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SMOOTH OPTIMAL SYNTHESIS FOR INFINITE HORIZON
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Abstract. We study Hamiltonian systems which generate extremal flows of regular variational prob-
lems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a
system implies the existence of a global smooth optimal synthesis for the infinite horizon problem.
We also show that in the Euclidean case negativity of the generalized curvature is a consequence of
the convexity of the Lagrangian with respect to the pair of arguments. Finally, we give a generic
classification for 1-dimensional problems.
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1. Introduction

Given a smooth n-dimensional manifold M and a smooth function ϕ : TM → R we study the functional

J(γ(·)) =

∞∫
0

ϕ(γ(t), γ̇(t)) dt (1.1)

defined on the Lipschitzian curves γ : [0, +∞) → M such that the integral (1) converges. More precisely, we
assume that an equilibrium point q∞ ∈ M is fixed such that ϕ(q∞, 0) = 0, ∂ϕ

∂q (q∞, 0) = 0, and try to find the
cost

c(q0) = min
{∫ ∞

0

ϕ(γ(t), γ̇(t)) dt : γ(0) = q0, lim
t→∞ γ(t) = q∞

}
. (1.2)

Moreover, we are mainly interested in the characterization of Lagrangians ϕ such that the minimization
problem admits a smooth optimal synthesis according to the following definition:
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Definition 1.1. A smooth optimal synthesis is a smooth vector field V on M such that q∞ is a globally stable
equilibrium of the ordinary differential equation q̇ = V (q) and

c(q) =

∞∫
0

ϕ(γq(t), γ̇q(t)) dt, ∀q ∈ M,

where γ̇q(t) = V (γq(t)), γq(0) = q.

The classical case of quadratic Lagrangians:

ϕ(q, q̇) = 〈Rq̇, q̇〉 + 〈Sq, q〉, q ∈ R
n, q∞ = 0, (1.3)

demonstrates that the problem is somehow natural. Indeed, it is easy to show that problem (1.3) admits a
smooth optimal synthesis (with a linear field V ) if the matrices R and S define positive definite quadratic
forms. On the other hand, if one of these quadratic forms is sign-indefinite, then c(q) is simply not defined for
almost all q ∈ R

n.

Of course, smooth optimal synthesis may exist only on the contractible (i.e. homeomorphic to R
n) manifold.

Nevertheless, we prefer to use intrinsic coordinate free language. The reason is clear: any smooth change of
variables transforms optimal synthesis into optimal synthesis, hence natural conditions for the existence of a
smooth optimal synthesis have to survive smooth changes of variables, in other words, have to be coordinates
free.

In fact, the manifold M often appears as a domain in a bigger manifold or as the universal covering of
a hyperbolic Riemannian manifold. In particular, if the Hessian of ϕ at (q∞, 0) is positive definite, then
the restriction of our problem to a small neighborhood of q∞ admits a smooth optimal synthesis which is
a small perturbation of the synthesis for the corresponding quadratic problem. The main goal of this pa-
per is to find natural intrinsic conditions which guarantee the existence of a global smooth optimal synthesis
for given M .

Any segment of a minimizing path γ(t), t ≥ 0, is automatically a minimizer for the corresponding finite
horizon functional. The extremal paths of the finite horizon problems are described either by the Euler-
Lagrange second order ordinary differential equation on M or by the Hamiltonian system on T ∗M . In the
classical Calculus of Variations, usually the former approach is preferred (see for instance the textbooks [5,6]);
we use the Hamiltonian approach, in the spirit of the Pontryagin Maximum Principle.

Clearly, smooth optimal synthesis should correspond to an n-dimensional stable invariant submanifold of
the Hamiltonian system. Hence we need conditions which guarantee the existence of an appropriate global
invariant submanifold. Moreover, we would like to have conditions which are reduced to the sign conditions for
the quadratic forms defined by the matrices R and S in the case of the quadratic Lagrangian (1.3). To this end,
we use curvature-type invariants of the Hamiltonian systems. Negativity of the curvature plus some standard
growth conditions not only implies the existence of an n-dimensional stable submanifold of the Hamiltonian
system in T ∗M but also guarantees that this submanifold is diffeomorphically projected onto M .

Section 2 contains necessary facts on Hamiltonian systems. The main results are stated and proved in
Section 3. Section 4 is mainly devoted to the case of convex Lagrangians in the Euclidean space. The last
Section 5 contains a generic classification for 1-dimensional problems: a preliminary step towards a more
flexible theory which would allow the curvature to change sign.

The literature devoted to the infinite horizon optimization is vast and we do not plan to observe it here.
Let us only mention a very recent paper [4] on the infinite horizon optimal synthesis in a very general fairly
nonsmooth and even discontinuous setting.
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2. Statement of the problem and preliminaries

2.1. The problem

Let M be a complete Riemannian n-dimensional manifold; we consider problem (1.1), and let us formulate
it as an optimal control problem:

min
q(t)

∫ ∞

0

ϕ(q(t), u(t)) dt, (2.1)

where q : [0, +∞) → M is a Lipschitzian curve such that

q̇ = u, u ∈ TqM,
q(0) = q0

q(t) → q∞ as t → +∞.
(2.2)

We make the following assumptions:
(H1) ϕ is bounded from below and is strongly convex w.r.t. the second variable; moreover, we assume that ϕ

grows superlinearly in the second variable with respect to the given Riemannian metric,
i.e. ϕ(q, u) + c > 0 for some constant c and

|u|
ϕ(q, u) + c

→ 0 as |u| → +∞;

(H2) there is a unique point q∞ ∈ M such that ϕ(q∞, 0) = 0 and ∂ϕ
∂q (q∞, 0) = 0;

(H3) there exist constants a, b > 0 such that for any (q, u)

|∂qϕ(q, u)| ≤ a(ϕ(q, u) + |u|) + b,

where ∂q is the covariant derivative.
Let us recall that the cotangent bundle T ∗M admits a natural symplectic structure, given by the symplectic

form σ, which is defined as σ = dϑ, where for any λ ∈ T ∗M ϑλ := λ ◦ π∗, and π : T ∗M → M is the canonical
projection. A subspace of the tangent space to T ∗M is called Lagrangian if the symplectic form vanishes on
it and if it has the maximal possible dimension compatible with this property, which is dim(T ∗M)/2 (in this
case, n); the set of all Lagrangian subspaces of a vector space is called Lagrange Grassmannian of the vector
space. A submanifold of some symplectic manifold is called Lagrangian if its tangent space at every point is a
Lagrangian subspace. Moreover, if h : T ∗M → R is a smooth function on the cotangent bundle, we can define
the Hamiltonian vector field 	h associated to h through the following relation σz(	h, ·) = −dzh, where dzh is the
differential of the function h at z ∈ T ∗M .

