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Abstract. Measure contraction property is one of the possible
generalizations of Ricci curvature bound to more general metric
measure spaces. In this paper, we discover sufficient conditions for
a three dimensional contact subriemannian manifold to satisfy this
property.

1. Introduction

In the past few years, several connections between the optimal trans-
portation problems and curvature of Riemannian manifolds were found.
One of them is the use of optimal transportation for an alternative def-
inition of Ricci curvature lower bound developed in a series of papers
[38, 18, 41]. Based on the ideas in these papers, a generalization of
Ricci curvature lower bound for general metric measure spaces, called
curvature-dimension condition, is introduced in [30, 31, 39, 40] (see
section 5 for a quick overview of these results). Recently the case of a
Finsler manifold was studied in [36] and the results are very similar to
that of the Riemannian case due to strict convexity of the correspond-
ing Hamiltonian.

The situation changes dramatically in the case of subriemannian
manifolds. The reason is that the class of metric spaces we are dealing
with have Hausdorff dimensions strictly greater than their topologi-
cal dimensions. Therefore, the interplay between the metrics and the
measures of these spaces should be significantly different from that of
the Riemannian or Finsler case. One particular case of subriemannian
manifolds, the Heisenberg group, is studied in [24]. In this case the
space does not satisfy any curvature-dimension condition mentioned
above (however, see [9, 11, 10] for a different definition of curvature-
dimension condition in the subriemannian setting). Instead it satisfies
a weaker condition, called measure contraction property, introduced in
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[40, 35] (see Section 5 for the definition). Like the curvature-dimension
condition, measure contraction property is a generalization of Ricci cur-
vature lower bound on Riemannian manifolds. However, it is a weaker
condition for general metric measure spaces.

The approach used by [24] relies on the complete integrability of
the subriemannian geodesic flow on the Heisenberg group. Because of
this, the changes in the measure along the geodesic flow can be written
down explicitly in this case, which is not possible for subriemannian
manifolds in general.

The goal of this paper is to study a subriemannian version of the mea-
sure contraction property for three dimensional contact subriemannian
manifolds under certain curvature conditions. This study uses a sub-
riemannian generalization of the classical Riemannian curvature. The
generalized Ricci curvature was introduced by the first author in the
90s for some special cases (including the three dimensional contact sub-
riemannian structures), and in full generality by the first author and
I. Zelenko (see [7]). Later C.-B. Li and I. Zelenko found a complete
system of curvature invariants (see [27, 28]). To state some interesting
consequences of the main result in this paper, let us first give a brief
introduction to the curvature invariants (see Section 6 for a more detail
discussion of these invariants).

Let etH⃗ be the subriemannian geodesic flow defined on the cotangent
bundle T ∗M and let � be in T ∗M . In a similar spirit of the Frénet-
Serret frame, one can find a special moving frame along the trajectory

t 7→ etH⃗(�). The main property of this frame is that it satisfies certain
first order equations when pulled back to the tangent space T�T

∗M at

the point � by the geodesic flow etH⃗ . The pulled back frame is called
the canonical Darboux frame.

In the Riemannian case, the canonical Darboux frame

{e1(t), ..., en(t), f1(t), ..., fn(t)}

satisfies the following equations which is the Jacobi field equation (up
to certain identifications of tangent and cotangent spaces)

ėi(t) = fi(t), ḟi(t) = −Rij
� (t)ej(t).

The matrix R� := R�(0) with ij-th entries given by Rij
� (0) above is the

Riemannian curvature operator (again up to certain identifications).
In the three dimensional contact subriemannian case, the canonical

Darboux frame

{e1(t), e2(t), e3(t), f1(t), f2(t), f3(t)}
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satisfies the following equations instead

ė1(t) = f1(t), ḟ1(t) = −R11
� (t)e1(t)− f2(t),

ė2(t) = e1(t), ḟ2(t) = −R22
� (t)e2(t),

ė3(t) = f3(t), ḟ3(t) = 0.

Therefore, R� =

⎛⎝ R11
� (0) 0 0
0 R22

� (0) 0
0 0 0

⎞⎠ is a natural generalization of

the Riemnnian curvature.
In this paper, we introduce a new generalized measure contraction

propertyℳCP(K; 2, 3) (see Section 7 for the definition and its motiva-
tion). One of the main results (Theorem 8.1) gives sufficient conditions
on the curvature R for a class of three dimensional contact subrieman-
nian manifolds, called Sasakian manifolds, to satisfy this new measure
contraction property. Our generalized measure contraction property
ℳCP(0; 2, 3) coincides with the old condition MCP (0, 5) (see Section
5 for the definition of MCP (0, 5)). As a result of this and Theorem
8.1, the following theorem holds. In particular, it generalizes the result
in [24] for the Heisenberg group.

Theorem 1.1. (Measure Contraction Property) Assume that the three
dimensional contact subriemannian manifold is Sasakian. If R11

� ≥ 0
for all � in the cotangent bundle T ∗M , then the metric measure space
(M,d, �) satisfies the measure contraction property MCP (0, 5).

Several interesting consequences also follow from Theorem 1.1 (see
Section 8 for the detail). They include:

∙ Volume doubling property
∙ Local Poincaré inequality
∙ Harnack inequality for harmonic functions of sub-Laplacian
∙ Liouville property of sub-Laplacian

The method used in the proof of Theorem 8.1 also apply to three
dimensional contact subriemannian manifolds which are not necesarily
Sasakian. In the second main result (Theorem 9.1), we apply it to
any three dimensional compact contact subriemannian manifolds and
give estimates of the measure contractions for these subriemannian
manifolds.

The structure of this paper is as follows. In Section 2, we give sev-
eral basic notions on subriemannian geometry necessary for the present
work. In Section 3, we give the definition and the properties of contact
subriemannian manifolds. A special class of examples of contact sub-
riemannian manfiolds, called Sasakian manifolds, is introduced here
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as well. Sasakian manifolds serve as examples to the main result of
this paper. In Section 4, we recall the definition and some basic re-
sults on the optimal transportatin problem. In Section 5, we give a
brief overview on how the optimal transportation problem gives rise to
the curvature-dimension condition and the measure contraction prop-
erty. We also give the motivation of the present work in this section.
In Section 6, we recall and specialize the recent result of [27, 28] on
the curvature type invariants of subriemannian manifolds to the three
dimensional contact case. We also give explicit formulas for these in-
variants. In section 7, we give the definition of the new generalized
measure contraction property. We will also motivate its definition by
considering how measures contract in the Sasakian version of space
form. In Section 8, we state the main theorem (Theorem 8.1) and its
consqeuences. The main theorem gives sufficient conditions on when a
three dimensional contact subriemannian satisfies the generalized gen-
eralized measure contraction property ℳCP(K; 2, 3). (see Definition
7.3 below). In particular, ℳCP(K; 2, 3) coincides with the old mea-
sure contraction property MCP (0, 5). As a consequence, these spaces
satisfy the volume doubling property, the local Poincaré inequality, the
Harnack inequality and the Liouville property for harmonic functions
of the sub-Laplacian. In Section 9, we give the measure contraction
estimates for three dimensional compact contact subriemannian man-
ifolds. The proofs of all the results of this paper are given in the rest
of the sections.
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A table of notations
M a metric space or a manifold
⟨⋅, ⋅⟩, ∣⋅∣ a subriemannian metric and its norm
Δ a distribution on M
� the Popp’s measure
�, �0, �1, �t measures on M
Π a measure on M ×M
d a distance function on M
U a Borel set in M
H subriemannian Hamiltonian

etH⃗ subriemannian geodesic flow
ei(t), fi(t) canonical Darboux frame
Rij
� (t) curvature invariants

v tangent vectors
� covectors
�0 contact form
v0 the Reeb field
v1, v2 subriemannian orthonormal basis
�0, �1, �2 dual basis of v0, v1, v2

� tautological 1-form on T ∗M
! standard symplectic 2-form on T ∗M
X a tangent vector in TT ∗M
ℒ Lie derivative
∇H horizontal gradient
ΔH sub-Laplacian

2. Subriemannian Manifolds and Their Geodesics

In this section, we recall several basic notions in subriemannian ge-
ometry. For a detail discussion of various topics, see [34].

Recall that a Riemannian manifold is a manifold M together with a
fibrewise inner product defined on the tangent bundle TM . The length
of a curve is defined by this inner product and the Riemannian distance
between two points is the length of the shortest curve connecting them.
For a subriemannian manifold the fibrewise inner product is defined on
a family of subspaces Δ inside the tangent bundle TM . Therefore,
the notion of length can only be defined for curves which are tangent
to this family Δ. These curves are called horizontal curves and the
subriemannian distance between two points is the length of the shortest
horizontal curve connecting them.
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More precisely, a subriemannian manifold is a triple (M,Δ, ⟨⋅, ⋅⟩),
where M is a smooth manifold, Δ is a distribution (a vector subbundle
Δ of the tangent bundle TM of the manifold M), and ⟨⋅, ⋅⟩ is a fibrewise
inner product defined on the distribution Δ. The inner product ⟨⋅, ⋅⟩
is also called a subriemannian metric. An absolutely continuous curve
 : [0, 1] → M on the manifold M is called horizontal if it is almost
everywhere tangent to the distribution Δ. Using the inner product
⟨⋅, ⋅⟩, we can define the length l() of a horizontal curve  by

l() =

∫ 1

0

∣̇(t)∣dt,

where ∣ ⋅ ∣ denotes the norm of the subriemannian metric ⟨⋅, ⋅⟩.
The subriemannian or Carnot-Caratheodory distance d between two

points x and y on the manifold M is defined by

(2.1) d(x, y) = inf l(),

where the infimum is taken over all horizontal curves which start from
x and end at y.

The above distance function may not be well-defined since there may
exist two points which are not connected by any horizontal curve. For
this we assume that the distribution Δ is bracket-generating. Before
defining what a bracket-generating distribution is, let us introduce sev-
eral notions. Let Δ1 and Δ2 be two distributions on a manifold M , and
let X(Δi) be the space of all vector fields contained in the distribution
Δi. The distribution formed by the Lie brackets of the elements in
X(Δ1) with those in X(Δ2) is denoted by [Δ1,Δ2]. More precisely,

[Δ1,Δ2]x = span{w1(x), [w2, w3](x)∣wi ∈ X(Δj), i = 1, 2, 3, j = 1, 2}.

We define inductively the following distributions: [Δ,Δ] = Δ2 and
Δk = [Δ,Δk−1]. A distribution Δ is called k-generating if Δk = TM
and the smallest such k is called the degree of nonholonomy. Finally the
distribution is called bracket-generating if it is k-generating for some k.

Under the bracket-generating assumption, the subriemannian dis-
tance is well-defined thanks to the following famous Chow-Rashevskii
Theorem (see [34, Chapter 2] for a proof):

Theorem 2.1. (Chow-Rashevskii) Assume that the manifold M is con-
nected and the distribution Δ is bracket-generating. Then there is a
horizontal curve joining any two given points.

Finally, let us discuss the subriemannian geodesics and the corre-
sponding geodesic flow. As in Riemannian geometry, horizontal curves
which realize the infimum in (2.1) are called length minimizing geodesics
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(or simply geodesics). From now on, all subriemannian manifolds are
assumed to be complete as a metric space. It follows that given any
two points on the manifold, there is at least one constant speed geo-
desic joining them. Next we will discuss one type of geodesics called
normal geodesics. For this let us recall several notions in the symplec-
tic geometry of the cotangent bundle T ∗M . Let � : T ∗M →M be the
projection map, the tautological one-form � on T ∗M is defined by

��(X) = �(d�(X)),

where � is in the cotangent bundle T ∗M and X is a tangent vector on
the manifold T ∗M at �.

