonians

li(λ) = 〈λ, f0i〉, i = 1, . . . ,dimN0.

Then A(N0) can be equivalently described as the common part of the zero locus of li:

A(N0) = {λ ∈ T ∗M : π(λ) ∈ N0, li(λ) = 0, i = 1, . . . ,dimN0}.

But then by the definition of a Hamiltonian vector field

dλ(0)li(Z0v0) = dλ(0)li(~h0v0) = σλ(0)(~h0v0,~li) = 〈λ(0), [f0v0, f0i]〉 = 0,

where the last equality is due to involutivity of the family f0v0.
Similarly, one has that Φ∗Z1u1 is always tangent to the image of A(N1).
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3.3 Jacobi equation and second variation

Set V = ker dũE. Inside V we consider the following subspace

V0 = {v̂ ∈ V : v0 = 0, v1 = 0} . (38)

V0 corresponds to the tangent space of the manifold of variations that fix the end-points q0 and q1 of an extremal
curve γ. Hence Q|V0 is the second variation of the optimal control problem with fixed end-points and there exist
efficient ways of computing the index of this quadratic forms using generalisations of classical Jacobi fields [11,
Section 21]. Our goal is to compute the difference

indQ− indQ|V0

in terms of geometric objects on the manifold M , which will result in formula (16) when N = N0 × N1. The
main tool for computing the difference of indices is the following folklore lemma.

Lemma 5. Suppose that Q is a continuous quadratic form on a Hilbert space H. Then, for any subspace V of
finite codimension it holds:

indQ = indQ|V + indQ|V ⊥Q + dim
(
V ∩ V ⊥Q/(V ∩ kerQ)

)
. (39)

We will take V as Hilbert space and the second variation as Q. Thus

V⊥Q0 = {v̂ ∈ V : Q(v̂, ŵ) = 0,∀ŵ ∈ V0},

and the kernel of Q on V is
kerQ = {v̂ ∈ V : Q(v̂, ŵ) = 0,∀ŵ ∈ V}.

Now, we reformulate each term appearing in (39) as a boundary value problem for a differential equation
on Tλ0T

∗M . For t ∈ [0, 1], let Ht and Zt be the matrices appearing in equations (34) and (35). Jacobi equation
(see [11, Theorem 21.1]) is the following linear system:

η̇(t) = ZtH
−1
t σ(Zt·, η(t)), η(t) ∈ Tλ(0)T

∗M. (40)

Proposition 4. Consider system (40). To any solution η satisfying

π∗η(0) ∈ Tq0N0, π∗η(1) ∈ (π ◦ P−1
ũ )∗(Tq1A(N1)),

we can associate an element v ∈ V⊥Q0 . This correspondence is unique modulo solutions satisfying η(0), η(1) ∈ Π
and η̇ = 0. Moreover:

(i) elements in V0 ∩ V
⊥Q
0 correspond to solutions of (40) satisfying the boundary conditions:

η(0) ∈ Π, η(1) ∈ Π;

(ii) elements of kerQ ∩ V0 correspond to solutions satisfying the boundary conditions:

η(0) ∈ Π ∩ Tλ(0)A(N0), η(1) ∈ Π ∩ Tλ(0)Φ
−1
1 (A(N1));

(iii) elements in kerQ correspond to solutions of (40) satisfying the boundary conditions:

η(0) ∈ Tλ(0)A(N0), η(1) ∈ Tλ(0)Φ
−1
1 (A(N1)).

Proof. By definition, the subspace V0 is the set of infinitesimal variations v̂ = (v0, v, v1) such that
∫ 1

0
Ztv(t)dt ∈

Π and v0 = 0, v1 = 0. Moreover, since Π is a Lagrangian subspace∫ 1

0

Ztv(t)dt ∈ Π ⇐⇒ σ

(∫ 1

0

Ztv(t)dt, ν

)
= 0, ∀ ν ∈ Π

and so:

v̂ ∈ V⊥Q0 ⇐⇒ Q(v̂, ŵ) = 0, ∀ ŵ ∈ V0

⇐⇒ Q(v̂, ŵ) =

∫ 2

−1

σ(ν, Ẑtŵ(t))dt, ∀ν ∈ Π,∀ ŵ ∈ V0.
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Using the explicit formula for Q given in (37), we have that ∃ ν ∈ Π such that, for almost every t ∈ [0, 1]:

Ht(v(t), ·) + σ

(∫ t

0

Zτv(τ)dτ + Z0v0, Zt·
)

= σ(Zt·, ν).