Let us recall moreover that an admissible control is a measurable locally bounded mapping u : t �→ u(t) ∈ TM ;
a pair (q(·), u(·)) such that q̇ = u is called admissible pair. It is well known (see for instance the text book [3])
that we can associate to problem (2.1) a Hamiltonian function hu(λ) = 〈λ, u〉 − ϕ(q, u), where λ ∈ T ∗M ,
and Pontryagin Maximum Principle states that if ũ(t) is an admissible control and q̃(t) the corresponding
solution of Cauchy problem (2.2), then q̃(t) is an optimal trajectory for (2.1) only if there exists a Lipschitzian
curve λ(t) ∈ T ∗

q̃(t)M, 0 ≤ t < +∞, such that

λ̇(t) = 	hũ(t)(λ(t)) (2.3)
hũ(t)(λ(t)) = max

u∈TqM
hu(λ(t)) (2.4)

for almost all t ∈ [0, +∞);

we have that π(λ(t)) = q̃(t) for t ∈ [0, +∞).
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Figure 1. Optimal synthe-
sis for the inverted harmonic
oscillator.
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Figure 2. Optimal synthe-
sis for the pendulum.

We define the maximized Hamiltonian

H(λ) = max
u∈TqM

hu(λ).

Assumptions (H1) and (H3) imply that the Hamiltonian H is smooth and the Hamiltonian field 	H is complete.
Actually, in the following we will only need that the Hamiltonian satisfies these two assumptions (smoothness

and completeness of the vector field); hypotheses (H1) and (H3) are thus assumed to be satisfied in order to
guarantee the required properties.

The vector field 	H defines the Hamiltonian dynamical system on T ∗M given by the equation

λ̇(t) = 	H(λ(t)); (2.5)

we denote with φt the flow generated by the vector field 	H through the equation (2.5). In the following, we will
say that a trajectory of this system is bounded if it has compact closure. Hypothesis (H2) implies that there
exist a point z∞ ∈ T ∗

q∞M which is an equilibrium of the system (2.5).
Since the maximized Hamiltonian H is smooth, it is known that if a Lipschitzian curve λ(t) ∈ T ∗M is a

solution of the Hamiltonian system (2.5), then one can choose and admissible control ũ(t), t ∈ [0, +∞), such
that the pair (λ(t), ũ(t)) satisfies equations (2.3)–(2.4) (see [3]).

The aim of this paper is to find the condition for the existence of a smooth optimal synthesis for the
problem (2.1) focusing on the dynamical properties of the Hamiltonian system (2.5).

Before presenting the technical tools, let us see what happens in two elementary examples with M = R,
q∞ = 0, given by ϕ(q, u) = 1

2u2 + 1
2q2, H(p, q) = 1

2p2 − 1
2q2 (the inverted harmonic oscillator) and ϕ(q, u) =

1
2u2 +1−cos(q), H(p, q) = 1

2p2−1+cos(q) (the pendulum). Here T ∗
R is identified with R

2, so that λ = (p, q) ∈
T ∗

q R; the phase diagrams of these Hamiltonian systems are depicted respectively in Figures 1 and 2.
In the first case, every trajectory is unstable (i.e. goes to infinity) but the ones whose initial points lie on

the bisectrix of the II and the IV quadrant: every semitrajectory arising from these points reaches the origin in
an infinite time; since the projection of the bisectrix on the state axis is a bijection, we can guess that for any
initial q there is a Hamiltonian trajectory that goes to the origin. It is easy to show that actually this trajectory
is the optimal solution of our problem.
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In the second case, we shall distinguish different possibilities. The Hamiltonian trajectories lying on energy
levels with H > 0 are all unstable; for H < 0 the trajectories are closed and do no reach the origin; but for any
initial q0 ∈ (−2π, 2π) there is a trajectory that lies on the level H = 0 and that reaches the origin in an infinite
time, and is an optimal trajectory for the problem under investigation. If |q0| > 2π, the trajectories on the zero
level arising form q0 do not reach the origin, but go to another fixed point of the system, and then cannot be
optimal.

These examples suggest us that the we shall look for the optimal trajectories among the stable trajectories
of the Hamiltonian system (2.5).

2.2. Geometric tools

Here we briefly explain the formalism introduced in [1,2] that permits us to recover a lot of information about
the structure of our Hamiltonian system.

Let t �→ Λ(t) be a smooth curve in the Lagrange Grassmannian of Tz(T ∗M), and let d
dtΛ(t) be the tangent

vector to it; for any τ , we can canonically associate to the tangent vector a quadratic form on Λ(τ) denoted
by Λ̇τ and defined as Λ̇τ (ξ) = σ(λ̇(τ), λ(τ)), where λ(t) is a smooth curve in Tz(T ∗M) such that λ(τ) = ξ,
λ(t) ∈ Λ(t) for any t, and λ̇(t) is its derivative; it can be shown that actually the quadratic form depends only
on d

dtΛ(t)|t=τ . We say that the curve Λ(t) is regular if the quadratic form Λ̇t is nondegenerate, and that the
curve is monotone increasing (decreasing) if Λ̇t is positive (negative) definite. To a quadratic form on some
vector space it is uniquely associated a self-adjoint linear operator from the vector space to its dual; then, we
can associate to the quadratic form Λ̇t a linear operator Λ̇t : Λ(t) → Λ(t)∗.

