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Abstract

We explicitly compute the maximal Lyapunov exponent for a switched system on SL2(R). This
computation is reduced to the characterization of optimal trajectories for an optimal control prob-
lem on the Lie group.
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1 Introduction

Let
ẏ = A(t)y, y ∈ Rn, (1.1)

be a linear system of ordinary differential equations; here t 7→ A(t), t ≥ 0, is a measurable bounded
family of n × n-matrices. Let X(t) be the fundamental matrix of system (1.1), the solutions of (1.1)
have a form: y(t) = X(t)y(0).

Principal Lyapunov exponent of system (1.1) is defined as follows:

ℓ(A(·)) = lim sup
t→∞

1

t
ln ∥X(t)∥. (1.2)

This quantity does not depend on the choice of norm in the space of matrices and is a natural
measure of instability of system (1.1). Indeed, system (1.1) is asymptotically stable with an exponential
convergence rate if and only if ℓ(A(·)) < 0.

Principal Lyapunov exponents play a key role in the general theory of Dynamical Systems, see [7],
[2].

If A(t) ≡ A is a constant matrix, then ℓ(A) is maximum of the real parts of the eigenvalues of A.
Moreover, for any A(·) and any c ∈ R, we have ℓ(A(·) + cI) = ℓ(A(·)) + c.

In what follows, we use standard notations: gln(R) is Lie algebra of all real n × n-matrices and
GLn(R) is Lie group of all nondegenerate real n×n-matrices. Similarly sln(R) is Lie algebra of all real
n× n-matrices with zero trace and SLn(R) is Lie group of all real n× n-matrices whose determinant
equals 1.

Let S ⊂ sln(R) be a compact subset. A switched system induced by S is the set of systems of
ordinary differential equations

ẏ = A(t)y, A(t) ∈ S, 0 ≤ t < ∞,

where t 7→ A(t), t ≥ 0, is any measurable map with values in S.
Let AS ⊂ L∞([0,∞);GLnR)) be the set of all such maps. Principal Lyapunov exponent of the

switched system is defined as follows:

ℓ(S) = sup
A(·)∈AS

ℓ(A(·)) .

Clearly, ℓ(S) ≥ sup
A∈S

ℓ(A) .

We say that the switched system is exponentially stable if ℓ(S) < 0. Stability of switched dynamical
systems is really important for applications and there is a big literature devoted to this subject, see
for instance [1], [6], [5], and references there.

A more natural mathematical problem is to compute or at least to estimate principal Lyapunov
exponent of any switched system; many results about stability can be naturally generalized in this
direction.

In particular, paper [1] is about stability but if you analyse proofs of the main results you will find
the characterization of Lie subalgebras g ⊂ gln(R) such that

ℓ(S) = sup
A∈S

ℓ(A), ∀S ⊂ g . (1.3)
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Namely, a Lie subalgebra g ⊂ gln(R) has property (1.3) if and only if g does not contain a subalgebra
isomorphic to sl2(R).

In the current paper, we explicitly compute ℓ({A,B})1 for any pair of matrices A,B which generates
Lie algebra sl2(R). Such a formula automatically provides us with an explicit expression of ℓ(A,B) for
matrices A,B of any size if these matrices generate a Lie algebra isomorphic to sl2(R).

Indeed, let Ψ : sl2(R) → Lie(A,B) be such isomorphism; then Ψ is a representation of sl2(R). The

representation Ψ is a direct sum of irreducible representations, Ψ =
k⊕

i=1

Ψi, where Ψi : sl2(R) → slni
(R),

i = 1, . . . , k, n1 ≥ · · · ≥ nk ≥ 2. Then

ℓ(A,B) = (n1 − 1)ℓ(Ψ−1(A),Ψ−1(B)).

We hope that our computation will serve as a building block for eventual estimates of the Lyapunov
exponents in much more general cases.
Our final result can be stated as follows. To simplify the notation, set a = tr(A2), b = tr(B2), c =
tr(AB).

Theorem 1.4 (Main Theorem). Suppose that A,B ∈ sl2(R), with a ≥ b.

1. If a ≥ 0 and c > a or a < 0 and c ≥
√
ab, then

ℓ(A,B) =
1

2

√
c2 − ab

c− a+b
2

;

2. If a ≥ 0 and c ≤ a, then

ℓ(A,B) =

√
a

2
;

3. If a < 0 and c ≤ −
√
ab, then

ℓ(A,B) =
2

π

1√
−2
a + 3

√
−2
b

arcosh

(
−c√
ab

)
.

We point out that for every A,B ∈ sl2(R) such that a, b ≤ 0, then c2 ≥ ab (see Section 6 for more
explanations).
In Figure 1 you can see a graphical representation of Main Theorem.
The whole paper is devoted to prove our Main Theorem and it is structured as follows: in Section 2 we
show how computing the Lyapunov exponents ℓ(A,B) can be reduced to an optimal control problem
and we will apply Pontryagin Maximum Principle (PMP) to this problem. We stated the precise
version of PMP that we used in the Appendix. In Section 3 we will deduce from PMP some general
properties of Pontryagin extremals. In particular, we will divide them into two categories: bang-bang
extremals and singular extremals. In Section 4 and 5 we study bang-bang and singular extremals
respectively. In Section 6 we show which extremal is the optimal one, depending on tr(A2), tr(B2) and
tr(AB).

1In what follows we use shortened notation ℓ(A,B)
.
= ℓ({A,B})
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Figure 1: Graphics of ℓ(A,B) for different ranges of tr(A2), tr(B2), tr(AB). In the first picture tr(A2)
is normalized to 1, while tr(B2) ≤ 1 and tr(AB) ∈ R; in the second one tr(A2) = 0, tr(B2) ≤ 0 and
tr(AB) ∈ R; in the third one tr(A2) is normalized to −1, while tr(B2) ≥ 1 and |tr(AB)| ≥ −

√
tr(B2).

4



2 Reduction to OC Problem and application of PMP

As explained in the Introduction, we will study the switched system induced by two matrices A,B:{
Ẋ(t) = X(t)

(
u(t)A+ (1− u(t))B

)
,

X(0) = Id,
(2.1)

where X : [0, T ] → SL2(R) , T > 0, A,B ∈ sl2(R), such that A,B, [A,B] are linearly independent, u ∈
U := {v : [0, T ] → {0, 1} | v measurable}. Without loss of generality, we can suppose tr(A2) ≥ tr(B2).
Notice that here we write Ẋ = XA(t), while in the Introduction we had Ẋ = A(t)X. Indeed, using
the notation of the Introduction, system (2.1) should be written as ẊT = XTA(t)T , where the T
superscript denotes the transpose matrix. To simplify the notation we will drop this superscript.
We prefer to solve the system with A and X in the reversed order because system (2.1) is left-invariant.
We want to find the principal Lyapunov exponent ℓ(A,B). Fixed u ∈ U , we will denote with X(·;u)
the solution of (2.1) with control equal to u.
A natural relaxation of our problem (2.1) consists in taking u : [0, T ] → [0, 1] measurable instead of
u : [0, T ] → {0, 1}. This way, we can restate the original problem into a control problem and so we
can use all the classical results from Control Theory.
Given X ∈ SL2(R) with real eigenvalues, let us denote with λ(X) the eigenvalue of X bigger than 1.
If X has complex eigenvalue, we denote with λ(X) the real part of these eigenvalues.
Another crucial observation is that if the norm in (1.2) is the norm induced by the Euclidean metric
on R2, then its value coincides with the absolute value of λ(X(T )). Hence, if for every T > 0 we can
compute c(T ) such that

sup
u∈U

λ(X(T ;u)) = c(T ),

then, we obtain that

ℓ(A,B) = lim sup
T→+∞

1

T
ln c(T ).

