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1. Introduction

We survey results of recent activity aimed at studying controllability and
accessibility properties of Navier-Stokes systems (NS systems) controlled by
low-dimensional (degenerate) forcing. This choice of control is characteristic
feature of our problem setting. The corresponding equations are

∂u/∂t+∇uu+ gradp = ν∆u+ F (t, x),(1)

divu = 0.(2)

The words "degenerate forcing" mean that F (t, x) can be represented as:

F (t, x) =
∑
k∈K1

vk(t)F
k(x), K1 is �nite.

The word "controlled" means that the functions vk(t), t ∈ [0, T ] entering the
forcing can be chosen freely among measurable essentially bounded functions.
In fact any functional space, which is dense in L1[0, T ] would �t.

The domains treated here include 2-dimensional (compact) Riemannian
manifolds M homeomorphic to either sphere, torus or disc. The latter case
includes a rectangle and 2D simply connected domain M with analytic
boundary ∂M . We impose so called Lions boundary condition, whenever
boundary is nonempty.

Our approach stems from geometric control theory, which is essentially
based on di�erential geometry and Lie theory; geometric control approach
proved its e�ectiveness in studying controlled dynamics in �nite dimensions.
We would like to report on some ideas of how such methods can be extended
onto the area of in�nite-dimensional dynamics and of controlled PDE. Ex-
tensions of the geometric control theory onto in�nite-dimensional case are
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almost unknown. Classical Lie techniques are not well adapted for in�nite-
dimensional case, and several analytic problems are encountered.

In this contribution we concentrate almost exclusively on geometric and
Lie algebraic ideas of the accomplished work. For details on analytic part
we refer interested readers to the publications [7, 6, 25, 23, 24, 28, 29].

Applications of geometric theory to the study of controllability of �nite-
dimensional systems is well established subject, although many problems
still remain unsolved. Starting point of the activity aimed at controlling NS
systems by degenerate forcing was study ([13, 4, 6, 27]) of accessibility and
controllability of their �nite-dimensional Galerkin approximations on T2 and
T2 (periodic boundary conditions). This question being settled, one should
note, that controllability of �nite-dimensional Galerkin approximations of
NS systems on many other domains remains an open problem; answers for
generic analytic 2D domains follow from results of Section 9.

Study of in�nite-dimensional case started in [5, 6, 7], where we dealt with
2D NS/Euler system on 2D torus T2 . In those publications notions of solid
controllability in projections and of approximate controllability have been
introduced and su�cient criteria for them have been established.

To arrive to such criteria the technique of so-called Lie extensions in in-
�nite dimensions has been suggested. In the context of our problem this
technique can be loosely interpreted as designing the propagation to higher
modes of the energy pumped by controlled forcing into lower modes.

The control functions involved are fast-oscillating and analytic part of
the study consists of establishing continuity properties of solutions of NS
systems with respect to so called relaxation metric of forcing. The latter
metric is weaker than the classical metrics and is adapted for dealing with
fast oscillating functions.

An extension of the above mentioned techniques techniques onto the case
of NS system, subject to Lions boundary conditions on a rectangle, has
been accomplished by S.Rodrigues ([23]). In the course of this study both
geometric and analytic part needed to be adjusted: Lie extensions turn more
intricate and continuity properties need to be reproved. These results are
surveyed in Section 8.

A new approach is suggested for establishing controllability on a generic
Riemannian surface (Section 9).

Finally study of Lie algebraic properties of spherical harmonics results in
controllability criterion for NS/Euler system on 2D sphere (Section 10).

The results appearing in Sections ??-10 have not been previously pub-
lished.

An interesting extension of the above described methods onto the case of
NS system on 3D torus has been accomplished by A.Shirikyan in [28, 29].
The geometric part of his study coincides essentially with the one of [6] and
of [27], but additional analytic di�culties in the 3D case are numerous. We
do not survey these results for the sake of remaining more geometric in spirit
and avoiding new notation. Interested readers should consult [28, 29].
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There was an extensive study of controllability of the Navier-Stokes and
Euler equations in particular by means of boundary control. There are var-
ious results on exact local controllability of 2D and 3D Navier-Stokes equa-
tions obtained by A.Fursikov, O.Imanuilov, global exact controllability for
2D Euler equation obtained by J.-M. Coron, global exact controllability for
2D Navier-Stokes equation by A.V. Fursikov and J.-M. Coron. The read-
ers may turn to the book [14] and to the surveys [15] and [11] for further
references.

The authors are grateful to S.Rodrigues for useful comments and help
during preparation of this contribution.

2. 2D NS/Euler system controlled by degenerate forcing.
Definitions and problem setting

2.1. NS/Euler system on 2D Riemannian manifold. Representation
of NS/Euler system in the form (1)-(2) requires interpretation, whenever
one considers the system on 2D domain M with arbitrary Riemannian met-
ric. There is a general way of representing NS/Euler systems on any n-
dimensional Riemannian manifold (see e.g. [10]), but we prefer to remain
in 2 dimensions and to advance with some elementary vector analysis in the
2D Riemannian case.

We consider smooth (or analytic) 2-dimensional Riemannian manifold M
(with or without boundary), endowed with Riemannian metric (·, ·) and
with area 2-form σ. All functions, vector �elds, forms, we deal with, will be
smooth.