The symplectic two-form ! on T ∗M is defined as the exterior de-
rivative of the tautological one-form: ! = d�. It is nondegenerate in
the sense that !(X, ⋅) = 0 if and only if X = 0. Given a function
H : T ∗M → ℝ on the cotangent bundle, the Hamiltonian vector field
H⃗ is defined by iH⃗! = −dH. By the nondegeneracy of the symplectic

form !, the Hamiltonian vector field H⃗ is uniquely defined.
Given a distribution Δ and a subriemannian metric ⟨⋅, ⋅⟩ on it, we can

associate with it a Hamiltonian H, called subriemannian Hamiltonian,
on the cotangent bundle T ∗M . To do this, let � be in the cotangent
space T ∗xM at the point x. The subriemannian metric ⟨⋅, ⋅⟩ defines a
bundle isomorphism I : Δ∗ → Δ between the distribution Δ and its
dual Δ∗. It is defined by

⟨I(�), ⋅⟩ = �(⋅),

where � is an element in the dual bundle Δ∗ of the distribution Δ.
By restricting the domain of the covector � to the subspace Δx of

the tangent space TxM , it defines an element, still called �, in the
dual space Δ∗. Therefore, I(�) is a tangent vector contained in the
space Δx and the subriemannian Hamiltonian H corresponding to the
subriemannian metric ⟨⋅, ⋅⟩ is defined by

H(�) :=
1

2
�(I(�)) =

1

2
⟨I(�), I(�)⟩ .

Note that this construction defines the usual kinetic energy Hamilton-
ian in the Riemannian case.

Let H⃗ be the Hamiltonian vector field corresponding to the sub-
riemannian Hamiltonian H and we denote the corresponding flow, the

subriemannian geodesic flow, by etH⃗ . If t 7→ etH⃗(�) is a trajectory of the

subriemannian geodesic flow, then its projection t 7→ (t) = �(etH⃗(�))
is a locally minimizing geodesic. That means sufficiently short segment
of the curve  is a minimizing geodesic between its endpoints. The
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minimizing geodesics obtained this way are called normal geodesics. In
the special case where the distribution Δ is the whole tangent bun-
dle TM , the distance function (2.1) is the usual Riemannian distance
and all geodesics are normal. The same is true for subriemannian
manifolds, called contact subriemannian manifolds (see Section 3 for
the definition), studied in this paper. However, this is not the case
for general subriemannian manifolds. To introduce another class of
geodesics, consider the space Ω of horizontal curves with square in-
tegrable derivatives. The endpoint map end : Ω → M is defined by
taking an element  in space of curves Ω and giving the endpoint (1)
of the curve: end() = (1). Geodesics which are regular points of the
endpoint map are automatically normal and those which are critical
points are called abnormal. However, there are geodesics which are
both normal and abnormal (see [34, Chapter 3] and reference therein
for more detail about abnormal geodesics).

3. Contact Subriemannian and Sasakian Manifolds

In this section, we recall the definition of contact subriemannian
manifolds which is the main object of study for this paper. We will also
recall the definition of Sasakian manifolds which served as key examples
of various results. Finally we will mention some explicit examples in
the three dimensional case.

A distribution Δ on a manifold M is contact if there exists a 1-form
�0, called contact form, for which the kernel of �0 is Δ and the dif-
ferential d�0 is nondegenerate on Δ. In other words, a tangent vector
v is contained in Δ if and only if �0(v) = 0 and d�0(v, ⋅) ≡ 0 if and
only if v = 0. Note that the second condition implies the manifold
M is odd dimensional. Once a contact distribution is fixed, there are
lots of contact form associated with it. However, if a subriemannian
metric ⟨⋅, ⋅⟩ is also fixed on the distribution, then there is a unique
contact form �0 such that the restriction of the 2n-form d�0 ∧ ...∧ d�0

to the distribution Δ coincides with the volume form induced by the
subriemannian metric ⟨⋅, ⋅⟩ on Δ. Therefore, we say that the subrie-
mannian manifold (M,Δ, ⟨⋅, ⋅⟩) is a contact subriemannian manifold if
Δ is a contact distribution and we call the 1-form �0 defined above the
induced contact form of (M,Δ, ⟨⋅, ⋅⟩).

For each contact subriemannian manifold (M,Δ, ⟨⋅, ⋅⟩), we can asso-
ciate with it a unique vector field v0, called the Reeb field. If �0 is the
induced contact form, then v0 is defined by conditions �0(v0) = 1 and
d�0(v0, ⋅) = 0. Note that the second condition implies the Reeb field
v0 is transversal to the distribution Δ.
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Using the Reeb field v0, we can define a natural measure on the
subriemannian manifold. Let v1, ..., v2n be a basis in the contact dis-
tribution Δ which is orthonormal with respect to the given subrie-
mannian metric. Let � be the (2n + 1)-form defined by the condition
�(v0, ..., v2n) = 1. The measure induced by this volume form �, which
will be denoted by the same symbol throughout this paper, is an ex-
ample of a Popp’s measure. Popp’s measures can be defined for any
subriemannian manifold. For the detail definition of this measure in
general, see [34, Chapter 10]. From now on, when we consider a contact
subriemannian manifold as a metric measure space, it always refers to
the triple (M,d, �) where d is the subriemannian distance and � is the
Popp’s measure.

Before giving examples of contact subriemannian manifolds, let us
recall the definition of an important class of manifolds, called Sasakian
manifolds. They are contact subriemannian manifolds for which the
Reeb field v0 is a subriemannian isometry. Note that by the definition
of the Reeb field v0, the flow of v0 preserves the induced contact form
and hence the distribution Δ. Therefore, subriemannian isometry here
means the flow of the Reeb field v0 preserves the subriemannian length
of tangent vectors in Δ.

If we assume further that the Reeb field v0 of the Sasakian manifold
generates a free and proper group action (i.e. the flow of v0 is a free and
proper group action), then the quotient N := M/G of the manifold M
by this G-action (G = S1 or ℝ) is again a manifold. Let �M : M →
N be the quotient map. Then there is a Riemannian metric on N
such that the restriction of d� to the distribution Δ is an isometry.
Many of the interesting examples of subriemannian manifolds have this
structure. The Heisenberg group ℍn is one of them.

The standard subriemannian structure of the Heisenberg group ℍn

can be defined as follows. The underlying manifold of ℍn is the 2n+1-
dimensional Euclidean space M = ℝ2n+1. If we denote the coordinates
of this Euclidean space by {x0, x1, ..., x2n}, then the distribution Δ is
defined by

Δ = span {Xi, Yi∣i = 1, ..., n} ,

where Xi = ∂xi − 1
2
xn+i∂x0 and Yi = ∂xn+i + 1

2
xi∂x0 .

The standard subriemannian metric ⟨⋅, ⋅⟩ is the one for which the
vector fields {Xi, Yi∣i = 1, ..., n} are orthonormal. The induced contact
form �0 is given by

�0 = −dx0 +
1

2

n∑
i=1

(xidxn+i − xn+idxi).
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The Reeb field v0 in this case is −∂x0 and the Popp’s measure � is the
2n+ 1-dimensional Lebesgue measure. The Reeb field v0, in this case,
is a subriemannian isometry. It also defines a proper ℝ-action and the
quotient manifold N is the 2n-dimensional Euclidean space ℝ2n. The
standard subriemannian structure ⟨⋅, ⋅⟩ on ℍn descends to the standard
Euclidean structure on ℝ2n.

We end this section with two more examples of contact subrieman-
nian manifolds with the above symmetry structure. For more examples
of subriemannian manifolds with symmetry, see [34, Chapter 11]. For
other examples of contact manifolds, see [14].

Recall that SU(2), the special unitary group, consists of 2×2 matri-
ces with complex coefficients and determinant 1. The Lie algebra su(2)
consists of skew Hermitian matrices with trace zero. The left invariant
vector fields of the following two elements in su(2)

v1 =

(
0 1/2
−1/2 0

)
, v2 =

(
0 i/2
i/2 0

)
span the standard distribution Δ on SU(2). The standard subrieman-
nian metric is given by the condition ⟨vi, vj⟩ = �ij, i = 1, 2. The Reeb
field v0 is given by

v0 =

(
0 −1/2

1/2 0

)
.

The flow of the Reeb field defines a S1-action on SU(2) called the
Hopf fibration. The quotient N of SU(2) by this action is the standard
2-sphere S2. The standard subriemannian metric on SU(2) descends
to the Riemannian metric on S2 of contant curvature 1.

The special linear group SL(2) is the set of all 2 × 2 matrices with
real coefficients and determinant 1. The Lie algebra sl(2) is the set of
all 2× 2 real matrices with trace zero. The left invariant vector fields
of the following two elements in sl(2)

v1 =

(
1/2 0
0 −1/2

)
, v2 =

(
0 1/2

1/2 0

)
span the standard distribution Δ on SL(2). The standard subrieman-
nian metric on SL(2) is defined by ⟨vi, vj⟩ = �ij, i = 1, 2. The Reeb
field in this case is v0, where

v0 =

(
0 −1/2

1/2 0

)
.

The flow of the Reeb field also defines a S1-action on SU(2). The
quotient N of SL(2) by this action is the upper half-space with the
standard non-Euclidean structure.
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4. Introduction to Optimal Transportation

In this section, we give a quick introduction to the optimal trans-
portation problem. A standard reference on this is the book [42].

Let M be a metric space with distance function d. Let �0 and �1

be two Borel probability measures on M . The theory of optimal trans-
portation starts with the following minimization problem

(4.1) inf
'∗�0=�1

∫
M

d2(x, '(x)) d�0(x)

where the infimum is taken over all Borel maps ' : M → M which
pushes �0 forward to �1 (i.e. �0('−1(U)) = �1(U) for all Borel sets U
in M).

By the famous work of [25], the relaxed version of the above problem
given below in (4.2) always has a solution (i.e. existence of minimizer).

(4.2) inf
(�1)∗Π=�0,(�2)∗Π=�1

∫
M×M

d2(x, y) dΠ(x, y)

where �1, �2 : M × M → M are projections onto the first and sec-
ond component, respectively, and the infimum is taken over all Borel
measures Π on M ×M satisfying (�1)∗Π = �0 and (�2)∗Π = �1 (i.e.
Π(U ×M) = �0(U) and Π(M ×U) = �1(U) for all Borel sets U in M).

The existence and uniqueness of solution to the origin problem (4.1)
were proved much later in ([15]) in the Euclidean setting under certain
assumptions on the measures �0 and �1. It was later extended to
the compact Riemannian setting by [33]. The following is a summary
of their results (see also the result in [19] where all the compactness
assumptions are removed).

Theorem 4.1. [15, 33] Let M be a Riemannian manifold with Rie-
mannian distance d. Assume that the measures �0 and �1 have com-
pact supports and the measure �0 is absolutely continuous with respect
to the Riemannian volume. Then the optimal transportation problem
(4.1) has a solution ' which is unique up to a set of �-measure zero.
Moreover, there exists a Lipschitz function f : M → ℝ such that the
map ' is given by

'(x) = exp(∇f(x)).

The problem (4.1) in the subriemannian setting was first considered
in [8]. Under the same assumptions as in Theorem 4.1 on the mea-
sures, the existence and uniqueness of the solution was shown when
the space is the Heisenberg group equipped with the standard subrie-
mannian metric (see Section 2 for the defintion). The generalization
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to more general subriemannian manifolds is later done in [4]. In [4],
the authors proved that the existence and uniqueness theorem holds
when the subriemannian manifold is 2-generating (see Section 2 for the
definition of k-generating distribution). In particular, it is applicable
to the contact subriemannian case considered in the present work.