To be precise, the previous equality should be a “lower or equal” a priori, because the optimal strategy
to maximize λ up to time T can be change when T goes to infinity. We prove however that the limit is
realized by a fixed control u(t), which is explicitly computed. For those familiar with the terminology
of Control Theory, the optimal strategy will be one of the following three possibilities: the constant
singular control, corresponding to case 1. in the Main Theorem, the constant control equal to 1,
corresponding to case 2., a bang-bang periodic control, corresponding to case 3. We will define these
concepts later.

Instead of finding supu λ(X(T ;u)), one can find supu f
(
λ(X(T ;u))

)
, for a suitable f monotone in λ.

It turns out that a convenient choice of f is the trace tr(X(T ;u)): besides being monotone in λ, it is
a linear function of X and it is invariant after a change of basis.
Thus, we can restate our original problem into the following Optimal Control problem:

Problem. Fix A,B ∈ sl2(R) and T ≥ 0. Let U = {u : [0, T ] → [0, 1] | u measurable} and for each
u ∈ U denote with X(·;u) the solution of the following Cauchy problem on SL2(R):{

Ẋ(t) = X(t)(u(t)A+ (1− u(t))B),

X(0) = Id ∈ SL2(R),
t ∈ [0, T ]. (2.2)

Define the functional ΦT : U → R, ΦT (u) = trX(T ;u). We want to find ũ ∈ U which maximizes ΦT :

trX(T ; ũ) = max
u∈U

trX(T ;u). (2.3)
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If we are able to solve this problem for each fixed T , then from the estimate of trX(T ;u) we can deduce
an estimate for ∥X(T ;u)∥ which is uniform with respect to u ∈ U and depends only on T . Then, the
desired value of the principal Lyapunov exponent follows.
Notice that if [A,B] is a linear combination of A and B, then the Lie algebra generated by A,B is
two-dimensional, hence is solvable. In this case we already know from [1] the value of ℓ(A,B).

Existence of maximum in (2.3) is guaranteed by Filippov Theorem (see, for instance, Theorem 10.1 in
[8]).
So, we can apply Pontryagin Maximum Principle (PMP) to our problem. For a general reference, see
Theorem 12.3 in [8]. You can find in Appendix A (see Theorem A.5) the precise statement that we
use here.
We define the Pontryagin left-invariant Hamiltonian function:

H(η, u) = tr
(
η(uA+ (1− u)B)

)
η ∈ sl2(R), u ∈ [0, 1]. (2.4)

Here we identify tangent and cotangent space of SL2(R) through Killing form of sl2(R), which is non-
degenerate since sl2(R) is simple (see Appendix A). Recall also that Killing form K on sl2(R) can be
computed as

K(M1,M2) = 4tr(M1M2), M1,M2 ∈ sl2(R).

From Pontryagin Maximum Principle and the theory of left-invariant Hamiltonian systems on Lie
Groups (see Appendix A) we obtain that if ũ is a local maximum for ΦT , then there exists a Lipschitz
function η : [0, T ] → sl2(R) satisfying{

η̇(t) =
[
η(t), ũ(t)A+

(
1− ũ(t)

)
B
]
,

η(0) = η0.
(2.5)

for a.e. t ∈ [0, T ] (see Proposition A.10 and Equation A.12). We will call this ODE adjoint system
and its solution η adjoint trajectory. Moreover, the two following conditions must hold:

H(η(t), ũ(t)) = max
u∈[0,1]

H(η(t), u), for a.e. t ∈ [0, T ], (2.6)

η(T ; ũ) = X(T ; ũ)− tr(X(T ; ũ))

2
Id. (2.7)

The latter condition is known as transversal condition, see Lemma A.13.
We will call Pontryagin extremal a couple (X(·, u), η(·;u)) satisfying all necessary conditions prescribed
by PMP.

3 General properties of extremals

In the following, if it is not important to specify the control we will denote with X the solution of
(2.2) instead of X(·;u).
The solution η to equation (2.5) can be expressed as

η(t) = X(t)−1η0X(t). (3.1)

Indeed, differentiating the previous expression and recalling that

d

dt
[X(t)−1] = −X(t)−1Ẋ(t)X(t)−1,
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one obtains equation (2.5).

Thus, from (3.1), we can see that the determinant along any solution of (2.5) is constant. For M ∈
sl2(R), we have the formula 2 det(M) = −tr(M2). In what follows, it will be more convenient to use
the expression tr(M2) instead of detM .
Notice that from (2.7), it follows that

tr(η(T )2) =
1

2

(
trX(T )

)2 − 2.

So, since X(T ) ∈ SL2(R), then tr(X(T ))2 ≥ 4, at least for large T , and so tr(η(T )2) > 0. Moreover,
since tr(η2) is constant, we can deduce that tr(η(t)2) > 0 for all t ∈ [0, T ]. In particular, η(t) must
have real eigenvalues for all t ∈ [0, T ].

3.1 Invariant Hyperboloid

Equation (2.5) is invariant after a dilation, in the sense that for any c ∈ R, if η(·) is a solution with
initial value η(0) = η0, then η̃(t) = cη(t) is a solution with initial value η̃(0) = cη0.
So, it is not restrictive to suppose that tr(η(t)2) = tr(η20) = 1. Hence, the trajectory η is contained in
the set

H := {M ∈ sl2(R) | tr(M2) = 1},

which is a (connected) hyperboloid in the three-dimensional vector space sl2(R). To see this, just take

M =

(
m1 m2

m3 −m1

)
.

Then

tr(M2) = 2(m2
1 +m2m3) = 2

(
m2

1 +

(
m2 +m3

2

)2

−
(
m2 −m3

2

)2
)
.

Since A,B, [A,B] are linearly independent, we can write

M = αA+ βB + γ[A,B],

and the equation defining H reads

α2tr(A2) + β2tr(B2) + γ2tr([A,B]2) + 2αβtr(AB) = 1.

To simplify the previous expression, we will use the following result.

Lemma 3.2. Let A,B ∈ sl2(R). Then

tr([A,B]2) = 2tr(AB)2 − 2tr(A2)tr(B2). (3.3)

Proof. From the definition of bracket, we have

tr([A,B]2) = 2tr((AB)2)− 2tr(A2B2).
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Since A,B ∈ sl2(R), A2 and B2 are scalar, that is A2 = λ2Id and B2 = µ2Id. So

tr(A2B2) = 2λ2µ2 =
1

2
tr(A2)tr(B2).

On the other hand, the minimal polynomial of AB is

(AB)2 − tr(AB)AB + det(AB)Id = 0,

and computing the trace of the expression above leads to

tr((AB)2) = tr(AB)2 − 2 detAdetB = tr(AB)2 − 1

2
tr(A2)tr(B2).

and so
tr([A,B]2) = 2tr((AB)2)− 2tr(A2B2) = 2tr(AB)2 − 2tr(A2)tr(B2).

as we wanted to prove.

Using the previous Lemma, we can rewrite the equation for H as

α2tr(A2) + β2tr(B2) + 2γ2
(
tr(AB)2 − tr(A2)tr(B2)

)
+ 2αβtr(AB) = 1.