Any vector �eld y onM can be paired with two di�erential 1-forms de�ned
as:

y 7→ y[ : 〈y[, ξ〉 = (y, ξ)

y 7→ y] : 〈y], ξ〉 = σ(y, ξ),(3)

for each vector �eld ξ. Obviously 〈y], y〉 = σ(y, y) = 0.
Note that for any 1-form λ there holds:

(4) λ ∧ y] = 〈λ, y〉σ.
To prove (4) it su�ces to compare the values of 2-forms λ∧y] and 〈λ, y〉σ on
any pair of linearly independent vectors. Evidently (4) is valid if y (and y])
vanishes. If y 6= 0, we take a pair y, z, which is linearly independent. Then

(λ ∧ y])(y, z) =

∣∣∣∣ 〈λ, y〉 〈y], y〉〈λ, z〉 〈y], z〉

∣∣∣∣ = 〈λ, y〉σ(y, z).

Now we de�ne the vorticity curl and the divergence div of a vector �eld
via the di�erentials dy[, dy]. These latter are 2-forms; we put

dy[ = (curly)σ, dy] = (divy)σ,

or by abuse of notation:

(5) (curly) = dy[/σ, (divy) = dy]/σ.
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The gradient gradϕ of a function ϕ is the vector �eld paired with dϕ
metrically: (gradϕ)[ = dϕ.

As in the Euclidean case the vorticity of gradient vector �eld vanishes:

curl(gradϕ) = d(gradϕ)[/σ = d(dϕ)/σ = 0.

While in 3D case operator curl transforms vector �elds into vector �elds,
in the 2D case it transforms vector �elds into scalar functions (actually in
a component of vector �eld directed along additional third dimension). We
will de�ne the vorticity operator curl on functions. The result of its action
on a function φ is a vector �eld curlφ, which satis�es the relation:

〈λ, curlφ〉σ = (dφ ∧ λ),

for each 1-form λ. By virtue of (4) and due to the nondegeneracy of paring
y 7→ y] we conclude:

(6) (curlφ)] = −dφ.

As in the Euclidean case the divergence of vorticity of a function vanishes:

(7) div(curlφ) = d(curlφ)]/σ = −d(dφ)/σ = 0.

Coming back to the equation (2) we note that the condition divu = 0 can
be written down as

(8) du] = 0.

If M is simply connected we conclude that u] must be a di�erential: u] =
−dψ, where ψ is so called stream function. By virtue of (6)

curlψ = u.

For non simply connected domains we impose a condition which guarantees
the exactness; in the next subsection we comment on it.

Given the symplectic structure on M de�ned by σ and (·, ·) we see that u
is Hamiltonian vector �eld corresponding to the Hamiltonian −ψ: u = −

−→
ψ .

The nonlinear term ∇uu in the right-hand side of (1) corresponds to co-
variant derivative of the Riemannian (metric torsion-free) connection on M .

Finally we de�ne the Laplace-Beltrami operator ∆ as

∆ = curl2.

In Hodge theory (see [10]) this operator transforms p-forms into p-forms; in
our notation ∆ transforms vector �elds into vector �elds and functions into
functions.

2.2. Helmholtz form of 2D NS sytem. To arrive to the Helmholtz form
of the NS system (1)-(2), we apply the operator curl to both parts of (1).
As a result we get for the vorticity curlu = w the equation

(9) ∂w/∂t+ curl(∇uu) = ν∆w + f(t, x),

where f(t, x) = curlF (t, x).
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One should note that the vorticity of gradp vanishes and that the operator
curl commutes with ∆ = curl2 .

To calculate curl(∇uu) according to the formula (5)we �rst compute the

1-form (∇uu)[, adapting the argument of [10, �IV.1.D].
Let y be a vector �eld which commutes with u: the Lie-Poisson bracket

[u, y] = 0. Then

(10) 〈(∇uu)[, y〉 = (∇uu, y) = Lu(u, y)− (u,∇uy).

(Here and below Lu denotes Lie derivative. Note that for the covariant
derivative of metric connection there holds: Lu(u, y) = (∇uu, y)+(u,∇uy).)
Since the connection is torsion-free and [u, y] = 0, then ∇uy−∇yu = 0, and
the right-hand side of (10) can be represented as

Lu〈u[, y〉 − (u,∇yu) = Lu〈u[, y〉 −
1

2
〈d(u, u), y〉.

Besides Lu〈u[, y〉 = 〈Luu[, y〉, as long as Luy = [u, y] = 0, and we obtain

〈(∇uu)[, y〉 = 〈Luu[, y〉 −
1

2
〈d(u, u), y〉.

As far as one can �nd vector �eld y, which commutes with u and has any
prescribed value at a given point, we conclude: (∇uu)[ = Luu

[ − 1
2d(u, u).

Using the de�nition of curl (5) we get

curl(∇uu) = d((∇uu)[)/σ = dLuu
[/σ = Ludu

[/σ = Lu(wσ)/σ = Luw.