Theorem 4.2. [4] Let M is a subriemannian manifold with subrieman-
nian distance d and a 2-generating distribution Δ. Assume that the
measures �0 and �1 have compact supports and the measure �0 is abso-
lutely continuous with respect to a Riemannian volume. Then the opti-
mal transportation problem (4.1) has a solution ' which is unique up to
a set of �0-measure zero. Moreover, there exists a function f : M → ℝ
which is Lipschitz with respect to a Riemannian metric such that the
map ' is given by

'(x) = �(e1⋅H⃗(dfx)).

where etH⃗ denotes the subriemannian geodesic flow and � : T ∗M →M
is the natural projection.

The difficulty in extending the above theorem to all subriemannian
manifolds lies in the presence of abnormal minimizers. Using geometric
measure theory, [20] is able to extend Theorem 4.2 to more general sub-
riemannian manifolds. However, the problem of showing uniqueness or
non-uniqueness of solutions to (4.1) in the subriemannian case remains
unsolved in general.

5. Optimal Transportation and Ricci Curvature

In this section, we give a very brief overview of results concerning the
connection of optimal transportation with generalized Ricci curvature
lower bound (see [30, 31, 39, 40] for a detail discussion).

The optimal transportation problem in (4.2) defines a distance func-
tion on the space of all Borel probability measures of a given metric
space. More precisely, let P , called the Wasserstein space, be the space
of all Borel probability measures � such that the following integral is
finite for some point x0 in M∫

M

d2(x, x0)d�(x).

The Wasserstein distance functionW on P is defined by the optimal
transportation problem as follows.

(5.1) W(�0, �1) =

(
inf

(�1)∗Π=�0,(�2)∗Π=�1

∫
M×M

d2(x, y) dΠ(x, y)

)1/2

.
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Assume that the space M is locally compact complete separable met-
ric space. Then the Wasserstein space P equipped with the Wasserstein
distanceW is a geodesic space (i.e. distance between two points is given
by the length of the shortest curve, called geodesic, connecting them,
see [40] for the precise definition of geodesic space and the proof of this
fact).

Remark 5.1. Assume that the metric space (M,d) is a contact sub-
riemannian manifold and the measure �0 is absolutely continuous with
respect to a Riemannian volume. Then the geodesics of the correspond-
ing Wasserstein distance are given by

t 7→ ('t)∗�0

where 't = �(etH⃗(df)) and f is defined as in Theorem 4.2. These paths
of measures, called displacement interpolations, were first introduced
in [32].

Finally let us fix a locally finite measure � and introduce the relative
entropy functional Ent(�∣�) on P by

Ent(�∣�) =

{∫
M
g log g d� if � = g�

+∞ otherwise.

Formally, a metric measure space (M,d, �) satisfies the curvature-
dimension condition CD(K,∞) if the above relative entropy functional
has second derivative bounded below by K along any geodesic in the
Wasserstein space P of M equipped with the Wasserstein distance W .
More precisely, the second derivative is replaced by the following dif-
ference quotient.

Definition 5.2. The metric measure space (M,d, �) satisfies the con-
dition CD(K,∞), called curvature-dimension condition, if for any ge-
odesic �t in P the following holds

K

2
t(1− t)W2(�0, �1) ≤ (1− t)Ent(�0∣�) + tEnt(�1∣�)− Ent(�t∣�).

There are also other curvature-dimension conditions CD(K,N) for
N > 0 finite. The definitions of these conditions are similar to that of
CD(K,∞) but are more involved. Their detail definitions as well as
related results can found in [40].

In the Riemannian case, the condition CD(K,∞) is the same as
Ricci curvature bounded below by K. More precisely, the following
holds.
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Theorem 5.3. [38, 18, 41] Assume that M is a complete Riemannian
manifold with Riemannian distance d and a measure � induced by the
Riemannian volume form. If we denote the Ricci curvature by Ric
and the Riemannian metric by ⟨⋅, ⋅⟩, then the the metric measure space
(M,d, �) satisfies curvature-dimension condition CD(K,∞) if and only
if

Ric(v, v) ≥ K∣v∣2

for all tangent vector v in the tangent bundle TM .

Besides Riemannian manifolds, it was shown in [36] that CD(K,∞)
is equivalent to the flag Ricci tensor bounded below by K in the Finsler
case. The situation in the subriemannian case is completely different.
In [24], it was shown that the most basic subriemannian example, the
Heisenberg group (see Section 3 for the precise definition of the Heisen-
berg group and the standard subriemannian structure on it), does not
satisfy any curvature-dimension condition mentioned above (however
see [9, 11, 10] for a different curvature-dimension condition in the sub-
riemannian setting which is satisfied by the Heisenberg group in par-
ticular). On the other hand, it was shown in [24] that the Heisenberg
group satisfies the measure contraction property MCP (K,N) defined
below.

Definition 5.4. The metric measure space (M,d, �) satisfies the mea-
sure contraction property MCP (K,N) if for any point x0 in the space
M , for any geodesic �t in P satisfying �1 = �x0 (the delta mass at x0)
and �0 = �, the following holds

�0('t(U)) ≥
∫
U

(1− t)
(
sK((1− t)D(x))

sK(D(x))

)N−1

d�t(x)

for any Borel set U , where

sK(r) =

⎧⎨⎩
1√
K

sin(
√
K r) if K > 0

r if K = 0
1√
−K sinh(

√
−K r) if K < 0

and D(x) = d(x0,x)√
N−1

.

As mentioned in the introduction, MCP (K,N) is another character-
ization of Ricci curvature lower bound for N -dimensional Riemannian
manifolds.

Theorem 5.5. [40, 35] Assume that M is a N-dimensional complete
Riemannian manifold with Riemannian distance d and a measure �



RICCI CURVATURE FOR CONTACT 3-MANIFOLDS 15

induced by the Riemannian volume form. If we denote the Ricci cur-
vature by Ric and the Riemannian metric by ⟨⋅, ⋅⟩, then the the met-
ric measure space (M,d, �) satisfies the measure contraction property
MCP (K,N) if and only if

Ric(v, v) ≥ K∣v∣2

for all tangent vector v in the tangent bundle TM .

Finally we end this section with the following theorem, proved in
[24], which motivates the present work.

Theorem 5.6. [24] Let ℍn be the 2n+1 dimensional Heisenberg group.
Let d be the standard subriemannian distance and � be the (2n + 1)-
dimensional Lebesgue measure dx2n+1. Then the metric measure space
(ℍn, d, dx2n+1) satisfies the measure contraction property MCP (0, 2n+
3).

6. Generalized Curvatures on Subriemannian Manifolds

In this section, we recall the definition of the curvature type invari-
ants studied in [3, 7, 27, 28] and specialize it to the case of a three
dimensional contact subriemannian manifold.

Let etH⃗ be the subriemannian geodesic flow defined in Section 2 and
let � be a point in the manifold T ∗M . As mentioned in the introduc-
tion, the idea is to construct a Frénet-Serret type frame along the curve

t 7→ etH⃗(�) so that the pulled back frame, called canonical Darboux
frame, satisfies certain differential equations, called structural equa-
tions. The coefficients of these equations, in turn, defines the curvature
operator that we need.

The vertical space V� at � of the bundle � : T ∗M →M is defined as
the kernel of the map d�� : T�T

∗M → T�(�)M . Recall that a subspace
V of a symplectic vector space of dimension 2m is Lagrangian if the
symmplectic form restricted to V vanishes and the dimension of V
is m. Each of these vertical spaces V� is a Lagrangian subspace with
respect to the canonical symplectic form ! defined in Section 2. On the

other hand, the differential de−tH⃗ : TetH⃗(�)T
∗M → T�T

∗M of the map

e−tH⃗ is a symplectic transformation (i.e. it preserves the symplectic
form) between the symplectic vector spaces TetH⃗(�)T

∗M and T�T
∗M .

Therefore, the one parameter family of subspaces

t 7→ J�(t) := de−tH⃗(VetH⃗(�))

defines a curve of Lagrangian subspaces contained in a single symplectic
vector space T�T

∗M . This curve is called the Jacobi curve at �.
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Recall that the space of all Lagrangian subspaces in a symplectic
vector space Σ is a finite dimensional manifold (in fact a homogeneous
space of the symplectic group), called the Lagrangian Grassmannian
LG(Σ) of Σ. The Jacobi curve defined above is a smooth curve in the
Lagrangian Grassmannian LG(T�T

∗M). The curvature type invariants

of the geodesic flow etH⃗ are simply differential invariants of the Jacobi
curve under the action of the symplectic group (see [27, 28] for further
detail). The construction of differential invariants for a general curve
t 7→ J(t) in the Lagrangian Grassmannian LG(Σ) of a symplectic vector
space Σ was done in the recent papers [27, 28], though partial results
were obtained earlier (see [3, 7]).

Recall that a basis {e1, ..., en, f1, ..., fn} in a symplectic vector space
with a symplectic form ! is a Darboux basis if it satisfies !(ei, ej) =
!(fi, fj) = 0, and !(fi, ej) = �ij. Given a subriemannian Hamilton-
ian, there is a moving Darboux basis {e1(t), ..., en(t), f1(t), ..., fn(t)},
called canonical Darboux frame, of the symplectic vector space T�T

∗M
such that J�(t) = span{e1(t), ..., en(t)} and, more importantly, the
canonical Darboux frame satisfies a system of first order ODEs of
specific form, called structural equations. This defines a splitting of
the symplectic vector space T�T

∗M = J�(t) ⊕ Ĵ�(t), where Ĵ�(t) =
span{f1(t), ..., fn(t)}. In particular, the subspace J�(0) is the vertical

space V� of the bundle � : T ∗M →M and the subspace Ĵ�(0) is a com-

plimentary subspace to J�(0) = V� at time t = 0. Hence,
∪
�∈T ∗M Ĵ�(0)

defines an Ehresmann connection on the bundle � : T ∗M →M .
In the Riemannian case, this is, under the identification of the tan-

gent and cotangent spaces by the Riemannian metric, simply the Levi-
Civita connection (see [3, Proposition 5.2]). The canonical Darboux
frame, in this case, satisfies the following equations which is the Jacobi
field equation (up to certain identifications of tangent and cotangent
spaces)

ėi(t) = fi(t), ḟi(t) = −Rij
� (t)ej(t).

The matrix R� := R�(0) with ij-th entries given by Rij
� (0) above is the

Riemannian curvature operator (again up to certain identifications).
Using the above splitting we can also define a generalization of the

Ricci curvature in the Riemannian geometry. Indeed let �J�(t) and
�Ĵ�(t) be the projections, corresponding to the splitting T�T

∗M =

J�(t) ⊕ Ĵ�(t), onto the subspaces J�(t) and Ĵ�(t), respectively. Let
w(⋅) be a path contained in the Jacobi curve J�(⋅) (i.e. w(t) ∈ J�(t)
for all t). Then the projection �Ĵ�(t)ẇ(t) of its derivative ẇ(t) onto the

subspace Ĵ�(t) depends only on the vector w(t) but not on the curve
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w(⋅). Therefore, it defines a linear operator Φt
J�Ĵ�

: J�(t)→ Ĵ�(t)

Φt
J�Ĵ�

(v) = �Ĵ�(t) (ẇ(t)) .

Similarly we can also define another operator Φt
Ĵ�J�

: Ĵ�(t)→ J�(t) by

switching the role of J and Ĵ above. The composition of Φ0
Ĵ�J�

and

Φ0
J�Ĵ�

defines a linear operator Φ0
Ĵ�J�
∘ Φ0

J�Ĵ�
: J�(0) = V� → V� of

the vertical space V�. Finally the generalized Ricci curvature ℜic(�)
at � is defined by the negative of the trace of Φ0

Ĵ�J�
∘Φ0

J�Ĵ�
. When the

geodesic flow etH⃗ is Riemannian, the generalized Ricci curvature ℜic
reduces to the usual Ricci curvature (under certain identifications of
tangent and cotangent spaces).