3.2 Switching function, bang-bang and singular extremals

Equation (2.6) can be rewritten more explicitly as

tr(η(t)B) + ũ(t)tr(η(t)(A−B)) = max
u∈[0,1]

[
tr(η(t)B) + utr(η(t)(A−B))

]
(3.4)

= tr(η(t)B) + max
u∈[0,1]

utr(η(t)(A−B)), (3.5)

for almost every t ∈ [0, T ]. Hence, we are lead to define φ : [0,+∞) → R,

φ(t) = tr(η(t)(A−B)). (3.6)

We will call φ switching function. Notice that φ is at least Lipschitz. If φ has only isolated zeros, then
a control u, in order to satisfy Pontryagin Maximum Principle, must be of the form

u(t) =

{
1 if φ(t) > 0,
0 if φ(t) < 0,

(3.7)

that is, the isolated zeros of φ are exactly the times when there are a switch in the dynamics.
If φ(t0) = 0, we will call t0 a switching time and the corresponding η(t0) switching point.
If φ has any nonisolated zero, then Pontryagin Maximum Principle does not determine the control
directly, but in our case it is still possible to bypass this obstacle and determine the control.

Definition 3.8 (bang-bang control, Singular control). We will call bang-bang a control u and its
corresponding extremal if φ has only isolated zeros.
If instead φ ≡ 0, then we will call the associated control u and its extremal singular.

A control u which takes only extremal values, i.e. u(t) ∈ {0, 1} for a.e. t ∈ [0, T ], is called bang-bang.
We will first focus on bang-bang extremals and then we will discuss separately the singular case.
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4 Bang-bang extremals

4.1 Properties of bang-bang extremals

In order to determine the structure of Pontryagin bang-bang extremals, it will be useful to study the
plane of switching points:

Π = {M ∈ sl2(R) | tr(MA) = tr(MB)}. (4.1)

This is the set of matrices in sl2(R) for which the function φ is zero.
Since the matrices A,B, [A,B] form a bases of sl2(R) by hypothesis, we can write the equation
tr(MA) = tr(MB) as

αtr(A2) + βtr(AB) + γtr([A,B]A) = αtr(AB) + βtr(B2) + γtr([A,B]B),

that is

β =
tr(AB)− tr(A2)

tr(AB)− tr(B2)
α. (4.2)

So, if we impose tr(M2) = 1, that is if we intersect the hyperboloid H with the plane Π we obtain the
equation of a conic (

2tr(AB)− tr(A2)− tr(B2)
)
tr
(
[A,B]2

)(
tr(AB)− tr(B2)

)2 α2 + tr
(
[A,B]2

)
γ2 = 1. (4.3)

Figure 2: Examples of switching curves. In both pictures you can see the orange hyperboloid H, the
blue plane Π and their intersection, the switching curve S.
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Definition 4.4 (Switching curve). We will call switching curve S the intersection curve Π∩H, whose
equation is (4.3).

So, the coefficient in front of α is positive if and only if(
2tr(AB)− tr(A2)− tr(B2)

)
tr
(
[A,B]2

)
> 0.

Hence, if tr
(
[A,B]2

)
> 0, then the switching curve is an ellipse if tr(AB) > tr(A2)+tr(B2)

2 , and is an

hyperbola if tr
(
[A,B]2

)
> 0 and tr(AB) < tr(A2)+tr(B2)

2 .

If instead tr
(
[A,B]2

)
< 0 , the switching curve is an hyperbola if tr(AB) < tr(A2)+tr(B2)

2 . Notice that

tr(AB) > tr(A2)+tr(B2)
2 implies tr

(
[A,B]2

)
> 0, so we can neglet the case tr(AB) > tr(A2)+tr(B2)

2 and

tr
(
[A,B]2

)
< 0 .

4.2 Hyperboloid foliation

Let us now fix an initial point on the hyperboloid:

η0 ∈ H.

Define the half spaces

Π+ = {M ∈ sl2(R) | tr(MA) > tr(MB)},
Π− = {M ∈ sl2(R) | tr(MA) < tr(MB)},

and the half hyperboloids

H+ = H ∩Π+,

H− = H ∩Π−.

From condition (3.7), we can see that if η0 ∈ H+, the control u, in order to satisfy Pontryagin Maximum
Principle, must be equal to 1 until the trajectory η meets the switching curve S. Notice that, as far
as u(t) = 1, the Hamiltonian function of the problem is H(η(t), 1) = tr(η(t)A), hence the quantity
tr(η(t)A) is constant.
Similarly, if η(t) ∈ H− for t ∈ [τ1, τ2], for some 0 < τ1 < τ2, then H(η(t), 0) = tr(η(t)B) is constant.

Define the planes

ΠA,c = {M ∈ sl2(R) | tr(MA) = c}
ΠB,c = {M ∈ sl2(R) | tr(MB) = c},

for c ∈ R.
So, if η0 ∈ H+ is such that tr(η0A) = c0, then the trajectory η is contained in the curve H+∩ΠA,c0 (see
Figure 3). In particular, we can suppose that geometrically the trajectory η coincides with the whole
curve H+ ∩ΠA,c0 . Indeed, if η accumulates at some point, then the control u(t) is identically equal to
1 or to 0 for every t sufficiently large and, as we will see, the corresponding Lyapunov exponents are
easy to compute.
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Now, we want to study all the possible configuration of H,S and the planes ΠA,c0 ,ΠB,c0 . Consider
the straight line given by the intersection of the three planes Π,ΠA,c0 ,ΠB,c0 :

rc0 :

 tr(MA) = c0,
tr(MB) = c0,
tr(MA) = tr(MB).

There are three cases: either this line does not intersect the hyperboloid H, either it is tangent to the
hyperboloid, or it has two distinct intersection with the hyperboloid.
We will see later that if rc0 is tangent, then the corresponding trajectory η is constant and in particular
it is a singular trajectory. So, we will consider first the non-tangent cases and we postpone the tangent
case to the Section of singular extremals.

If rc0 does not intersect the hyperboloid, then the trajectory η starting from η0 does not meet the
switching curve S. This means that η is confined either in the region H+ or H−, so the control u is
identically equal to 1 or 0 for all times.

If instead there are two distinct intersection between rc0 and H, then there are three possibilities (see
Figure 3):

1. there is exactly one switch;

2. there are two switches and after the second switch the adjoint trajectory does not meet anymore
the switching curve;

3. the adjoint trajectory is periodic with infinite switches.

Since we are interested in computing the Lyapunov exponents of the system, the case with no switches
and the cases with finite number of switches are the same, because the resulting trajectories are
asymptotically equal.
So, to resume, we have obtained the following result about the structure of bang-bang extremals.

Theorem 4.5. Any admissible control corresponding to a bang-bang extremal must be in one of the
following two forms:

• constant controls, that is either u(τ) ≡ 1 or u(τ) ≡ 0 for all τ ∈ [0,+∞);

• bang-bang periodic controls, that is controls in the form

u(τ) =

{
1 if τ ∈ [0, t),

0 if τ ∈ [t, T ),
(4.6)

for some T > t > 0 and then extended by periodicity on the whole interval [0,+∞).

Another important observation is the following.

Proposition 4.7. A couple (X, η) solution of (2.2) and (2.5) respectively satisfies transversal condition
(2.7) if and only if η is periodic of period T .

Proof. If (2.7) is satisfied, then

X(T )−1η(0)X(T ) = η(T ) = X(T )− tr(X(T ))

2
Id,
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and simply multiplying both sides by X(T ) on the left and by X(T )−1 on the left one obtains that
also

η(0) = X(T )− tr(X(T ))

2
Id = η(T ),

that is, η is periodic of period T .
Viceversa, if η(0) = η(T ), then, from η(T ) = X(T )−1η(0)X(T ), it follows that

X(T )η(0) = η(0)X(T ),

that is, η(0), η(T ) and X(T ) commutes. But then also X(T ) − tr(X(T ))
2 Id and η(T ) commutes, and

since they are both matrices in sl2(R), which is semisimple, they must be proportional, i.e. there is
c ∈ R such that :

cη(T ) = X(T )− tr(X(T ))

2
Id.

Hence transversal condition (2.7) is satisfied.

