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SUB-RIEMANNIAN METRICS AND ISOPERIMETRIC PROBLEMS
IN THE CONTACT CASE
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1. Introduction

1. Invariants. A contact sub-Riemannian metric is a triple (X,∆, g) consisting of a (2n+ 1)-dimensional
manifold X, a distribution ∆ on X, which is a contact structure, and a metric g on ∆. It defines a metric
on X by measuring via g the length of smooth curves that are tangent to ∆. All the considerations in this
paper are local: we consider only germs (X,∆, g)q0 at a fixed point q0.

There are two canonical objects that are associated with (X,∆, g), modulo their sign: the “defining”
one-form ω and the “characteristic” vector field ν:

(i) Kerω = ∆, (dω)n|∆ = Volume,

(ii) ω(ν) = 1, iνdω = 0,
(1.1)

or equivalently
(ii′) iν(ω ∧ dω) = dω.

If n is odd and the signs are reversed, the form ω ∧ (dω)n is unchanged; hence, it defines an orientation
on X. In this case, the assignment of a vector field Z transversal to ∆ is equivalent to the choice of an
orientation on ∆; the volume form on ∆ is defined by sgn(ω(Z))(dω)n|∆.

In the opposite case, where n is even, (dω)n|∆ defines an orientation on ∆, and the orientation on X is

given by any Z transversal to ∆; we chose ω(Z) > 0.
First, we will discuss normal forms and invariants for such a structure. We obtain a completely reduced

normal form for any n. These results will be stated and proved in Sec. 2 of the paper.
In the three-dimensional case, a certain number of covariant symmetric tensor fields over ∆ appear; they

are invariants of the sub-Riemannian structure. Two of them, denoted by Q2 and V3, are very important,
and they have covariance degree 2 and 3, respectively. They are irreducible under the action of SO(2).

Generically, Q2 is nonzero outside a smooth curve C, and V3 is nonzero on this curve. They are
respectively called the principal and second invariants of the structure. They reflect the most important
local properties of the sub-Riemannian metric.

2. Isoperimetric problems. We also consider general isoperimetric problems on a two-dimensional ori-
ented Riemannian manifold (M, g) of the following type: we are given a two-form η = ψ(Volume), two
points q0, q1 ∈ M are fixed, together with a curve γ̃ : [0, 1] → M , γ̃(0) = q0, γ̃(1) = q1, and we are looking
for curves γ : [0, 1] → M , γ(0) = q1, γ(1) = q0, that have the minimum Riemannian length and are such

that the value A of the integral
∫
Ω
η is prescribed, where Ω is the domain bounded by γ and γ̃.

The Dido problem is a particular case where ψ = 1, i.e., we want to minimize the perimeter for
a prescribed area. (In fact, the classical Dido problem is the dual formulation of this problem.) Also,
sometimes, it is called the Pappus problem in honor of the Greek mathematician who solved it in the
particular case of a flat metric on a plane (see [9, pp. 366–370]).

We now reformulate the isoperimetric problems under consideration in the following two equivalent
ways.

(1) Such an isoperimetric problem (M, g, η) can be reformulated locally in terms of sub-Riemannian
geometry as follows: with a germ at q0 (M, g, η)q0 , one can associate a germ (X,∆, g)p0 of an oriented
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three-dimensional sub-Riemannian structure with a symmetry, where X = M × R = {z, w}, π : X → M ,
p0 = (q0, 0), and if α is a given primitive of the form η and γ̃ : [0, 1]→ X, γ̃(0) = (q0, 0), γ̃(1) = (q1, w∗), is
a smooth curve tangent to ∆, then the following conditions hold:

(a) the sub-Riemannian length of γ̃ is equal to the Riemannian length of its projection γ = πγ̃ :[0, 1]→
M ,

(b) w∗ =
∫ 1
0
α(γ̇)dτ .

This sub-Riemannian metric (X, g,∆)p0 has the symmetry ξ =
∂

∂w
and the form α, which is unique up

to a closed 1-form dn and can be uniquely normalized as follows: we consider all sub-Riemannian geodesics
passing through p0 whose projections are Riemannian geodesics on M . If we require that all such curves be
contained in the surface {w = 0} ⊂ X, then α is uniquely determined.

Therefore, starting from the isoperimetric problem (M, g, η)q0, we constructed a unique sub-Riemannian
metric with symmetry (X,∆, g, ξ)p0 .

This sub-Riemannian structure is contact iff ψ does not vanish; it corresponds to the Dido problem on
(M, g) iff ξ = ν, the characteristic vector field.

(2) Now, if we have a germ of a sub-Riemannian structure with symmetry (X,∆, g, ξ)p0 , where the
symmetry ξ is transversal to ∆, then the quotient space M = X/ξ inherits the Riemannian structure g. Up
to a certain trivial prolongation along the symmetry, X can be equipped with the structure of a (trivial)
principal line bundle over the Riemannian manifold (M, g) with a connection whose horizontal space is ∆.
Conversely, if we have (X,M, g, π,∇), a (circle or line) principal bundle π : X → M with a connection
∇ over a Riemannian manifold (M, g), then we have a sub-Riemannian structure over X determined by
the lift of the Riemannian metric to the horizontal space ∆ of the connection. By construction, this sub-
Riemannian structure has a symmetry transversal to ∆. Also, the curvature form of the connection defines
an isoperimetric problem over M .

Since we are at the local level in the paper, it does not make any difference whether we consider a circle
or a line bundle.

The sub-Riemannian structure is contact iff the curvature form of the connection does not vanish; it is
Dido iff the curvature form is equal to the lift of the volume form.

Depending on the context, we will use these two equivalent reformulations of the isoperimetric problem
and use both notations (X,M, g, ξ)p0 and (X,M, g, π, ∇)p0.

Note that these new definitions of isoperimetric sub-Riemannian metrics and Dido metrics work not
only for n = 1.

One of our goals is to find a (local) optimal synthesis for the isoperimetric problems, i.e., for a fixed
q0, for all sufficiently close q1, and for all sufficiently small values w of the prescribed integral, find all
minimum-length curves joining q0 with q1.

An equivalent problem is to compute the shape of all associated sub-Riemannian spheres of small radius
(that are level sets of the sub-Riemannian distance function to q0) in the space {(z, w)}.

This problem will be solved in the paper as a consequence of the treatment of the general case of small
sub-Riemannian spheres:

(a) for a generic contact isoperimetric problem, the two main invariants Q2 and V3 mentioned above do
not vanish simultaneously. Precisely as in the nonisoperimetric case, Q2 is nonzero outside isolated smooth
curves (that are fibers of the projection (z, w) → z in this case), and V3 is nonzero on these fibers. As
a consequence, there will be very small differences in all the results we show between isoperimetric sub-
Riemannian metrics and general sub-Riemannian metrics. In particular, for the optimal synthesis, there
will be no difference at all.

(b) On the contrary, for the Dido problem, the invariant Q2 vanishes identically. Therefore, the results
of the generic case are not applicable.

Just as an illustration of the results in this paper, let us state a theorem giving the shape of the (local)
optimal synthesis in the Dido case.
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Fig. 1. Generic cut loci.

Again, q0 ∈M is a pole; now ∇ is the Levi-Civita connection on M and k(q) is the Gaussian curvature

on M . A denotes a (small) prescribed value of the integral
∫ 1
0
α(γ̇(τ )) dτ , where α is the primitive of the

volume form described above. We will treat only the case A > 0. The case A < 0 is similar and is obtained
by reversing orientation.

Let us set h =

√
A

π
. The successive covariant derivatives ∇jk are covariant symmetric tensor fields of

degree j on M , and they can be decomposed under the action of the structural group SO(2) of TM on the
fibers of the corresponding vector bundles into isotypic components relative to successive powers eliϕ of the
basic character eiϕ, i =

√
−1 :

∇jk(q0) =
j∑

l=0

(∇j
lk(q0)). (2.1)

In particular, ∇2k(q0) is a quadratic form, ∇2k(q0) = ∇20k(q0) +∇
2
2k(q0), where

∇20k(q0) =
1

2
traceg(∇

2k(q0))g(q0)

and ∇22k(q0) = 0 iff the discriminant discrg(∇2k(q0)) = 0, ∇3k(q0) is cubic, ∇3k(q0) = ∇31k(q0) +∇
3
3k(q0).

Let us consider the following vectors: V1, V 12 , V
2
2 , V

1
3 , V

2
3 , and V 33 in Tq0M :

(1) V1 is the vector that is normal to the gradient of k at q0 with length
π

4
| grad k|q0, and the frame

(grad k, V1)q0 is direct;
(2) V i

2 are the vectors in the direction at which the quadratic form ∇22k(q0) attain its maximum r̃2 on the

unit circle of length
π

2
r̃2;

(3) V j
3 are the vectors that are normal to the directions I1, I2, and I3 at which the cubic form ∇33k(q0)

attains its maximum r̃32 on the unit circle of length
3π

8
r̃32, and the frames (Ij, V

j
3 ) are direct, j = 1, 2, 3.

The “cut locus” CutL(h) corresponding to the prescribed value h is defined as the subset of M formed
by the points q1 that are joined with q0 by several (not unique) minimum-length trajectories.

Theorem 2.1. For a germ of a Riemannian metric at q0 and for h small enough, the following statements
hold.

There exists a germ of a smooth curve γ(t) at q0 such that
dγ(t)

dt
(q0) = V1, and

(1) if ∇22k(q0) �= 0, then CutL(h) is a tree graph formed by two semi-open smooth curve segments emanating
from the point γ(h4). The direction of these two segments is V i

2 and their length has the asymptotics
h5|V i

2 |;
(2) if ∇22k(q0) = 0 but ∇33k(q0) �= 0, then CutL(h) is a tree graph formed by three semi-open smooth curve

segments emanating from the same point γ(h4). The direction of these segments is V i
3 and their length

has asymptotics h6|V i
3 |.

Figure 1 shows two diagrams, D1 and D2, which depict the shape of the generic cut loci. Consequently
the following assertion holds.
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Corollary 2.2 (for generic Riemannian metrics g over M). There are the following two types of points q0 ∈
M : q1 ∈ M denotes any point sufficiently close to q0; γ : [0, 1] → M , γ(0) = q0, γ(1) = q1, denotes any

curve emanating from q0 with prescribed value A of the integral
∫ 1
0
α(γ̇(τ )) dτ , |A| sufficiently small. Then

(1) if ∇22k(q0) �= 0 (generic points), then there are exactly one or two optimal curves γ;
(2) if ∇22k(q0) = 0 (isolated points), then there are points q1 with three optimal curves γ from q0 to q1.

(The optimal means the minimum length.)