By the strong Legendre condition Ht is invertible. This allows us to solve the equation for the variation v and
obtain

v(t) = H−1
t σ

(
Zt·,

∫ t

0

Zτv(τ)dτ + Z0v0 + ν

)
. (41)

Set

η(t) =

∫ t

0

Zτv(τ)dτ + Z0v0 + ν. (42)

Differentiating η and plugging in the expression for the variation v above, shows that η satisfies the following
equation for almost all t ∈ [0, 1]:

η̇(t) = ZtH
−1
t σ(Zt·, η(t)).

Using the definition of Z0 and Lemma 4 we find that η(t) satisfies (40) with π∗η(0) ∈ Tq0N0. Boundary
conditions at t = 1 follow from the fact that v̂ ∈ V. In fact, equation (36) implies that there exists ξ ∈ Π such
that:

η(1) =

∫ 1

0

Zτv(τ)dτ + Z0v0 + ν = ξ + ν − Z1v1.

Thus a variation v̂ ∈ V⊥Q0 determines a function η : [0, 1] → Tλ(0)(T
∗M) which solves the following boundary

value problem {
η̇(t) = ZtH

−1
t σ(Zt·, η(t)),

π∗η(0) ∈ Tq0N0, π∗η(1) ∈ π∗(Tλ(0)Φ
−1
1 A(N1)).

(43)

Notice that the second space appearing as boundary condition is the image of the tangent space of N1 at q1

through the differential of flow generated by the optimal control ũ. From (43) we can compute the dimension

of V0 ∩ V
⊥Q
0 . If we substitute vi = 0 in the above equations, we get solutions starting from Π and arriving to

Π. Since the Jacobi equation derived above is exactly the same as the Jacobi equation for problem with fixed

points, we immediately see that dim(V0 ∩ V
⊥Q
0 ) is the multiplicity of the point q1 as conjugate point.

In a similar fashion we can compute the dimension of kerQ ∩ V0 We have

kerQ ∩ V0 = {v̂ ∈ V0 : Q(v̂, ŵ) = 0, ∀ŵ ∈ V}.

Using the same argument as above we find that for every ν ∈ Π
0 = σ(Z0·, ν)

Q(v, ·) = σ(Zt·, ν)

σ
(∫ 1

0
Ztv(t)dt, Z1·

)
= σ(Z1·, ν)

The second equation tells us that we are dealing with a solution of equation (43). The first equality gives us a
condition on ν and consequently on η(0), while the third condition give us a condition for η(1). Namely:

η(0) ∈ Π ∩ Tλ(0)A(N0), η(1) ∈ Π ∩ Tλ(0)(Φ
−1
1 A(N0)).

This settles points (i) and (ii). Point (iii) follows similarly.

Up until now, we have built linear maps from V⊥Q0 , kerQ,V⊥Q0 ∩ V0 and V⊥Q0 ∩ kerQ to suitable subspaces
of solution of (40). Now we have to prove that these correspondences are actually bijections. Let us prove
injectivity. Suppose that v̂ is mapped to the zero solution of equation (40). It follows, by the injectivity of Z0

and Z1 that v0 and v1 are both zero. Moreover η̇(t) = Ztv(t) = 0 and consequently, by definition of V⊥Q0 ,

0 = Q(v̂, ŵ) =

∫ 1

0

Ht(v(t), w(t))dt, ∀ŵ ∈ V.

In particular Ht(v(t), v(t)) = 0 for almost every t ∈ [0, 1]. But then by the strong Legendre condition v = 0 and
thus v̂ = 0.

Now we try to invert the correspondence control-solution. Suppose that η(t) is a solution of equation (43).
We can define a function v(t) using (41), namely:

v(t) := H−1
t σ(Zt., η(t)).
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The initial and final boundary conditions of equation (43) implies that there are unique v0 and v1 such that

η(0)−Z0v0 and η(1)−Z1v1. Set ξ(t) =
∫ t

0
Zτvτ+Z0u0+ν for ν ∈ Π. Differentiating the function η(t)−ξ(t) yields

that ν is determined up to constant solutions starting from the fibre. Hence the correspondence solution-control
is injective if and only if there are no constant solutions in the fibre.

As before, let Ψ be the differential of the Hamiltonian flow given in equation (15) and Γ(Ψ) the graph of Ψ.

Remark 7. It can be shown that (40) is closely related to the linearisation of the extremal flow along the fixed
extremal λ we are considering, see for example [12]. It is the linearisation at λ(0) of the Hamiltonian flow of
btũ(λ) = (H −hũ(t)) ◦Φt(λ) which coincides with the linearisation of (Φt)

−1 ◦ etH . Let us denote by ΘJ the flow
of the Jacobi equation (40) at time one and let

Γ(ΘJ) = {(η(0), η(1)) : η(0) ∈ Tλ(0)(T
∗M)} ⊂ Tλ(0)(T

∗M)× Tλ(0)(T
∗M)

be its graph. Then in this notation
Γ(Ψ) = (I × Φ1)∗Γ(ΘJ).