Now, we want to find a precise expression for the intersection points between the line rc0 and the
switching curve S.
It is convenient to parameterize such initial data with the corresponding value c0. More precisely, we
are looking for initial data η0 ∈ sl2(R) such that

tr(η20) = 1,

tr(η0A) = tr(η0B),

tr(η0A) = c0.

(4.8)

Using the same notation introduced above, we can write η0 = αA + βB + γ[A,B], and one can find
the corresponding solutions for α, β, γ:

α =
2
(
tr(B2)− tr(AB)

)
tr
(
[A,B]2

) c0,

β =
2
(
tr(A2)− tr(AB)

)
tr
(
[A,B]2

) c0, (4.9)

γ = ±

√
2
(
tr(A2) + tr(B2)− 2tr(AB)

)
c20 + tr

(
[A,B]2

)
|tr
(
[A,B]2

)
|

.

Thus, there are two distinct intersection if c0 is such that

2
(
tr(A2) + tr(B2)− 2tr(AB)

)
c20 + tr([A,B]2) > 0.

If tr(A2) + tr(B2)− 2tr(AB) > 0 and tr([A,B]2) > 0 (the switching curve is an hyperbola), then the
previous condition holds for every c0 ∈ R. If instead tr(A2)+tr(B2)−2tr(AB) > 0 and tr([A,B]2) < 0
(the switching curve is again an hyperbola) this condition corresponds to

c0 >
1√
2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

or c0 < − 1√
2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

.

12



Figure 3: The figure illustrates the possible cases when the switching curve is a horizontal circle:
in the first figure the intersection between the Hyperboloid H and the planes ΠA,c0 and ΠB,c0 are
two hyperbolas and the corresponding adjoint trajectory has only one switch. In the second figure
the intersection with one plane is an ellipse and the other is a hyperbola, and the resulting adjoint
trajectory has two switch. In the third case, the two intersections between the hyperboloid and the
planes are hyperbolas, but in this case there are three connected components and one of them is closed,
which corresponds to a periodic adjoint trajectory. The last figure is similar to the third one but with
ellipses instead of hyperbolas.
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If instead tr(A2) + tr(B2) − 2tr(AB) < 0 , this implies tr
(
[A,B]2

)
> 0 (hence the switching curve is

an ellipse) 2 , hence c0 can assume the values

− 1√
2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

< c0 <
1√
2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

.

Notice that if γ = 0, then the line rc0 is tangent to the hyperboloid.

As already mentioned in the Introduction, if the control u in equation (2.2) is constant equal to 1,
then the corresponding principal Lyapunov exponent is equal to the positive eigenvalue of A, i.e.

ℓu=1(A,B) =

√
tr(A2)

2
.

Analogously, if the control u is constant equal to 0, then

ℓu=0(A,B) =

√
tr(B2)

2
.

Clearly, since we are assuming tr(A2) ≥ tr(B2), we have ℓu=1 ≥ ℓu=0.
So, it remains to analyze the case of periodic controls.

4.3 Bang-bang periodic controls

So far, we proved that there are two qualitatively different type of adjoint trajectories: with a finite
number of switches or periodic trajectories with an infinite number of switches.

If the adjoint trajectory is periodic, then also the switching function (3.6) is periodic and then the
associated control is periodic too. However, not every bang-bang periodic control as in (4.6) satisfy
PMP. As we will see, for any T > 0, the control in (4.6) satisfies PMP only for a specific value of the
switching time t ∈ [0, T ].
In this Section we are going to describe how to find all periodic solution to equation adjoint equation
(2.5), and so we will be able to characterize all periodic controls satisfying Pontryagin Maximum
Principle.

From (3.1), finding all periodic solution to equation adjoint equation (2.5) amounts to find X(T ) in
the form

X(T ) = etAesB ,

with t+ s = T and 0, t, T switching times.
We will proceed as follows: for every t we will find s = s(t) such that 0, t, T = t+s(t) are switching

points. The following result simplifies this task.

Proposition 4.10. Define the bang-bang control

u(τ) =

{
1 if τ ∈ [0, t],

0 if τ ∈ [t, T ].

Let X be the corresponding solution of (2.2) and η be the solution of (2.5). Suppose that η satisfies
the condition of transversality (2.7). If t is a switching point, then also 0 and T are switching points.

2It a consequence of 3.2 and 2c > a+ b =⇒ c2 > ab, which follows from ab < 1
4
(a+ b)2.
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Proof. The solution of equation (2.5) is

η(τ) = X(τ)−1η0X(τ).

Since η must satisfy the transversal condition, we know by Proposition 4.7 that η is periodic of period
T , so it must be

η0 = X(T )−
tr
(
X(T )

)
2

Id.

So, putting together the last two equations with the formula for X, we obtain that

η(τ) =

{
e(t−τ)AesBeτA − tr(X(T ))

2 Id if τ ∈ [0, t]

e(s−τ+t)BetAeτ−tB − tr(X(T ))
2 Id if τ ∈ [t, t+ s]

We are assuming that t to be a switching time, so it satisfy

tr(η(t)A) = tr(η(t)B).

Using the formula for η that we have just obtained, we get

tr(esBetAA) = tr(esBetAB). (4.11)

The left hand side can be rewritten as

tr(esBetAA) = tr(esBAetA) = tr(etAesBA) = tr(X(T )A).

Similarly, the right hand side of (4.11) is equal to tr(X(T )B). Hence, it follows that also

tr(X(T )A) = tr(X(T )B), (4.12)

which implies that T (and thus, since η is T -periodic, also 0) is a switching time.

Remark 4.13. If we consider a solution of (2.2) with one switch, the final point is in the form

X(T ) = X(t, s) = etAesB

where T = t+ s. So, we can see the cost functional as a function of t and s:

Φ(t, s) = tr(etAesB).

With this notation, if t is a switching point, from the previous proof follows that X(T ) must satisfy
Equation (4.12), which can be rewritten as

∂Φ

∂t
(t, s) =

∂Φ

∂s
(t, s). (4.14)

To summarize, given any t > 0, equation (4.14) give us a condition to find s > 0 as a function of t
such that the control

u(τ) =

{
1 if τ ∈ [0, t],

0 if τ ∈ [t, t+ s],
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satisfies Pontryagin Maximum Principle on the time interval [0, t+ s]. The corresponding solution to
the adjoint system η satisfies transversal condition on the same time interval, so one can extend this
control by periodicity on the whole line [0,+∞).

Concerning the value of the principal Lyapunov exponent, when the adjoint trajectory is periodic
it can be computed as follows:

ℓper(T ) = lim sup
n→+∞

1

nT
log ∥X(nT )∥ =

= lim sup
n→+∞

1

nT
log ∥X(T )n∥ =

= lim sup
n→+∞

1

nT
log λ(T )n =

1

T
log λ(T ), (4.15)

Where λ(T ) is the greatest eigenvalue of X(T ). We can further simplify the expression for ℓper(T ).
Indeed, the functional of our Optimal Control Problem does not appear explicitly in the formula for
ℓper(T ). However, we can deduce the value the eigenvalue from the trace solving

λ(T )2 − tr(X(T ))λ(T ) + 1 = 0,

which gives

λ(T ) =
tr(X(T )) +

√
tr(X(T ))2 − 4

2
.

Using the identity arcoshx = log(x+
√
x2 − 1), we obtain

ℓper(T ) =
arcosh

(
tr(X(T ))

2

)
T

.