The triple point of case (2) is exactly the point γ(h4); all other points of the semi-open curve segments
are double.

Remark 2.1. It follows from the theory of characteristic classes (see, e.g., [20, Chap. 40, p. 204]) that if M
is a compact manifold and the Euler characteristic κ(M) is nonzero, there are always isolated points of the
second type: ∇22k defines a field of quadratic form with signature 1 on the complement of the set of these
isolated points in M , and the sum of indices of the associated “field of line elements” is 2κ(M).

3. Equation of geodesics and the exponential mapping. Before going further in this introduction, we
need to say a few words about the geodesics and the exponential mapping. Here, we will use the Hamiltonian
formalism. There are several other possible ways of writing the equation of sub-Riemannian geodesics. In
particular, in the case of isoperimetric problems, it is easily computed that the equation of the projections
γ of the sub-Riemannian geodesics γ̃, γ = πγ̃ onto M is given by

kg(γ(s)) = cψ(γ(s)), (3.1)

where kg(·) is the geodesic curvature on M and c is a constant.
This equation is also the equation of motion of a charged particle in the magnetic field, and ψ is the

value of the magnetic field on M . See our preprint [6], and [17] for more details on this point.
Also, there is a natural connection (called the Rumin connection, see [10,19]) associated with a contact

sub-Riemannian metric, and the equations of geodesics can be written in a very similar way in terms of this
connection.

We will say a little more about this topic (the Rumin connection) in Sec. 6 of this paper.
Here, we will consider the Hamiltonian H:

H(p) =
1

2
sup

v∈∆\{0}

(
p(v)

‖v‖

)2
. (3.2)

H(p) is a positive semi-definite quadratic form on the fibers of πX : T ∗X → X whose kernel is the annihilator
of ∆.

Since we consider only the contact case, there is no abnormal geodesic, and all geodesics (i.e., locally

C0 minimizing curves) are the projections of trajectories of the Hamiltonian vector field 1H associated with
H onto X. (For the study of several noncontact cases, see [3, 11].)

Let H1
2
= H−1(1

2
) be a level surface of H corresponding to geodesics that are parametrized by the

arclength. Since Hamiltonian (3.2) is homogeneous w.r.t. p, the canonical contact structure of the projective
cotangent bundle PT ∗X corresponds to H1

2
. Let C̄0 ⊂ T ∗X, C̄0 = π−1X (q0), πX : T ∗X → X, and let C0 be

the cylinder C0 = C̄0 ∩H1
2
. C0 is a Legendre manifold for this contact structure, and the Hamiltonian flow

preserves this contact structure.
The exponential mapping is the mapping

ε : C0 ×R+ → X, (p, s)→ πX ◦ exp(s 1H(p)). (3.3)

The wave front of radius s is Ws = ε(C0,s); the sphere of radius s is the set Ss = {q ∈ E|d(q, q0) = s}.
Standard arguments (of Filippov’s type for instance) show that for s small enough, if d(q, q0) = s, there

is at least a geodesic segment of length s joining q0 with q. Hence Ss ⊂ Ws.
By the homogeneity of H, ε(c, λs) = ε(λc, s). Hence we can also consider ε as a map ε : C̄0 → X, ε(p) =

πX ◦ exp 1H(p). In that case, let us denote it by ε̄.
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At the end, we see that one can always consider the exponential mapping as the suspension of a mapping
between two-dimensional manifolds (Sec. 3.10).

Thus, there are three ways to consider the exponential mapping: if s denotes the arclength parameter,
then (1) we can consider ε̄ as a Lagrangian mapping or (2) for s fixed, we can consider εs as a Legendre
mapping. As we just said, it will also be possible and convenient (3) to consider ε as the suspension of an
ordinary smooth mapping between 2-dimensional manifolds. In this case, let us denote it by εS.

4. Content of the paper. Section 2 is devoted to normal forms and invariants for contact sub-Riemannian
metrics and isoperimetric problems.

Section 3 is devoted to the effective computation of the exponential mapping in all the considered
three-dimensional cases, i.e., contact general sub-Riemannian metrics, isoperimetric metrics, and finally, the
Dido case.

The computations in the general case have already been done in [2, 10], and in more detail in [4]. We
merely state the results that we need. Even this is not easy, because the formulas are so long that it is not
reasonable to show them completely. In practice, some of these computations in our series of papers have
been done by using a formal computation program. In [2, 10], they have been done by hand.

For all details, we refer to these papers. For detailed computation in the Dido case, we refer to [6].
One of the goals of the paper is to study the singularities of εs, ε̄, and εS, i.e., the singularities of ε as

a Legendre or Lagrangian or (suspension of an) ordinary mapping.
As consequences of this study, we are able to describe spheres and wave fronts, together with their

singularities, and caustics with their singularities. This is not new: it is mainly the results of [2, 4, 10].
But, what is new, as we said, is a similar study in the Dido case.
Section 4 is devoted to the study of sub-Riemannian caustics, i.e., the set of singular values of ε̄ and

εS. Stability of both mappings is studied in the Lagrangian and Thom–Mather sense, respectively. This
was the purpose of [4]. We simply restate the results. We give complements for the isoperimetric problems.

Section 5 concerns the study of small spheres and wave fronts. It also concerns the Legendre stability
of εs.

Theorem 2.1 and the Corollary 2.2 above are simply consequences of these results.

2. Normal Forms and Invariants

5. Normal coordinates. The task has already been done by us in the three-dimensional case in [4].
We start with a general (2n + 1)-dimensional smooth contact sub-Riemannian metric (X,∆, g)q0. We

assume that we are given a germ of a curve Γ :]− ε, ε[→X, Γ(0) = q0 that is transversal to the distribution.
We will define special coordinates “adapted to this curve.”

We set

AΓ =
⋃

t∈]−ε,ε[

{
p ∈ T ∗Γ(t)X

∣∣∣∣∣p
(
dΓ(t)

dt

)
= 0

}
.

AΓ is simply the union of all cotangent vectors along Γ that satisfy the Pontryagin transversality conditions
w.r.t. Γ.

There are smooth coordinates (z, w) in a neighborhood of q0 having the following properties:

(1) Γ(t) = (0, t);
(2) geodesics passing through Γ(t) that satisfy the Pontryagin transversality conditions w.r.t. Γ (i.e.,

geodesics of the form {πX ◦ exps 1H(p)}, p ∈ AΓ) are straight lines contained in the planes {w = t};

(3) for s small enough, the cylinders Cs =
{
2n∑
i=1

z2i = s2
}
are simply the sets

Cs = {q|d(q,Γ) = s},

where d denotes the sub-Riemannian distance.

(These properties are easy consequences of the Pontryagin maximum principle.) These coordinates, called
adapted to Γ coordinates, are unique up to changes of coordinates of the form

z̃ = U(w)z, w̃ = w,
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where U(w) ∈ O(2n). If these coordinates are compatible with the given orientation of ∆ (or X), then they
are unique up to U(w) ∈ SO(2n).

Now we are able to define the “isoperimetric normal coordinates at q0” for an (oriented) isoperimetric
sub-Riemannian metric (X,∆, g, ξ)q0.

Definition 5.1. The (z, w) isoperimetric normal coordinates, or simply isoperimetric coordinates (resp.,

Dido coordinates) correspond to the choice Γ(t) = exp tξ(q0), and to the choice of U(w) making ξ =
∂

∂w

(resp. ν =
∂

∂w
). The coordinates z are standard normal Riemannian coordinates over M (agreeing with

the given orientation of M). This choice of U(w) along Γ is unique up to the choice of U(0) ∈ SO(2n).

In the general case, there is still the job of normalizing U(w) along Γ, although the canonical choice of
Γ is clear up to sign: we chose Γ(t) = exp tν(q0).

5.1. Normalization of U(w) in the general contact case. First, we work at the points of Γ, i.e.,
qw = (0, w).

We are given an orientation (on ∆ if n is odd, and on X if n is even, i.e., in both cases, we have
a vector field Z transversal to ∆). This completely defines ω and ν. By contactness, the 2-form dω|∆ is
nondegenerate. In the z coordinates just defined, dω|∆ has the (skew symmetric) matrix Aw at qw. Let
us make the following assumption: the sub-Riemannian metric is strongly nondegenerate at q0 in the sense
that all the eigenvalues of Aw are distinct, w ∈ ]−ε, ε[. For a generic contact sub-Riemannian metric, this
happens at points q0 in an open dense set of X. Also, if n = 1, there is no assumption at all. Note also

that the product of the eigenvalues should be exactly
(
1

n!

)2
, since (dω)n|∆ = Volume. Equivalently, the

n positive imaginary parts αi of these eigenvalues should satisfy
n∏

i=1
αi =

1

n!
. These αi are invariants of

the sub-Riemannian structure at q0. If n = 1, they are trivial. They are also the only invariants of the
nilpotentization at q0 of the metric. By construction, they are invariant under orientation changes.

The ordered sequence of 2-dimensional real eigenspaces V w
i corresponding to the increasingly ordered

set of these imaginary parts of eigenvalues αi(w) are subspaces of ∆(qw).
Now we go back to our given curve Γ. What we can first do is to reduce the action of U(w) to the

action of a maximal torus T n(w) in SO(2n)(w) (a simultaneous normalization of the nilpotentizations along

Γ). Therefore, we can split the coordinate z into (x, y) coordinates such that V w
i = Vi = Span

{
∂

∂xi
,
∂

∂yi

}
,

i = 1, . . . , n, and the coordinates are now uniquely defined up to rotations U(w) that live in a given maximal

torus T n of SO(2n). In these coordinates, dω =
n∑

i=1
αi(w)dxi ∧ dyi at points of Γ.

Definition 5.2. Such coordinates are called Γ-reduced coordinates.

Now, let us consider any point q = (x, y, w) in a sufficiently small neighborhood U of q0. Let us consider
the planes Sw0 = {q|w = w0}. The projection Πw0 : U → Sw0 , Πw0(x, y, w) = (x, y, w0), has the differential
TΠw0. For q = (z, w), TΠw maps linearly and bijectively ∆(q) onto TqSw. The image of g(q) under TΠw

defines a Riemannian metric on Sw, which is denoted by gw.
The space V w

i = Vi can be considered either as 2-dimensional subspaces of Sw or as 3-dimensional
subspaces of R2n+1.

We have the following theorem.

Theorem 5.1. (x, y) are (Riemannian) normal coordinates at (0, 0, w) for all (Sw, gw).