We can now compute the restriction of Q to V⊥Q0 and prove the following result.

Proposition 5. Let Q be the quadratic form of second variation for the problem (29)-(31) and V0 be the subspace
of variations defined in (38). Then

ind−Q = ind−Q|V0 + i
(
Π2
λ,Γ(Ψ), TλA(N)

)
+ dim(Γ(Ψ) ∩Π2

λ)− dim(Γ(Ψ) ∩Π2
λ ∩ TλA(N))

Moreover, the Maslov index of the triple can be replaced by i
(
(Π2

λ)W ,Γ(Ψ)W , TλA(N)W
)

where W = TλA(N)∩
Π2
λ and the superscript means everything is computed on the space reduced by W .

Proof. In view of Proposition 4 and Remark 7 it only remains to prove that

ind−Q
V
⊥Q
0

= i
(
Π2
λ,Γ(Ψ), TλA(N)

)
.

Since (v0, v, v1) ∈ V⊥Q0 , we have that:∫ 1

0

[
Ht(v, w) + σ

(
Z0v0 +

∫ t

0

Zτv(τ)dτ, Ztw(t)

)]
dt = σ

(∫ 1

0

Ztw(t)dt, ν

)
, ∀w ∈ L2[0, 1],∀ν ∈ Π,

Z0v0 + Z1v1 +

∫ 1

0

Ztv(t)dt = ξ ∈ Π.

Combining these expressions with (37) gives us:

Q(v̂) = −σ
(
Z0v0 +

∫ 1

0

Ztv(t)dt, Z1v1

)
− σ

(∫ 1

0

Ztv(t)dt, ν

)
= −σ(ξ, Z1v1) + σ(Z1v1 + Z0v0, ν)

= −σ(ν, Z0v0) + σ(ξ + ν,−Z1v1)

(44)

From (42) follows that:

η(0) = ν + Z0v0 η(1) = ν + Z0v0 +

∫ 1

0

Ztv(t)dt = ν + ξ − Z1v1.

Hence the restriction of Q to V⊥Q0 coincides with the quadratic form

m
(
Π2,Γ(ΘJ), Tλ(0)A(N0)× Tλ(0)(Φ

−1
1 A(N1))

)
.

Note that Z0v0 do not span the whole Tλ(0)A(N0) and correspondingly Z1v1 does not span Tλ(0)(Φ
−1
t A(N1)).

Nevertheless we obtain the correct Maslov form. In fact, the map Z0 : Rk → Tλ(0)A(N0) is injective and its
image is transversal to Π ∩ Tλ(0)A(N0) (and the same is true for the Z1). Hence imZ0 + Π = Tλ(0)A(N0) + Π

(and similarly for Z1). Moreover, we can either reduce by W = Π∩Tλ(0)A(N0)⊕Π∩Tλ(0)(Φ
−1
t A(N1)) or work

on the original space. The index is the same since W ⊆ kerm.
We now apply the map I × (Φ1)∗ to each Lagrangian space inside the Maslov index of the triple above. By

Remark 7 and invariance with respect to symplectomorphism we get

i
(
Π2,Γ(ΘJ), Tλ(0)A(N0)× Tλ(0)(Φ

−1
1 A(N1))

)
= i
(
Π2
λ,Γ(Ψ), TλA(N)

)
.
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3.4 Proof of Theorem 1

Before proving the general formula, we prove a corollary of Proposition 5. Assume that we have an optimal
control problem (7)-(8) and two sets of possible boundary conditions:

(q(0), q(1)) ∈ N0 ×N1 =: N

and
(q(0), q(1)) ∈ Ñ0 × Ñ1 =: Ñ .

and assume that a curve λ : [0, 1] → TM is an extremal for both problems. This amounts to say that λ is
a solution of the Hamiltonian system of PMP and satisfies the transversality conditions for both boundary
conditions at the same time, i.e. λi annihilates the sum TλiNi + TλiÑi. A relevant example to keep in mind is
when N ⊂ Ñ . In this case if λ satisfies the transversality conditions for Ñ , then it automatically satisfies the
transversality conditions for N .

Consider the two second variations QN and QÑ , corresponding to the two optimal control problems with
boundary conditions like above. We apply Proposition 5 to express the difference between the Morse indices of
those two quadratic forms.