4.4 Principal Lyapunov exponent for periodic controls

Now, we are now going to compute the upper bound for Principal Lyapunov exponent of periodic
controls. As we saw previously, in order to find the extremals of our problem we have to study the
functional Φ : [0,+∞)× [0,+∞) → R

Φ(t, s) = tr(etAesB).

Since equations (2.2) and (2.5) are invariant after a change of basis, if A and B are not nilpotent (see
Remark 4.22 for the nilpotent case), without loss of generality we can assume

A =

(
λ 0
0 −λ

)
, B = P

(
µ 0
0 −µ

)
P−1, P =

(
a b
c d

)
,

with λ, µ ∈ R ∪ iR and P ∈ SL2(C). Up to exchange the role of A and B, we can assume tr(A2) ≥
tr(B2).

Proposition 4.16. With this notations, the functional in (4.4) is

Φ(t, s) = 2 cosh(λt) cosh(µs) +
tr(AB)

λµ
sinh(λt) sinh(µs). (4.17)
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This formula is a simple consequence of the following Lemma.

Lemma 4.18. If M ∈ sl2(R), with positive eigenvalue α > 0, then

etM = cosh(αt)Id +
sinh(αt)

α
M. (4.19)

Proof. From the characteristic polynomial of M , we know that M2 = α2Id , and so M2k = α2kId ,
M2k+1 = α2kM . Using these facts in the series expansion of etM one obtains the formula above.

Remark 4.20. If M ∈ sl2(R) is nilpotent, i.e. M2 = 0, then

etM = Id + tM. (4.21)

So, if either A or B is nilpotent, one can just replace formula (4.17) with a formula for Φ obtained
using (4.21).

Remark 4.22. From (4.17) we see immediately that Φ(T, 0) coincide with the case of a trajectory
without switch and

∂Φ

∂s
(t, 0) =

tr(AB)

λ
sinh(λt).

On the other hand, if we define Ψ(t, s) = 2 cosh(λ(t + s)), which represent the cost of a trajectory
without switch on the same interval of time, we obtain

∂Ψ

∂s
(t, 0) = 2λ sinh(λt).

Thus, if tr(AB)
λ > 2λ, which means

tr(AB) > tr(A2),

then the trace of a trajectory with a switch grows faster, at least for small times, than the trajectory
without switch.

4.4.1 Imaginary eigenvalues

We are now going to examine a special case. Suppose that tr(A2), tr(B2) < 0, i.e. A,B have imaginary
eigenvalues.

Proposition 4.23. If both A,B have imaginary eigenvalues, the functional Φ is

Φ(t, s) = tr
(
exp(tA) exp(sB)

)
= 2 cos(λt) cos(µs)− 2γ sin(λt) sin(µs),

Where γ = |tr(AB)|√
tr(A2)tr(B2)

.

This is simply a consequence of formula (4.17) and cosh(iλt) = cos(λt), sinh(iµs) = i sin(µs). With
this formula, the switching equation (4.14) reads

(γλ− µ) cos(λt) sin(µs) = (γµ− λ) cos(µs) sin(λt),

from which we obtain immediately that there are always solutions for cos(λt), cos(µs) = 0, that is

(t, s) ∈
{(

π

2λ
,
3π

2µ

)
,

(
π

2λ
,
π

2µ

)
,

(
3π

2λ
,
π

2µ

)}
.
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From these choices the value of this functional is Φ(t, s) = ±2γ. Using formula (4.3) one obtains

ℓper,im(A,B) =
1

t+ s
arcosh(γ).

If tr(AB) < 0, then we have

ℓper,im(A,B) =
2

π
(√

−2
tr(A2) + 3

√
−2

tr(B2)

)arcosh( −tr(AB)√
tr(A2)tr(B2)

)
. (4.24)

Notice that we have chosen the couple (t, s) so to maximize 1
t+s under the hypothesis tr(B2) < tr(A2) <

0.
If instead tr(AB) > 0, then

ℓper,im(A,B) =
2

π
(√

−2
tr(A2) +

√
−2

tr(B2)

)arcosh( tr(AB)√
tr(A2)tr(B2)

)
. (4.25)

We will see in the next subsection how to deal with the extremals with cos(λt), cos(µs) ̸= 0.

4.4.2 General case

We suppose now cosh(λt), cosh(µs) ̸= 0 (we already saw the case cosh(λt), cosh(µs) = 0, which can
happen if λ, µ ∈ iR). With this assumption, equation (4.14) becomes

tanh(µs) =
µ

λ

tr(AB)− tr(A2)

tr(AB)− tr(B2)
tanh(λt). (4.26)

This equation has always a positive solution s = s(t) if tr(AB)−tr(A2)
tr(AB)−tr(B2) > 0. In particular

s(t) =
tr(AB)− tr(A2)

tr(AB)− tr(B2)
t+ o(t) as t → 0. (4.27)

Remark 4.28. The value

s′(0) =
tr(AB)− tr(A2)

tr(AB)− tr(B2)

is intrinsic and depends only on the equation

∂Φ

∂t
(t, s(t)) =

∂Φ

∂s
(t, s(t)).

Indeed, if we differenciate this equation with respect to t, we obtain

∂2Φ

∂t2
(t, s(t)) +

∂2Φ

∂t∂s
(t, s(t))s′(t) =

∂2Φ

∂t∂s
(t, s(t)) +

∂2Φ

∂s2
(t, s(t))s′(t).

Thus

s′(0) =

∂2Φ

∂t∂s
(0, 0)− ∂2Φ

∂t2
(0, 0)

∂2Φ

∂t∂s
(0, 0)− ∂2Φ

∂s2
(0, 0)

=
tr(AB)− tr(A2)

tr(AB)− tr(B2)
.
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So, for every t > 0 we obtained an s(t) such that the bang-bang control

u(τ) =

{
1 if τ ∈ [0, t),

0 if τ ∈ [t, t+ s(t)),

and extended by periodicity for τ ∈ [t + s(t),+∞), satisfies all conditions of Pontryagin Maximum
Principle.
Now, it remains just to determine for which t the Principal Lyapunov exponent of the system is
maximal. Define the family of controls

ut,s(τ) =

{
1 if τ ∈ [0, t),

0 if τ ∈ [t, t+ s),
t, s > 0,

and denote with Xt,s the solution of (2.2) with control equal to ut,s. Let α(t, s) be the greatest
eigenvalue of Xt,s(t+ s), so that the Principal Lyapunov exponent corresponding to the control ut,s is

ℓ(t, s) =
1

t+ s
log
(
α(t, s)

)
.

The following result help us in this task.

Lemma 4.29. With the notation introduced above:

1. if tr
(
[A,B]2

)
> 0, then ℓ( t2 ,

s
2 ) > ℓ(t, s);

2. if tr
(
[A,B]2

)
< 0, then ℓ( t2 ,

s
2 ) < ℓ(t, s);

We first show how to obtain the estimate for the Principal Lyapunov exponent, then we prove the
Lemma.

Theorem 4.30. If tr
(
[A,B]2

)
> 0, then for every t > 0 it holds

ℓ(t, s(t)) < lim
τ→0

ℓ(τ, s(τ)) =
1

2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

(4.31)

If instead tr
(
[A,B]2

)
< 0, then control with switches are not optimal.

Proof. First, suppose that tr
(
[A,B]2

)
> 0. One can check that this condition implies that the coeffi-

cient in (4.26) is smaller than 1:
µ

λ

tr(AB)− tr(A2)

tr(AB)− tr(B2)
< 1.

So, for every t > 0 it makes sense to take the inverse hyperbolic tangent in (4.26) on both sides.
Moreover, from point (1) of Lemma 4.29, for any t > 0 we have

ℓ

(
t

2
,
s(t)

2

)
> ℓ(t, s(t)).