The proof is an easy verification, which is left to the reader.
In a neighborhood of q0, we can consider any direct orthonormal frame field F for the metric, F =

(F1, G1, . . . , Fn, Gn); in a trivial abbreviated way in the Γ-reduced coordinates (x, y, w) = (z, w), it is

written as F = Q
∂

∂z
+ L

∂

∂w
. We can choose the frame so that Qi,j = Qj,i: we begin with an arbitrary
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orthonormal frame field F = Q
∂

∂z
+ L

∂

∂w
, and by using a gauge transformation (i.e., a rotation of the

frame, U(z, w) ∈ SO(2n), depending on (z, w)), we simply take the polar decomposition of Q. U(z, w) is
unique. Thus, we can assume that Q is symmetric. In fact, there is more than that: the frame obtained is
independent of the one from which we started for the following reasons:

(1) Qw(z) = Q(z, w), in our coordinates, is, by construction, the square root of the inverse of the matrix
of the Riemannian metric gw on Sw, which is well defined;

(2) if ω is the defining form, then ω is written as ω = f(z, w)(dw − µ(z, w)dz), f > 0, in a unique way,
and, since ω is defining, we have L(z, w) = µQ.

Therefore, this orthonormal frame is completely defined by the Γ-reduced coordinates.

Definition 5.3. This frame is called the normal frame subordinated to the Γ-reduced coordinates.

The only remaining choice to fix everything (the coordinates and the frame) is therefore the choice of
a curve Γ̃ : ]−ε, ε[→ T n, w → U(w).

We will prove the following theorem.

Theorem 5.2. Up to U(0) ∈ T n, there is a unique choice of the curve Γ̃ for which the sectional curvatures
relative to the subspaces Vi = V w

i at (0, w) of all the metrics (Sw, gw) are zero.

This could seem surprising. However, there is not only a rotation of coordinates (which of course does

not change the sectional curvatures), but there is also the effect of
∂U

∂w
on the metrics gw.

The proof of this theorem is postponed to the next section.

Definition 5.4. The coordinates (x, y, w) thus obtained, (x, y) = (xi, yi), 1 ≤ i ≤ n, ordered by the αi,
that are unique up to U(0) ∈ T n, are called the sub-Riemannian normal coordinates. The subordinated
normal frame is simply called the (sub-Riemannian) normal form at q0 of the metric (which is assumed to
be strongly nondegenerate).

6. (Sub-Riemannian) normal form. We choose any Γ-reduced coordinate system (x, y, w). Let ((Fi, Gi),

i = 1, . . . , n) be an ordered frame field for the metric such that (Fi, Gi)(0, 0, w) =

(
∂

∂xi
,
∂

∂yi

)
(the order

is given by the αi). The (2n + 1) × 2n-matrix formed by this frame field splits into the matrices Q(q) and
L(q) of dimension 2n× 2n and 1× 2n, respectively, and we can assume that Q is symmetric. (Abbreviated

notations for the frame field are again Q
∂

∂z
+ L

∂

∂w
.)

Theorem 6.1. (i) Q(z, w)z = z, L(z, w)z = 0;

(ii) conversely, if Q
∂

∂z
+ L

∂

∂w
is an orthonormal frame field that satisfies (i), then, setting Γ(t) = (0, t),

(z, w) is an “adapted to Γ coordinate system.”

Proof. (i) Again, (p, r) denotes the dual coordinates in T ∗X, and s is the arclength. Along our special
sub-Riemannian geodesics, the adjoint vector has to satisfy r(s) = 0 and pt(s) = ż(s): by the Pontryagin
maximum principle, p(s) satisfies the transversality conditions w.r.t. the cylinders Cs; hence r(s) = 0,
pt(s) = µ(s)ż(s), and µ(s) �= 0. Also, H = 1

2
, hence ‖pQ‖ = 1. Otherwise, ż = Q(pQ)t, pt = µQ(pQ)t, and

ppt = µ(pQ)(pQ)t = µ = µ2‖ż‖2 = µ2. Hence µ = 1.

Now,
pt

µ
= ż = Q2pt (Q is symmetric) and pt = Q2pt. But, also, λ(s)pt(s) = z(s), λ(0) = 0, λ(s) �= 0

for s �= 0. Therefore, z(s) = Q2z(s) for all s and (Id+Q(s))(Id−Q(s))z(s) = 0. But, Id+Q(0) is invertible:
Q(0) = Id. Therefore, (Id+Q(s)) is invertible for small s and Q(s)z(s) = z(s). This is true along all our
geodesics, so that Q(z, w)z = z.
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Along these geodesics, r(s) = 0, but also ẇ(s) = 0 = −
∂H

∂r
= L(pQ)t and 0 = LQpt =

1

λ(s)
LQz(s)

for s �= 0. By continuity again and by considering again all our geodesics, we have L(z, w)Q(z, w)z =
L(z, w)z = 0 for all (z, w).

(ii) It is easy to verify that the trajectories z(s) = s
z0

‖z0‖
, pt(s) =

z0

‖z0‖
, r(s) = 0, w(s) = cte are

solutions to the adjoint equations providing (i). Also, with (i), we find that along these trajectories, s is the
arclength. (An obvious continuity argument at s = 0 is needed.) �

Proposition 6.2. The conditions (i) of Theorem 6.1 are invariant under coordinate changes of the form
z̃ = U(w)z, w̃ = w for U(w) ∈ SO(2n).

Proof. First, let us show that if (i) is satisfied, then Q is invertible.
We write Q(z, w) as a power series in z : Q = Q0(w)+Q1(z, w)+ · · ·+Qn(z, w)+ · · · ; then Q(z, w)z =

z = Q0(w)z +Q1(z, w)z+ · · · ; this shows that Q0(w) = Id. In particular, for z sufficiently small, Q(z, w) is
invertible.

The formulas for these coordinate changes are easily computed. We obtain

Q̃ = U [(Q+AzL)(Q− LtztA)]
1
2U t,

L̃ = L(Q− LtztA)U tQ̃−1,
(6.1)

where A(w) =
dU(w)

dw
(A(w) is skew symmetric).

Then Q̃2z̃ = U(Q + AzL)(Q − LtztA)z = U(Q + AzL)(z + LtztAz). But ztAz = 0, since A is skew-

symmetric; hence Q̃2z̃ = Uz = z̃. Q(0) = Id , (Id+Q̃) is invertible, and Q̃z̃ = z̃.
For the second point, L̃z̃ = L(Q− LtztA)U tQ̃−1z̃ = L(Q− LtztA)z = Lz = 0. �
The following remark is also interesting and useful.

Proposition 6.3. Let us again write Q(z, w) as a power series in z; Q = Id+Q1(w, z)+ · · · ; then, Q1 = 0.

Proof. First, for all 1 ≤ i ≤ j ≤ 2n, we have Q1i,j(z, w) =
n∑

k=1
Q1,ki,j (w)zk; the relation Q(z)z = z yields

n∑
j,k=1

Q1,ki,j (w)zkzj = 0, which shows that Q1,ki,j (w) = −Q1,ji,k(w). Now, Q1 is symmetric; hence, Q1,kj,i (w) =

Q1,ki,j (w) = −Q
1,j
i,k(w) = −Q

1,j
k,i(w) = Q1,ik,j(w) = Q1,ij,k(w) = −Q

1,k
j,i (w) = 0.

Let us examine now how such a frame field should look when n = 1. We take a Γ-adapted coordinate
frame at q0. In this case, it is automatically Γ-reduced. We know that Q(0, w) = Id. Let us set Q =(
Q1 Q2
Q2 Q3

)
; let β(z, w) = −

1

xy
Q2(z, w) if x, y �= 0. Then, using Qz = z, we find Q1 = 1 + y2β and

Q3 = 1 + x2β. Then βxy, x2β, and y2β are smooth functions. Applying the following lemma twice, we see
that, in fact, β is smooth even at x = 0 or y = 0. �

Lemma 6.4 (desingularization). Let f(x, y, w) be any function on Rp+2. If xf and yf are smooth, then f
is smooth. (Replace smooth either by C∞ or by Cω).

Proof. Left to the reader. �
Therefore, we see that

Q(z, w) =

(
1 + y2β(x, y, w) −xyβ(x, y, w)
−xyβ(x, y, w) 1 + x2β(x, y, w)

)
. (6.2)

Also, let us set L(x, y, w) = (L1, L2) and γ(x, y, w) =
2

y
L1. Then, using Lz = 0, we get L2 = −

x

2
γ outside

{y = 0}, and γx and γy are smooth functions. By the desingularization lemma, γ is smooth.
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Also, since n = 1, we have α1 = α = 1. Writing again ω = f(dw + µdz) for the defining form, we
have f > 0; since ω(ν) = 1, we conclude that f(0, 0, w) = 1; this shows (after a small computation) that
γ(0, 0, w) = 1.

Thus, in dimension 3, we have

F = (1 + y2β(x, y, w))
∂

∂x
− xyβ(x, y, w)

∂

∂y
+
y

2
γ(x, y, w)

∂

∂w
,

G = −xyβ(x, y, w)
∂

∂x
+ (1 + x2β(x, y, w))

∂

∂y
−
x

2
γ(x, y, w)

∂

∂w
,

γ(0, 0, w) = 1.

(6.3)

By definition, the matrix Q(x, y, w) is such that Q
∂

∂z
is an orthonormal frame field for the metric gw on

the plane Sw. A direct computation shows that the Gaussian curvature (which is also the sectional curvature
at (0, 0, w) relative to the subspace V1 = V w

1 in that case) is

kgw(0, 0) = 6β(0, 0, w). (6.4)

Therefore, by our normalization of the coordinates in Theorem 5.2, it should be zero.
It is now time to prove Theorem 5.2 of the previous section. To this end, we need a technical lemma.

Lemma 6.5. The sectional curvature Sec0(V w
i ) at (0, 0, w), relative to the 2-dimensional subspaces V w

i of
the (Sw, gw) satisfies

Sec0(V
w
i ) =

(
∂2Qi,i

2,2

(∂xi)2
+
∂2Qi,i

1,1

(∂yi)2
− 2

∂2Qi,i
1,2

∂yi∂xi

)
(0, 0, w),

where Q is 2× 2-block, Q = Block(Qi,j).

Proof. For a Riemannian metric g, in normal coordinates, we have g = Q−2, where Q is symmetric matrix
of an orthonormal frame field and g(0) = Id. The proof of Theorem 6.1 also works for Riemannian metrics,
that is, to show that Q(z)z = z. If Q(z) = Id+Q1(z) + Q2(z) + · · · , where Qi has order i in z, then
Q1(z) = 0 (Proposition 6.3). Hence, g(z) = Id−2Q2(z) +O3(z). Now, computations in normal coordinates
show that

2Sec0

(
Span

{
∂

∂zk
,
∂

∂zl

})
= −

(
∂2gl,l

(∂zk)2
+
∂2gk,k

(∂zl)2
− 2

∂2gk,l

∂zl∂zk

)
.