Hence curl(∇uu) = Luw.
For u being Hamiltonian vector �eld with the Hamiltonian −ψ there holds

∇uw = −{ψ,w}, where {·, ·} is Poisson bracket of functions.
The Helmholtz form of the Navier-Stokes equation (cf. [10]) reads

∂w

∂t
− {ψ,w} − ν∆w = f(t, x).

Note that w = curlu = curl2ψ = ∆ψ.
The Lions condition written in terms of the vorticity w and the stream

function ψ reads:

(11) ψ
∣∣
∂M

= w
∣∣
∂M

= 0.

If the boundary ∂M of M is smooth, then the Hamiltonian vector �eld

u = −
−→
ψ is tangent to ∂M .

Given the vorticity w and the boundary conditions (11), one can recover
in a unique way the velocity �eld u, which corresponds to an exact 1-form
u]. The corresponding formula is u = curlψ, where ψ is the unique solution
of the Dirichlet problem ∆ψ = w under boundary condition (11). Indeed
such u is divergence free and its vorticity equals w by the de�nition of ∆.

The NS system can be written as

(12)
∂w

∂t
− {∆−1w,w} − ν∆w = f(t, x).
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This last equation looks universal: in fact its dependence on the domain
is encoded in the properties of the Laplacian ∆ on this domain. It is well
explained in [8, 10] that the Euler equation for �uid motion is in�nite-
dimensional analogy of Euler equation for rotation of (multidimensional)
rigid body, and the Laplacian in (12) plays role of tensor of inertia of rotat-
ing rigid body.

2.2.1. Stream function on �at torus. Let us consider the �at torus T2, en-
dowed with standard Riemannian metric and with area form σ, both inher-
ited from covering of T2 by the Euclidean plane. Let ϕ1, ϕ2 be the 'euclidean'
coordinates on T2. We proceed in the space of velocities u with vanishing
space average:

∫
T2 udσ = 0 (due to �atness we may think that all the veloc-

ities belong to the same linear space).
To establish exactness of the closed 1-form u] (involved in (8)) it su�ces

to prove that its integral along a generator of a torus vanishes. By Stokes
theorem the integrals of the closed form u] along any two homologous paths
have the same value.

Taking u = (u1, u2) we get u] = −u2dϕ1 + u1dϕ2. Integrating u
] along a

loop Γ : ϕ1 = α, we obtain the value of the integral
∫

Γ u
] =

∫ 2π
0 u1dϕ2 =

c(α), which by the aforesaid is constant: c(α) ≡ c. Integrating it with

respect to ϕ1 we conclude 2πc =
∫ 2π

0 u1dϕ2dϕ1 =
∫
T2 u1dσ = 0. Hence∫

Γ u
] = c = 0. The same holds for the loops Γ′ : ϕ2 = const.

2.3. Controllability: de�nitions. In what follows we reason in terms of
so called modes which are the eigenfunctions φk(x) of the Laplace-Beltrami
operator ∆ de�ned in the space of vorticities w: ∆φk(x) = λkφ

k(x).
Representing w, f in (12) as a series w(t, x) =

∑
k qk(t)φ

k(x), f(t, x) =∑
k vk(t)φ

k(x) with respect to the basis of eigenfunctions one can write the
NS system as an in�nite system of ODE on the coe�cients qk(t). Assume

{φi(x), φj(x)} =
∑
k

Cijk φ
k(x).

Then the equation (12) can be written down 'in coordinate form' as

(13) q̇k −
∑
i,j

Cijk λ
−1
i qiqj − νλkqk = vk(t).

Typically we will consider the controlled forcing, which is applied to few
modes φk(x), k ∈ K1, K1 - �nite. Then in the system (13) the controls enter
only the equations indexed by k ∈ K1, while for k 6∈ K1, vk = 0.

Introduce another �nite set Ko of observed modes. We will always assume
Ko ⊃ K1. We identify the space of observed modes with RN and denote by
Πo the operator of projection of solutions onto the space of observed modes
span{φk| k ∈ Ko}. The coordinates corresponding to the observed modes
are reunited in observed component qo.

Galerkin Ko-approximation of the 2D NS/Euler system is the equation
(ODE) for qo(t), obtained by projecting the 2D NS system onto the space



Solid Controllability in Fluid Dynamics 7

of observed modes and putting all the components qk(t), k 6∈ Ko zero. The
resulting equation is

(14)
∂qo

∂t
−Πo{∆−1qo, qo} − ν∆qo = f(t, x).

As far as Ko ⊃ K1, i.e. controlled forcing f only a�ects part of observed
modes, then Πof(t, x) = f(t, x).

In coordinate form passing to Galerkin approximation means omitting the
equations (13) for variables qk with k 6∈ Ko and taking these qk equal 0 in
the resting equations.

We say that a control f(t, x) steers the system (12) (or (14)) from ϕ̃ to
ϕ̂ in time T , if for equation (12) forced by f the solution with the initial
condition ϕ̃ at t = 0 takes 'value' ϕ̂ at t = T .

The �rst notion of controllability under study is controllability of Galerkin
approximation.

De�nition 2.1 (controllability of Galerkin approximation). Galerkin Ko-
approximation of 2D NS/Euler systems is time-T globally controllable if for
any two points q̃, q̂ in RN , there exists a control which steers in time T this
Galerkin approximation from q̃ to q̂. �

This is purely �nite-dimensional notion. The next notion regards �nite-
dimensional component of solutions, but takes into account complete in�nite-
dimensional dynamics. Let us introduce some terminology.