A Lagrangian distribution is a smooth family {Λz}z∈T∗M of Lagrangian subspaces, where Λz ⊂ Tz(T ∗M).
Given z ∈ T ∗M we define a curve Λz(t) := φ−t∗Λφt(z) in the Lagrange Grassmannian of Tz(T ∗M). We have
Λ̇z(ξ) = σ([ 	H, X ](z), X(z)) for any ξ ∈ Tz(T ∗M) and any vector field which is a section of our distribution such
that X(z) = ξ.

Remark 2.1. Let Λz = Tz(T ∗
π(z)M), and choose on T ∗M Darboux coordinates {(p, q)} in such a way that

T ∗
q M = {(p, q) : p ∈ R

n}; then Λ̇ is represented in these coordinates by the Hessian matrix ∂2H
∂p2 , and then

monotonicity of the curve Λz(t) is equivalent to convexity or concavity of H on the fibers of the cotangent
bundle.

Now assume that {Πz}z∈T∗M is another Lagrangian distribution on T ∗M , and assume that Λz and Πz are
transversal at any point (i.e. Λz ∩Πz = 0), that means that they define for any point a splitting of the tangent
space to T ∗M . The symplectic form σ defines a nondegenerate pairing of Λz and Πz as well as Λz(t) and Πz(t),
where Πz(t) = φ−t∗Πφt(z). In particular, Λz(t)∗ is identified with Πz(t) and Πz(t)∗ is identified with Λz(t),

and we may treat the operator Λ̇zt as a linear mapping from Λz(t) to Πz(t), and the operator Π̇zt as a linear
mapping from Πz(t) to Λz(t).

Assume that Λz(t) is regular and monotone; the following rules uniquely define a Riemannian structure 〈·, ·〉
on T ∗M associated with the Hamiltonian H and the splitting T (T ∗M) = Λ ⊕ Π:

〈ξ, ξ〉 = |Λ̇z0(ξ)|, 〈η, η〉 = |Λ̇z0

(
(Λ̇z0)

−1η
)
|, 〈ξ, η〉 = 0,

for all ξ ∈ Λz, η ∈ Πz , z ∈ T ∗M .
Another important object associated with the Lagrangian splitting is the operator RH

z : Λz → Λz defined as
follows:

RH
z = −Π̇z0 ◦ Λ̇z0 . (2.6)

The operator (9) is called the generalized curvature operator of the Hamiltonian vector field 	H at the point z
with respect to the splitting Λ ⊕ Π.

If Λz(t) is regular and monotone, then the generalized curvature is a self-adjoint operator with respect to the
scalar product on Λz defined above [1]; in particular, it has real eigenvalues.
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Any vector field Y on T ∗M is splitted Y = YΛ + YΠ, where YΛ is a section of Λ and YΠ is a section of Π. For
any section X of Λ and any z ∈ T ∗M , we have (see [1]):

RH
z X(z) = −[ 	H, [ 	H, X ]Π]Λ(z).

In what follows we always assume that Λz = Tz(T ∗M). Assumption (H1) implies that the curves Λz(t) are
regular and monotone. As for the complements Πz , there are different ways to select them. We are now going
to describe two quite natural ones: the first is canonically defined by the Hamiltonian field 	H and the second
by a symmetric linear connection on the base manifold M .

Let us consider the first one. To any regular curve Λz(t) in the Lagrange Grassmannian of Tz(T ∗M) we can
canonically associate another smooth curve in the following way. Let Δ be a Lagrangian subspace of Tz(T ∗M)
transversal to Λz(0), and let πΔΛz(0) be the projector of T ∗M onto Λz(0) and parallel to Δ; then it allows that

πΔΛz(0)|Λz(0) = id; πΔΛz(0)|Δ = 0.

The space {πΔΛz(0) : Δ ∈ Λz(0)�} (where Δ ∈ Λz(0)� means that Δ ∩ Λz(0) = 0) is an affine subspace of
gl(Tz(T ∗M)): to prove this, notice that the linear combination

απΔΛz(0) + (1 − α)πΔΛz(0) α ∈ R

vanishes on its kernel and equals the identity when restricted to Λz(0), hence it is a projector (onto Λz(0)). On
the space {πΔΛz(0) : Δ ∈ Λz(0)�} it is defined the subtraction operation which gives values on gl(Tz(T ∗M)).

Let us now consider Λz(τ) and t �= τ : since the curve is regular, Λz(t) is transversal to Λz(τ) for t sufficiently
close to τ [1]. We say that the operator-valued function t �→ πΛz(t)Λz(τ) has a pole if the function t �→
πΛz(t)Λz(τ) − πΔΛz(τ) has a pole (as a function with values in gl(Tz(T ∗M))) for some Δ ∈ Λz(0)�. Let us
compute its Laurent expansion: πΛz(t)Λz(0) = π0 +

∑
i�=0 πit

i. It can be proved that πi ∈ gl(Tz(T ∗M)) for i �= 0,
while π0 is an element of the affine subspace; then there exists a unique subspace Λ◦

z(τ) of Tz(T ∗M) transversal
to Λz(τ), such that π0 = πΛ◦

z(τ)Λz(τ); this subspace is called the derivative element to Λz(τ).
This procedure can be repeated to construct the derivative element to Λz(t) for any t, and hence we can

define the derivative curve t �→ Λ◦
z(t).

Since the curve Λz(t) is regular, its derivative curve is smooth; since Λz(t) is regular and Lagrangian, then
Λ◦

z(t) is Lagrangian for any t (see [1] for details and explicit expressions).
The splitting Tz(T ∗M) = Λz(0) ⊕ Λ◦

z(0) given by a curve and its derivative curve is called the canonical
splitting.