The result follows. �

Notation. Below, for any function ϕ(z), the notation ϕ(ẑi) means ϕ(0, . . . , 0, zi, 0, . . . , 0), i.e., ϕ all of
whose components (xj, yj) except (xi, yi) are zero.

Proof of Theorem 5.2. The relation Q(z, w)z = z implies Qi,i(ẑi, w)zi = zi, 1 ≤ i ≤ n. As a consequence,
Qi,i(ẑi, w) has the form (6.2). In the same way, if L(z, w) = Block(Li), then Li satisfies the following:

Li(ẑi, w) =
(
yi
2
,−

xi
2

)
γi(ẑi, w), 1 ≤ i ≤ n. (6.5)

Also, γi(0, w) �= 0 : γi(0, w) is exactly the eigenvalue αi(w) considered above.
For the same reason, we have Qj,i(ẑi, w)zi = 0; hence, Qi,j(ẑi, w)Qj,i(ẑi, w)zi = 0. With the same

reasoning as before, this implies

Qi,j(ẑi, w)Q
j,i(ẑi, w) =

(
y2i βi,j(zi, w) −xiyiβi,j(zi, w)
−xiyiβi,j(zi, w) x2iβi,j(zi, w)

)
. (6.6)

Otherwise, the coordinate changes z̃ = U(w)z, U(w) = Block(eJδi(w)), J =

(
0 1
−1 0

)
∈ T n, act as

indicated in formula (6.1).
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The application of this formula allows us to compute Q̃i,i(ẑi). We will compute it up to terms of order
3 only, since we want to apply Lemma 6.5 at the end:

Q̃i,i(ẑi) = eJδi(w)

(Qi,i +AiziL
i)(Qi,i − LitztiAi) +

∑
j �=i

Qi,jQj,i

 1
2

e−Jδi(w) +O3(zi) (6.7)

with Ai = J
dδi

dw
.

Using specific forms of Qi,i(ẑi), Li(ẑi), Ai, and Qi,i(ẑi) and computing a bit, we obtain

Q̃i,i(ẑi) = eJδi(w)
(

1 + y2i β̂(zi, w) −xiyiβ̂(zi, w)
−xiyiβ̂(zi, w) 1 + x2i β̂(zi, w)

) 1
2

e−Jδi(w) +O3(zi)

with β̂(0, w) =
∑
j �=i

βi,j(0, w) + 2

(
βi(0, w)−

dδi

dw
(0, w)

γi

2
(0, w)

)
.

This shows that we can find δi(w) independently and in a unique way up to δi(0) for β̂(0, w) = 0 and
for all w small enough. Hence, after the change of variables z̃ = U(w)z, we obtain

Q̃i,i( ̂̃zi) =
(

1 + ỹ2i β̂(z̃i, w) −x̃iỹiβ̂(z̃i, w)
−x̃iỹiβ̂(z̃i, w) 1 + x̃2i β̂(z̃i, w)

)
+O3(z̃i)

with β̂(0, w) = 0.
By Lemma 6.5, this shows the result. �
We can now again use the fact that the curve Γ is simply {exp(tν)(q0)} in order to obtain additional

conditions on L.
Taking the Taylor expansion of L w.r.t. z = (x, y), we write L(z, w) = L1(w, z) +L2(w, z)+ · · · , where

L1 is linear and L2 is quadratic in z. We already know that

L1i (w) = αi(w)
(
yi
2
,−

xi
2

)
. (6.8)

Setting L2dz =
2n∑
i=1

L2i dzi, we see that d(L2dz) is written as d(L2dz) =
n∑

j=1
L̃2j(x, y, w)dxj ∧ dyj+ other terms,

where L̃2j(x, y, w) = L̃2j(z, w) is linear in z.
Computations show that the fact that iν(dω) = 0 is equivalent to

n∑
j=1

∂

∂yk
(L̃2j(z, w))|z=0

n∏
i=1

{αi(w)}i�=j = 0, (6.9)

n∑
j=1

∂

∂xk
(L̃2j(z, w))|z=0

n∏
i=1

{αi(w)}i�=j = 0, 1 ≤ k ≤ n. (6.10)

We have proved the following theorem.

Theorem 6.6 (normal form). Assume that (X,∆, g)q0 is a strongly nondegenerate germ of a contact sub-
Riemannian metric. Then, up to sign for the defining form ω and the characteristic vector field ν, there is a
coordinate system (x, y, w), z = (x, y), (unique up to an element of the maximal torus T n of SO(2n) defined

by dω) and an orthonormal frame field Q
∂

∂z
+ L

∂

∂w
(unique once the coordinates are chosen) such that

(0) Q is symmetric,
(1) Q(z, w)z = z, L(z, w)z = 0, Q = Block(Qi,j), L = Block(Li), 1 ≤ i ≤ j ≤ n,

(2) (i) Qii(ẑi, w) =

(
1 + y2i βi(zi, w) −xiyiβi(zi, w)
−xiyiβi(zi, w) 1 + x2iβi(zi, w)

)
,

(ii) βi(0, w) = 0,
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(3) Li(z, w) = L1i (w, z) +L2i (w, z) + higher order in z, L1i = αi(w)

(
yi

2

∂

∂xi
−
xi

2

∂

∂yi

)
, L2i has order 2 in z,

d(
∑
L2idzi) =

∑
L̃idxi ∧ dyi + other terms,

(i) Li(ẑi, w) = αi(zi, w)

(
yi

2

∂

∂xi
−
xi

2

∂

∂yi

)
,

(ii)
1

n!
=

n∏
i=1

αi(0, w),

(iii)
∑n

j=1

∂L̃i

∂yk
(0, w)

n∏
i=1

{αi(0, w)}i�=j =
n∑

j=1

∂L̃i

∂xk
(0, w)

n∏
i=1

{αi(0, w)}i�=j = 0, 1 ≤ k ≤ n.

If (x, y, w) and Q
∂

∂z
+ L

∂

∂w
are the coordinates and frame field such that (0)–(3) are satisfied, then

(x, y, w) are normal coordinates and Q
∂

∂z
+ L

∂

∂w
is the corresponding normal frame field.

Also, it follows from our discussion that the following theorem holds.

Theorem 6.7 (invariance of the normal form). The normal form is invariant under the action of T n on
∆(0). Precisely, if z is Uz̃, then Q is replaced by U tQ(Uz̃, w)U , and L is replaced by L(Uz̃, w)U .

We restate these theorems in the special case n = 1 (this is not new; see [4]).

Theorem 6.8 (3-dimensional normal form). In the normal coordinates, the normal frame field is written
as follows:

F = (1 + y2β(x, y, w))
∂

∂x
− xyβ(x, y, w)

∂

∂y
+
y

2
γ(x, y, w)

∂

∂w
,

G = −xyβ(x, y, w)
∂

∂x
+ (1 + x2β(x, y, w))

∂

∂y
−
x

2
γ(x, y, w)

∂

∂w
,

(6.11)

with the “boundary conditions”
β(0, 0, w) = 0, γ(0, 0, w) = 1,

∂γ

∂x
(0, 0, w) =

∂γ

∂y
(0, 0, w) = 0.

(6.12)

These normal coordinates are unique up to a rotation of SO(2) in ∆(0) (and changing orientation on ∆
changes w to −w). Once the normal coordinates are chosen, the normal frame is unique, and the normal
form is invariant under the action of SO(2): if U ∈ SO(2) is taken, and if we set z = Uz̃ = z, β and γ are
replaced by β ◦ U and γ ◦ U , respectively.

To conclude, let us restate our results about isoperimetric normal forms. Let us do this only in the
3-dimensional case, but note that it is possible to do the same for n > 1 (i.e., reducing to the action of a
maximal torus in SO(2n)).

Remark 6.1. One can verify that in this way, we obtain normal forms and complete invariants for
“Riemannian-symplectic” structures.

Theorem 6.9 (3-dimensional isoperimetric normal form). Let (X,∆, g, ξ)q0 be an isoperimetric structure.
In isoperimetric coordinates (that are unique up to a rotation in Tp0M , M = X\ξ, Π : X →M , Π(q0) = p0),
there is a unique orthonormal frame field of the form

F = (1 + y2β(x, y))
∂

∂x
− xyβ(x, y)

∂

∂y
+
y

2
γ(x, y)

∂

∂w
,

G = −xyβ(x, y)
∂

∂x
+ (1 + x2β(x, y))

∂

∂y
−
x

2
γ(x, y)

∂

∂w
,

(6.13)

without any boundary condition, but with ξ =
∂

∂w
. This normal form is invariant under the action of SO(2):

U ∈ SO(2) changes β and γ to β ◦ U and γ ◦ U .
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Theorem 6.10 (3-dimensional Dido normal form). Let (X,∆, g)p0 be the Dido metric. Then, we have the
same statement as the one of Theorem 6.9, and, moreover,

γ(x, y) = (1 + (x2 + y2)β(x, y))
∫ 1
0

2t dt

1 + t2(x2 + y2)β(tx, ty)
. (6.14)

Also, β(0, 0) = 1
6
k(p0), k(p0) is the Gaussian curvature of M at p0.

Proof. Left to the reader (a straightforward computation simply using the fact that ξ = ν). �

7. Invariants. All normal forms in the previous theorems allow us to define tensor fields that are invariants
of the sub-Riemannian, or isoperimetric, or Dido structures (because of the invariance of the normal forms).

7.1. The general case. Let us begin with the general case, that is, with any n. We make the following
identifications:

TX = ∆⊕X Rν, T ∗X = ∆∗ ⊕X ∆0,

where ∆∗ is the dual of ∆ and ∆0 is the annihilator of ∆ in T ∗M (∆0 = Rω).
If V is a vector space, we denote by SkV ∗ the set of covariant symmetric tensors of degree k on V ,

which can be canonically identified with homogeneous polynomials of degree k on V ∗.
Given an orientation (on ∆ if n is odd and on X if n is even) together with a normal coordinate system

at q0, consider Q
∂

∂z
+ L

∂

∂w
, the normal form of our metric. For any two vectors V1 and V2 in ∆q0, we can

consider the values A1(z, w, V1, V2) = V t
1Q(z, w)V2, and A2(z, w, V1) = L(z, w)V1, (identifying V1 and V2 with

their representants in normal coordinates). For each k > 0, let us consider Ai
k(z, V1, V2) =

∂kAi

∂wk |w=0
and

Bi
k,l(V1) = DlAi

k(z)|z=0, the kth derivative with respect to z at 0 of Ai
k(z). B

1
k,l is an element of Sk∆∗q0⊗S

2∆∗q0
and B2k,l is an element of Sk∆∗q0 ⊗∆∗q0. For a defining form ω, we set

B̃i
k,l =

Bi
k,l if k is even,

Bi
k,l ⊗ ω if k is odd.