De�nition 2.2 (attainable sets of NS systems). Attainable set Aϕ̃ of the
NS/Euler system (12) is the set of points in H2(M) attained from ϕ̃ by
means of essentially bounded measurable controls in any positive time. For

each T > 0 time-T (time-≤ T ) attainable set ATϕ̃ (A≤Tϕ̃ ) of the NS/Euler
system is the set of points attained from ϕ̃ by means of essentially bounded
measurable controls in time T (in time ≤ T ). Attainable set Aϕ̃ =

⋃
T ATϕ̃ . �

De�nition 2.3. The NS/Euler system is time-T globally controllable in pro-

jection onto L if for each ϕ̃ the image ΠL
(
ATϕ̃
)
coincides with L.

De�nition 2.4. The NS/Euler system is time-T L2-approximately control-
lable if ATϕ̃ is L2-dense in H2. �

Let us introduce the notion of accessibility in projection.

De�nition 2.5. (accessibility in �nite-dimensional projection) Let L be a
�nite-dimensional subspace of H2(M) and ΠL be L2-orthogonal projection of
H2(M) onto L. The NS/Euler system is time-T accessible in projection on

L if for any ϕ̃ ∈ H2(M) the image ΠL
(
ATϕ̃
)
contains interior points in L. �

Now we will introduce notion of solid controllability.

De�nition 2.6. Fix initial condition ϕ̃ ∈ H2(M) for trajectories of the
controlled 2D NS/Euler system. Let v(·) ∈ L∞ ([0, T ];Rr) be the controlled
forcing and wt be the corresponding trajectory of the NS system.
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If NS/Euler system is considered on an interval [0, T ] (T < +∞), then the
map ET : v(·) 7→ wT is called end-point map; the map Πo ◦ F/T T is called
end-point component map, the composition ΠL ◦ F/T T is called L-projected
end-point map. �

De�nition 2.7. Let Φ :M1 7→ M2 be a continuous map between two metric
spaces, and S ⊆ M2 be any subset. We say that Φ covers S solidly, if
S ⊆ Φ(M1) and this inclusion is stable with respect to C0-small perturbations
of Φ, i.e. for some C0-neighborhood Ω of Φ and for each map Ψ ∈ Ω, there
holds: S ⊆ Ψ(M1). �

De�nition 2.8. (solid controllability in �nite-dimensional projection) The
2D NS/Euler system is time-T solidly globally controllable in projection on
�nite-dimensional subspace L ⊂ H2(M), if for any bounded set S in L there
exists a set of controls BS such that

(
ΠL ◦ F/T T

)
(BS) covers S solidly. �

2.4. Problem setting. In this contribution we will discuss the following
questions.

• Under what conditions the 2D NS/Euler system is globally control-
lable in observed component? �
• Under what conditions the 2D NS/Euler system is solidly controllable
in a �nite-dimensional projection? �
• Under what conditions the 2D NS/Euler system is accessible in a
�nite-dimensional projection? �
• Under what conditions the 2D NS/Euler system is L2-approximately
controllable? �

As we explained above the geometry of controllability is encoded in spec-
tral properties of the Laplacian ∆ and therefore on the geometry of the do-
main on which the controlled NS system evolves. Below we provide answers
for particular types of domains.

3. Geometric control: accessibility and controllability via
Lie brackets

In this section we collect some results of geometric control theory regarding
accessibility and controllability of �nite-dimensional real-analytic control-
a�ne systems of the form

(15) ẋ = f0(x) +
r∑
i=1

f i(x)vi(t), x(0) = x0, vi(t) ∈ R, i = 1, . . . , r.

Geometric approach is coordinate-free, so that it is adapted for dealing with
dynamics on manifolds, but we will assume that the system (15) is de�ned
on a �nite-dimensional linear space RN in order to maintain parallelism with
NS systems, which evolve in Hilbert spaces.

We use standard notation Pt = etf for the �ow corresponding to a vector
�eld f .
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3.1. Orbits, Lie rank accessibility. Let v(·) ∈ L∞ ([0, T ];Rr) be admis-
sible controls and x(t) be corresponding trajectories of the system ẋ =
f0(x) +

∑r
i=1 f

i(x)vi(t) with initial point x(0) = x0. We again introduce
the end-point map ET : v(·) 7→ xv(T ); here xv(·) is the trajectory of (15)
corresponding to the control v(·).

For each T > 0 time-T (time-≤ T ) attainable set ATx0 from x0 of the sys-
tem (15) is the image of the set L∞ ([0, T ];Rr) under the map ET , or, equiv-
alently, the set of points x(T ) attained in time T from x0 by means of ad-

missible controls. The time-≤ T attainable set from x0 is A≤T
x0

⋃
t∈[0,T ]Atx0 .

Attainable set from x0 of the system (15) is Ax0 =
⋃
T≥0ATx0 . �

Important notions of geometric control theory are orbits of control system.