Now let us consider the three dimensional contact subriemannian
case. The structural equations, in this case, have the following form
(see Section 10 for the proof):

Theorem 6.1. Let (M,Δ, ⟨⋅, ⋅⟩) be a three dimensional contact sub-
riemannian manifold. For each fixed � in T ∗M , there is a moving
Darboux frame

e1(t), e2(t), e3(t), f1(t), f2(t), f3(t)

of the symplectic vector space T�T
∗M and functions R11

� (t), R22
� (t) of

time t such that {e1(t), e2(t), e3(t)} form a basis for the Jacobi curve
J�(t) and it satisfies the following structural equations⎧⎨⎩

ė1(t) = f1(t),
ė2(t) = e1(t),
ė3(t) = f3(t),

ḟ1(t) = −R11
� (t)e1(t)− f2(t),

ḟ2(t) = −R22
� (t)e2(t),

ḟ3(t) = 0.

Moreover, the generalized Ricci curvature ℜic(�) at � is given by
ℜic(�) = R11

� (0).

Next we will write down explicit formulas (Theorem 6.2) for the
canonical Darboux frame and the differential invariants R11(t) and
R22(t) in Theorem 6.1. Let {v1, v2} be a local orthonormal frame in the
contact distribution Δ with respect to the subriemannian metric ⟨⋅, ⋅⟩
and let v0 be the Reeb field. This defines a convenient frame {v0, v1, v2}
in (a neighborhood of) the tangent bundle TM and we let {�0, �1, �2}
be the corresponding dual co-frame in the cotangent bundle T ∗M (i.e.
�i(vj) = �ij).



18 ANDREI AGRACHEV AND PAUL W.Y. LEE

The frame {v0, v1, v2} and the co-frame {�0, �1, �2} defined above
induces a frame in the tangent bundle TT ∗M of the cotangent bundle
T ∗M . Indeed, let �⃗i be the vector fields on the cotangent bundle T ∗M
defined by i�⃗i! = −�i. Note that the symbol �i in the definition
of �⃗i represents the pull back �∗�i of the 1-form � on the manifold
M by the projection � : T ∗M → M . This convention of identifying
forms in the manifold M and its pull back on the cotangent bundle
T ∗M will be used for the rest of this paper without mentioning. Let

�⃗1 and �⃗2 be the vector fields defined by �⃗1 = ℎ1�⃗2 − ℎ2�⃗1 and �⃗2 =
ℎ1�⃗1 + ℎ2�⃗2. Finally if we let ℎi : T ∗M → ℝ be the Hamiltonian
lift of the vector fields vi, defined by ℎi(�) = �(vi), then the vector

fields ℎ⃗0, ℎ⃗1, ℎ⃗2, �⃗0, �⃗1, �⃗2 define a local frame for the tangent bundle
TT ∗M of the cotangent bundle T ∗M . Under the above notation the
subriemannian Hamiltonian is given by H = 1

2
((ℎ1)2 + (ℎ2)2) and the

Hamiltonian vector field is H⃗ = ℎ1ℎ⃗1 + ℎ2ℎ⃗2. Let ds : T ∗M → T ∗M
be the dilation in the fibre direction defined by ds(�) = s� and let E⃗

be the Euler field defined by E⃗(�) = d
ds
ds(�)

∣∣∣
s=1

. It is also given by

E⃗ = −ℎ0�⃗0 − �2.
We also need the bracket relations of the vector fields v0, v1, v2. Let

ckij be the functions on the manifold M defined by

(6.1) [vi, vj] = c0
ijv0 + c1

ijv1 + c2
ijv2.

Note that ckij = −ckji. The dual version of the above relation is

(6.2) d�k = −
∑

0≤i<j≤2

ckij�i ∧ �j.

By (6.2) and the definition of the Reeb field v0, it follows that d� =
d�0 = �1 ∧ �2. Therefore, c0

01 = c0
02 = 0 and c0

12 = −1. If we also take
the exterior derivative of the equation in (6.2), we get c1

01 + c2
02 = 0.

Finally we come to the main theorem of this section. Note that all
vector fields in Theorem 6.2, Theorem 6.6, and their proofs should be
evaluated at �. They are omitted to avoid heavy notations.

Theorem 6.2. The canonical Darboux frame

e1(t), e2(t), e3(t), f1(t), f2(t), f3(t)

and the differential invariants R11
� (t) and R22

� (t) in Theorem 6.1 satisfy
R11
� (t) = R11

etH⃗(�)
(0), R22

� (t) = R22

etH⃗(�)
(0), and
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⎧⎨⎩

e1(t) = 1√
2H

(etH⃗)∗�⃗1,

e2(t) = 1√
2H

(etH⃗)∗�⃗0,

e3(t) = 1√
2H

(etH⃗)∗E⃗ = 1√
2H

(E⃗ − tH⃗),

f1(t) = 1√
2H

(etH⃗)∗[ℎ1ℎ⃗2 − ℎ2ℎ⃗1 + �0�⃗0 + (�⃗1ℎ12)�⃗1 − ℎ12�⃗2],

f2(t) = 1√
2H

(etH⃗)∗[2Hℎ⃗0 − ℎ0H⃗ − �1�⃗0 + (�⃗1a)�⃗1 − a�⃗2],

f3(t) = − 1√
2H
H⃗,

ℜic(�) := R11
� (0) = ℎ2

0 + 2H�− 3
2
�⃗1a,

R22
� := R22

� (0) = R11
� (0)�⃗1a− 3H⃗�⃗1H⃗a+ 3H⃗2�⃗1a+ �⃗1H⃗

2a.

where

a = dℎ0(H⃗),

�0 = ℎ2ℎ01 − ℎ1ℎ02 + �⃗1a,

�1 = ℎ0a+ 2H⃗�⃗1a− �⃗1H⃗a,
� = v1c

2
12 − v2c

1
12 − (c1

12)2 − (c2
12)2 − 1

2
(c2

01 − c1
02).

The proof of Theorem 6.2 is postponed to Section 10.

Remark 6.3. Note that � 7→ ℜ(�) = R11
� (0) is a quadratic form on

T ∗M which is positive on the kernel of the subriemannian Hamiltonian
H. On the other hand, � 7→ R22

� is a form of degree 4.

Remark 6.4. It was recently shown in [5] that � coincides (up to a
multiple of a constant) with the Tanaka-Webster curvature in CR ge-
ometry.

Recall that a = dℎ0(H⃗) defined in Theorem 6.2 is the Poisson bracket
of the subriemannian Hamiltonian H and the Hamiltonian lift ℎ0 of the
Reeb field v0. It follows immediately that a three dimensional contact
subriemannian is Sasakian if and only if a ≡ 0. It turns out that this
is also equivalent to R22 ≡ 0.

Theorem 6.5. A three dimensional contact subriemannian manifold
is Sasakian if and only if R22 ≡ 0.

For the proof of this, see Section 10. In the Sasakian case, the
equations in Theorem 6.2 simplify to

Theorem 6.6. Assume that the subriemannian manifold in Theorem
6.1 is Sasakian. Then the canonical Darboux frame

e1(t), e2(t), e3(t), f1(t), f2(t), f3(t)

and the differential invariants R11
� (t) and R22

� (t) satisfy

R11
� (t) = R11

etH⃗(�)
(0), R22

� (t) = R22

etH⃗(�)
(0),
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and⎧⎨⎩

e1(t) = 1√
2H

(etH⃗)∗�⃗1,

e2(t) = 1√
2H

(etH⃗)∗�⃗0,

e3(t) = 1√
2H

(etH⃗)∗E⃗ = 1√
2H

(E⃗ − tH⃗),

f1(t) = 1√
2H

(etH⃗)∗[ℎ1ℎ⃗2 − ℎ2ℎ⃗1 + 2Hc2
01�⃗0 + (�⃗1ℎ12)�⃗1 − ℎ12�⃗2],

f2(t) = 1√
2H

(etH⃗)∗[2Hℎ⃗0 − ℎ0H⃗],

f3(t) = − 1√
2H
H⃗,

ℜic(�) := R11
� (0) = ℎ2

0 + 2H�,
R22
� := R22

� (0) = 0.

where � = v1c
2
12 − v2c

1
12 − (c1

12)2 − (c2
12)2 − c2

01.

If we assume that the flow of the Reeb field v0 defines a free and
proper group action, then the quotient N of the manifold M by this
group action is a manifold and the subriemannian metric on M induces
a Riemannian metric on N . In this case, � is simply the Gauss curva-
ture of N (see Section 11 for the proof of the following proposition).

Proposition 6.7. Assume that the Reeb field v0 defines a proper G-
action (G = S1 or ℝ) on the subriemannian manifold M . If the quo-
tient manifold N = M/G is equipped with the Riemannian metric in-
duced by the subriemannian in M . Then the Gauss curvature of N
coincides with � defined in Theorem 6.6.

In particular, Proposition 6.7 shows that ℍ3, SU(2), and SL(2) with
standard subriemannian structures defined in Section 3 satisfies � = 0,
� = 1, and � = −1, respectively.

7. Sasakian Space Forms and Generalized Measure
Contraction Property

In this section, we specialize the definition of measure contraction
property to the contact subriemannian case and rewrite it as a condi-
tion on the volume growth of the Popp’s measure along subriemannian
geodesics. Then we go on and compute explicitly this volume growth
for the Sasakian manifolds with � defined in Theorem equal to a con-
stant. We will refer to these Sasakian manifolds as Sasakian space
forms. With this as a motivation, we will introduce the generalized
measure contraction property ℳCP(K; 2, 3) at the end.

Let (M,Δ, ⟨⋅, ⋅⟩) be a contact subriemannian manifold with subrie-
mannian distance function d and let x0 be a point in M . Let f be the
function defined by f(x) = −1

2
d2(x0, x). According to the result in [4],

the function f is Lipshitz with respect to a Riemannian distance. In
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particular, it is differentiable almost everywhere. Therefore, we can
define the map 't by

(7.1) 't(x) = �(etH⃗(dfx)),

where etH⃗ is the subriemannian geodesic flow and � : T ∗M →M is the
natural projection.

For each fixed x in the manifold M , the curve t 7→ 't(x) is a mini-
mizing geodesic starting from x and ending at x0. In particular, '1 is
the constant map '1(x) = x0. It follows that '1 is the unique solution
to the optimal transportation problem (4.1) when the final measure �1

is a delta mass �x0 at the point x0. It also follows that the path of mea-
sures 't∗� defines a Wasserstein geodesic and all Wasserstein geodesics
�t with �1 = �x0 is of this form. If we substitute the map 't into the
definition of measure contraction property, we have the following.

Proposition 7.1. Let (M,Δ, ⟨⋅, ⋅⟩) be a contact subriemannian man-
ifold with subriemannian distance d and Popp’s measure �. Then the
metric measure space (M,d, �) satisfies the measure contraction prop-
erty MCP (K,N) if and only if for any point x0 in the space M the
following holds

�('t(U)) ≥
∫
U

(1− t)
(
sK((1− t)D(x))

sK(D(x))

)N−1

d�(x)

for any Borel set U , where

sK(r) =

⎧⎨⎩
1√
K

sin(
√
K r) if K > 0

r if K = 0
1√
−K sinh(

√
−K r) if K < 0,

D(x) = d(x0,x)√
N−1

, and the map 't is defined in (7.1).

It follows from Proposition 7.1 that the measure contraction property
is a control on the volume growth �('t(U)) of the set U along geodesics
t 7→ 't(x) which end at x0. In the case of Sasakian space form, the
volume growth �('t(U)) is given by the following equality (see Section
12 for the proof).