Then B̃i
k,l, i = 1, 2, do not depend on the choice of U in T n and on the orientation. The first fact comes

from Theorem 6.7. Second, if we change orientation, w is changed to −w, but ω is changed to −ω.
Now if we move the base point q0 of this construction, we obtain tensor fields, still denoted by B̃i

k,l,
that are invariants of the sub-Riemannian structure.

Now, if J is any subbundle of the tensor bundle
⊗p,q ∆ (p times contravariant, q times covariant),

the abelian group T n acts on its typical fiber J(0). J(0) as a T n-module can be decomposed into (1- or
2-dimensional) real irreducible components, J(0) =

⊕
{Jk(0)|k ∈ Zn, k not necessarily distinct}, Jk(0)

corresponds to the characters eεi(k1θ1+···+knθn), ε = +1,−1.
In the case n = 1, these considerations can be made more precise. This is the purpose of the following

section.

7.2. The case n = 1. In this case, it is more convenient to define these invariants in another (but equiva-
lent) way: we can consider functions β and γ that appear in the normal form (6.11). By their invariance and
by the same considerations for orientation, the following tensor fields are invariants of our sub-Riemannian

structure: we define the tensors at the pole q0 via the normal form at q0. We set βk =
∂kβ

∂wk |w=0
, γk =

∂kγ

∂wk |w=0

and we take the lth derivatives with respect to z at z = 0, βk
l , γ

k
l . If k is odd, then we tensorize with ω.

(We still denote these tensors by βk
l and γkl in this case.)

If k is even, then βk
l , γ

k
l ∈ Sl∆∗, and if k is odd, they belong to Jl = Sl∆∗ ⊗ T ∗X.

We have T ∗X = ∆∗ ⊕X Rω, and the structural group SO(2) of Sk∆∗ acts on the typical fiber Jk(q0)
of Jk in a trivial way. Hence all the tensor bundles considered above have decompositions into isotypic
components. If N is an SO(2)-module, we denote by (N)k its isotypic component corresponding to the kth
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power of the basic character χ = eiθ (i.e., the direct sum of the real irreducible components corresponding
to χk).

The following decompositions are the most important in the remaining part of the paper:

S2∆∗ = (S2∆∗)0 ⊕ (S2∆∗)2, S3∆∗ = (S3∆∗)1 ⊕ (S3∆∗)3.

(S2∆∗)0 can be identified with the line bundle Rg, (S3∆∗)1 endowed with the symmetric product ∆∗ �Rg.
Then (S2∆∗)2 (resp. (S3∆∗)3) is simply the orthogonal complement of (S2∆∗)0 (resp. (S3∆∗)1) with respect
to the metric induced by g on S2∆∗ (resp. S3∆∗).

For instance, if q ∈ S2∆∗, then q = (q)0 + (q)2, (q)0 =
1
2
traceg(q)g and traceg((q)2) = 0.

More generally, for ε = 0, 1, S2p+ε∆∗ =
p⊕

k=0
(S2p+ε∆∗)2k+ε, and if q ∈ S2p+ε∆∗, then q = (q)ε + · · · +

(q)2p+ε. If one considers q as a homogeneous polynomial of degree p, then, being restricted to the unit circle
in ∆∗q0, it is a function q(θ) of the angle θ. The above decomposition is simply the (finite) Fourier series of
q(θ), and (q)2p+ε is the “highest harmonic.” In this study, the “highest harmonics” always play a crucial
role as we will see.

Two of these tensors play a particularly important role in this paper; hence, we give them a special
name: Q = γ02 and V = γ03 . They belong to S2∆∗ and S3∆∗, respectively. Their highest harmonics are
Q2 ∈ (S2∆∗)2 and V3 ∈ (S3∆∗)3 and were called the principal and second invariant in the introduction.

Theorem 7.1 (genericity). X is given. There is an open-dense set (in the Whitney topology) among the
contact sub-Riemannian metrics on X such that the principal invariant Q2 is nonzero outside a smooth
(possibly empty) curve. On this smooth curve, the second invariant V3 is nonzero.

The proof is left to the reader. For more details, see [10].

7.3. The 3-dimensional isoperimetric case. Let us go back to the original statement of an isoperimetric
problem in the 2-dimensional case. It is a triple (M, g, η)q0. η = ψVolume. The sub-Riemannian formulation
(X,∆, g, ξ) is contact iff ψ does not vanish.

In the same way, we will consider SkT ∗M , the bundle of covariant symmetric tensors of degree k on
TM . The structural group SO(2) of TM acts on a typical fiber of this bundle, and we again have the
following decompositions into isotypic components:

SkT ∗M =
⊕

M(SkT ∗M)j .

If ΠX : X → M is the canonical projection, q0 ∈ X, and p0 = ΠX(q0) ∈ M , then an element T ∈ SkT ∗p0M

is pulled back linearly to an element Π∗X(T ) ∈ Sk∆∗q0. Both bundles SkT ∗M and Sk∆∗ have the same fiber
with the same action of SO(2). Hence the typical fibers of both bundles have the same decomposition. The
pull back mapping commutes with these decompositions, i.e., if T ∈ (SkT ∗p0M)j, then Π∗X(T ) ∈ (Sk∆∗q0)j.

Fix p0 ∈ M and q0 ∈ (ΠX)−1(p0). Set x2 = ∇2 logψ, x3 = ∇3 logψ. x2 ∈ S2T ∗p0M and x3 ∈ S3T ∗p0M .

The decompositions of x2 and x3 (as elements of S2∆∗ and S3∆∗, in particular) yield Π∗X(x2) = (x2)0+(x2)2
and Π∗X(x3) = (x3)1 + (x3)3.

Computations show the following.

Theorem 7.2. In the contact isoperimetric case, Q2 is a nonzero multiplier of (x2)2 and V3 is a nonzero
multiplier of (x3)3.

Also, it is clear that for an open dense set of tuples (g, ψ) (among the open set of (g, ψ) with nonvanishing
ψ) on a 2-dimensional manifold M , (x2)2 is nonzero, except for isolated points where (x3)3 is nonzero.

Therefore (except for small details due to the symmetry, which we will explain later on), the study of
generic isoperimetric problems is equivalent to the study of generic sub-Riemannian problems (since, as we
will see, most of the properties that we study are completely determined by Q2 if it is nonzero, or V3 if
Q2 = 0).
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7.4. Dido case (3-dimensional). On the contrary, for the Dido problem, a computation with the formula
(6.14) and the isoperimetric normal form (6.13) show that Q2 is identically zero.

Of course, in the Dido case the only tensor fields of interest will be ∇rk, where k is the Gaussian
curvature on M . For convenience in computations and coherence with the general sub-Riemannian case, we
will prefer the invariants defined by β in the isoperimetric normal form (6.13). Clearly, β can be considered
either as a function on the quotient M = X\ξ or as a function on X. The confusion will be not substantial
because of the identification of SkT ∗p0M with Sk∆∗q0 and their respective decompositions done in the previous
section.

Again, because of the invariance of the normal form, the derivatives Dkβ with respect to z taken at
z = 0 define elements βk ∈ Sk∆∗q0 (or S

kT ∗p0M). Moving the base points p0, q0, we obtain tensor fields that
are invariants of the isoperimetric structure (they are also invariant w.r.t. to changes of orientation). The
most important among βr will be β2 and β3. They are related to the ∇rk as follows:

Theorem 7.3 (invariants in the Dido case). The “highest harmonics” (∇rk)r and (βr)r are nonzero con-
stant multipliers for r = 2, 3:

(∇2k)2 = 20(β2)2, (∇3k)3 = 180(β3)3.

For more details, see [6].

3. Computation of the Exponential Mapping

In all of this section, we restrict ourselves to the 3-dimensional case.
We know that the sub-Riemannian geodesics are projections of the trajectories of the Hamiltonian

vector field 1H onto X. Here, let us present the computations in the general sub-Riemannian case and in the
Dido case only. As we said in Sec. 2.7.3 for the main results, it is not necessary to make the computations
in the general isoperimetric case: they are direct consequences of the results in the general nonisoperimetric
case. However, for some details that we will show in Sec. 4, it is necessary to do the computations. They
have been done in [8].

We consider a sub-Riemannian metric that is either general or Dido. In the general case, we work in
normal coordinates with the normal form (6.11) and with the boundary conditions (6.12). In the Dido case,
we work in isoperimetric normal coordinates, with the isoperimetric normal form, and with relation (6.14).

In both cases, the dual coordinates in T ∗X of the normal coordinates (x, y, w) (isoperimetric or Dido)
are denoted by (p̃, q̃, r).

8. Reparametrization of geodesics. Let us denote the arclength by s and reparametrize the time. The
new time will be t, defined by dt = r(s)ds. In the Dido case, r is constant; hence, t = rs. We set

p =
p̃

r
, q =

q̃

r
, ρ =

1

r
. (8.1)

Along a geodesic, let us write ρ for ρ(t) at t = 0 : ρ = ρ(0). When using ρ at the new time t, we always
use explicitly the notation ρ(t).

In these coordinates, the cylinder C0 = {p = ρ cos(ϕ), q = ρ sin(ϕ)}, and ε is a mapping of the variables
(ρ, ϕ, t), which is smooth even at ρ = 0. We denote it again by ε(ρ, ϕ, t). For z = (x, y), εz denotes the first
two components of ε, and εw denotes the third one. εz, εw have expansions in terms of ρ at ρ = 0 of the
form

εz = ρεz1(t, ϕ) + ρ3εz3(t, ϕ) + · · · + ρnεzn(t, ϕ) + o(ρn+1) = ε̃zn + o(ρn+1). (8.2)

Remark 8.1. Note the very important point that the term of order 2 is missing. This is due (i) to
Proposition 6.3 and (ii) to the boundary conditions on γ in the general case and to the special form of γ in
the Dido case. This is not true in the general isoperimetric case for the isoperimetric coordinates (which are
the natural ones). However, we decided to forget these coordinates and to work in normal nonisoperimetric
coordinates in this case. This results in the fact that the w component is not exactly the value of the
prescribed integral, but this does not change the general shape of spheres, wave fronts, and conjugate loci:

εw = ρ2εw2 (t, ϕ) + ρ4εw4 (t, ϕ) + · · ·+ ρnεwn (t, ϕ) + o(ρn+1) = ε̃wn + o(ρn+1). (8.3)
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Remark 8.2. The term εw3 is missing. As in the remark above, this is not true for general isoperimetric
problems in isoperimetric coordinates with the same consequences in the interpretation of the results on
spheres, wave fronts, and optimal synthesis.