De�nition 3.1 (orbits and zero-time orbits of control systems). An orbit of
the control system (15) passing through x0 is the set of points obtained from

x0 under the action of (the group of) di�eomorphisms of the form et1f
u1 ◦· · ·◦

etNf
uN

, where tj ∈ R, j = 1, . . . , N, and fu
j

= f0+
∑r

i=1 f
i(x)uji is the right-

hand side of (15) corresponding to constant control uj = (uj1, . . . , u
j
r) ∈ Rr.

Zero-time orbit is the subset of the orbit, resulting from the action of these
di�eomorphisms subject to condition

∑
j tj = 0. �

If we consider 'symmetrization' of the system (15),

ẋ = f0(x)v0 +

r∑
i=1

f i(x)vi(t), x(0) = x0, v0 ∈ R, vi(t) ∈ R, i = 1, . . . , r,

then the orbit of (15) can be interpreted as the attainable set from x0 of this
symmetrization corresponding to application of piecewise-constant controls.

The famous Nagano theorem relates properties of the orbits and Lie al-
gebraic properties of the system. It claims that the orbit and the zero-time
orbit of an analytic system (15) are immersed manifolds of RN , and tangent
spaces to these orbits can be calculated via Lie brackets of the vector �elds
{f0, . . . , fm}.
De�nition 3.2 (Lie rank and zero-time Lie rank). Take the Lie algebra
Lie{f0, . . . , fm} generated by {f0, . . . , fm} and evaluate vector �elds from
Lie{f0, . . . , fm} at a point x; the dimension of the resulting linear space
Liex{f0, . . . , fm} is Lie rank of the system {f0, . . . , fm} at x.

Take the Lie ideal generated by span{f1, . . . , fm} in Lie{f0, . . . , fm} and
evaluate vector �elds from it at x; the dimension of the resulting linear space
Lie0

x{f0, . . . , fm}, is zero-time Lie rank at x of the system {f0, . . . , fm}. �
These two Lie ranks either are equal or di�er by 1.
The Nagano theorem claims that in analytic case Liex{f0, . . . , fm} and

Lie0
x{f0, . . . , fm} are tangent spaces at each point x of the orbit and zero-

time orbit respectively.
Accessibility properties of analytic control system (15) are determined by

its Lie ranks. Recall that the system is called accessible if its attainable set
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Ax0 has nonempty interior and is strongly accessible if ∀T > 0 attainable
sets ATx0 have nonempty interior. The following fact holds.

Theorem 3.3 (Jurdjevic-Sussmann (Cω case),Krener (C∞ case)). If the Lie
rank of the system of vector �elds {f0, . . . , f r} at x0 equals n, then ∀T > 0

the interior of the attainable set A≤T
x0

is nonvoid. Besides A≤T
x0

possesses

the interior which is dense in it. If zero-time Lie rank at x0 equals n, then
∀T > 0 the interior of the attainable set ATx0 is nonvoid and this interior is

dense in ATx0 . �

See [19, 2] for the proof.
Let L be a linear subspace of RN and ΠL be a projection of RN onto L.

A control system (15) is accessible (strongly accessible) from x in projection
on L if the image ΠLAx0 (ΠLATx0) contains interior points in L (for each
T > 0).

One easily derives from the previous theorem a criterion for accessibility
in projection.

Theorem 3.4. If ΠL maps Liex{f0, . . . , fm} (respectively Lie0
x{f0, . . . , fm})

onto L, then control system (15) is accessible (respectively strongly accessible)
at x in projection on L. �

Proof. The proofs of the two statements are similar; we sketch the proof
of the �rst one. Consider the orbit of the system (15) passing through
x0. The tangent space to the orbit at each of its points x coincides with
Liex{f0, . . . , fm}.

By Theorem 3.3 the attainable set of the system possesses relative interior
with respect to the orbit. Moreover there are interior points xint ∈ Ax0
arbitrarily close to x0 so that ΠL maps Liexint{f0, . . . , fm} onto L. Then
su�ciently small neighborhoods of xint in the orbit are contained in Ax0 and
are mapped by ΠL onto a subset of L with nonempty interior. �

3.2. Lie extensions and controllability. Controllability is stronger and
much more delicate property than accessibility. To verify it it does not su�ce
in general to compute the Lie rank which accounts for all the Lie brackets.
Instead one should select 'good Lie brackets' avoiding 'bad Lie brackets' or
'obstructions'.

To have a general idea of what good and bad Lie brackets can be like let
us consider the following elementary example.

Example 1.
ẋ1 = v, ẋ2 = x2

1.

This is 2-dimensional control-a�ne system (15) with f0 = x2
1∂/∂x2, f

1 =
∂/∂x1. The Lie rank of this system equals 2 at each point, the system is
accessible but uncontrollable from each point x̂ = (x̂1, x̂2) given the fact that
we can not achieve points with x2 < x̂2. One can prove that the attainable
set Ax̂ coincides with the half-plane x2 > x̂2 with added point x̂. One sees
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that that it is possible to move freely (bidirectionally) along good vector �eld
f1, while along bad Lie bracket [f1[f1, f0]] = 2∂/∂x2 we can move only in
one direction.

Good Lie brackets form Lie extension of a control system.