Corollary 1. Using the notations just introduced, the following formula holds:

ind−QÑ − ind−QN = i
(
TλA(N),Γ(Ψ), TλA(Ñ)

)
+ dim(Γ(Ψ) ∩ TλA(N))+

− dim(Γ(Ψ) ∩ TλA(N) ∩ TλA(Ñ)) + dim(Tπ(λ)N ∩ Tπ(λ)Ñ)− dimTπ(λ)N. (45)

Proof. Apply Proposition 5 to get an expression for ind−QÑ and ind−QN . Subtracting them gives

ind−QÑ − ind−QN = i
(
Π2
λ,Γ(Ψ), TλA(Ñ)

)
− i
(
Πλ,Γ(Ψ), TλA(N)

)
+

+ dim(Γ(Ψ) ∩Πλ ∩ TλA(N))− dim(Γ(Ψ) ∩Πλ ∩ TλA(Ñ))

Apply formula (55) with L0 = Π2
λ, L1 = Γ(Ψ), L2 = TλA(Ñ) and L3 = TλA(N). After cancellations this results

in

ind−QÑ − ind−QN = i
(
Γ(Ψ), TλA(Ñ), TλA(N)

)
− i
(
Π2
λ, TλA(Ñ), TλA(N)

)
+

+ dim(Γ(Ψ) ∩ TλA(N))− dim(Γ(Ψ) ∩ TλA(N) ∩ TλA(Ñ))−
− dim(Π2

λ ∩ TλA(Ñ)) + dim(Π2
λ ∩ TλA(N) ∩ TλA(Ñ)).

We simplify the terms different to dim(Γ(Ψ) ∩ TλA(N)), dim(Γ(Ψ) ∩ TλA(N) ∩ TλA(Ñ)), which appear in the
formula in the statement.

By formula (56) it follows

i
(
Γ(Ψ), TλA(Ñ), TλA(N)

)
= i
(
TλA(N),Γ(Ψ), TλA(Ñ)

)
.

By lemma 7 we have
i
(
Π2
λ, TλA(Ñ), TλA(N)

)
= i
(
TλA(N),Π2

λ, TλA(Ñ)
)

= 0.

Finally, straight from the definition of an annihilator, it follows that

dim(Π2
λ ∩ TλA(Ñ)) = 2 dimM − dimTπ(λ)Ñ

and

dim(Π2
λ ∩ TλA(N) ∩ TλA(Ñ)) = 2 dimM − dimTπ(λ)Ñ − dimTπ(λ)N + dim(Tπ(λ)N ∩ Tπ(λ)Ñ).

Combining all of the above results in formula (45).

Remark 8. Notice that if N = {q0} × {q1} we obtain exactly the formula from Proposition 4, as expected.
Another necessary remark is that formula (45) might seem asymmetric at first. We expect, that if we ex-
change N and Ñ , then the resulting right-hand side will change sign. This is not entirely obvious just from
the expression itself. However, this is indeed the case. The difference between i

(
TλA(N),Γ(Ψ), TλA(Ñ)

)
and

i
(
TλA(Ñ),Γ(Ψ), TλA(N)

)
is not zero, but an expression involving dimensions of intersections of various sub-

spaces as can be seen from formula (55).

Now we are ready to prove Theorem 1. We will reduce the case of general boundary conditions (q0, q1) ∈
N ⊆M ×M to the case with separated boundary conditions by introducing extra dummy variables.
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Proof of Theorem 1. Consider optimal control problem (7)-(9). We can lift it to an optimal problem on M ×M
by considering a new control system: {

ẋ = 0,

q̇ = f tu(t)(q),
(46)

with boundary conditions
(x(0), q(0), x(1), q(1)) ∈ ∆×N ⊂M4. (47)

There is a one-to-one correspondence between admissible curves of (7)-(9) and admissible curves of (46)-(47).
For this reason we can consider admissible curves (46)-(47) which minimize the functional (9). The Hamiltonian
system of PMP is then given by {

µ̇ = 0,

λ̇ = ~Ht(λ),
λ, µ ∈ T ∗M

and its flow is given by I ×Ψt.
We can now apply directly Corollary 1 to the boundary conditions ∆ × Ñ and ∆ × N . In order to see

that everything indeed reduces to formula (16), we show how to rewrite each term of (45), without writing
explicitly the lengthy formula here. Let us go term by term starting from the ones involving dimensions. Let
λ = (−λ(0), λ(0),−λ(0), λ(1)), initial and final point of the extremal lift. We have

dim
(
Tπ(λ)(∆×N) ∩ Tπ(λ)(∆× Ñ)

)
− dim

(
Tπ(λ)(∆×N)

)
=

= dimTπ(λ)∆ + dim(Tπ(λ)N ∩ Tπ(λ)Ñ)− dimTπ(λ)∆− dimTπ(λ)N = dim(Tπ(λ)N ∩ Tπ(λ)Ñ)− dimTπ(λ)N.