Theorem 7.2. Let (M,Δ, ⟨⋅, ⋅⟩) be a Sasakian manifold with � = K
a constant. Let d be the subriemannian distance and � be the Popp’s
measure. Let x0 be a point on the manifold M and let 't be defined as
in (7.1). Then the following holds

�('t(U)) =

∫
U

(1− t)
(
s(k(x), (1− t)D(x))

s(k(x), D(x))

)
d�(x)
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for any Borel set U , where

s(k, r) =

⎧⎨⎩
12(2−2 cos(

√
kr)−

√
k r sin(

√
k r)

k2
if k > 0

r4 if k = 0
12(2−2 cosh(

√
−k r)+(

√
−k r) sinh(

√
−k r))

k2
if k < 0

k(x) = (v0D)2(x) +K, and D(x) = d(x0, x).

Note that

s(k(x), (1− t)D(x))

s(k(x), D(x))
≥ s(K, (1− t)D(x))

s(K,D(x))
.

In view of this and Theorem 7.2, we define the generalized measure
contraction property as follows.

Definition 7.3. The metric measure space (M,d, �) satisfies the gen-
eralized measure contraction property ℳCP(K; 2, 3) if for any point x0

in the space M , for any geodesic �t in P satisfying �1 = �x0 (the delta
mass at x0) and �0 = �, the following holds

�0('t(U)) ≥
∫
U

(1− t)
(
sK((1− t)D(x))

sK(D(x))

)
d�t(x)

for any Borel set U , where

sK(r) =

⎧⎨⎩
12(2−2 cos(

√
Kr)−

√
K r sin(

√
K r)

K2 if K > 0

r4 if K = 0
12(2−2 cosh(

√
−K r)+(

√
−K r) sinh(

√
−K r))

K2 if K < 0

and D(x) = d(x0, x).

Remark 7.4. Note that the condition ℳCP(0; 2, 3) coincides with the
condition MCP (0, 5).

Remark 7.5. sK in the Definition 7.3 satisfies

sK(r) = r4 + o(r4) as r → 0.

Therefore, ℳCP(K; 2, 3) does not imply MCP (0, N) for any N > 5.

8. The Main Result and its Consequences

In this section, we state our main result and its consequences. For
their proofs, see Section 13.
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Theorem 8.1. (Generalized Measure Contraction Property) Assume
that the three dimensional contact subriemannian manifold is Sasakian
(i.e. R22 ≡ 0) and there is a constant K such that R11

� ≥ 2KH(�)
for all � in the cotangent bundle T ∗M . Then the metric measure
space (M,d, �) satisfies the generalized measure contraction property
ℳCP(K; 2, 3), where d is the subriemannian distance and � is the
Popp’s measure (see Section 2 for the defintions).

Recall thatℳCP(0; 2, 3) is the same as MCP (0, 5). Therefore, The-
orem 1.1 follows from Theorem 8.1.

Remark 8.2. The proof of Theorem 6.2 also works when we assume that
R22
� ≥ 0 for all � in the cotangent bundle. However, it is I. Zelenkos

observation (private communications) that R22
� ≥ 0 for all � implies

R22 ≡ 0. On the other hand, see Section 9 for result with relaxed
assumption on R22.

Remark 8.3. If Δ is a bracket-generating distribution, then it defines
a flag of distribution by

Δ1 := Δ ⊂ Δ2 ⊂ ... ⊂ TM.

If we denote the dimension of the vector space Δi
x by nix, then the

growth vector of the distribution Δ at the point x is defined by

(n1
x, n

2
x, ..., n

k
x).

The pair (2, 3) in the generalized measure contraction property is the
growth vector of the three dimensional contact subriemannian mani-
fold. In this paper, we add ℳCP(K; 2, 3) to the measure contraction
property MCP (K,N) introduced earlier by Sturm. It would be very
interesting to find appropriate measure contraction properties for other
subriemannian manifolds with different growth vectors.

Remark 8.4. Many ingredients used in the proof of Theorem 8.1 also
present in the higher dimensional contact subriemannian case. This
includes the recent result in [27, 28], a comparison principle of matrix
Riccati equations, and the solvability of matrix Riccati equations with
constant coefficients. Therefore, results similar to Theorem 8.1 can
be proved in a similar way in the higher dimensional case where the
canonical Darboux frames and curvature invariants are well understood
(i.e. an analog of Theorem 6.2). For instance, the result in [24] for the
higher dimensional Heisenberg group can be proved in the same way
as in Theorem 8.1.

Let Bx(R) be the subriemannian ball of radius R centered at a point
x in the manifold M and let � : T ∗M →M be the natural projection.
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The proof of Theorem 8.1 is still valid if the curvature assumptions
only holds on a ball Bx(R) and the measure is contracted towards the
ceneter of the ball x. Therefore, the following volume doubling property
holds.

Corollary 8.5. (Volume Doubling Property) Assume that there is a
point x0 in the three dimensional contact subriemannian manifold and
a constant R > 0 such that R11

� ≥ 2KH(�) and R22
� = 0 for all � in

�−1(Bx0(2R)) and for some constant K > 0. Then

�(Bx0(2kR)) ≤ 25�(Bx0(kR))

for all 0 < k < 1.

Remark 8.6. Note that although the generalized measure contraction
property is sharp (see Section 7), the constant 25 in Corollary 8.5 is not.
This is because the generalized measure contraction property, which is
a condition on general sets, does not take into account the symmetry
of the subriemannian balls.

The local Poincaré inequality also holds under the assumptions in
Corollary 8.5. For this, let ∇Hf be the horizontal gradient of the
function f defined by the condition df(v) = ⟨∇f, v⟩ for all v in the
distribution Δ. For the proof of the following Corollary, see Section
13.

Corollary 8.7. (Local Poincaré Inequality) Under the assumptions
in Corollary 8.5, the following local Poincaré inequality holds for all
smooth functions f and all 0 < k < 1

1

�(Bx0(kR))

∫
Bx0 (kR)

∣f(x)− ⟨f⟩Bx0 (kR) ∣d�(x)

≤ CR

�(Bx0(2kR))

∫
Bx0 (2kR)

∣∇Hf ∣d�(x),

for some constant C and where

⟨f⟩Bx0 (kR) =
1

�(Bx0(kR))

∫
Bx0 (kR)

f(x)d�(x).

Let ΔH be the sub-Laplacian defined by ΔH = div�∇H , where div�
denotes the divergence with respect to �. Under the assumptions in
Theorem 1.1, the results in [17] together with Corollary 8.5 and 8.7
show that any positive harmonic function of the sub-Laplacian ΔH

satisfies the Harnack inequality. More precisely,
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Theorem 8.8. (Harnack inequality for sub-Laplacian) Under the as-
sumptions in Corollary 8.5, any positive solution to the equation ΔHf =
0 satisfies

sup
Bx0 (kR)

f ≤ C inf
Bx0 (kR)

f

for all 0 < k < 1.

For the proof of Theorem 8.8, see [17]. Finally, by letting R goes to
+∞ in Theorem 8.8, the following Liouville theorem holds.

Corollary 8.9. (Liouville Theorem for sub-Laplacian) Under the as-
sumptions in Theorem 1.1, any non-negative solution to the equation
ΔHf = 0 is a constant.

9. More General Situations and Final Remark

In this section, we show that the assumption on R22 in Theorem 8.1
can be relaxed. To do this, let Ωx be the injectivity domain at a point
x in M defined as the set of all covectors � in T ∗xM such that

t 7→ �(etH⃗(�)), 0 ≤ t ≤ 1

is length minimizing between its end points. Finally, let Ω =
∪
x Ωx be

the injectivity domain.
One can apply similar arguments as in the proof of Theorem 8.1

under the assmption that R22 is bounded below by a constant on Ω
instead of bounded by zero. This will give certain measure contraction
property.

Theorem 9.1. Assume that M is a three dimensional contact sub-
riemannian manifold with subriemannian distance d and Popp’s mea-
sure �. Assume further that there are constants C1 and C2 such that
R11
� ≥ 2C1H(�) and R22

� ≥ −C2
2 for all � in Ω. Let 't be as in (7.1).

Then the metric measure space (M,d, �) satisfies

�('t(U)) ≥
∫
U

(1− t)

(
sC1,C2(

√
2(1− t))

sC1,C2(
√

2)

)
d�(x)
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for any Borel set U , where

sC1,C2(r) =

⎧⎨⎩

24
(

cosh(a2r)−1
a4

+ cos(b2r)−1
b4

)
if a > 0 and b > 0,

24
(
r2

2
+ cos(b2r)−1

b4

)
if a = 0 and b > 0,

24
(

cosh(a2r)−1
a4

− r2

2

)
if a > 0 and b = 0,

24
(
− cosh(a2r)−1

a4
+ cosh(b2r)−1

b4

)
if a > 0 and b < 0,

24
(
− r2

2
+ cosh(b2r)−1

b4

)
if a = 0 and b < 0,

24
(

cosh(a2r)−1
a4

+ r2

2

)
if a > 0 and b = 0,

24
(
− cos(a2r)−1

a4
+ cos(b2r)−1

b2

)
if a < 0 and b < 0,

24
(
r2

2
+ cos(b2r)−1

b4

)
if a = 0 and b < 0,

24
(

cos(a2r)−1
a4

− r2

2

)
if a < 0 and b = 0,

r4 if a = b = 0,

a(x) = C2 − 1
2
C1d

2(x0, x), and b(x) = C2 + 1
2
C1d

2(x0, x).

The proof of Theorem 9.1 is very similar to that of Theorem 8.1
and will be omitted. Finally, we show that the any compact three
dimensional contact subriemannian manifold satisifies the assumptions
in Theorem 9.1.

Theorem 9.2. Assume that the three dimensional contact subrieman-
nian manifold is compact. Then R22

�

∣∣∣
�∈Ω

is bounded.

For the proof of Theorem 9.2, see Section 14.

After the submission of this paper, there are some very interesting
works which are also on Ricci curvature type condition and its con-
sequences to subriemannian geometry and PDE ([9, 29, 11, 10, 5]).
Among them, [9, 11, 10] uses an apporach very different from ours.
It would be very interesting to establish connections between the two
approaches. Finally, we would like to point out that curvature type
invariants on three-dimensional contact subriemannian manifolds were
considered in [22] and a Bonnet-Myer theorem is proved there. We
would like to thank one of the referees who pointed this out.

10. Proof of Theorem 6.1, 6.2, and 6.5

In this section, we give the proof of Theorem 6.1, 6.2, and 6.5. Let
us start with a lemma on Euler field. Recall that E⃗ denotes the Euler
field and H denotes the subriemannian Hamiltonian.
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Lemma 10.1. (etH⃗)∗E⃗ = E⃗ − tH⃗

Proof. Recall ds : T ∗M → T ∗M is the dilation map ds(�) = s�. By
the definition of the symplectic form,

d∗s! = s!.

It follows that

!(dds(H⃗(�)), X(s�))

= s!(H⃗(�), dd−1
s (X(s�)))

= −sdH(dd1/s(X(s�))),

where X is any tangent vector in the tangent bundle TT ∗M .
The subriemannian Hamiltonian H is homogeneous of degree two in

the fibre direction. In other words,

H(ds(�)) = s2H(�).

Therefore,

!(d�s(H⃗(�)), X(s�)) = −1

s
dH(X(s�)) =

1

s
!(H⃗(s�), X(s�)).