Also, let us set ε1 = (ρεz1(t, ϕ), ρ
2εw2 (t, ϕ), ε̄n = (ε̃zn(t, ϕ), ε̃

w
n+1(t, ϕ)), and ε̂n = (ε̃zn(t, ϕ), ε̃

w
n(t, ϕ)).

Remark 8.3. ε1 is simply the exponential mapping of the “Heisenberg” right-invariant metric, which is
the basic model. Everything will be computed by using formulas (8.2) and (8.3) as a perturbation of this
basic (and totally degenerate) exponential mapping.

ε1 can be computed easily:

ε1(ρ, ϕ, t) = (ρεz1(t, ϕ), ρ
2εw2 (t, ϕ)),

εz1(t, ϕ) = (2 cos(ϕ− t/2) sin(t/2), 2 sin(ϕ− t/2) sin(t/2)),

εw2 (t, ϕ) = (t− sin(t))/2.

(8.4)

Let us now show how to compute the other terms that we need in formulas (8.2) and (8.3).
We set σ = (x, y, p, q). Then our geodesics have the expansion

σ(ρ, ϕ, t) = σn(ρ, ϕ, t) + o(ρn+1),

σn(ρ, ϕ, t) = ρσ1(ϕ, t) + ρ3σ3(ϕ, t) + · · · + ρnσn(ϕ, t);
(8.5)

σ1(ρ, ϕ, t) is the “Heisenberg term,” the first two components of which are given in (8.4). Let 1B1 denote the

(x, y, p̃, q̃) components of our vector field 1H in which, moreover, we set r = 1, p̃ = p, and q̃ = q. Let 1B2 =(
0, 0, p

∂H

∂w
, q
∂H

∂w

)
in which also r = 1, p̃ = p, and q̃ = q, and let 1B = 1B1+ 1B2. Let 1Bn denote the nth jet of

1B with respect to (x, y, p, q, w) and with respect to the gradation deg(x) = deg(y) = deg(p) = deg(q) = 1,

deg(w) = 2. Let 1C be the w-component of 1H (in which r = 1, p̃ = p, q̃ = q), 1C =
∂H

∂r
(σ, w)|r=1, and let 1Cn

be the nth jet of 1C in the same gradation. Then we can compute (σn(ϕ, t), εwn(ϕ, t) by induction, since

σn+1 = ρ σ1(ϕ, t) +
∫ t

0
eA(t−s)( 1Bn+1 − 1B1)(σ

n(ρ, ϕ, s), ε̃wn (ρ, ϕ, t)) ds+O(ρn+2), (8.6)

ε̃wn+1 =
∫ t

0

1Cn+1(σ
n(ρ, ϕ, s), ε̃wn (ρ, ϕ, t))ds+O(ρn+2), (8.7)

where A(x, y, p, q) = 1B1(x, y, p, q) is the Heisenberg linear operator with the matrix

A =


0 1/2 1 0

−1/2 0 0 1
−1/4 0 0 1/2
0 −1/4 −1/2 0

 .

These computations are rather long. They were done by hand in [10] and for higher order using a formal
program in [4]. This higher order was necessary for the purposes of Sec. 4. We show here the expressions of
εz3 and εw4 in the Dido case. The other expressions are too long. In the following formulas, α0 = 1/6k(p0),

εz3 =α0/2(6t cos(ϕ− t)− 6 sin(ϕ) + 2 sin(ϕ− 2t) + 3 sin(ϕ− t) + sin(ϕ+ t),

6t sin(ϕ− t) + 6 cos(ϕ)− 2 cos(ϕ− 2t)− 3 cos(ϕ− t)− cos(ϕ+ t)),

εw4 =3α0/8(−2t − 4t cos(t) + 4 sin(t) + sin(2t)).

(8.8)

Similar expressions for the general sub-Riemannian case are given in [4, 10].
Note also that in the Dido case the computations are simpler because the two steps computing σn and

εwn are completely decoupled. The counterpart is that we will need to compute higher-order jets.
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We will also need an expression for ρ(t); by setting µ(t, ρ, ϕ) =
∂H

∂w |r=1
(σ(t, ρ, ρ), εw(t, ρ, ϕ)), we obtain

ρ(t) = ρ exp
(∫ t

0
µ(τ, ρ, ϕ)dτ

)
, which is of the form ρ(t) = ρ+O(ρ5). (8.9)

9. Back to wave fronts, spheres, conjugate loci, and cut loci. Any geodesic is optimal on small
pieces of itself. For such a geodesic ε(c, ·), c ∈ C0, we define the conjugate-time (of the pole) sconj(c) (resp.
the cut-time scut(c)) as the first instant of time at which the geodesic tail is locally optimal, i.e., optimal
among admissible curves having the same endpoints and lying in a certain C0 neighborhood of the geodesic
segment (resp. globally optimal).

It is possible to verify that sconj(c) is also the first strictly positive instant of time at which the expo-
nential mapping does not have full rank.

The conjugate locus CL is the union
⋃

c∈C0
ε(c, sconj(c)), i.e., the set of (first) singular values of the

exponential mapping ε. The cut locus CutL is the union
⋃

c∈C0
ε(c, scut(c)).

The conjugate locus is also a part of the set of singular values of ε̄ (ε̄ is defined to be equal to ε, but
taken as a Lagrangian mapping ε̄ : C̄0 → X). C̄0 is a Lagrangian submanifold of T ∗E, ε̄ is a Lagrangian
mapping (in the sense of [7]), and the conjugate locus is part of the associated “caustic.”

In the same way, εs = ε(s, ·) : C0 → E is a Legendre mapping (in the same sense), and its image is the
wave front Ws.

Therefore, all the objects under study (spheres, conjugate loci, cut loci) are, in a local level, elementary
objects of the theory of Lagrangian and Legendre singularities in dimension 3. Of course, we will show
nothing new in this level.

A simple computation shows that the conjugate time for the Heisenberg approximation ε̄1(ρ, ϕ, t) is
tH = 2π. Hence all the phenomena of importance occur for t close to 2π.

Our study is local : first, we restrict ourselves to a neighborhood of the base point q0 in X; second, we
restrict ourselves to instants that are at most close to 2π, i.e., we restrict ourselves to what happens in a
neighborhood of the first conjugate points. The reason for this is that only this restriction is important from
the point of view of optimality.

However, our study has a “global character”: we consider the exponential mapping as a mapping
restricted to a neighborhood US of the first conjugate points, and we study this restriction globally.

What will be new is that the elementary singularities appearing in our study consist of nontrivial ar-
rangements of classical Lagrangian and Legendre singularities (generic and hence stable, since the dimension
is 3). These collections of elementary stable singularities are not organized in an arbitrary way.

10. The exponential mapping as a suspension. Once we have computed the expansion of ε, it is
possible and very convenient for our purposes to choose coordinates at the source of the exponential mapping
so that it is in suspended form. For w > 0 and ρ > 0, we set

h =
√
w/π, σ = (s− 2πh)/h, (10.1)

and we will use the coordinates (x, y, h) at the image and (ϕ, σ, h) in the source.
One can verify that these coordinate changes are valid in a certain neighborhood of {t = 2π} at the

source (merely by using the expression (8.4) of εw2 , and the expression of s, s =
∫ t

0
(ρ(τ )dτ and ρ(t) =

ρ+O(ρ5)).

Remark 10.1. The case w < 0, ρ < 0 is absolutely similar and leads to completely parallel results by

setting h =
√
−w/π. Also, in the Dido case, the results for w < 0 can be obtained from the results for

w > 0 simply by reversing the orientation a posteriori. From now on, we will consider the case w > 0 only.

Remark 10.2. This coordinate system for the suspended mapping εS goes back to the arclength. This is
not the case for the coordinate systems (at the image and at the source) that we used in previous papers,
(x, y, h) and (ϕ, t, h), which forget the arclength. For this reason, this new coordinate system is much better
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for computations of cut loci, as we will see. Also, the next lemma shows that it is very convenient for the
computation of the conjugate loci.

10.1. Basic properties of the conjugate locus and the cut locus. Let us fix a geodesic ε(ϕ,h)(σ).
Then, in these suspended coordinates, the conjugate time and the cut time are functions σconj(ϕ, h) and
σcut(ϕ, h). As we will see, these two functions are smooth, and the conjugate locus and the cut locus are
(in the generic case) 2-dimensional surfaces with singularities. If we cut them by the planes {h = ct}, we
obtain one-dimensional objects. The conjugate locus (cut by h = ct) will be a closed curve that is smooth,
except for a finite number of cusp points. (In fact, the conjugate locus is a surface that is smooth except
for cuspidal lines transversal to the planes {h = ct}.)

Lemma 10.1. In the coordinates (x, y, h) of the image and (ϕ, σ, h) of the source, the following properties
hold:

(i) the conjugate time is given by the equation
∂ε

∂ϕ
= 0;

(ii) the conjugate time σconj(ϕ, h), for h constant, is a function of ϕ having its extrema at the position ϕ
of cusp points of the conjugate locus.

Simple general arguments also show in our contact case that CutL\CL is formed by points that are
joined to the origin by several (not unique) geodesics at the same arclength time.

As a consequence, CutL\CL is simply “the optimal part of the union of the self-intersections of all
wave fronts.”

The complement of CutL\CL in CutL is called “the boundary of the cut locus.” We also have the
following lemma.

Lemma 10.2. The boundary of the cut locus coincides with the cuspidal lines of the conjugate locus.

The proof of Lemmas 10.1 and 10.2 are given in [6]. Both proofs deeply use Liouville’s theorem.

10.2. Sufficient jets for the exponential mapping. One of the conclusions of this study is that all
singularities that appear for the exponential mapping are stable singularities: for the mapping as an (sus-
pension of a) ordinary mapping between 2-dimensional manifolds (εS) or for the mapping as a Legendre
mapping (εs), or for the mapping as a Lagrangian mapping (ε̄).

As a suspension of an ordinary mapping, ε will have sufficient asymptotics in terms of h (or in terms of
ρ), at least in restriction to a certain neighborhood of the first conjugate locus at the source. Hence ε will
be determined by certain jets of the metric at the pole, q0, in the general case, and by certain jets of the
Riemannian metric at p0 in the Dido case.

Also, as we will see, not all Lagrangian singularities appear. This will be shown in the next section of
the paper.

4. Caustics

Here, we study the conjugate locus. We simply study ε as a suspension of an ordinary mapping. We
observe that ε is stable in Thom–Mather’s sense (in restriction to a neighborhood of its singular set at the
source). Hence all singularities of the conjugate locus that appear are simply cuspidal lines and transversal
self-intersections. Thus, as Lagrangian singularities, swallow tails do not appear, and the D4+,− singularities
do not appear. It is explained in [10] that, in fact, the swallow tail A4 appears in the transition between the
nondegenerate situation (points at which the principal invariant is nonzero) and the degenerate situation
(points at which it is zero). All the results of the general case are valid for the isoperimetric case but are
different in the Dido case: the sufficient asymptotics have higher order, and the size of the conjugate locus
is different.