Let us now define the second remarkable splitting. Any linear connection on M defines a parallel transport of
tangent vectors to M along curves in M and hence, by duality, a parallel transport of cotangent vectors to M .
Hence, the connection defines a lift to T ∗M of vector fields on M ; in other words, it defines a vector distribution
on T ∗M that is a complement to the “vertical” distribution Tz(T ∗M) = Λz, z ∈ T ∗M . A simple calculation
shows that this distribution is Lagrangian if and only if the connection is symmetric (i.e. torsion-free).

Let us now consider the Levi-Civita connection on a Riemannian manifold (M, g) (g is the metric); the adjoint
connection to the Levi-Civita connection then defines a Lagrangian splitting on T (T ∗M). It happens that this
Lagrangian splitting coincides with the canonical splitting defined by the Hamiltonians of natural mechanical
systems on the Riemannian manifold (M, g). We mean Hamiltonians H of the form:

H(z) =
1
2
〈z, g−1(π(z))z〉 + U(π(z)), z ∈ T ∗M,

where U is a smooth function on M , a “potential energy”. In this case, the generalized curvature is given by

RH
z (X) = R(z̄, X)z̄ + DX(∇U),
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where z̄ ∈ TM is the dual to z via the metric g, symbol R denotes the Riemannian curvature, and D is the
covariant derivative. In the special case of M = R

n with the standard flat metric we obtain:

H(p, q) =
1
2
|p|2 + U(q), RH

z =
∂2U

∂q2
·

Let us now recall the following definition:

Definition 2.1. A point z ∈ T ∗M is a hyperbolic fixed point of the flow φt if it is a fixed point of the flow and
if there exist a φt-invariant splitting of the tangent space Tz(T ∗M) = E+

z ⊕ E−
z and two positive constants γ

and b such that

‖Dzφ
∓tX‖ ≤ be−γt‖X‖ for X ∈ E±

z and t ≥ 0. (2.7)

Let us now mention here two results proved in [1], that show the relation between the generalized curvature
and the behaviour of the Hamiltonian system; in the following two statements, we will reduce to the case in
which the splitting Λ ⊕ Π is the canonical splitting.

Theorem 2.1. Let Λz(t) be regular and monotone and W a compact invariant set of the flow φt. If 	H has
negative curvature at any point of W , then W is a finite set and each point of W is a hyperbolic equilibrium of
the field 	H.

Corollary 2.1. Assume that Λz(t) is regular and monotone and that 	H has everywhere negative curvature.
Then any bounded semitrajectory of the system ż = 	H(z) converges to an equilibrium with exponential rate,
while another semitrajectory of the same trajectory must be unbounded.

These two results can actually be generalized, using the technique that Wojtkovski proposed in [10]. The
core of the proof of Theorem 2.1 and Corollary 2.1 is to find a special metric ‖ · ‖ on T (T ∗M) (which actually is
the metric defined by Λ̇z) and a family of invariant expanding and contracting cones C±

z ⊂ Tz(T ∗M) such that

‖Dzφ
∓tX‖ ≤ be−γt‖X‖ for X ∈ C±

z and t ≥ 0,

for some positive constants γ, b; to demonstrate these results it was used the negativity of the generalized
curvature (with respect to the canonical splitting). In [10] it is proved that such a family of cones C±

z exists,
provided there is a continuous nondegenerate quadratic form Q : TM → R such that its Lie derivative with
respect to 	H L 	HQ := d

dtQ(Dφt·)t=0 is positive definite. The results above stated are valid if such quadratic
form exists.

In order to use the generalized versions of Theorem 2.1 and Corollary 2.1 we have then to prove the existence
of such a quadratic form. The following lemma show that this requirement is satisfied under some assumptions
on the sign of the curvature.

Lemma 2.1 (P.Przytycki). Let Λ⊕Π be a Lagrangian splitting of T (T ∗M) such that the curves Λz(t) and Πz(t)
are regular, and Λz(t) is monotone. Assume that the curvature RH

z of the vector field 	H with respect to this
splitting is negative definite for any z. Then there exists a continuous nondegenerate quadratic form Q : TM → R

such that L 	HQ is positive definite.

Proof. First of all, note that asking the curvature RH
z to be negative definite is equivalent to saying that the

quadratic forms associated to Λ̇z(t) and Π̇z(t) are both regular and have opposite sign (see [1]); for simplicity,
assume that Λz(t) is monotone increasing.

Let us write any vector X on T ∗M as X = XΛ +XΠ, where, as before, XΛ is a section of Λ and XΠ a section
of Π; define the following quadratic form on TM :

Qt(X) = σ((Dzφ
tX)Λ, (Dzφ

tX)Π);
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we have that

L 	HQ(X) = − σ([ 	H, X ]Λ, XΠ) − σ(XΛ, [ 	H, X ]Π)

= σ([ 	H, XΛ], XΛ) + σ([ 	H, XΠ], XΛ)

+ σ(XΠ, [ 	H, XΛ]) + σ(XΠ, [ 	H, XΠ])

= σ([ 	H, XΛ], XΛ) + σ(XΠ, [ 	H, XΠ])

= Λ̇z(t)(XΛ) − Π̇z(t)(XΠ) > 0. �

From this we get that z∞ is a hyperbolic fixed point of φt; we get by Hadamard-Perron theorem [8] that
there exists a smooth submanifold in T ∗M , which we will denote by W s

loc(z∞) and which is called the local
stable manifold at z∞, such that

• Tz∞W s
loc(z∞) = E−

z∞ ;
• there is a neighbourhood U of z∞ such that

W s
loc(z∞) = {y ∈ U : d(φt(y), z∞) → 0 as t → +∞}. (2.8)

Moreover, we can define the global stable manifold

W s(z∞) =
⋃
t>0

φ−t(W s
loc(φ

t(z∞))),

which is a smooth manifold characterized by

W s(z∞) = {y : d(φt(y), z∞) → 0 as t → +∞}.