It follows that d∗sH⃗ = sH⃗, where d∗sH⃗ is the pullback of the vector

field H⃗ by the map �s. By comparing the flow of the above vector
fields, we have

etH⃗ ∘ �s = �s ∘ etsH⃗ .
By differentiating the above equation with respect to s and set s to 1,

it follows that (etH⃗)∗E⃗ = E⃗ − tH⃗ as claimed. □

Proof of Theorem 6.1. According to the main result in [27, 28], there
exists a family of Darboux frames

{e1(t), e2(t), e3(t), f1(t), f2(t), f3(t)}
and functions Rij

� (t) which satisfy⎧⎨⎩

ė1(t) = f1(t),
ė2(t) = e1(t),
ė3(t) = f3(t),

ḟ1(t) = −R11
� (t)e1(t)−R31

� (t)e3(t)− f2(t),

ḟ2(t) = −R22
� (t)e2(t)−R32

� (t)e3(t),

ḟ3(t) = −R31
� (t)e1(t)−R32

� (t)e2(t)−R33
� (t)e3(t).

Remark 10.2. In the language of [27, 28], the Young diagram associated
with the above structural equations consists of two columns with two
boxes in the first column and one box in the second column.
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Note that d�(E⃗) = 0. Therefore, E⃗(etH⃗(�)) is contained in the

vertical space at etH⃗(�) for each time t. Hence, by the definition of the

Jacobi curve J�(t), the vector (etH⃗)∗E⃗(�) is contained in J�(t) for each
t. It follows from Lemma 10.1 that

E⃗(�)− tH⃗(�) =
3∑
i=1

ai(t)ei(t)

for some functions ai of time t. If we differentiate with respect to time
t twice, we get

2ȧ1(t)f1(t) + 2ȧ2(t)e1(t) + 2ȧ3(t)f3(t)− a1(t)(R11
� (t)e1(t)+

+R31
� (t)e3(t) + f2(t)) + a2(t)f1(t)− a3(t)(R31

� (t)e1(t) +R32
� (t)e2(t)+

+R33
� (t)e3(t)) + ä1(t)e1(t) + ä2(t)e2(t) + ä3(t)e3(t) = 0.

If we equate the coefficients of the fi(t)’s, we get a1 ≡ a2 ≡ ȧ3 ≡ 0.

Therefore, E⃗(�)− tH⃗(�) = a3e3(t) and −H⃗(�) = a3f3(t) for some con-

stant a3 satisfying (a3)2 = !(a3f3(t), a3e3(t)) = dH(E⃗(�)) = 2H(�).
It follows that R31

� (t) = R32
� (t) = R33

� (t) = 0. Moreover, we also have
(10.1)

e3(t) =
1

(2H(�))1/2
(E⃗(�)− tH⃗(�)), f3(t) = − 1

(2H(�))1/2
H⃗(�).

□

For the proof of Theorem 6.2, we need a few more lemmas. Let
ℎij : T ∗M → ℝ be the Hamiltonian lift of the vector field [vi, vj] defined
by

ℎij(�) = �([vi, vj]).

The commutator relations of the frame {ℎ⃗i, �⃗i∣i = 1, 2, 3} are given by
the following:

Lemma 10.3.

[⃗ℎi, ℎ⃗j] = ℎ⃗ij, [⃗ℎi, �⃗j] = −
∑
k

cjik�⃗k, [�⃗i, �⃗j] = 0.

Proof. Since the Lie derivative ℒ of the symplectic form ! along the

Hamiltonian vector field ℎ⃗i vanishes,

(10.2) i[⃗ℎi ,⃗ℎj ]! = ℒℎ⃗iiℎ⃗j! − iℎ⃗jℒℎ⃗i! = ℒℎ⃗iiℎ⃗j! = −d(!(⃗ℎi, ℎ⃗j)).

The function !(⃗ℎi, ℎ⃗j) is equal to ℎij. Indeed, since d�(⃗ℎi) = vi, we
have

��(⃗ℎi) = �(d�(⃗ℎi)) = �(vi) = ℎi(�).

It follows from this and the Cartan’s formula that

dℎj (⃗ℎi) = !(⃗ℎi, ℎ⃗j) = d�(⃗ℎi, ℎ⃗j) = dℎj (⃗ℎi)− dℎi(⃗ℎj)− �([⃗ℎi, ℎ⃗j]).
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If we apply again d�(⃗ℎi) = vi, then we have

��([⃗ℎi, ℎ⃗j]) = �(d�([⃗ℎi, ℎ⃗j])) = �([vi, vj]) = ℎij(�).

Therefore, we have

(10.3) !(⃗ℎi, ℎ⃗j) = −dℎi(⃗ℎj) = ℎij.

If we combine this with (10.2), the first assertion of the lemma follows.
A calculation similar to the above one shows that

i[⃗ℎi,�⃗j ]! = ℒℎ⃗ii�⃗j!.

By Cartan’s formula, the above equation becomes

i[⃗ℎi,�⃗j ]! = −iℎ⃗i�
∗d�j = −�∗(ivid�j).

The second assertion follows from this and (6.2).
If we apply Cartan’s formula again,

i[�⃗i,�⃗j ]! = ℒ�⃗ii�⃗j! − i�⃗jℒ�⃗i! = −i�⃗id(�∗�j) + i�⃗jd(�∗�i)

Since d�(�⃗i) = 0, it follows that i[�⃗i,�⃗j ]! = 0. Therefore, the third
assertion holds by the nondegeneracy of !. □

Let � = ℎ1dℎ2 − ℎ2dℎ1, then we also have the following relations:

Lemma 10.4.

dℎi(⃗ℎj) = −ℎij, �i(⃗ℎj) = −dℎi(�⃗j) = �ij, �i(�⃗j) = 0,

�(�⃗2) = dH(�⃗1) = 0, �(�⃗1) = dH(�⃗2) = −2H.

Proof. The first assertion follows from (10.3) and the next two asser-

tions follow from d�(⃗ℎi) = vi and d�(�⃗i) = 0. A computation using

�i(⃗ℎj) = �ij proves the rest of the assertions. □

Proof of Theorem 6.2. Recall J�(⋅) denotes the Jacobi curve at the
point � in the cotangent bundle T ∗M . By Theorem 6.1, there exists a
family of Darboux frame

{e1(t), e2(t), e3(t), f1(t), f2(t), f3(t)}

and functions Rij
� (t) such that

J�(t) = span{e1(t), e2(t), e3(t)}
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and ⎧⎨⎩

ė1(t) = f1(t),
ė2(t) = e1(t),
ė3(t) = f3(t),

ḟ1(t) = −R11
� (t)e1(t)− f2(t),

ḟ2(t) = −R22
� (t)e2(t),

ḟ3(t) = 0.

Let ℰ(t) be defined by

ℰ(t) = (etH⃗)∗�⃗0(�) = de−tH⃗(�⃗0(etH⃗(�))).

By the definition of the Jacobi curve J�(⋅), we known that ℰ(t) is
contained in J�(t) for each t. Since e1(t), e2(t), e3(t) span J�(t), we
must have

ℰ(t) = c1(t)e1(t) + c2(t)e2(t) + c3(t)e3(t)

for some functions ci of time t, i = 1, 2, 3.
Let � : T ∗M → M be the natural projection. The Hamiltonian

vector field H⃗ of the subriemannian Hamiltonian H satisfies

d�(H⃗(�)) = d�(ℎ1(�)v1 + ℎ2(�)v2) = 0.

It follows that

!(�⃗0, H⃗) = −�∗�0(H⃗) = 0.

Since the flow etH⃗ preserves the symplectic form !, it follow from
the definition of ℰ(t) that

!(ℰ , H⃗) = 0.

By (10.1), we know that f3(t) = − 1
(2H)1/2

H⃗. Since {ei(t), fi(t)∣i =

1, 2, 3} is a Darboux basis, we have

0 = !(ℰ , H⃗) = (2H)1/2c3(t).

This shows that c3 ≡ 0 and so

ℰ(t) = c1(t)e1(t) + c2(t)e2(t).

By the definition of ℰ(t), if we differentiate this with respect to time t,
then we have

(etH⃗)∗[H⃗, �⃗0] = ℰ̇(t) = ċ1(t)e1(t) + c1(t)f1(t) + ċ2(t)e2(t) + c2(t)e1(t).

By the Cartan’s formula and �0(H⃗) = 0, it follows that

!(ℰ̇(t), ℰ(t)) = !([H⃗, �⃗0], �⃗0) = �∗�0([H⃗, �⃗0]) = −�∗d�0(H⃗, �⃗0) = 0.
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By combining this with the above equation for ℰ and ℰ̇ , we have
c1 ≡ 0. If we differentiate the equation

ℰ(t) = c2(t)e2(t)

with respect to time t again, we get

(etH⃗)∗(adH⃗(�⃗0)) = ċ2(t)e2(t) + c2(t)e1(t)

(etH⃗)∗(ad2
H⃗

(�⃗0)) = c̈2(t)e2(t) + 2ċ2(t)e1(t) + c2(t)f1(t).

Here adH⃗ denotes adH⃗(⋅) = [H⃗, ⋅].
Since {ei(t), fi(t)∣i = 1, 2, 3} is a Darboux basis and the flow etH⃗

preserves the symplectic form !,

(c2(t))2 = !�((etH⃗)∗ad2
H⃗

(�⃗0), (etH⃗)∗adH⃗(�⃗0)))

= (etH⃗∗ !)etH⃗(�)(ad
2
H⃗

(�⃗0), adH⃗(�⃗0)))

= !etH⃗(�)(ad
2
H⃗

(�⃗0), adH⃗(�⃗0)))

Therefore, c2(t) = (etH⃗)∗
(

1
c

)
, where c(�) := 1

(!�(ad2
H⃗

(�⃗0),ad
H⃗

(�⃗0)))1/2
.

It follows from the definition of ℰ that

e2(t) =
1

c2(t)
ℰ(t) = (etH⃗)∗(c�⃗0).

To find out what c is more explicitly, we first compute [H⃗, �⃗0]. The
Lie bracket is a derivation in each of its entries, so

[H⃗, �⃗0] = [ℎ1ℎ⃗1 + ℎ2ℎ⃗2, �⃗0]

= −dℎ1(�⃗0)⃗ℎ1 − dℎ2(�⃗0)⃗ℎ2 + ℎ1 [⃗ℎ1, �⃗0] + ℎ2 [⃗ℎ2, �⃗0].

It follows from this, Lemma 10.3, and Lemma 10.4 that

[H⃗, �⃗0] = ℎ1�⃗2 − ℎ2�⃗1 = �⃗1.

Next, we want to compute [H⃗, �⃗1]. For this, let

(10.4) [H⃗, �⃗1] = k0�⃗0 + k1�⃗1 + k2�⃗2 +
2∑
i=0

c̃iℎ⃗i

for some functions c̃i and ki.
To compute c̃0 for instance, we apply �0 on both sides of (10.4).

Using Lemma 10.4 and Cartan’s formula, we have c̃0 = 0. Similar
computation gives c̃1 = −ℎ2 and c̃2 = ℎ1. This shows that

(10.5) [H⃗, �⃗1] = k0�⃗0 + k1�⃗1 + k2�⃗2 + ℎ1ℎ⃗2 − ℎ2ℎ⃗1.
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By applying dℎ0 on both sides of (10.5) and using Lemma 10.4 again,

we have k0 = ℎ2ℎ01−ℎ1ℎ02 + �⃗1a. Similar calculations using � and dH
give

(10.6) [H⃗, �⃗1] = ℎ1ℎ⃗2 − ℎ2ℎ⃗1 + �0�⃗0 + (�⃗1ℎ12)�⃗1 − ℎ12�⃗2.

where �0 = ℎ2ℎ01 − ℎ1ℎ02 + �⃗1a and a = dℎ0(H⃗).
It follows that

c−2 = !(ad2
H⃗

(�⃗), adH⃗(�⃗)) = 2H

and e2(0) = 1√
2H
�⃗0. It also follows from Theorem 6.1 that

(10.7)

e1(0) = 1√
2H
�⃗1,

f1(0) = 1√
2H

[H⃗, �⃗1],

ḟ1(0) = 1√
2H

[H⃗, [H⃗, �⃗1]],

f̈1(0) = 1√
2H

[H⃗, [H⃗, [H⃗, �⃗1]]].