From now on, the nondegenerate case is the case of base points q0 where the principal invariant Q2 �= 0.
In the isoperimetric case, this is equivalent to (∇2 logψ)2 �= 0. In the Dido case, Q2 is always zero, and we
say that the basepoint p0 is nondegenerate if (∇2k)2 �= 0.
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Also, in the Dido case, which we want to present in detail, we will need extra notations:

β1(p0) = r1 cos(t1)dx− r1 sin(t1)dy = 1/12∇k(p0),

β22 = r2Re(e
it2(dx+ idy)2), β20 = τ2(dx

2 + dy2),

β31 = (r31 cos(t31)dx − r31 sin(t31)dy)� (dx2 + dy2),

β33 = r32Re(e
it32(dx + idy)3), α0 = 1/6k(p0),

(10.2)

where βi
j = (βi)j. ∇22k = 0 iff r2 = 0 and ∇33k = 0 iff r32 = 0.

11. Nondegenerate case. Using Lemma 10.1, we see first that the conjugate time is a smooth function
σconj(ϕ, h) and obtain its expansion:

σconj(ϕ, h) = h2π/48(−72α0 + 197(α0)
2h2 − 320h2τ2 − 720h2r2 cos(2ϕ)) + o5(h). (11.1)

Replacing the expression of the conjugate time in the expansion of the exponential mapping, we obtain the
asymptotics of the conjugate locus.

In the general case, after normalization we have

xconj(ϕ, h) = |Q2|h
3 cos(ϕ)3 +O4(h),

yconj(ϕ, h) = |Q2|h
3 sin(ϕ)3 +O4(h),

(11.2)

and in the Dido case,

zconj(ϕ, h) = z5conj(ϕ, h) + o6(h)

= h4π(3r1 sin(t1) − 15h · r2 cos(ϕ)− 5h · r2 cos(3ϕ), 3r1 cos(t1) + 20h r2 sin(ϕ)
3) + o6(h).

(11.3)

Moreover, for both cases, the following assertion holds.

Theorem 11.1. For h > 0 small enough, there is a neighborhood U of the singular set at the source such
that the exponential mapping restricted to U is left-right equivalent (via h-preserving diffeomorphisms) to
its 3rd jet in h (resp. 5th jet in the Dido case), which is determined by the 3rd jet of the sub-Riemannian
metric at q0 (resp. 2nd jet of the curvature at p0 in the Dido case).

Sections CL(h) of the conjugate locus CL by the planes {h = ct} are closed curves with 4 cusp points
and without self-intersection.

12. Degenerate case. The situation is much more complicated. Mainly, this is due to the very strange
asymptotic symmetry of π: a symmetry at the level of the 4th jet in h of the exponential mapping (resp.
at the level of the 6th jet in the Dido case).

Using again Lemma 10.1, we obtain the following asymptotics for the conjugate time.
In the Dido case, we obtain

σconj(ϕ, h) = −h
2π/48(72α0 − 197(α0)

2h2 + 320h2τ2 + 2880h3r32 sin(3ϕ)) +O6(h). (12.1)

For the expression in the general case, see [10].
Replacing the expansion of the exponential mapping by the suspended form, we obtain the asymptotics

of the conjugate locus:
(a) In the general case:

zconj(ϕ, h) = z4conj(ϕ, h) +O5(h)

= |V3|h
4{2 cos(2ϕ) + cos(4ϕ),−2 sin(2ϕ) + sin(4ϕ)}+O5(h).

(12.2)

(b) In the Dido case:

zconj(ϕ, h) = z6conj(ϕ, h) + o7(h)

= −h4π/2(−6r1 sin(t1) + h2(31α0r1 sin(t1) + 25r31 sin(t31))

+ 45h2r32(2 sin(2ϕ) + sin(4ϕ)),−6r1 cos(t1) − h2(25r31 cos(t31)− 31α0r1 cos(t1))

+ 45h2r32(2 cos(2ϕ)− cos(4ϕ))) + o7(h).

(12.3)
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One can see that, at the level of these approximations, in both cases,

zconj(ϕ, h) = zconj(ϕ+ π, h). (12.4)

This is the announced asymptotic symmetry.
Hence the approximations at order 6 w.r.t. h of the sections CL(h) are double closed curves with 3 cusp

points (6 if counted with multiplicity).
Because of this symmetry, we have a theorem stating that these approximations are sufficient, locally

only, along the singular locus at the source S.
For both cases, the following theorem holds.

Theorem 12.1. For h > 0 small enough, there is a neighborhood Ux of each point of the singular set at
the source S such that the exponential mapping restricted to Ux is left-right equivalent (via h-preserving
diffeomorphisms) to its 4th jet in h (resp. 6th jet in the Dido case), which is determined by the 4th jet of
the sub-Riemannian metric at q0 (resp. 3rd jet of the curvature at p0 in the Dido case).

Singularities that appear at the local level on the caustic are the same: cuspidal lines only.
If we want to go further, general arguments from singularity theory say that we have to analyze the

self-intersections of the conjugate locus at the level of higher-order jets: if the conjugate locus is in general
position, then the suspended exponential mapping will be (Thom–Mather) stable.

13. Symbols for conjugate loci. For all the details (which are very complicated), see [4] in the general
case and [8] in Dido case.

We will conclude that generic conjugate loci CL(h) (cut by {h = ct}) are closed curves with 6 cusp
points, which are in general position.

To analyze their self-intersections, we are led to consider reciprocal polynomials P (z) of the form

Pµ,ν(z) = µz4 + νz3 + ν̄z + µ̄. (13.1)

Theorem 13.1 (general case). We are given a generic sub-Riemannian metric (X,∆, g)q0; q0 is a degener-

ate point. The normal coordinates at q0 are chosen for the asymptotic position ϕ =
2kπ

3
of the cusp points

of the conjugate locus relative to q0. There is a surjective mapping M, M : S�∆∗ × S�∆∗ → C, which
associates (ν+, ν−, µ) with the “invariants” γ14 , γ

0
4 of the sub-Riemannian metric at the basepoint q0. The

asymptotic positions on the unit circle of ∆q0 as h→ 0 of the self-intersections of the conjugate locus CL(h)
fall into two classes:

(a) those that coincide with the position of the cusp points, and
(b) the others.
Points of class (b) are the roots on the unit circle of the polynomial Pµ, ν+ if h > 0 (resp. Pµ, ν− if

h < 0).

Note that γ14 is invariant w.r.t. the action of SO(2), but covariant w.r.t orientation changes.

Theorem 13.2 (Dido case). We are given a generic Riemannian metric (M, g); p0 is a degenerate point,

p0 = Π(q0). The Dido coordinates at q0 are chosen for the asymptotic position ϕ =
2kπ

3
of the cusp points

of the conjugate locus relative to q0. There is a surjective mapping N , N : S�T ∗M→ C∈, which associates
(ν, µ) with ∇4k(p0). The asymptotic positions on the unit circle of TMp0, as h→ 0, of the self-intersections
of the conjugate locus CL(h) fall into two classes:

(a) those that coincide with the position of the cusp points, and
(b) the others.
Points of class (b) are the roots on the unit circle of the polynomial Pµ, ν.

A similar statement to the one of Theorem 13.2 holds in the general isoperimetric case. Here we see the
only difference between the general sub-Riemannian case and the isoperimetric case: due to the symmetry,
in the isoperimetric case conjugate loci are the same if we reverse the orientation. This is not true in the
general case.

657



We define a semi-conjugate locus CL+, or CL−, as the restriction of CL to {w > 0} (resp. {w < 0}).

Definition 13.1. We select any cusp point and any orientation. Following the curve CL(h), we count the
number of self-intersections between the ith and (i + 1)th cusp point and we divide by 2. The result is a
sequence of 6 rational numbers that we take modulo reflection and cyclic permutation. This sequence is the
“symbol” of CL+,−.

Recall that, generically, the degenerate points live on a curve C in X. The following (difficult) theorem
is proved in [4]. This theorem says that there are 3 types of points on C. At all of them, the exponential
mapping εS restricted to a neighborhood of the semi-singular locus at the source is still stable and finitely
determined.

Theorem 13.3. (1) At generic points of the curve C, the possible symbols for generic “semi-conjugate loci”
are as follows:

S1 = (2, 1, 1, 2, 1, 0), S2 = (2, 1, 1, 1, 1, 1), S3 = (0, 1, 1, 1, 1, 1).

(2) At isolated points of the first type of C,

S∗1 = S1 = (2, 1, 1, 2, 1, 0), S∗2 = S2 = (2, 1, 1, 1, 1, 1).

But in this case, the exponential mapping is determined by a higher-order jet of the metric (7th jet) than at
generic points of C (5th jet).

(3) At isolated points of the second type, the possible symbols are

S4 =
(
1

2
,
1

2
, 1, 0, 0, 1

)
, S5 =

(
1,

1

2
,
1

2
, 1, 1, 1

)
, S6 =

(
3

2
,
1

2
, 1, 1, 0, 1

)
, S7 =

(
2,

1

2
,
1

2
, 2, 0, 0

)
.

Also, the semi-conjugate locus is recovered from the symbol (this is not obvious at all). Hence, the
above list of symbols provides a complete classification of semi-conjugate loci with respect to germs of
origin-preserving homeomorphisms of R3 that are smooth, together with their inverse, outside the origin.

Problem. Find all possible couples of symbols, modulo cyclic permutation and reversing orientation,
for generic metrics. This should give a complete classification up to left-right equivalence of exponential
mappings restricted to neighborhoods of their conjugate locus. Quick estimations show that there should
be hundreds; however, this problem should not be difficult to solve using the results of our paper.

In the general isoperimetric and Dido cases, the situation is simpler. It follows from this study that
the possible full conjugate loci are recovered from the symbols of the semi-conjugate loci, and the following
assertion holds.

Theorem 13.4. For generic Dido structures (or Riemannian metrics), at the isolated degenerate points,
the possible symbols for conjugate loci are as follows:

S1 = (2, 1, 1, 2, 1, 0), S2 = (2, 1, 1, 1, 1, 1), S3 = (0, 1, 1, 1, 1, 1).

These symbols give a complete classification of conjugate loci of degenerate Dido structures under the action
of (origin-preserving) homeomorphisms that are smooth, together with their inverse, outside the origin.