We wish to work on the same symplectic space Tλ0
T ∗M . Thus we perform the following change of coordinates

S : (λ, η) 7→ (−λ, η) on T ∗M . This changes the sign of the symplectic form: we will work with (−σ) ⊕ σ.
Moreover, this change of coordinates maps

A(N) = {(λ0, λ1) : 〈λ0, X0〉+ 〈λ1, X1〉 = 0,∀(X0, X1) ∈ TN}

to the submanifold:
SA(N) = {(λ0, λ1) : 〈λ0, X0〉 = 〈λ1, X1〉,∀(X0, X1) ∈ TN},

we will have to use the latter in the formulas.
Let us write down explicitly each individual subspace entering the formula.

TλSA(∆×N) = {(ξ, ξ, ν1, ν2) : ξ ∈ Σ, (ν1, ν2) ∈ TλSA(N)},
TλSA(∆× Ñ) = {(ξ̃, ξ̃, ν̃1, ν̃2) : ξ̃ ∈ Σ, (ν̃1, ν̃2) ∈ TλSA(Ñ)}, (48)

Γ(I ×Ψ) = {(η1, η2, η1,Ψη2) : η1, η2 ∈ Σ}.

Notice that we used that {(Sξ, Sξ) : ξ ∈ Tλ(0)T
∗M} = Γ(I) in the last identification. From the expressions

in (48) it follows directly that

dim(Γ(I ×Ψ) ∩ TλA(∆×N)) = dim(Γ(Ψ) ∩ TλA(N))

dim(Γ(I ×Ψ) ∩ TλA(∆×N) ∩ TλA(∆× Ñ)) = dim(Γ(Ψ) ∩ TλA(N) ∩ TλA(Ñ)).

In order to simplify the Maslov index term, we note that the intersection of annihilators contains the following
isotropic subspace

W = {(ξ, ξ, 0, 0) : ξ ∈ Tλ(0)T
∗M}.

We can thus perform a reduction to the space W⊥/W . We have

W⊥ = {(ζ, ζ, ξ, η) : ζ, ξ ∈ Tλ(0)T
∗M,η ∈ Tλ(1)T

∗M}.

Thus we can identify W⊥/W with the image of the projection

π1 :
(
Tλ(0)T

∗M
)3 ⊕ Tλ(1)T

∗M → Tλ(0)T
∗M ⊕ Tλ(1)T

∗M

to the symplectic space (Tλ(0)T
∗M⊕Tλ(1)T

∗M, (−σλ(0))⊕σλ(1)). Let us consider the space (W⊥+W )∩Γ(I×Θ),
it is straightforward to check that it projects to {(η,Ψη) : η ∈ Σ}. Hence:

i
(
TλSA(∆×N),Γ(I ×Ψ), TλSA(∆× Ñ)

)
= i
(
TλSA(N),Γ(Ψ), TλSA(Ñ)

)
.
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A Appendix

A.1 Symplectic geometry

A symplectic vector space is a finite dimensional vector space Σ with a non degenerate skew-symmetric bilinear
form σ (the symplectic form). A symplectic manifold M , is a manifold whose tangent space TM is endowed
with a symplectic structure at each point (i.e M together with a closed non degenerate 2−form).

Cotangent spaces of smooth manifolds are always endowed with a symplectic structure which is given by the
so called tautological form. Call π : T ∗M →M the canonical projection. Take λ ∈ T ∗M and define the 1−form
sλ(X) = λ(π∗X). One can check that ds is non degenerate and thus (T ∗M,ds) is a symplectic manifold. The
2−form σ = ds on T ∗M is called the canonical symplectic form.

A linear map Ψ between symplectic vector spaces (Σ1, σ1)→ (Σ2, σ2) is called a (linear) symplectomorphism
if Ψ∗σ2 = σ1. A diffeomorphism is a symplectomorphism if its differential is a linear symplectomorphism.

A natural way to obtain diffeomorphisms is trough flows. Given a (complete) vector field X one obtains a
family of diffeomorphisms Φt by solving the ODE system

Φ̇t = X(Φt),

Φ0 = Id.

In a similar way one can produce symplectomorphisms using special classes of vector fields: Hamiltonian and
symplectic fields. A vector field X, is Hamiltonian if there is a smooth function H such that dH(Y ) = σ(Y,X)

for all smooth vector fields Y . H is called Hamiltonian function and X is often denoted by ~H. A vector field
for which we can find a Hamiltonian only locally, i.e. in a neighbourhood of every point, is called symplectic.
The flow of Hamiltonian and symplectic vector fields is always a one parameter group of symplectomorphisms.