3. The results

Now we are ready to state the result:

Theorem 3.1. Let M be a simply connected smooth manifold, and let ϕ : TM → R be a smooth function that
satisfies hypotheses (H1)–(H3). Let {Λz}z = {Tz(T ∗

π(z)M)}z and {Πz}z, z ∈ M , be two Lagrangian distributions

that provide a splitting of T (T ∗M); assume that the generalized curvature of 	H w.r.t. the splitting is negative
definite for any z. Then the problem (2.1) with final point q∞ admits a smooth optimal synthesis on M .

Proof. We already know that any optimal trajectory shall satisfy PMP, and, since the Hamiltonian is smooth,
we also know that any smooth solution of the Hamiltonian system (2.5) in fact satisfies PMP, and vice versa.
The following theorem (see [3]) provides a sufficient condition for an admissible trajectory to be optimal:

Theorem 3.2. Let L0 be a Lagrangian submanifold of T ∗M, and call, for any t, Lt = et 	H(L0). Assume that for
any t ∈ [0, T ] the restriction π|Lt of the projection π : T ∗M → M is a diffeomorphism. Then for any λ0 ∈ L0

the normal extremal trajectory
q̃(t) = π ◦ et 	H(λ0), 0 ≤ t ≤ T,

realizes a strict minimum of the cost functional
∫ T

0
ϕ(q(t), u(t)) dt among all admissible trajectories q(t), 0 ≤

t ≤ T , of system (2.1) with the same boundary conditions

q(0) = q̃(0), q(T ) = q̃(T ).

This result is stated for finite final time T , but the generalization for infinite horizon problems is straightfor-
ward.
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We are going to apply Theorem 3.2 to the global stable manifold W s(z∞), thus proving that all the optimal
trajectories for our problem are projections of stable solutions to (2.5). Then, the optimal synthesis is thus
constructed: we put for any q ∈ M

X(q) := π∗( 	H(λ)),
with λ ∈ W s(z∞) and π(λ) = q. This vector field is smooth, because the Hamiltonian is smooth and W s(z∞)
projects diffeomorphically on M ; since the optimal trajectories are projections of the integral curves of 	H , they
are actually integral curves of X .

The proof that W s(z∞) satisfies the hypotheses of Theorem 3.2 is split into two steps: in the first one we
prove the Lagrangianity of the stable manifold, and that the restriction π|W s(z∞) is a local diffeomorphism and
a proper mapping of W s(z∞) on its image (note in fact that the stable manifold is φt-invariant, so it is sufficient
to prove the condition only for W s(z∞)). In the second step, we will prove that actually W s(z∞) projects
surjectively on M , hence getting the existence of a (global) optimal synthesis. �

3.1. Regularity of the projection

Lemma 3.1. W s(z∞) is a Lagrangian submanifold of T ∗M .

Proof. Let X, Y ∈ TzW
s(z∞), z ∈ W s(z∞); then, since the Hamiltonian flow preserves the symplectic form,

for any t

σ(X, Y ) = σ(Dzet 	HX, Dzet 	HY ) → 0 as t → +∞. �
Lemma 3.2. The restriction of the projection π|W s(z∞) is a covering of its image.

Proof. π|W s(z∞) is clearly a smooth map, since the stable manifold is smooth.
π|W s(z∞) is also an immersion, and, in particular, a local diffeomorphism; in fact, let us assume that there is a

vector X ∈ kerπ∩TzW
s(z∞); we get that Q0(X) = 0, since the projection of X on the horizontal space vanishes.

Since Qt(X) → 0 as t → +∞ and L 	HQ is positive definite, we have that Qt(X) = 0 for any t ≥ 0, which implies
that Dzφ

tX is vertical (i.e. (Dzφ
tX)q = 0) for nonnegative t; since [ 	H(φt(z)), Dzφ

tX ] /∈ Tφt(z)(T ∗
π(φt(z))M),

we get a contradiction.
Let us now prove that π|W s(z∞) is a proper mapping: first of all, let d(·, ·) be the distance induced on T ∗M

by the scalar product previously defined, and let Br(z) denote the ball of radius r centered at z, for some
r > 0, z ∈ T ∗M . Let K be a compact set in π(W s(z∞)), and {zi}i a sequence in π|−1

W s(z∞)(K). The sequence
is bounded: in fact, let us write the zi’s in coordinates, zi = (pi, qi) for any i; qi ∈ K for any i, and hence
they are bounded; the pi shall be bounded as well, because the stable manifold lies in the level H−1(0), and
the Hamiltonian grows to +∞ when |p| → +∞. Then the sequence {zi}i converges, up to a subsequence, to
some z̄ ∈ π−1(K); let us assume that z̄ /∈ W s(z∞). Let us consider the Hamiltonian trajectories whose initial
conditions are given by these zik

’s: by continuity, for any small ε > 0 and any T > 0 we can find k such that
φt(zik

) ∈ Bε(φt(z̄)) for any 0 ≤ t ≤ T . Since we assumed that z̄ /∈ W s(z∞), φt(z̄) shall go to infinity (see
Cor. 10), which means that for any ρ > 0 we can always find a t′ ≥ T such that φt′(z̄) /∈ B2ρ(z∞)).

Now recall that zik
∈ W s(z∞), which means that φt(zik

) reaches z∞ with exponential rate, that is there are
two positive constants b, γ such that ‖ 	H(φt(zik

))‖ ≤ be−γt‖ 	H(zik
)‖. So we have that

∫ +∞

t

‖ 	H(φτ (zik
))‖ dτ ≤ b ‖ 	H(zik

)‖
∫ +∞

t

e−γτ dτ = b ‖ 	H(zik
)‖e−γt

γ
·

We can chose ε so small and ρ, T so large that b ‖ 	H(zik
)‖ e−γT

γ < ρ, which means that the trajectory φt(zik
)

cannot reach z∞. This is a contradiction; hence z̄ belongs to the stable manifold, and hence π|−1
W s(z∞)(K) is

compact.
Since π|W s(z∞) is a proper local diffeomorphism, it is also a smooth covering (of its image); if its image is

simply connected, we can conclude that the map π|W s(z∞) is also a global diffeomorphism (onto its image). �
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3.2. Existence of the optimal synthesis

Now we will prove that the projection π|W s(z∞) is onto, in order to get the global version of Theorem 3.2
and the existence of the optimal synthesis.