In particular, we can find t1 < t such that t1 + s(t1) =
1
2 (t+ s(t)), so that

ℓ(t1, s(t1)) > ℓ

(
t

2
,
s(t)

2

)
> ℓ(t, s(t)).
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Moreover, we have that limt→0 s(t) = 0, so

ℓ(t, s(t)) < lim
τ→0

ℓ(τ, s(τ)).

To evaluate the last limit, one can use Taylor expansions. This leads to

lim
t→0

ℓ(t, s(t)) =
1

2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

.

It is possible to avoid to compute explicitly this limit (see next Subsection).
Suppose now that tr

(
[A,B]2

)
< 0. Notice that this can happen only if tr(A2), tr(B2) > 0. Similarly

to the previous case, this inequality implies

µ

λ

tr(AB)− tr(A2)

tr(AB)− tr(B2)
> 1.

So, we can solve equation (4.26) only for t < t̄, where

t̄ =
1

λ
arctanh

(
λ

µ

tr(AB)− tr(A2)

tr(AB)− tr(B2)

)
.

Moreover, limt→t̄ s(t) = +∞. Then, from point (2) of Lemma 4.29, we have

ℓ(2t, 2s(t)) > ℓ(t, s(t)).

So, in particular we can find t1 ∈ (t, t̄) such that t1 + s(t1) = 2(t+ s(t)). So, this implies

ℓ(t1, s(t1)) > ℓ(2t, 2s(t)) > ℓ(t, s(t)).

So, we obtain that
ℓ(t, s(t)) < lim

τ→t̄
ℓ(τ, s(τ)).

But as t → t̄, the trajectory spends more and more time with control equal to 0. So, this strategy
is for sure worse than spending all the time with control equal to 1, which is always admissible if
tr
(
[A,B]2

)
< 0 . Hence, in this case switches are not optimal.

We now prove Lemma 4.29.

Proof of Lemma 4.29. Recall that

l(t, s) =
1

t+ s
log
(
α(t, s)

)
.

Hence, we can write

ℓ

(
t

2
,
s

2

)
− ℓ(t, s) =

2

t+ s
log

(
α

(
t

2
,
s

2

))
− 1

t+ s
log
(
α(t, s)

)
=

=
1

t+ s
log

(
α
(
t
2 ,

s
2

)2
α(t, s)

)
.
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So, we can see that this difference is positive if and only if

α
(
t
2 ,

s
2

)2
α(t, s)

> 1.

Since α(t, s) > 1 for any t, s > 0, we have that

α

(
t

2
,
s

2

)2

> α(t, s) iff α

(
t

2
,
s

2

)2

+
1

α
(
t
2 ,

s
2

)2 > α(t, s) +
1

α(t, s)
,

which is the same as

tr

(
X

(
t

2
,
s

2

)2
)

> tr
(
X(t, s)

)
.

The term in the left hand side can be rewritten as

X

(
t

2
,
s

2

)2

= X(t, s) + e
t
2A
[
e

s
2B , e

t
2A
]
e

s
2B .

So, in the end, it amounts just to compute tr
(
e

t
2A
[
e

s
2B , e

t
2A
]
e

s
2B
)
, which can be done using formula

(4.19). One obtains

tr
(
e

t
2A
[
e

s
2B , e

t
2A
]
e

s
2B
)
=

sinh(λ t
2 )

2 sinh(µ s
2 )

2

2λ2µ2
tr
(
[A,B]2

)
.

So, if tr
(
[A,B]2

)
> 0 , then we obtained point (1) of the Lemma. If instead tr

(
[A,B]2

)
< 0, then all

inequalities are reversed and we obtain point (2).

Remark 4.32. Notice that this is a completely general result about product of matrix exponentials.
Indeed, it holds for a generic control ut,s, even if it do not correspond to a Pontryagin extremal.

4.4.3 Limit trajectory as switching time tends to zero

In the previous Subsection we saw that if tr([A,B]2) > 0, then the upper bound for the principal
Lyapunov is obtained as the switching time tends to zero. Now, we want to discuss some more details
about the limit trajectory as the switching time goes to zero. This will allow us to evaluate the upper
bound without computing directly the limit.

Proposition 4.33. The limit trajectory as the switching time goes to zero is the singular trajectory.

Proof. First, recall that from (4.27)

s(t) =
tr(AB)− tr(A2)

tr(AB)− tr(B2)
t+ o(t) as t → 0.

So, our trajectory spends t time with control equal to 1, which corresponds to matrix A, and approx-

imately tr(AB)−tr(A2)
tr(AB)−tr(B2) t time with control equal to 0, corresponding to matrix B. For simplicity, let us

call

c =
tr(AB)− tr(A2)

tr(AB)− tr(B2)
,
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the coefficient appearing in s(t).
So, by convex approximation (see Theorem 8.2 in [8]), we know that as the number of switches goes
to infinity (i.e., t goes to zero), the flow tends uniformly (in the C∞(SL2(R))-topology) to

T 7→ exp
(
T (vA+ (1− v)B)

)
,

where

v =
1

1 + c
=

tr(AB)− tr(B2)

2tr(AB)− tr(A2)− tr(B2)
,

which corresponds to the value of the singular control (see Section 5).

So, since the convergence in the previous proof is uniform on compact time intervals and since in
the case of periodic controls we can reduce to the finite time case (see 4.15), we obtain the following
Corollary.

Corollary 4.34. With the notation used in Subsection 4.4.2, we have

lim
τ→0

ℓ(τ, s(τ)) = λ∗ =
1

2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

,

where λ∗ is the positive eigenvalue of 5.6 (see Section 5).

5 Singular extremals

In this Section we are going to deal with the case of singular extremals (see Definition 3.8). Recall the
definition of the (left-invariant) Hamiltonian function

H(η, u) = tr
(
η(uA+ (1− u)B)

)
,

and the switching function
φ(t) = tr

(
η(t)(A−B)

)
. (5.1)

Recall also that the singular extremals correspond to the case of φ(t) = 0 for t ∈ [τ1, τ2], and τ1, τ2 > 0.
In this case, since φ is Lipschitz, we can derive it:

0 = φ̇(t) = tr
(
η̇(t)(A−B)

)
= tr

([
η(t), uA+ (1− u)B

]
(A−B)

)
= tr

(
η(t)[A,B]

)
,

where in the last equality we used the identity tr([M1,M2]M3) = tr(M1[M2,M3]). Notice that φ̇ does
not depend on u and in particular it is again a Lipschitz function. So, if η∗ is a point of a singular
trajectory, it must satisfy the two following conditions:{

tr
(
η∗(A−B)

)
= 0,

tr
(
η∗[A,B]

)
= 0

. (5.2)

These two conditions are linear in η∗, so, since A,B and [A,B] are linearly independent, they determine
a straight line in sl2(R).
If we write η∗ = αA+βB+γ[A,B], then the second equation implies γ = 0. Hence, from (4.9), we see
that if we take c∗ = tr(η∗A), the line rc∗ is tangent to the hyperboloid H (see discussion in Subsection
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4.2).