At these points, the 8th jet in h is sufficient for the exponential mapping, w.r.t. left-right equivalence
when restricted to a neighborhood of the conjugate locus at the source. It is determined by the 5th jet of the
curvature at p0.

There is a statement similar to that of Theorem 13.4 in the general isoperimetric case. The sufficient
jet of the sub-Riemannian metric is the 5th one.

5. Wave Fronts and Spheres

Using Lemmas 10.2 and 10.1 and also the fact that the cut locus is simply the optimal part of the
self-intersection of all wave fronts, we can draw a conclusion. This is not an easy job. All details can be
found in [6].
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To compute the self-intersections of the wave fronts, we have to solve the following equation in suspended
coordinates:

εS(σ, ϕ′, h)− εS(σ, ϕ, h) = 0. (13.2)

It is obvious that in Eq. (13.2), the term sin

(
ϕ′ − ϕ

2

)
= sin

(
δϕ

2

)
factors out.

Once this is done, we obtain the cut time scut(ϕ, δϕ) simply by applying the implicit function theorem
(which shows that it is a smooth function).

Let us show the results in the Dido case only:
(a) nondegenerate case

σc =
π

48
h2(−72α0 + 197α20h

2 − 320τ2h
2

− 120h2r2(cos(2ϕ) + 4 cos(dϕ+ 2ϕ))

− 120h2r2 cos(2(dϕ+ ϕ))) + o(h5);

(13.3)

(b) degenerate case

σc =
π

48
h2(−72α0 + 197α20h

2 − 320τ2h
2

− 360h3r32(sin(3(dϕ + ϕ)) + 3 sin(dϕ + 3ϕ)

+ 3 sin(2dϕ+ 3ϕ) + sin(3ϕ)) + o(h6).

(13.4)

After that, we can replace this expression in one of the nontrivial equations of (13.2) (there are two).
We obtain the following:

(a) nondegenerate case
h4(sin(dϕ/2))2 sin(dϕ+ 2ϕ) + o(h5) = 0; (13.5)

(b) degenerate case

h5(sin(dϕ/2))2 cos(dϕ/2) cos(3/2(dϕ + 2ϕ)) + o(h6) = 0. (13.6)

The following lemma is crucial.

Lemma 13.5. In formulas (13.5) and (13.6), the term (sin(dϕ/2))2 factors out.

At this level, let us forget the proof in the degenerate case: due partly to the asymptotic symmetry, it
is really much more complicated. In the nondegenerate case, we obtain

dϕ1 = −2ϕ+ o(h), dϕ2 = −2ϕ+ π + o(h). (13.7)

Only one of these solutions is optimal (it is dϕ1).
Replacing in (13.3), we obtain the following final expression of the cut time:

σcut = h2π(−72α0 + 197α20h
2 − 160h2(3r2 + 2τ2)− 240h2r2cos(2ϕ)))/48 + o(h5). (13.8)

This is smooth, as we claimed.
Plugging the cut time in the exponential mapping, we obtain the following asymptotics of the cut locus:

zcut = h4π(3r1 sin(t1)− 20hr2 cos(ϕ), 3r1 cos(t1)) + o(h6). (13.9)

Putting everything together, we obtain the following theorem.

Theorem 13.6 (cut locus and sphere in the nondegenerate Dido case). The cut time and the cut locus
have the smooth asymptotics (13.8) and (13.9). In particular, the cut locus has the size h5 (in place of
h3 for generic sub-Riemannian metrics or generic isoperimetric problems).

Sections by h = cst of the cut locus are curve segments joining two cusp points among those of the
conjugate locus.

The small spheres are homeomorphic to Euclidean spheres, but they are not smooth: the subset where
they are not differentiable consists of two curve segments.

The singularities of the typical small wave front fall into two parts (upper and lower hemisphere). Each
of them consists of a closed cuspidal curve with 4 cusp points. At the cusp points, swallow tails appear.
On each part, there are also two curve segments (each of them joining two of the cusp points), and the
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Fig. 2. Degenerate case, wave front.

Fig. 3. Degenerate case. Parts 1 and 2 of the self-intersection of the wave front with the
approximation at order 6 of the conjugate locus.

nonboundary points of these segments correspond to transversal self-intersections of the wave front. One of
these segments is the (upper or lower) singular set of the sphere.

Thus, contrary to what happens for caustics, all the stable elementary Legendre singularities occur.
Let us now describe what happens in the degenerate case.

Theorem 13.7 (cut locus, sphere, and wave front in the degenerate case). The cut locus has the size h6

in the Dido case (in place of h4 in the case of generic sub-Riemannian metrics or generic isoperimetric
problems).

Sections of the cut locus by h = cst consist of 3 curve segments with a common endpoint. The other
endpoints of the 3 segments coincide with cusps of the conjugate locus.

The small spheres are homeomorphic to Euclidean spheres but they are not differentiable. The singular
set of the sphere falls into two pieces (in both hemispheres), each of them consisting of 3 curve segments
with one common endpoint.

The singularities of the wave fronts that are close to the corresponding spheres are shown in Fig. 2.
They consist of certain complicated self-intersections (described below) plus a closed cuspidal line with 6
cusp points that are endpoints of 6 swallow tails.

Now let us completely describe this singularity of the wave front, which is close to the singularity of
the sub-Riemannian sphere. It is shown in Fig. 2. The rightmost object in Fig. 2 is the picture of the
sub-Riemannian sphere from above.

To analyze the singularity, it is easier to deal only with the 6th jet in the Dido case, 4th jet in the
general case) of the exponential mapping. There is the asymptotic symmetry, but everything is easier to
understand, and what will happen after perturbation is very clear.

Moreover, this analysis, in agreement with computations, shows that, in fact, for the purposes of
determining the sub-Riemannian sphere, these jets generically are sufficient.

This is not the case for the wave front and for the caustic for which breaking the symmetry is necessary:
the caustic cut by {h = ct} has to be in general position, as we said.

The generic caustic is described by one of the symbols shown in Sec. 4.
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Since we are looking at the nonsufficient 4th jet for which the asymptotic symmetry is present, CL(h)
is a double closed curve with 6 cusp points.

The self-intersection of the wave front (the part of it that is close to the corresponding sphere) has two
pieces (adherent to the upper and lower hemisphere). Only one of them is shown in Fig. 2.

Each of these pieces falls into two parts, called Part 1 and Part 2.
If we cut the union of these self-intersection loci by h = ct, we obtain what is shown in Fig. 3. In this

figure, these two parts are drawn at h = ct, together with the conjugate locus.
The first part only contains points of the cut locus, easily recognizable, compared with Fig. 2, right,

which shows the sphere from above. The triple point appearing is perfectly stable: it corresponds to the
transversal intersection of 3 surfaces.

All these pieces of the self-intersection are quadruple curves (in Fig. 3): they are double, since any cut
locus should be double, and they are quadruple because of the asymptotic symmetry.

The most unstable phenomena at the level of this approximation are the cusps of Part 2: they are stable
cusps also, but they are also 6, and looking at the middle of Fig. 2, one can see how they will separate: at
these points, in Fig. 2 (middle), there is an unstable intersection of twofold lines on the wave front. After
perturbation, they will separate, giving two cusps.

On a given wave front, there is a cuspidal closed curve. This curve is without self-intersections (at this
level of approximation, it has 3) and with 6 cusps. Each of these cusps is the base point of a swallow tail
on the wave front.

6. Complements

14. Rumin’s Connection. For details, see [10, 19].
Again, we deal with the 3-dimensional case only. We are given a contact sub-Riemannian metric

(X,∆, g). TX and ∆∗ denote the sheaves of sections of TX and ∆, respectively.

Theorem 14.1. There is a unique linear connection such that if ∇ : TM ×M TM → TM is the associated
covariant derivative, then

(i) ∇ : TM ×M ∆→ ∆ (∇ has a restriction to ∆);
(ii) ∇g = 0,∇ω = 0;
(iii) ∇νν = 0;
(iv) the torsion of ∇ is ν ⊗ dω;
(v) the form II : ∆×M ∆→ R, II(X, Y ) = 〈∇Xν, Y 〉g, is symmetric.

The proof of this theorem is given in [10].
All the invariants appearing in this paper, in particular the principal and the second invariant, can be

computed in terms of this canonical connection as follows.
In the 3-dimensional case, there is a natural complex structure on ∆ (that we already used implicitly in

the paper) j : ∆→ ∆, defined by dω(X, Y ) = 〈j(X), Y 〉g. If the orientation is reversed, j is changed to −j.
The restriction ∇II|∆ is a section of ∆∗ ⊗ S2∆∗ =

⊕
n=1,3

(∆∗ ⊗ S2∆∗)n. Let III = ∇II|∆. (III)3 is a

component of III in (∆∗ ⊗ S2∆∗)3.

Theorem 14.2. For u ∈ ∆, one has

Q2(u) =
1

4
II(u, j(u)), V3(u) =

1

15
(III)3(j(u), u, u).

Also, the Gaussian curvature of ∇ is K = � trace}(Q) = � trace}(γ′∈).

In terms of this connection, the geodesics λ(s) are solutions of the following equations:

∇λ̇λ̇ = rj(λ̇), ṙ + II(λ̇) = 0, r(0) = r0.
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7. A Large Number of Cusps

We focus on the Dido case. In the generic situation, the number of cusps of the conjugate locus ncusp
is equal to double the number of free endpoints of the singular segments on the hemisphere, ne, and is also
equal to the number nsw of swallow tails adherent to the (hemi)sphere on the (hemi)wave front of same
radius:

ncusp = 2 ne = nsw. (15.1)

Also,
ncusp

2
is equal to the first integer j > 1 such that (∇jk(q0))j �= 0, where k is the Gaussian curvature

and q0 is the pole. It seems that there is something general beyond these facts.

Open problem. Given any (nongeneric) germ at q0 of a Riemannian metric that is “nonflat” in the sense

that ∇i
ik(q0) �= 0 for some integer i > 1. Set j= first integer >1 such that ∇j

jk(q0) �= 0. Is it still true that:
(a) ncusp = 2j?
(b) formula (15.1) holds?
(c) if j is odd, then the conjugate locus is asymptotically double?
The same problem also makes sense in the general case of (isoperimetric or not) sub-Riemannian metrics.

Perhaps, accordingly to the generic cases, this term ∇j
jk(q0) dominates all other terms. We are unable

to prove this in general. Nevertheless, what we can prove is the following theorem.

Theorem 14.3. Assume that all tensors ∇l
kk(q0) are zero, except for∇j

jk(q0), for some j. Then, ncusp = 2j.

REFERENCES

1. A. A. Agrachev, “Methods of control theory in nonholonomic geometry,” In: Proc. ICM-94, Zürich,
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