Let us concentrate on the set π(W s(z∞)); it is an open subset of M , since it is the image of a local diffeo-
morphism.

Moreover, it is closed in M too: indeed, we shown that the stable manifold W s(z∞) is closed. Since the
restriction π|W s(z∞) is a proper map (and in particular a closed map), π(W s(z∞)) shall be closed in M .

Then, we conclude that π(W s(z∞)) = M .

Remark 3.1. It is crucial to assume that the function u �→ ϕ(q, u) has superlinear growth. In fact, assume
by contradiction that there exists a direction uj on which the function ϕ has linear growth for large ‖u‖,
which implies that ∂uj ϕ tends to a constant as ‖u‖ goes to infinity. Then there exists an M > 0 such that
supu〈λ, u〉 − ϕ(q, u) = +∞ if the jth component of λ exceeds M . If the maximized Hamiltonian is not defined,
the flow itself is not globally defined.

4. The Euclidean case

Theorem 4.1. Consider the problem

min
q(t)

∫ ∞

0

ϕ(q(t), u(t)) dt, (4.1)

with

q̇ = u
q(0) = q0

q(t) → q∞ as t → +∞ q ∈ R
n, (4.2)

where ϕ is smooth and strongly convex in the pair (q, u) and the function u �→ ϕ(q, u) has superlinear growth
for any q, and there is a point q∞ such that ϕ(q∞, 0) = 0 and ∂ϕ

∂q (q∞, 0) = 0.
Then there exists a hyperbolic fixed point z∞ with π(z∞) = q∞ of the Hamiltonian system associated to (4.1),

and the problem (4.1) with final point q∞ = π(z∞) admits a smooth optimal synthesis on R
n.

Proof. As above, PMP let us associate to problem (4.1) a Hamiltonian hu(p, q) = 〈p, q〉 − ϕ(p, q), and its
maximized H(p, q) = maxu hu(p, q).

The hypotheses on ϕ imply that the maximized Hamiltonian H(p, q) is smooth and that the assumption (H3)
is satisfied.

Let us now choose, for any (p, q), Λ(p,q) =span{∂p1 , . . . , ∂pn}(p, q) and Π(p,q) =span{∂q1 , . . . , ∂qn}(p, q). We
have that Λ̇(p,q) > 0 and Π̇(p,q) < 0; in fact, let X =

∑n
i=1 Xi∂pi ∈ Λ(p,q) and Y =

∑n
i=1 Yi∂qi ∈ Π(p,q); then

Λ̇(p,q)(X) = σ([ 	H, X ], X) =
n∑

i=1

XiXj
∂2H

∂pi∂pj
,

Π̇(p,q)(Y ) = σ([ 	H, Y ], Y ) =
n∑

i=1

YiYj
∂2H

∂qi∂qj
,

by direct computation, we get that

∂2H

∂pi∂pj
=

∑
l,m

∂ūl

∂pi

∂2ϕ

∂ul∂um
|u=ū

∂ūm

∂pj
,
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which is positive definite. On the other hand,

∂2H

∂qi∂qj
=

∂2hu

∂qi∂qj
−

∑
l,m

∂ūl

∂qi

∂2hu

∂ul∂um
|u=ū

∂ūm

∂qj

= − ∂2ϕ

∂qi∂qj
+

∑
l,m

∂2ϕ

∂qj∂ul

(
∂2ϕ

∂ul∂um

)−1
∂ϕ

∂qi∂um
, (4.3)

in fact, let us define the function F : R
3n → R by F (p, q, u) = p− ∂ϕ

∂u (q, u); since rk(JuF ) = n, we can apply the
Implicit Function Theorem and express locally the function ū such that ∂ϕ

∂u |u=ū = 0 as a function of p and q,
and moreover we have that

Jū = −(JuF )−1(J(p,q)F ) =
(∂2ϕ

∂u2

)−1(
I,− ∂2ϕ

∂q∂u

)
·

Let us perform a change of variable and assume that, in the point where we are computing the derivatives,
the Hessian of ϕ w.r.t. u is the unit matrix, thus reducing (4.3) to

∂2H

∂q2
i

= −∂2ϕ

∂q2
i

+
n∑

l=1

(
∂ul

∂qi

)2

= −Hess(ϕ|Q=const),

with Q = (q1, . . . , q̂i, . . . , qn); hence ∂2H
∂q2

i
< 0. Since we can perform any linear change of variable in the space of

the q’s obtaining the same expression (4.3), we can conclude that the second derivative of H w.r.t. any direction
in the space of coordinates is negative, i.e. H is strictly concave w.r.t., hence Hessq(H) is a negative-definite
matrix.

This fact implies that the generalized curvature with respect to this splitting is negative definite; then we
are under assumptions of Theorem 3.1. �
Remark 4.1. The following example shows that the convexity of ϕ(q, u) is not sufficient to assure that the
generalized curvature w.r.t. the canonical splitting is negative definite.