A computation similar to that of (10.6) gives

(10.8) [H⃗, [H⃗, �⃗1]] = −2Hℎ⃗0 + ℎ0H⃗ + �1�⃗0 + (�2 + �0 − �⃗1a)�⃗1 + a�⃗2

where �1 = ℎ0a+ 2H⃗�⃗1a− �⃗1H⃗a and �2 = ℎ0ℎ12 + 2H⃗�⃗1ℎ12 − �⃗1H⃗ℎ12.
It follows from Theorem 6.1, (10.6), (10.7) and (10.8) that

R11
� (0) = !(ḟ1(0), f1(0))

= −�0 − �2.
(10.9)

Note that, in (10.9), �⃗1a does not appear. This is because

!(−2Hℎ⃗0, ℎ1ℎ⃗2 − ℎ2ℎ⃗1 + �0�⃗0) = −2H�⃗1a

and
!(−(�⃗1a)�⃗1, ℎ1ℎ⃗2 − ℎ2ℎ⃗1) = 2H�⃗1a.

Since ḟ1(0) = −R11
� (0)e1(0) − f2(0), it follows from (10.7), (10.8),

and (10.9) that

f2(0) =
1√
2H

[2Hℎ⃗0 − ℎ0H⃗ − �1�⃗0 + (�⃗1a)�⃗1 − a�⃗2].

A long computation using the bracket relations (6.1) gives

�2 = −(ℎ0)2 + 2H[(c1
12)2 + (c2

12)2 − v1c
2
12 + v2c

1
12] + �⃗1a.

and

�0 −
1

2
�⃗1a = ℎ2ℎ01 − ℎ1ℎ02 +

1

2
�⃗1a = H(c2

01 − c1
02).
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It follows as claimed that

R11
� (0) = ℎ2

0 + 2H�− 3

2
�⃗1a.

To prove the formula for R22, we differentiate the equation

ḟ1(t) = −R11
� (t)e1(t)− f2(t)

and combine it with the equation

ḟ2(t) = −R22
� (t)e2(t).

We have

R22
� (0)e2(0) = f̈1(0) + H⃗R11

� (0)e1(0) +R11
� (0)f1(0).

Therefore, by applying dℎ0 on both sides and using dℎ0(e1(0)) = 0,
we get

R22
� (0) = −

√
2H[dℎ0(f̈1(0)) +R11

� (0)dℎ0(f1(0))].

By using Cartan’s formula and (10.7), it follows that
√

2Hdℎ0(f1(0)) = dℎ0([H⃗, �⃗1]) = −�⃗1a,
√

2Hdℎ0(ḟ1(0)) = dℎ0([H⃗, [H⃗, �⃗1]]) = �⃗1H⃗a− 2H⃗�⃗1a,
√

2Hdℎ0(f̈1(0)) = 3H⃗�⃗1H⃗a− 3H⃗2�⃗1a− �⃗1H⃗
2a.

The formula for R22
� (0) follows from this.

□

Finally, we come to the proof of Theorem 6.5. The proof involves
lengthy computations of R22. Therefore, only a sketch is given below.

Proof of Theorem 6.5. Clearly, if a ≡ 0, then R22 ≡ 0 by Theorem 6.2.
Conversely, assume that R22 ≡ 0. By using the expression of R22 in
Theorem 6.2 and Lemma 10.4, we can rewrite R22 as a homogeneous
polynomial of degree 4 with three variables ℎ0, ℎ1, and ℎ2. A long
computation shows that the coefficients of ℎ2

0ℎ
2
1 and ℎ2

0ℎ1ℎ2 are−3(c2
01+

c1
02) and 12c1

01, respectively. Therefore, if R22 ≡ 0, then c2
01 + c1

02 = 0
and c1

01 = −c2
02 = 0. It follows that

a = dℎ0(H⃗)

= ℎ1dℎ0(⃗ℎ1) + ℎ2dℎ0(⃗ℎ2)

= −c1
01ℎ

2
1 − (c2

01 + c1
02)ℎ1ℎ2 + c1

01ℎ
2
2

= 0.

□
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11. Proof of Theorem 6.6 and Proposition 6.7

In this section, we will give the proof of Theorem 6.6 and Proposition
6.7. The result of Theorem 6.6 follows from the following two lemmas.

Lemma 11.1. Under the above assumptions, the functions ckij in the
bracket relation (6.1) satisfies

c0
01 = c0

02 = c1
01 = c2

02 = 0 and c2
01 = −c1

02.

Proof of Lemma 11.1. If the flow of the vector field e = v0 is denoted
by etv0 , then the invariance of the subriemannian metric under the
group action implies that〈

(etv0)∗vi, (e
tv0)∗vj

〉
= �ij, �((etv0)∗vj) = 0, i, j = 1, 2.

By differentiating the above equations with respect to time t, it follows
that

�j([e, vi]) + �i([e, vj]) = 0, �([e, vj]) = 0, i, j = 1, 2.

If we apply the bracket relations (6.1) of the frame v1, v2, v3, we have

cj0i+c
i
0j = �j([e, vi])+�i([e, vj]) = 0, c0

0j = �([e, vj]) = 0, i, j = 1, 2.

□

It follows that

Lemma 11.2. The function ℎ0 is a constant of motion of the flow etH⃗ .
i.e. a = dℎ0(H⃗) = 0.

Proof of Lemma 11.2. This follows from general result in Hamiltonian
reduction. In this special case this can also be seen as follow. By
Lemma 10.4

(11.1) dℎ0(H⃗) = dℎ0(ℎ1ℎ⃗1 + ℎ2ℎ⃗2) = ℎ1ℎ10 + ℎ2ℎ20.

By Lemma 11.1 we also have

ℎ10 = −c0
01ℎ0 − c1

01ℎ1 − c2
01ℎ2 = −c2

01ℎ2.

Similarly ℎ20 = −c1
02ℎ1. The result follows from this, (11.1), and

Lemma 11.1. □

Proof of Proposition 6.7. Let �M : M → N be the quotient map. Let
w1 and w2 be a local orthonormal frame on the surface N . Since � is a
submersion, there are unique vector fields w̃1 and w̃2 in the distribution
Δ such that d�(w̃i) = wi. If Φt is the flow of the Reeb field v0, then
�(Φt(x)) = �(x) by the definition of the quotient map. Therefore,
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d�(dΦt(w̃i)) = d�(wi). Since dΦt(w̃i) is in Δ, we have (Φt)∗w̃i = wi. If
we differentiate this equation and set t to zero, then we have [v0, w̃i] = 0.

Since w̃1 and w̃2 are orthonormal with respect to the subriemannian
metric, we can set vi = w̃i. It follows that c2

01 = 0 and � is simplified
to

(11.2) � = v1c
2
12 − v2c

1
12 − (c1

12)2 − (c2
12)2.

From (6.1), we also have [v1, v2] = c0
12v0 + c1

12v1 + c2
12v2. If we apply

d�M to the equation, then we get [w1, w2] = c1
12w1 + c2

12w2.
Let us denote the covariant derivative on the Riemannian manifold

N by ∇. It follows from Koszul formula ([37, Theorem 3.11]) that

(11.3)
∇w1w1 = −c1

12w2, ∇w2w2 = −c2
12w1,

∇w1w2 = c1
12w1, ∇w2w1 = −c2

12w2.

Since the covariant derivative ∇ is tensorial in the bottom slot and
is a derivation in the other slot, it follows from (11.3) that

∇[w1,w2]w1 = ∇c112w1+c212w2
w1

= c1
12∇w1w1 + c2

12∇w2w1

= −[(c1
12)2 + (c2

12)2]w2

and

[∇w1 ,∇w2 ]w1 = ∇w1∇w2w1 −∇w2∇w1w1

= −∇w1(c
2
12w2) +∇w2(c

1
12w2)

= −(w1c
2
12)w2 + (w2c

1
12)w2 − 2c1

12c
2
12w1.

Therefore, it follows from the above calculation that the Gauss cur-
vature is given by

< ∇[w1,w2]w1 − [∇w1 ,∇w2 ]w1, w2 >= w1c
2
12 − w2c

1
12 − (c1

12)2 − (c2
12)2.

By (11.2), this agrees with �. □

12. Proof of Theorem 7.2

Proof of Theorem 7.2. From the main result in [16], the function f =
−1

2
d2(x, x0) is locally semiconcave on M − {x0}, so it is differentiable

almost everywhere. Assume that x′ is a point where f is differentiable.

It follows that the map t 7→ 't(x
′) := �(etH⃗(dfx′)) is the unique mini-

mizing geodesic connecting x′ and x0. An argument similar to the Rie-
mannian case using inverse function theorem shows that the function
f is C∞ in a neighborhood of the curve t 7→ 't(x

′) (see, for instance,
[23]). Moreover, it follows from [1, Theorem 1.2] that there is no con-
jugate point along the curve t 7→ 't(x

′). Therefore, the map (d't)x′ is
nonsingular for each t < 1.
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If we denote the differential of the map x 7→ dfx by ddf, then

d't = d�(detH⃗(ddf)). Let ei(t) and fi(t) be the Darboux frame at
dfx′ defined as in Theorem 6.1 and let &i = d�(fi(0)). Then the vec-
tors {ddf(&1), ddf(&2), ddf(&3)} span a linear subspace W of Tdfx′T

∗M .
Therefore ddf(&i) can be written as

(12.1) ddf(&i) =
3∑

k=1

(aij(t)ej(t) + bij(t)fj(t)) or Ψ = AtEt +BtFt,

where At is the matrix with entries aij(t), Bt is the matrix with entries
bij(t), and Ψ, Et, and Ft are matrices with rows ddf(&i), ei(t), and fi(t),
respectively.

By a result in [20], the measure 't∗� is absolutely continuous with
respect to �. Let gt be the density of 't∗� (i.e. 't∗� = gt�). Since 't
is smooth in a neigborhood of x′, we can consider � as a volume form.
It follows from 't∗� = gt� that

gt('t(x
′)) ∣�(d'(&1), d'(&2), d'(&3))∣ = ∣�(&1, &2, &3)∣.

By Theorem 6.2,

∣�(d'(&1), d'(&2), d'(&3))∣ = ∣�(&1, &2, &3) detBt∣.
Note also that since (d't)x′ is nonsingular, Bt is invertible for all

t < 1. Since B0 is the identity matrix, detBt > 0 for all t < 1.
Therefore, we have proved the following lemma.

Lemma 12.1.

gt('t(x
′)) =

1

detBt

.

If we differentiate (12.1) with respect to time t and apply Theorem
6.1, then we have

0 = ȦtEt + AtĖt + ḂtFt +BtḞt

= ȦtEt + At(C1Et + C2Ft) + ḂtFt −Bt(R + CT
1 Ft),

where

C1 =

⎛⎝ 0 0 0
1 0 0
0 0 0

⎞⎠ , C2 =

⎛⎝ 1 0 0
0 0 0
0 0 1

⎞⎠ ,

R =

⎛⎝ r 0 0
0 0 0
0 0 0

⎞⎠ ,

r(x′) = ℎ2
0(dfx′) + 2KH(dfx′) = (v0f(x

′))2 −Kf(x′),

and CT
1 denotes the transpose of C1.
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Therefore, we have the following equations for the matrices At and
Bt.

(12.2) Ȧt + AtC1 −BtR = 0, Ḃt + AtC2 −BtC
T
1 = 0.

If st = gt('t(x)), then we have, by (12.1) and (12.2), the following:

detBt
d

dt
det(B−1

t ) = −tr(B−1
t Ḃt) = tr(B−1

t AtC2).