De�nition 3.5. The family F ′ of real analytic vector �elds is:
i) an extension of F if F ′ ⊃ F and the closures of the attainable sets

AF (x̃) and AF ′(x̃) coincide;
ii) time-T extension of F if F ′ ⊃ F and ∀T > 0 the closures of the time-T

attainable sets ATF (x̃) and ATF ′(x̃) coincide;
iii) �xed-time extension if it is time-T extension ∀T > 0.
The vector �elds from F ′ \ F are called i) compatible, ii) compatible in

time T , iii) compatible in a �xed time with F in the cases i), ii) and iii)
correspondingly. �

The inclusions AF (x̃) ⊂ AF ′(x̃), ATF (x̃) ⊂ ATF ′(x̃) are obvious. Less
obvious is the following Proposition (see [2]).

Proposition 3.6. If an extension F ′ of an analytic system F is globally
controllable, then F ′ also is. �

Remark 3.1. When talking about time-T extensions one can consider also
extensions by time-variant vector �elds Xt, t ∈ [0, T ]. We will say that vector
�eld Xt is time-T compatible with F if it drives the system in time T from
x̃ to the closure of ATF (x̃). �

Our idea is to proceed with a series of extensions of a control system
in order to arrive to extended system for which the controllability can be
veri�ed and then apply Proposition 3.6.

Obviously the De�nition 3.5 is nonconstructive. In what follows we will
use three particular types of extensions.

The �rst natural type is based on possibility of taking topological closure
of a set of vector �elds, maintaining closures of attainable sets.

Proposition 3.7. (see [19, Ch. 3, �2, Th.5]) Topological (with respect to
C∞ convergence on compact sets) closure cl(F) of F is Lie extension. �

The second method underlies the theory of relaxed (or sliding mode) con-
trols started [17, 16], which provided an extension of pioneering contributions
by L.C.Young [30] and E.J. McShane [22] onto the �eld of optimal control
theory. To introduce it we consider a family of so-called relaxation seminorms
‖ · ‖s,K of time-variant vector �elds Xt, t ∈ [0, T ]:

(16) ‖X·‖rxs,K = max
t∈[0,T ]

∥∥∥∥∥∥
t∫

0

Xτdτ

∥∥∥∥∥∥
s,K

,

with K being a compact in RN , s ≥ 0 being an integer and ‖Xτ‖s,K being

a Ck-norm on the compact K. The family of relaxation seminorms de�ne
relaxation (C∞) topology (metrics) in the set of time-variant vector �elds.
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Proposition 3.8 (see [17, 2]). Let a sequence of time-variant vector �elds

Xj
t converge to Xt in the relaxation metrics and let these vector �elds have

compact supports. Then the �ows of the vector �elds Xj
t converge to the �ow

of the vector �eld Xt. �

As a corollary of this result one can prove

Proposition 3.9. For the systems

coF =

{
m∑
i=1

βifi, fi ∈ F , βi ∈ Cω(RN ), βi ≥ 0,
m∑
i=1

βi ≡ 1, i = 1, . . . ,m

}
,

and F the closures of their time-T attainable sets coincide. �

Proof of this result and of its modi�cations can be found in [2, Chapter
8], [19, Chapter 3],[17, Chapters II,III ].

The next type of extension, we will use, relies upon Lie brackets. It
appeared in our earlier work on controllability of Euler equation for rigid
body in [3] and was named there reduction of a control-a�ne system. Here we
present a particular version adapted to our problem. Repeated application
of this extension settles controllability issue for �nite-dimensional Galerkin
approximations of NS systems.

Proposition 3.10. Consider control-a�ne analytic system

(17) ẋ = f0(x) + f1(x)v̂1 + f2(x)v̂2.

Let

(18) [f1, f2] = 0, [f1, [f1, f0]] = 0.

Then the system

ẋ = f0(x) + f1(x)ṽ1 + f2(x)ṽ2 + [f1, [f2, f0]]v12,

is �xed-time Lie extension of (17). �

Sketch of the proof. Take Lipschitzian functions v1(t), v2(t), (v1(0) =
v2(0) = 0) and change in (17) v̂1, v̂2 to ε−1v̇1(t) + ṽ1 and εv̇2(t) + ṽ2 respec-
tively. We arrive to the equation

(19) ẋ = f0(x) + f1(x)ṽ1 + f2(x)ṽ2 +
(
ε−1f1v̇1(t) + εf2v̇2(t)

)
.

Applying the 'reduction formula' from [3] or alternatively 'variation of
constants' formula of chronological calculus ([1]) one can represent the �ow

of (19) as a composition of the �ow P̃t of the equation

(20) ẏ = eadf
1(y)ε−1v1(t)+adf2εv2(t)f0(y) + f1(x)ṽ1 + f2(x)ṽ2.

and the �ow

(21) Pt = ef
1ε−1v1(t)+f2εv2(t).

For the validity of this decomposition the equality [f1, f2] = 0 is important.
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In (20) eadf is exponential of the operator adf : eadf =
∑∞

j=0(adf )j/j!.
The operator adf is determined by the vector �eld f and acts on vector �elds
as: adfg = [f, g], [f, g] being the Lie bracket of f and g.

By �rst of the relations (18) operators adf1 and adf2 commute and by the
second of these relations any iterated Lie bracket of the form (adf i1 ) ◦ · · · ◦
(adf im )f0, with ij = 1, 2, vanishes whenever it contains adf1 at least twice.