There are two intersection between the line (5.2) and the hyperboloid H described in Section 2 if and
only if (

2tr(AB)− tr(A2)− tr(B2)
)
tr([A,B]2) > 0. (5.3)

If there are no intersection, then there are no singular extremals. So, from now on we will assume that
this inequality hold.
We can compute explicitly these two intersection: let us call η∗ one of the two intersection point.
Then, from (4.2) and γ = 0 we obtain

η∗ = α∗A+ α∗
tr(AB)− tr(A2)

tr(AB)− tr(B2)
B,

where α∗ ∈ R is chosen such that tr(η2∗) = 1. Since the intersection between (5.2) and H is a discrete
set and since the solution η∗ is Lipschitz, the only possibility for η∗ is to be constant. Hence

0 = η̇∗(t) = [η∗, u∗A+ (1− u∗)B],

from which we can determine the value of the singular control u∗

u∗ =
tr(AB)− tr(B2)

2tr(AB)− tr(A2)− tr(B2)
. (5.4)

In order to be an admissible control, it must hold u∗ ∈ [0, 1]. The inequality u∗ ≥ 0 is equivalent to
the condition {

tr(AB) >
tr(A2) + tr(B2)

2

}
∪
{
tr(AB) ≤ tr(B2)

}
,

while the other inequality u∗ ≤ 1 is equivalent to{
tr(AB) ≥ tr(A2)

}
∪
{
tr(AB) <

tr(A2) + tr(B2)

2

}
,

and recalling that tr(A2) > tr(B2), we obtain

Proposition 5.5. u∗ is an admissible control if and only if

tr(AB) ≥ tr(A2) or tr(AB) ≤ tr(B2).

Then, we obtain

u∗A+ (1− u∗)B =
tr(AB)− tr(B2)

2tr(AB)− tr(A2)− tr(B2)
A+

tr(AB)− tr(A2)

2tr(AB)− tr(A2)− tr(B2)
B, (5.6)

and

tr
((

u∗A+ (1− u∗)B
)2)

=
1

2

tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

. (5.7)

So, if we take the constant control equal to u∗, then the associated Lyapunov exponent is

l =
1

2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

. (5.8)
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A direct computation shows that

tr
((

u∗A+ (1− u∗)B
)2) ≥ tr(A2) iff tr(AB) ≥ tr(A2) + tr(B2)

2
. (5.9)

So, taking into account that singular control is admissible if tr(AB) ≥ tr(A2), we obtain that singular
constant control are better than constant control if tr(AB) ≥ tr(A2). On the other hand, if tr(AB) ≤
tr(B2) then constant control is better than constant singular control.
The following result ends the discussion about the singular case.

Proposition 5.10. There are no solution to the adjoint system (2.5) containing a bang-bang piece
and a singular piece.

Proof. We already noticed that for η∗ we have γ = 0 in (4.9) and the intersection line between the
planes ΠA,c∗ and ΠB,c∗ is tangent to the hyperboloidH, where c∗ = tr(Aη∗). Recall from Section 4 that
as the switching time in a bang-bang trajectory in SL2(R) tends to zero, the resulting trajectory tends
to a singular trajectory. The convergence in SL2(R) implies that also the sequence of the corresponding
adjoint trajectories tends to the singular adjoint trajectory, which is constant. Thus, in a neighborhood
of η∗ sufficiently small and contained in the hyperboloid H, the phase portrait is as in Figure 4.

Sη∗

Figure 4: Phase portrait on the hyperboloid H for the adjoint system (2.5) near η∗. The black line S
is the switching curve, η∗ is the singular point. Above and below S we have the two bang pieces, and
as the switching time goes to zero the adjoint trajectory tends to η∗.

Thus, any possible trajectory starting from η∗ and escaping the switching curve S would inevitably
cross some of the periodic trajectories tending to η∗, contradicting the local uniqueness of the solution
of an ODE.

So, to resume, we found that if an extremal contains a singular piece, then the whole extremal is
singular, and the corresponding Lyapunov exponent is

ℓsing(A,B) =
1

2

√
tr
(
[A,B]2

)
2tr(AB)− tr(A2)− tr(B2)

, (5.11)

and this is the optimal solution if tr(AB) ≥ tr(A2).
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6 Discussion of cases

We end up with some final remarks about which is the optimal strategy depending on the values
tr(A2),tr(B2),tr(AB). As before, we always assume tr(A2) ≥ tr(B2).
So far, we have obtained that all possible extremals satisfying PMP are in one of the following form:

• constant control;

• constant singular control;

• if tr(A2) < 0, bang-bang periodic control as in Subsection 4.4.1.

As pointed out in Subsection 4.4.2, there is also this other kind of extremals accumulating at singular
extremals. However, we saw that their associated principal Lyapunov exponent is at most strictly less
then the one associated to singular extremal, so we can omit them from the discussion.
First, assume that tr(A2) ≥ 0. In this case we already saw in Section 5 that if tr(AB) ≥ tr(A2), then
the value of the Principal Lyapunov exponent given by the constant singular control is bigger than the
one given by the constant control. So, the first two point of the Main Theorem are proved.
We turn now to the tr(A2) < 0 case. We have the following restriction on the possible values of tr(AB).

Lemma 6.1. If tr(B2) ≤ tr(A2) < 0, then |tr(AB)| ≥
√

tr(A2)tr(B2). In particular tr([A,B]2) ≥ 0.

Proof. Up to a change of base, we can suppose

A =

(
0 −λ
λ 0

)
, B = P

(
0 −µ
µ 0

)
P−1, P =

(
a b
c d

)
∈ SL2(R), λ, µ ∈ R.

Since A in this form commutes with rotations, that is matrix of the form

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ [0, 2π],

we can use another change of base given by a rotation matrix to kill one element of P . That is, we
can further assume that P is in the form

P =

(
α β
0 1

α

)
, α, β ∈ R, α ̸= 0.

With A,B in this form, we can compute directly tr(AB) :

tr(AB) = −λµ

(
1

α2
+ α2 + β2

)
.

Since 1
α2 + α2 ≥ 2 , we obtain

|tr(AB)| ≥ 2|λµ| =
√

tr(A2)tr(B2).
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Remark 6.2. From the previous proof, we can give a geometric interpretation of the sign of tr(AB) in
the case tr(B2) ≤ tr(A2) < 0. Define the cone of imaginary matrices in sl2(R):

C = {M ∈ sl2(R) | tr(M2) < 0}.

To see that C is a cone, one can reason as at the beginning of Subsection 3.1. Using the form for A,B
introduced in the previous proof, if tr(AB) < 0, then λµ > 0, that is A,B are in the same connected
component. If instead tr(AB) > 0, then λµ < 0, hence A,B are in two different connected component.

In particular, if tr(AB) < 0, then the whole segment of velocities

{uA+ (1− u)B | u ∈ [0, 1]}

is inside the cone C. In this case, if the singular control is admissible, then it has imaginary eigenvalues,
hence singular constant control cannot be optimal (the resulting trajectory in SL2(R) would be periodic,
hence bounded). So, in this case the best admissible strategy is the one given in Subsection 4.4.1, and
we obtain the third point of Main Theorem.
If instead tr(AB) > 0, then part of the segment of velocities is outside the cone, and in particular
singular control is admissible since tr(A2) < 0.
The following Lemma shows that in this case constant singular control are again optimal.

Lemma 6.3. If tr(B2) ≤ tr(A2) < 0 and tr(AB) ≥
√

tr(A2)tr(B2), then

2

π

1√
−2

tr(A2) +
√

−2
tr(B2)

arcosh

(
tr(AB)√

tr(A2)tr(B2)

)
≤

√
1

2

tr(AB)2 − tr(A2)tr(B2)

2tr(AB)− tr(A2)− tr(B2)
.

Proof. First, notice that the two quantities are homogeneus in tr(A2), tr(B2), tr(AB). So, left hand
side can be rewritten as

2

π
a

√
b

1 +
√
b
arcosh

(
−c√
b

)
,

where a =
√

tr(A2)
−2 , b = tr(B2)

tr(A2) , c = tr(AB)
tr(A2) . From the hypothesis of the Lemma, we deduce a > 0,

b ≥ 1, c ≤ −
√
b ≤ −1. Using similar notation, the right hand side of the inequality in the thesis is

a

√
c2 − b

b+ 1− 2c
.