Given a subspace W of a symplectic vector space Σ, we can define its skew-orthogonal complement W⊥

using the symplectic form.
W⊥ = {u ∈ Σ : σ(u,w) = 0, ∀w ∈W}.

Since the symplectic form is non degenerate, dim(W ) + dim(W⊥) = dim(Σ) and (V +W )⊥ = V ⊥ ∩W⊥.
Inside a symplectic vector space we distinguish the following classes of subspaces:

� Isotropic V such that σ(v, w) = 0, ∀u, v ∈ V , i.e. V ⊆ V ⊥;

� Lagrangian V isotropic and maximal, i.e. V = V ⊥;

� Coisotropic V such that V ⊥ ⊆ V .

Lagrange subspaces are extremely important in symplectic geometry, their collection is a compact manifold
called Lagrange Grassmannian. It is denoted by

Lag(Σ) = {V ⊆ Σ : V = V ⊥}.

If dim(Σ) = 2n its dimension is n(n+ 1)/2.
The following examples of Lagrangian subspaces are often considered:

Example 1. If Ψ is a linear symplectomorphism then the graph of Ψ is a subspace of the product space Σ0

⊕
Σ1.

The product space can be endowed with a symplectic structure considering (−σ0)⊕ σ1. Graphs of symplecto-
morphisms are always Lagrangian subspaces with this choice.

Example 2. If N ⊆ M is a submanifold of a smooth manifold then we can always consider the following
submanifold of the cotangent bundle T ∗M :

A(N) := {λ ∈ T ∗M : π(λ) ∈ N,λ(X) = 0, ∀X ∈ Tπ(λ)N}. (49)

The tangent space to the annihilator at a point λ is a Lagrangian subspace of Tλ(T ∗M), which means that
A(N) is a Lagrangian submanifold.

If M is a product space i.e. M = M0×M1, the annihilator of a submanifold N is a Lagrangian submanifold
only with respect to σ0 ⊕ σ1, which coincides with the canonical symplectic form on T ∗(M0 ×M1).

To get a Lagrangian submanifold of (T ∗M0 ⊕ T ∗M1, (−σ0)⊕ σ1) one has to change the sign to the first or
the second covector and thus consider the submanifold A(N) defined in (11). Notice that this distinction is
unnecessary when N itself is a product, i.e. when N = N0 ×N1.

Example 3. A particular instance of the example above is the vertical fibre i.e. the tangent space to T ∗qM . This
space can be characterized as the annihilator of the point q or as the kernel of the natural projection, kerπ∗:

Πλ = {ξ ∈ Tλ(T ∗M) : π∗(ξ) = 0}. (50)
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Example 4. Consider as symplectic space R2n = {x = (p, q) : p, q ∈ Rn} with the canonical symplectic form
σ(x, x′) = 〈p, q′〉 − 〈q, p′〉. Using the Euclidean scalar product we can represent σ as:

σ(x, x′) = 〈Jx, x′〉 where J =

(
0 −1
1 0

)
(51)

The two subspaces B = {p = 0} and Π = {q = 0} are Lagrangian and any subspace of the form VS = {(q, Sq)}
and V ′S = {(Sp, p)} is Lagrangian provided that S = S∗.

It turns out that if we take two transversal Lagrangian subspaces L0 and L2 there always exists a choice
of basis, for which L0 is B and L2 is Π, and such that the symplectic form σ has the canonical form as in
equation (51) (see [26, Theorem 1.15]). These coordinates are sometimes called Darboux or symplectic.

Using these coordinates we can build charts for the Lagrange Grassmannian Lag(Σ). The map S 7→ VS
from the space of symmetric matrices to Lag(Σ) maps onto the set of planes transversal to Π (see for example
[26] for details).

A.2 Intersection index of Lagrangian subspaces

It is well known that the all pairs of transversal Lagrangian subspaces can be mapped to each other with a
linear symplectomorphism [26, Theorem 1.15]. This is no longer true for a triple of Lagrangian subspaces.

Definition 1 (Maslov index). Take three Lagrangian subspaces L0, L1, L2. Consider the isotropic subspace
L′1 := L1 ∩ (L0 +L2), if l1 ∈ L′1 then l1 = l0 + l2 with li ∈ Li. The following quadratic form is called the Maslov
form of the triple (L0, L1, L2):

m(l′1) = σ(l0, l2).

By a slight abuse of notation we will also write m(L0, L1, L2) instead of just m when we want to be explicit
about which Lagrangian subspaces are used.

The numbers ind+m, ind−m and sgm and dim kerm are invariants of the triple (L0, L1, L2). The Kashiwara
index is the signature of the Maslov form:

τ(L0, L1, L2) = sgm = ind+m− ind−m.