Taking the expansion of the operator exponential in (20) and using these
facts we get 1

ẏ = f0(y) + f1(x)ṽ1 + f2(x)ṽ2 +(22)

+ε−1[f1, f0](x)v1(t) + [f1, [f2, f0]](x)v1(t)v2(t) +O(ε),

To obtain the �ow of (19) we need to compose the �ow of (22) with the
�ow (21). For any �xed T one can get PT = Id by choosing v1(·), v2(·) such
that v1(T ) = v2(T ) = 0.

From now on we deal with the �xed T and the �ow of the equation (22).

Let us change in (22) vj(t) to vj(t) = 21/2 sin(t/ε2)v̄j(t), with v̄j(t) being
functions of bounded variation j = 1, 2. The relaxation seminorms of the
time-variant vector �eld ε−1[f1, f0](x)21/2 sin(t/ε2)v̄1(t) in the right-hand
side of (22) are O(ε) as ε→ +0. Also in the right-hand side of (22)

[f1, [f2, f0]](x)2 sin2(t/ε2)v̄1(t)v̄2(t) =

= [f1, [f2, f0]](x)v̄1(t)v̄2(t)− [f1, [f2, f0]](x) cos(2t/ε2)v̄1(t)v̄2(t).

The relaxation seminorms of the addend [f1, [f2, f0]](x) cos(2t/ε2)v̄1(t)v̄2(t)
are O(ε2) as ε→ +0.

Hence the right-hand sides of the equation (22) with the controls vj(t) =

21/2 sin(t/ε2)v̄j(t), j = 1, 2, converge in relaxation metric to the vector �eld

f0(y) + f1(x)ṽ1 + f2(x)ṽ2 + [f1, [f2, f0]](x)v̄1(t)v̄2(t)

as ε → 0. We can consider the product v̄1(t)v̄2(t) as a new control v12 and
invoke the Proposition 3.8. �

4. Bracket computation in finite and infinite dimensions;
controlling along "principal axes"

In this section we adjust the statement of the Proposition 3.8 for studying
controllability of the systems (12) and (14).

From viewpoint of geometric control the Galerkin approximation (14) of
NS/Euler system is particular type of control-a�ne system (15). Its state
space is �nite-dimensional and is generated by a �nite number of eigenfunc-
tions of the Laplace-Beltrami operator ∆ or modes.

1The time-variant vector �eld abbreviated by O(ε) in (22) equals

εφ(εadv2(t)f2)adv2(t)f2f0 + ε2ad2
v2(t)f2ϕ(εadv2(t)f2)[f1, f0],

where φ(z) = z−1(ez − 1), ϕ(z) = z−2(ez − 1− z).
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The dynamics of this control system is determined by quadratic drift vec-
tor �eld

f0
o = Πo{∆−1qo, qo}+ ν∆qo

and by controlled forcing
∑r

i=1 f
i(x)ui, where f

i are constant (qo-indepen-
dent) controlled vector �elds.

Start with computation of the particular Lie brackets, which are involved
in the formulation of the Proposition 3.8. For two constant vector �elds
f1, f2 there holds

[f i, f0
o ] = Πo

(
{f i,∆−1w}+ {w,∆−1f i}

)
+ ν∆f i, i = 1, 2;

[f1, [f2, f0
o ]] = Πo

(
{f2,∆−1f1}+ {f1,∆−1f2}

)
,

[f1, [f1, f0
o ]] = 2Πo{f1,∆−1f1}.

This computation is �nite-dimensional but the same holds true if one
considers constant vector �elds acting in in�nite-dimensional Hilbert space.
Taking 'drift' vector �eld of the equation (12) in in�nite dimensions

f0 = {∆−1q, q}+ ν∆q.

we conclude with

Lemma 4.1. For two constant vector �elds f1, f2 there holds

[f i, f0] = {f i,∆−1w}+ {w,∆−1f i}+ ν∆f i, i = 1, 2;

[f1, [f1, f0]] = 2{f1,∆−1f1},

(23) B(f1, f2) = [f1, [f2, f0]] = {f2,∆−1f1}+ {f1,∆−1f2}. �

Let us see what is needed for the assumptions of the Proposition 3.10 to
hold. As long as f1, f2 are constant and hence commuting, all we need is

(24) [f1, [f1, f0]] = {f1,∆−1f1} = 0.

In terms of Euler equation for ideal �uid

∂w

∂t
− {∆−1w,w} = 0.

this means that f1 corresponds to its steady motion. In particular eigenfunc-
tions of the Laplace-Beltrami operator ∆ correspond to steady motions and
satisfy (24). In what follows these eigenfunctions will be used as controlled
directions.

Eigenfunctions of the Laplacian are analogous to principal axes of a (mul-
tidimensional) rigid body.

By Proposition 3.10 given two constant controlled vector �elds one of
which corresponds to a steady motion we can extend our control system by
new controlled vector �eld (23) which is again constant.

Our method consists of iterating this procedure. The algebraic/geometric
di�culties, which arise on this way, consist of scrutinizing the newly obtained
controlled directions. In particular we want to know whether at each step
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we obtain a proper extension. This will be illustrated in the further Sections
which deal with particular 2D domains.