Define

f(b, c) =
2

π

√
b

1 +
√
b
arcosh

(
−c√
b

)
,

g(b, c) =

√
c2 − b

b+ 1− 2c
.

Notice that for every b, if c → −
√
b then both functions tend to zero, i.e.:

∀b ≥ 1 lim
c→−

√
b
f(b, c) = 0 = lim

c→−
√
b
g(b, c).
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Hence, if for every b ≥ 1 and every c ≤ −
√
b we have

∂f

∂c
(b, c) ≥ ∂g

∂c
(b, c), (6.4)

then we obtain f(b, c) ≤ g(b, c) for every b ≥ 1 and c ≤ −
√
b. These derivatives are

∂g

∂c
(b, c) = − 2

π

√
b√

b+ 1

1√
c2 − b

∂g

∂c
(b, c) =

1√
c2 − b

(c− 1)(b− c)

(b+ 1− 2c)
3
2

.

So (6.4) reduces to

2

π

√
b√

b+ 1
≤ (1− c)(b− c)

(b+ 1− 2c)
3
2

.

Since we want this inequality to hold for every c ≤ −
√
b and since the right hand side is decreasing in

c, it is sufficient to prove
2

π

√
b√

b+ 1
≤ (1 +

√
b)(b+

√
b)

(b+ 1 + 2
√
b)

3
2

.

After a few simplifications, this reduces to

(
√
b+ 1)

3
2 ≥ 2

π
,

which is true for every b ≥ 1.

This concludes the proof of the fourth case of Main Theorem.

A Pontryagin Maximum Principle

In this paper we used a version of Pontryagin Maximum Principle (PMP) which is slightly different
from the one that is usually written in books (see, for instance [8] or [4]). So, for completeness, we
recall here the precise statement of the PMP that we used in Section 2.
Let M be a smooth manifold of dimension n, U ⊂ Rm, and (fu)u∈U , a family of smooth vector field on
M . Suppose furthermore that M × U ∋ (q, u) 7→ fu(q) and M × U ∋ (q, u) 7→ ∂fu

∂q (q) are continuous.

Fix T > 0 and define U = {u : [0, T ] → U, u ∈ L∞
loc([0, T ], U)} the space of admissible controls. Fix

q0 ∈ M and for all u ∈ U denote with qu : [0, T ] → M the solution to the Cauchy Problem{
q̇u(t) = fu(t)(qu(t))

qu(0) = q0
. (A.1)

Existence and uniqueness of solution to (A.1) are guaranteed by Carathéodory Theorem, see, for
instance [3].
Let a : M → R be a smooth function. We define the cost functional

J(u) = a(qu(T )), u ∈ U .

Consider the following optimal control problem:
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Problem (Optimal control). Maximize J among all admissible control u, i.e., find ũ ∈ U such that
q̇ũ(t) = fũ(t)(qũ(t)), t ∈ [0, T ]

qũ(0) = q0

a(qũ(T )) = max
u∈U

a(qu(T ))

. (A.2)

A solution ũ ∈ U to this problem is called optimal control and the corresponding solution to (A.1) is
called optimal trajectory.

Definition A.3 (Attainable set). Fix q0 ∈ M . The set of attainable points from q0 of the control
system (A.1) at time T > 0 from q0 ∈ M is

Aq0 = {q ∈ M | ∃u ∈ U such that qu(T ) = q}.

Remark A.4. Let qũ be an optimal trajectory for the optimal control problem. Then a(qũ(T )) ∈
∂a(Aq0).

Theorem A.5 (Pontryagin Maximum Principle). Let ũ ∈ U be a control such that the point qũ(T ) is
a local maximum point for the functional a. Define hu(λ) = ⟨λ, fu(π(λ))⟩, for u ∈ U and λ ∈ T ∗M .
Then, there exists a Lipschitzian curve λ : [0, T ] → T ∗M such that

λ(t) ̸= 0, (A.6)

λ̇(t) = h⃗ũ(t)(λ(t)), (A.7)

hũ(t)(λ(t)) = max
u∈U

hu(λt), (A.8)

for almost all t ∈ [0, T ], and moreover
λT = dqũ(T )a. (A.9)

We will call (A.7) the Hamiltonian system associated to Problem (A.2), (A.8) the maximal condition
and (A.9) transversal condition.
We recall now some results that we used in Section 2 about Hamiltonian systems on Lie groups. For
more detailed reference see Chapter 18 in [8] and Section 7.6 in [4].
Let M ⊂ GL(N) be a Lie Group and M its Lie algebra. Given q ∈ M , define Lq(p) = qp, p ∈ M , the
multiplication on the left by q.
Take a Hamiltonian function h ∈ C∞(T ∗M) and define

H(ξ, q) = h(L∗
q−1ξ, q), ξ ∈ T ∗

q M, q ∈ M.

We will call H the trivialized Hamiltonian function of h. We say that h is left-invariant if H does not
depend on q. In this case, the function H can be seen simply as a smooth function on M∗, hence its
differential dH can be seen as a function from M∗ in (M∗)∗ = M.
Recall the definition of the adjoint representation: given v ∈ M, adv(w) = [v, w], where w ∈ M.

Proposition A.10. Let M be a Lie group and take h ∈ C∞(T ∗M). If h is left-invariant, then the
associated Hamiltonian system can be rewritten as{

q̇ = Lq∗dH,

ξ̇ = (ad dH)∗ξ.
(A.11)
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In our particular case, that is M = SL2(R) and M = sl2(R), we have that the Killing bilinear form
on sl2(R) is non-degenerate, so it provides an intrinsic identification between M and M∗. That is, for
every ξ ∈ M∗ there is an η ∈ M such that

K(η, v) = ⟨ξ, v⟩ ∀v ∈ M.

So, one can compute

K(η̇, v) = ⟨ξ̇, v⟩ = ⟨(ad dH)∗ξ, v⟩ = ⟨ξ, (ad dH)v⟩ =
= ⟨ξ, [dH, v]⟩ = K(η, [dH, v]) = K([η,dH], v), ∀v ∈ T1M.

So, the final form for the Hamiltonian system is{
q̇ = Lq∗dH,

η̇ = [η,dH].
(A.12)

Notice that the second equation does not involve q.
Finally, concerning transversal condition for the Optimal Control Problem (2.3), we have the following
result.

Lemma A.13. Let tr : SL2(R) → R be the trace operator on SL2(R). Let us identify the solutions
ξ(·) ∈ sl2(R)∗ and η(·) ∈ sl2(R) via the Killing form of sl2(R), that is ξ(t) = K(η(t), ·). Then

η(T ) =
1

4

(
Xũ(T )−

tr(Xũ(T ))

2
I

)
.

Proof. Define X = Xũ(T ) and let U ∈ sl2(R). Then

⟨ξ(T ), XU⟩ = ⟨dXtr, XU⟩ = d

dt

(
tr(XetU )

)
|t=0

= tr(XU).

Moreover tr(XU) = tr((X − tr(X)
2 I)U) and X − tr(X)

2 I ∈ sl2(R). Recalling that K(U, V ) = 4tr(V U)
for U, V ∈ sl2(R) and that K is non degenerate bilinear form, it follows that there exists a Y ∈ sl2(R)
such that K(Y, U) = ⟨dXtr, XU⟩ for all U ∈ sl2(R). Then

4tr(Y U) = tr

((
X − tr(X)

2
I

)
U

)
for all U ∈ sl2(R).

Hence Y = 1
4

(
X − tr(X)

2 I
)
, as we wished.
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