The negative Maslov index is defined as

i
(
L0, L1, L2

)
= ind−m.

Example 5. Suppose L0 and L2 are transversal. We can identify the symplectic space with the standard one
(R2n, σ) as given in equation (51). Since any couple of Lagrangian subspaces can be mapped into each other,
we can find a symplectomorphism which simultaneously maps L0 to B and L2 to Π.

Any L1 can be represented as L1 = {Aq+Cp = 0, q ∈ B, p ∈ Π} where AC∗ = CA∗ and rank[A,C] = n. If
A or C is invertible then the matrix expression of the Maslov form is given by −A−1C or C−1A respectively,
which have the same signature of ∓AC∗.

The Kashiwara index and the Maslov index have the following properties:

� Alternating τ(Ls(0), Ls(1), Ls(2)) = (−1)sg(s)τ(L0, L1, L2), where s is a permutation.

� Cocycle property [26, Theorem 1.32]

τ(L0, L1, L2)− τ(L1, L2, L3) + τ(L0, L2, L3)− τ(L0, L1, L3) = 0. (52)

� Relation between the negative index [7, Lemma 5]

τ(L0, L1, L2) = −2 i(L0, L1, L2) + dim(L1 ∩ (L0 + L2))− dim kerm

= −2 i(L0, L1, L2) + n− dim(L0 ∩ L2)− dim(L0 ∩ L1)

− dim(L1 ∩ L2) + 2 dim(L0 ∩ L1 ∩ L2).

(53)

� Symplectic reduction If V ⊆ L0 ∩ L2 is an isotropic subspace we can consider LV := (L ∩ V ⊥ + V )/V
which is a Lagrangian subspace of the reduced space. It holds that:

i
(
L0, L1, L2

)
= i
(
LV0 , L

V
1 , L

V
2

)
(54)

The Maslov index satisfies only a generic cocycle property. The next lemma will be used in the proof of
Theorem 1 and shows that the defect of being a cocycle is measured by the intersections of the four Lagrangian
subspaces one considers.
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Lemma 6. The following formulas hold:

3∑
i=0

(−1)i+1i
(
L0, . . . , L̂i, . . . L3

)
= dim(L1 ∩ L3)− dim(L0 ∩ L2)+

+

3∑
i=0

(−1)i+1 dim(L0 ∩ · · · ∩ L̂i ∩ · · · ∩ L3).

(55)

i
(
L0, L1, L2

)
= i
(
L1, L2, L0

)
= i
(
L2, L0, L1

)
. (56)

Proof. The proof is just a computation using equations (52) and (53). First apply (53) to express the index in
terms of the signature and the dimensions of some intersections. Then use (52) to cancel the signature part.

The dimensions of the intersections of couple of subspaces, after the summation, give the following contri-
bution:

2
(

dim(L1 ∩ L3)− dim(L0 ∩ L2)
)
.

The triple intersection do not simplify and thus their coboundary appears. Sometimes it is useful to think
of this remainder as the difference of the dimensions of two quotient spaces. L1 ∩L3 in which we factor out the
space L1 ∩ L3 ∩ L0 + L1 ∩ L3 ∩ L0 and L0 ∩ L2 quotient by L0 ∩ L2 ∩ L1 + L0 ∩ L2 ∩ L3.

Finally (56) follows from (55) choosing L3 = L0.

The following lemma will be used in the sequel.

Lemma 7. Given the standard symplectic structure (Σ, σ) = (Tλ(T ∗M), dsλ) and three submanifolds N0, N1, N2 ⊂
M . Assume that λ ∈ A(N0) ∩A(N1) ∩A(N2) and N1 ⊆ N0 (or N1 ⊆ N2) , then the following formula holds

m
(
TλA(N0), TλA(N1), TλA(N2)

)
≡ 0.

Moreover if M = M ′ ×M ′, T ∗M is endowed with the form (−σ′) ⊕ σ′ and A(Ni) are defined as in equa-
tion (11), the same is true.

Proof. Let L0 = TλA(N0), L1 = TλA(N1) and L2 = TλA(N2). Fix some coordinates in a neighbourhood of λ
such that dsλ is the standard form on R2n ' Tλ(T ∗M). The subspace L0 + L2 is the space:(

ν0

X0

)
+

(
ν2

X2

)
, Xi ∈ Tπ(λ)Ni, νi(Tπ(λ)Ni) = 0,

for i = 0, 2. Since the sum above should lie in L1 ∩ (L0 + L2), we have that X0 + X2 = X1 ∈ Tπ(λ)N1 and
ν0 + ν2 = ν1, with ν1 such that ν1(Tπ(λ)N1) = 0. If we compute now the Maslov form, we get:〈

J

(
ν0

X0

)
,

(
ν2

X2

)〉
= 〈ν0, X2〉 − 〈ν2, X0〉.