In fact, let
ϕ(q, u) = f(u) + U(q), q, u ∈ R,

with f ′′(u) > 0 and U ′′(q) > 0.
The generalized curvature is

RH(p, q) =
1
2

(
∂2H

∂p2

)−1 (
∂H

∂q

)2
∂4H

∂p4
− 1

2

(
∂2H

∂p2

)−1
∂2H

∂q2

∂3H

∂p3

∂H

∂p

+
∂2H

∂p2

∂2H

∂q2
− 3

4

(
∂2H

∂p2

)−2 (
∂H

∂q

)2 (
∂3H

∂p3

)

=
1

4f ′′(ū)4
(
3U ′(q)2f (3)(ū)2 − 4f ′′(ū)3U ′′(q) − 2ūf ′′(ū)2U ′′(q)f (3)(ū)

−2U ′(q)2f (4)(ū)f ′′(ū)
)
;

choosing ϕ(q, u) = u4 + u2 + q2, we get

R(ū, q) =
−(1 + 6ū2)2(1 + 12ū2) + q2(72ū2 − 6)

(1 + 6ū2)4
,

which is not a negative function.
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5. The 1-dimensional case

Let us now consider the optimal problem (4.1)–(4.2) with q ∈ R; we will investigate whether the problem
admits an optimal synthesis only looking at the phase portrait of the dynamical system generated by the
maximized Hamiltonian H(p, q).

We assume that ϕ is smooth and strongly convex in the second variable, and that the maximized Hamiltonian
H(p, q) = maxq̇ pq̇−ϕ(q, q̇) is well defined for any (p, q); these hypotheses imply that H(p, q) is a smooth function
strongly convex in p.

At a first moment, we do the following assumption:

(A1) for any q ∈ R the function p �→ H(p, q) has a (unique, by convexity) minimum;

this implies that there is a smooth curve γ that divides R
2 into two disjoint regions Γ+ and Γ− such that ∂H

∂p > 0
for any (p, q) ∈ Γ+, ∂H

∂p < 0 for any (p, q) ∈ Γ−, and ∂H
∂p = 0 if (p, q) ∈ γ; (A1) implies that γ is projected

surjectively onto the horizontal axis. By strict convexity of H w.r.t. p, γ is never tangent to vertical lines.
We remark that hypothesis (A1) is automatically satisfied if we require ϕ to have superlinear growth w.r.t. u.
All equilibrium points of 	H belong to γ and, if we denote by 	Hhor the component of 	H along the horizontal

direction, 	Hhor points in the positive directions for (p, q) ∈ Γ+, in the negative direction if (p, q) ∈ Γ−, and it
vanishes on γ.

Let us now classify the possible phase portraits of such a Hamiltonian. We always assume that the equilibrium
points are nondegenerate; if they are isolated degenerate, then we can always put things in general position
provoking local differences in the phase diagram, while the global behaviour does not change much.
1 equilibrium point. Since the Hamiltonian flow preserves volumes, the equilibrium point can only be a
center or a saddle; sinks, sources, stable and unstable nodes, stable and unstable foci cannot arise.

If the equilibrium point is a center, then there is no orbit reaching it in an infinite time, hence the problem (4.1)
has never solution.

Let us now suppose that the equilibrium point is a saddle. First of all, we notice that, since the function
p �→ H(p, q) is strongly convex for any q, for any fixed q there are at most two distinct values p1, p2 such that
(pi, q) belongs to the same level of H for i = 1, 2. This implies that the semi-trajectories belonging to the
stable and the unstable manifolds are unbounded: in fact, by Poincaré-Bendixon theorem, if a semitrajectory
is bounded, either it arises from another critical point, either its α-limit set is a periodic trajectory. Neither of
these cases can occur; the first one because by hypothesis there is no other equilibrium points; the second one
cannot occur since, by convexity of H w.r.t. p, each stable semi-trajectory cannot wind around the equilibrium
point, otherwise we would have more than two points with the same horizontal coordinate belonging to the
same level of H .

We can also prove that the stable and the unstable semi-trajectories are projected bijectively onto the
horizontal axis. If the projection of a semi-trajectory that belongs to the stable or the unstable manifold is
bounded, then the horizontal velocity along it vanishes while the trajectory goes to infinity, that contradicts
convexity of H w.r.t. p; this implies surjectivity. Injectivity is a consequence of the fact that there can exist at
most two points with the same horizontal coordinate that belong to the same sublevel of the Hamiltonian, and
that both the stable and the unstable trajectory are projected onto the horizontal axis.

Then, the infinite-horizon problem admits a solution for any initial point q0.
2 equilibrium points. As we saw, equilibrium points for this Hamiltonian can only assume the shape of
saddles and centers, so phase portraits for two equilibria can be obtained combining these possibilities. Call the
two points z1 and z2, with π(z1) < π(z2).
2 saddles. This combination is forbidden due to convexity of H w.r.t p, for this implies the non-existence of
vertical trajectories and because of the fact that 	Hhor has positive verse on Γ+ and negative verse on Γ−. As
shown in Figures 3 and 4, this gives rise to trajectories that intersect each other (in particular, in Fig. 3 it is
shown the situation in which the two equilibria belong to the same sublevel, in Fig. 4 the one in which they



SMOOTH OPTIMAL SYNTHESIS FOR INFINITE HORIZON VARIATIONAL PROBLEMS 185

Figure 3. Two equilibria:
saddle-saddle (1) (forbidden
case).

Figure 4. Two equilibria:
saddle-saddle (2) (forbidden
case).

Figure 5. Two equilibria:
saddle-saddle (3) (forbidden
case).

h

Figure 6. Two equilibria:
center-center (4) (forbidden
case).

belong to different sublevels). In Figure 5 it is illustrated that, if we try to avoid these intersections, we would
get trajectories whose horizontal velocity has wrong verse.
2 centers. This combination is again forbidden; in fact, by the structure of the Hamiltonian, the closed trajecto-
ries around each of the equilibria are covered in the same verse (clockwise). This fact leads up to a contradiction;
if, as in Figure 6, the closed orbits get nearer, then there shall be a line (called h in Fig. 6) that separates the
region of orbits around z1 from the region of orbits around z2 and, on this line, the component of 	H parallel to
it shall vanish; but since this line shall cross γ and it’s transversal to it, then there shall be a point on which 	H
vanishes, which is in contradiction with the fact that H has only two critical points.