Therefore, if we let St = B−1
t At, then we have the following lemma.

Lemma 12.2.

detBt = e−
∫ t
0 tr(SsC2)ds.

By (12.2), the matrix St defined by St = B−1
t At satisfies the following

matrix Ricatti equation

Ṡt −R + StC1 + CT
1 St − StC2St = 0.

Since '1(x) = x0 for all x, we have d'1(&i) = 0. Therefore, by
Theorem 6.2 and (12.1), B1 = 0. Therefore, S−1

t satisfies the following
matrix Ricatti equation

d

dt
(S−1

t ) + S−1
t RS−1

t − C1S
−1
t − S−1

t CT
1 + C2 = 0 and S−1

1 = 0.

Since the coefficient of the above equation does not depend on time
t, the solution to this equation can be found explicitly by the result in
[26] as follows.

Let us consider the matrix

Q =

(
C1 −C2

R −CT
1

)
and the corresponding matrix differential equation d

dt
q = Qq together

with the condition q(1) = I.
The fundamental solution is given by

q(t) = e(t−1)Q =

⎛⎜⎜⎜⎜⎜⎜⎝

cos �t 0 0 sin �t
�0

1−cos �t
�20

0

− sin �t
�0

1 0 cos �t−1
�20

sin �t−�t
�30

0

0 0 1 0 0 1− t
−�0 sin �t 0 0 cos �t

sin �t
�0

0

0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

if r > 0,
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q(t) = e(t−1)Q =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 1− t (1−t)2

2
0

t− 1 1 0 − (1−t)2
2

− (1−t)3
6

0
0 0 1 0 0 1− t
0 0 0 1 1− t 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

if r = 0,

q(t) = e(t−1)Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cosh �t 0 0 sinh �t
�0

cosh �t−1
�20

0

− sinh �t
�0

1 0 1−cosh �t
�20

�t−sinh �t
�30

0

0 0 1 0 0 1− t
�0 sinh �t 0 0 cosh �t

sinh �t
�0

0

0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

if r < 0, where �t =
√
∣r∣(1− t).

It follows from [26, Theorem 1] that

S−1
t =

⎛⎜⎝
sin �t
�0

1−cos �t
�20

0
cos �t−1
�20

sin �t−�t
�30

0

0 0 1− t

⎞⎟⎠
⎛⎝ cos �t

sin �t
�0

0

0 1 0
0 0 1

⎞⎠−1

=

⎛⎝ tan �t
�0

cos �t−1
�20 cos �t

0
cos �t−1
�20 cos �t

tan �t−�t
�30

0

0 0 1− t

⎞⎠ ,

if r > 0,

S−1
t =

⎛⎝ 1− t (1−t)2
2

0

− (1−t)2
2

− (1−t)3
6

0
0 0 1− t

⎞⎠⎛⎝ 1 1− t 0
0 1 0
0 0 1

⎞⎠−1

=

⎛⎝ 1− t − (1−t)2
2

0

− (1−t)2
2

(1−t)3
3

0
0 0 1− t

⎞⎠ ,
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if r = 0, and

S−1
t =

⎛⎜⎝
sinh �t
�0

cosh �t−1
�20

0
1−cosh �t

�20

�t−sinh �t
�30

0

0 0 1− t

⎞⎟⎠
⎛⎝ cosh �t

sinh �t
�0

0

0 1 0
0 0 1

⎞⎠−1

=

⎛⎜⎝
tanh �t
�0

1−cosh �t
�20 cosh �t

0
1−cosh �t
�20 cosh �t

�t−tanh �t
�30

0

0 0 1− t

⎞⎟⎠ .

if r < 0.
Therefore, inverting the above matrix gives the following. If r > 0,

then

St =

⎛⎜⎝ �0(sin �t−�t cos �t)
D

�20 (1−cos �t)

D 0
�20 (1−cos �t)

D
�30 sin �t
D 0

0 0 1
1−t

⎞⎟⎠
where D = 2− 2 cos �t − �t sin �t.

If r = 0, then

St =
1

(1− t)3

⎛⎝ 4(1− t)2 6(1− t) 0
6(1− t) 12 0

0 0 (1− t)2

⎞⎠ .

If r < 0, then

St =

⎛⎜⎝ �0(�t cosh �t−sinh �t)
Dℎ

�20 (cosh �t−1)

Dℎ 0
�20 (cosh �t−1)

Dℎ
�30 sinh �t
Dℎ 0

0 0 1
1−t

⎞⎟⎠
where Dℎ = 2− 2 cosh �t + �t sinh �t.

If r > 0, then

tr(C2St) =
�0(sin �t − �t cos �t)

2− 2 cos �t − �t sin �t
+

1

1− t
.

If r = 0, then

tr(C2St) =
5

1− t
.

If r < 0, then

tr(C2St) =
�0(�t cosh �t − sinh �t)

2− 2 cosh �t + �t sinh �t
+

1

1− t
.

If we integrate the above equations, we get

(12.3)

∫ t

0

tr(C2Ss)ds = − log

[
(1− t)(2− 2 cos �t − �t sin �t)

(2− 2 cos �0 − �0 sin �0)

]
.
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if r > 0,

(12.4)

∫ t

0

tr(C2Ss)ds = − log(1− t)5.

if r = 0, and

(12.5)

∫ t

0

tr(C2Ss)ds = − log

[
(1− t)(2− 2 cosh �t + �t sinh �t)

(2− 2 cosh �0 + �0 sinh �0)

]
.

if r < 0.
Since all the above computations hold for �-almost all x′, we can

combine them with Lemma 12.1 and 12.2 and obtain

�('t(U)) =

∫
U

1

gt('t(x))
d�(x)

=

∫
U

detBt d�(x)

=

∫
U

e−
∫ t
0 tr(SsC2)dsd�(x)

=

⎧⎨⎩
∫
U

(1−t)(2−2 cos �t−�t sin �t)
(2−2 cos �0−�0 sin �0)

d� if r > 0,

(1− t)5 �(U) if r = 0,∫
U

(1−t)(2−2 cosh �t+�t sinh �t)
(2−2 cosh �0+�0 sinh �0)

d� if r < 0.

Here we recall that �t = (1− t)
√
∣(v0f)2(x)−Kf(x)∣. □

13. Proof of Theorem 8.1 and its Consequences

Proof of Theorem 8.1. We use the setup and notations as in the proof
of Theorem 7.2. Both Lemma 12.1 and 12.2 still hold in this case. The
only difference is that the curvature R�(t) now is not given explicitly
and, more importantly, it depends on time t.

Let us consider the following matrix Riccati equation with constant
coefficients:

(13.1)
d

dt
(S̃−1

t ) + S̃−1
t R̃tS̃

−1
t − C1S̃

−1
t − S̃−1

t CT
1 + C2 = 0

together with the condition S̃−1
1 = 0, where R̃ =

⎛⎝ 2KH 0 0
0 0 0
0 0 0

⎞⎠.

It follows from the assumption of the theorem that

R11
dfx′

(t) ≥ 2KH(dfx′)
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and

R22
dfx′

(t) = 0.

Therefore, by comparison theorem of the matrix Riccati equation (see
[21, Theorem 2.1]), we have S−1

t ≥ S̃−1
t ≥ 0 for t close enough to 1.

Here A ≥ B means that A−B is nonnegative definite. By monotonicity
(see [13, Proposition V.1.6]), 0 ≤ St ≤ S̃t for t close enough to 1. If we
apply the same comparison principle to St and S̃t, then 0 ≤ St ≤ S̃t
for all t in [0, 1]. Therefore,

tr(S̃tC2) ≥ tr(StC2).

It follows from Lemma 12.1 and 12.2 that

gt('t(z)) = e
∫ t
0 tr(SsC2)ds ≤ e

∫ t
0 tr(S̃sC2)ds.

The last term of the above inequality can be computed as in the
proof of Theorem 7.2 and this finishes the proof. □

Proof of Corollary 8.5. From the proof of Theorem 8.1, we have

�('1/2(Bx0(2kR))) ≥ 1

25
�(Bx0(2kR)).

Since '1/2(Bx0(2kR)) is contained in Bx0(kR), the result follows. □

The proof of Corollary 8.7 can be found, for instance, in [31, 43], for
metric spaces satisfying condition MCP (0, 5). We give the proof here
in the subriemannian case for completeness.

Proof of Corollary 8.7. Let x′ and x̄ be two points on the manifold M .
Let f(x) = −1

2
d2(x, x′) and let f̄(x) = −1

2
d2(x, x̄). Let

't(x) := �(etH⃗(dfx)), '̄t(x) := �(etH⃗(d̄fx)).

Recall that t 7→ 't(x) is a minimizing geodesic connecting x and x′

for �-almost all x. Assume that both x′ and x̄ are contained in the ball
Bx0(kR). Then

∣f(x̄)− f(x′)∣ ≤ 2R

(∫ 1/2

0

∣∇Hf('t(x̄))∣dt+

∫ 1/2

0

∣∇Hf('̄t(x
′))∣dt

)
.

By the proof of Theorem 8.1, we have∫
Bx0 (kR)

∫ 1/2

0

∣∇Hf('t(x))∣dtd�(x)

≤
∫ 1/2

0

∫
't(Bx0 (kR))

∣∇Hf(x)∣
(1− t)5

d�(x)dt.
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Since 't(Bx0(kR)) is contained in Bx0(2kR), it follows that∫
Bx0 (kR)

∫ 1

0

∣∇Hf('t(x))∣dtd�(x) ≤ 15

4

∫
Bx0 (2kR)

∣∇Hf(x)∣d�(x).

Therefore,∫
Bx0 (kR)

∣f(x′)− ⟨f⟩Bx0 (kR) ∣d�(x′)

≤ 1

�(Bx0(kR))

∫
Bx0 (kR)

∫
Bx0 (kR)

∣f(x̄)− f(x′)∣d�(x̄)d�(x′)

≤ 15R

2

∫
Bx0 (2kR)

∣∇Hf(x)∣d�(x)

Finally, if we apply Corollary 8.5, then we get

1

�(Bx0(kR))

∫
Bx0 (kR)

∣f(x′)− ⟨f⟩Bx0 (kR) ∣d�(x′)

≤ 15R

2�(Bx0(kR))

∫
Bx0 (2kR)

∣∇Hf(x)∣d�(x)

≤ 240R

�(Bx0(2kR))

∫
Bx0 (2kR)

∣∇Hf(x)∣d�(x).

□

14. Proof of Theorem 9.2

In this section, we give the proof of Theorem 9.2. Like the proof
of Theorem 6.5, it involves the expansion of R22 found after a lengthy
calculations. So only a sketch of the proof will be given.

Proof of Theorem 9.2. Let �i be an unbounded sequence in Ω. It fol-
lows that ℎ2

0(�i)+H(�i)→∞ as i→∞. By [2, Theorem 3], it follows
that H(�i) → 0 and so ℎ2

0(�i) → ∞ as i → ∞. On the other hand,
recall that R22 is a degree 4 polynomial of ℎ0, ℎ1, and ℎ2. But R22 is
also quadratic in ℎ0 and the coefficient of R22

�i
in ℎ2

0 is given by

3(c2
01 + c1

02)ℎ2
2 + 12c1

01ℎ1ℎ2 − 3(c2
01 + c1

02)ℎ2
1.

Moreover, by [1, Theorem 3.1],√
ℎ2

1(�i) + ℎ2
2(�i) =

√
2H(�i) =

2�

ℎ0(�i)
+O

(
1

ℎ2
0(�i)

)
as i→∞.

It follows that R22
�i

stays bounded as i→∞ and the bound is inde-
pendent of the sequence by compactness of the manifold. □
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