Suppose without loss of generality that N1 ⊆ N0. The equation X0 + X2 = X1 implies that X2 = X1 −X0 ∈
Tπ(λ)N0 and thus 〈ν0, X2〉 = 0. Therefore the quadratic form is the zero form since:

〈ν2, X0〉 = 〈ν2, X0 +X2〉 = 〈ν2 + ν0, X0 +X2〉 = 〈ν1, X1〉 = 0.

For the second part, we work on the cotangent bundle of M = M ′ ×M ′ which is isomorphic to T ∗M ′ × T ∗M ′.
Label the coordinates as (λ0, λ1), call the standard form on T ∗M ′, σ′ and consider the following diffeomorphism:

S : (λ0, λ1) 7→ (−λ0, λ1).

It is straightforward to check that S∗(σ′ ⊕ σ′) = (−σ′)⊕ σ′ and S maps A(Ni) as given in equation (49) to the
corresponding A(Ni) as given by equation (11). Since Maslov index is invariant with respect to the action of
symplectomorphisms, the statement follows.
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A.3 Hermitian Maslov index

In the proof of Iteration Formulae it will be convenient to introduce complex coefficients and work on C2n.
Maslov form extends to this setting in the obvious way. Consider the complex version of the symplectic form:

σC(X,Y ) = σ(X̄, Y ), X, Y ∈ C2n.

If V is Lagrangian as a real vector space, then V ⊗ C is Lagrangian with respect to the new symplectic form.
If we take three Lagrangian subspaces the Maslov form is still well defined. Suppose that λ1 ∈ L1 ∩ (L0 + L2):

m(λ1) = σC(λ0, λ2) = σ(λ̄0, λ2).

Lemma 8. The Maslov form is a Hermitian form.

Proof. Notice that m(λ1) = σ(λ0, λ̄2) = m(λ̄1). We have to show that m(λ1) = m(λ̄1) but this follows from
the fact the subspaces are Lagrangian.

m(λ1)−m(λ̄1) = σ(λ̄0, λ2)− σ(λ0, λ̄2) = σ(λ̄0 + λ̄2, λ2)− σ(λ0, λ̄2 + λ̄0)

= σ(λ̄1, λ2)− σ(λ0, λ̄1) = σ(λ̄1, λ1) = 0.

This means that the quadratic form is real and thus m is Hermitian.

Thus the eigenvalues of m are real and the index and the signature is well defined exactly as in the real case.
Here we list some of the properties of the σC and complex Lagrange subspaces:

� Darboux basis Since σC is non degenerate, every time two Lagrangian subspaces L0, L1 are considered,
there exists a basis in which σC has the standard form.

� Grassmannian of Lagrangian subspaces In the real case the Lagrange Grassmannian is a homogeneous
space diffeomorphic to U(n)/O(n). It turns out that the complex one is diffeomorphic to U(n) (and thus
still real as a manifold). We can diagonalize the symplectic form obtaining:

1

2

(
i −1
1 −i

)(
0 −1
1 0

)(
−i 1
−1 i

)
=

(
i 0
0 −i

)
.

Thus we have two subspaces on which σC is non degenerate, the eigenspace Vi relative to i and V−i, the
one relative to −i. It is thus clear that if V is Lagrangian, V must be transversal to both the eigenspaces.
So it can always be represented as a graph of an invertible linear operator from Vi → V−i (or vice versa).
It remains to check what kind of linear maps are allowed. Using again the coordinates in which σC is
diagonal we get:

σC

((
x
Rx

)
,

(
y
Ry

))
= i〈x̄, y〉 − i〈R∗R̄x̄, y〉 = i〈(1−R∗R̄)x̄, y〉.

Since we need this quantity to be zero for any x, y ∈ Cn we get R̄R∗ = 1 and thus R ∈ U(n). It follows
that the complex Grassmannian is diffeomorphic to U(n).

� Atlas for the Lagrange Grassmannian Take two transversal subspaces L0, L1. Using Darboux coor-
dinates, we can build an affine chart as in the real case (compare with example 4). This time though we
consider Hermitian matrices. The subspaces VS = {(x, Sx) : S = S̄∗, x ∈ L0} are Lagrangian subspaces.

� Properties of Kashiwara index The proof of the cocycle property given in [26, Theorem 1.32] works in
the Hermitian case as well since our quadratic forms are all real by Lemma 8. It suffice to substitute the
word symmetric with the word Hermitian. In particular all the properties listed in the previous section
remain true in this setting, with real dimensions replaced by complex ones.
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