Otherwise, if there is family of closed trajectories that surround both critical points, then, getting nearer z1

and z2, there shall be at least another (or a continuum of) equilibrium point, as it is shown in Figure 9.
1 centre and 1 saddle. In this case, there can be two kind of phase diagram; let z1 be the saddle point and z2

the centre. In the first case, shown in Figure 7, one unstable semitrajectory and one stable semitrajectory of
z1 act together as a separatrix between the closed orbits around z2 and the unbounded orbits of the other part
of the plane. Repeating previous arguments, we see that these trajectories are diffeomorphically projected onto
the horizontal line, and then we get the existence of minima of problem (4.1) with q∞ = π(z1) for any q0 ∈ R

n.
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Figure 7. Two equilibria:
saddle-center (1) (allowed).
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Figure 8. Two equilibria:
saddle-center (2) (allowed).

A sample Hamiltonian with this behaviour is the function H(p, q) = 1
2p2 + U(q), where U(q) behaves as −q2

for q < π(z1) and in a neighbourhood of π(z1), has a local minimum in π(z2), and then grows monotonically
and assumes values strictly less than U(π(z1)).

In the second case, illustrated in Figure 8, a stable and an unstable semitrajectory of z1 join together in a
closed separatrix σ; in the closed region surrounded by σ there are the closed orbits around z2, in the outer
there are open orbits. In this case, there is a q̂ such that the infinite-horizon problem has solution only for
initial point q0 ≤ q̂ if π(z2) > π(z1), and for q0 ≥ q̂ if π(z2) < π(z1).

A sample Hamiltonian in this case is the function H(p, q) = 1
2p2 + q3 − αq, α > 0.

3 equilibrium points. As noticed all critical points lie on γ, and, moreover, we know from previous arguments
that some configurations (two saddles or two centers side by side) are forbidden; hence, we can only find two
situations: saddle-centre-saddle and centre-saddle-centre. Let us call z1, z2 and z3 the equilibria in such a way
that π(z1) < π(z2) < π(z3).
Centre-saddle-centre. Let z1 and z3 be the two centers. There is a closed trajectory σ that surrounds both the
centers and that passes through the saddle point that is a separatrix between the closed orbits around z1 or z3

and the outer orbits (that, depending on the problem, can be open or closed). In this case, the infinite-horizon
problem with final point π(z2) has solution only for q0 ∈ π(σ), while there is no Hamiltonian trajectories which
reach a point z such that π(z) = q1 or π(z) = q3 in an infinite time, thus the infinite-time problem with these
conditions has no solution.

This behaviour can be generated by a Hamiltonian like H(p, q) = 1
2p2 + q4 + αq3 − βq2, β > 0.

Saddle-centre-saddle. We have to distinguish two cases: in the first one, shown in Figure 10, the two saddle
points (z1 and z3) belong to the same sublevel of H ; in the other one, shown in Figure 11, they belong to
different sublevels.

Let us consider the former case; we notice that one stable semitrajectory arising from z1 joins with one
unstable semitrajectory of z2, and vice versa; these two trajectories form a separatrix between the closed orbits
around the centre and the unbounded orbits. Obviously, there is no solution for the infinite-horizon problem
with final point π(z2). Let us consider the problem with final point π(z1): for initial time q0 ≤ π(z1) the
infinite-horizon solution always exists, since the unstable manifold is diffeomorphically projected onto the half-
line {q ≤ π(z1)}; for π(z1) ≤ q0 < π(z2), the problem has again solution, since a point on the separatrix reaches
π(z1) in an infinite time; for q0 ≥ π(z2), there are no Hamiltonian trajectories reaching a point z ∈ R

2 such
that π(z) = π(z1) in infinite time, hence there is no solution. We can repeat the same argument to say that
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Figure 9. Three equilib-
ria: center-saddle-center.
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Figure 10. Three equilib-
ria: saddle-center-saddle (1).
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Figure 11. Three equilib-
ria: saddle-center-saddle (2).

the infinite-horizon problem for final point π(z2) admits solution for q0 ≥ π(z2) and for π(z1) < q0 ≤ π(z2) (on
the separatrix).

A sample Hamiltonian that has this phase diagram is H(p, q) = 1
2p2 − q4 + βq2, β > 0.

Let us now focus on the second case; about the problem with final state π(z3), we can repeat the same
arguments used in the situation depicted in Figure 7: there is a q̂ such that the infinite-horizon problem admits
solution if and only if q ≥ q̂; otherwise, problem (4.1) with final state π(z1) has a solution for any q0 ∈ R; as
seen, there is no solution for q∞ = π(z2).

This phase diagram can arise with a sample Hamiltonian as H(p, q) = 1
2p2 − q4 − αq3 + βq2, α �= 0, β > 0.

More than 3 equilibrium points. We get from previous arguments that all the equilibrium points lie on γ
and they can only be aligned alternating saddle points and centers. Then all the possible configurations can be
deduced by previous results.
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Figure 12. Two saddles:
allowed if we remove hy-
pothesis (A1).

Let us now see what happens if we remove hypothesis (A1). Since we ask that 	H has at least one equilibrium
point, there shall exist at least one q̄ for which the function p �→ H(p, q̄) has a minimum; then, there exists a
curve γ that divides R

2 into two regions as above, and such that γ passes through the minimum of H(·, q̄). What
we cannot say is that γ is projected onto the horizontal axis: it can happen that its projection is bounded. This
implies that we cannot guarantee that the stable manifold is projected onto the horizontal line, hence losing
the existence of the optimal synthesis (but we still have local existence of minimizers).

Moreover, we notice that there can be cases in which there exist two (or more) disjoint curves γi that divides
the regions where ∂H

∂p > 0 from the ones where ∂H
∂p < 0; in such cases, it remains true that on the same curve

there cannot lie two saddle points or two centers side by side, but we can have situations such as the one
depicted in Figure 12 in which the two critical points are saddle points.

For such cases, we just repeat that our analysis is only local and permits to prove the existence of minimizers
only for some initial points q0.
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