Another (analytic) di�culty arises when we pass from �nite-dimensional
approximations to controlled PDE. For these latter the sketched above proof
of the Proposition 3.10 is not valid anymore (for example one can not speak
about �ows). We have to reprove statement of the Proposition in each par-
ticular situation. The main idea will be still based on using fast oscillat-
ing control and relaxation metric. The analytic di�culties are in proving
continuity of forcing/trajectory map with respect to such metric. We will
provide a brief comment in the next Section; the readers can �nd details in
[6, 7, 23, 24].

5. Controllability and accessibility of Galerkin
approximations of NS/Euler system on T2

Here we survey results on accessibility and controllability of Galerkin ap-
proximations of 2D NS/Euler system on T2.

5.1. Accessibility of Galerkin approximations. The result of the com-
putation (23) in the periodic case is easy to visualize when the constant
controlled vector �elds which correspond to the eigenfunctions of Laplacian
∆ on T2, are written as complex exponentials.

For two di�erent complex eigenfunctions f1 = eik·x, f2 = ei`·x of the
Laplacian ∆ on T2, where x ∈ R2, k, ` ∈ Z2, the Poisson bracket in (23)
equals

(25) B
(
eik·x, ei`·x

)
= (k ∧ `)(|k|−2 − |`|−2)ei(k+`)·x,

i.e. again corresponds to an eigenfunction of ∆, provided that |k| 6= |`|, k ∧
` 6= 0. The conclusion is that given two pairs of complex exponentials
e±ik·x, e±i`·x as controlled vector �elds we can extend them by controlled
vector �elds ei(±k±`)·x.

Iterating the computation of the Lie-Poisson brackets (23) and obtaining
new directions we end up with (�nite or in�nite) set of functions, which
contains e±ik·x, e±i`·x and is invariant with respect to the bilinear operation
B(·, ·).

Therefore in the case of T2 starting with controlled vector �elds, which
correspond to the eigenfunctions eik·x, k ∈ Z2, of the Laplacian, the whole
computation of Lie extensions 'can be modeled' on the integer lattice Z2 of
"mode indices" k.

Actually one has to operate with real eigenfunctions of the Laplacian on
T2, i.e. with the functions of the form cos(k · x), sin(k · x). Also in this case
computation of iterated Lie-Poisson brackets (23) can be modelled on Z2

and the addition formulae are similar to those for the complex case.
We formulate now bracket generating criterion.
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Proposition 5.1 (bracket generating property). If

(26) |k| 6= |`|, |k ∧ `| = 1,

then:
i) invariant with respect to B set of functions, which contains complex

functions e±ik·x, e±i`·x, contains all the eigenfunctions eim·x, m ∈ Z2 \ 0;
ii) invariant with respect to B set of real functions, which contains

cos(k · x), sin(k · x), cos(` · x), sin(` · x),

contains all the eigenfunctions cos(m · x), sin(m · x), m ∈ Z2 \ 0. �

Bracket generating property for Galerkin approximation of 2D NS sys-
tem under periodic boundary conditions has been established by W.E and
J.Mathingly in [13]. The following result from [13] is an immediate conse-
quence of the previous Proposition 5.1 and Theorem 3.3.

Corollary 5.2 (accessibility by means of 4 controls). For any subset M ⊂
Z2 there exists a larger set M′ ⊇ M such that Galerkin M′-approximation
controlled by the forcing

(27) cos(k · x)vk(t) + sin(k · x)wk(t) + cos(` · x)v`(t) + sin(` · x)w`(t),

with k, ` satisfying (26), is strongly accessible. �

Here 4 controls vk(t), wk(t), v`(t), w`(t) are used for providing strong ac-
cessibility, but actually it can be achieved by a smaller number of controls.
Example (accessibility by means of 2 controls) Consider forcing

(28) gv(t) + ḡv̄(t), g = cos(k · x) + cos(` · x), ḡ = sin(k · x)− sin(` · x).

Application of controlled forcing (27) results in 4 independent controls, each
one vk(t), wk(t), v`(t), w`(t) entering one and only one of the equations (13).
Under the action of (28) each of controls v, v̄ is applied simultaneously to a
pair of equations (13).

Assume |k| 6= |`|, k ∧ ` 6= 0. We compute the bilinear form (23).

B(g, g) = (−|`|−2 + |k|−2){cos(k · x), cos(` · x)}
Up to a scalar multiplier B(g, g) equals

(−|`|−2 + |k|−2) sin(k · x) sin(` · x) =

= (k ∧ `)(−|`|−2 + |k|−2) (cos((k − `) · x)− cos((k + `) · x)) .

Similarly up to a scalar multiplier B(ḡ, ḡ) equals

(k ∧ `)(−|`|−2 + |k|−2) (cos((k − `) · x) + cos((k + `) · x)) ;

The span of B(g, g),B(ḡ, ḡ) coincides with the span of

g01 = cos((k − `) · x), g21 = cos((k + `) · x).

The direction
ḡ01 = sin((k − `) · x)

is obtained from computation of B(g, ḡ).
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Choose k = (1, 1), ` = (1, 0); then m = k + ` = (2, 1), n = k − ` = (0, 1).
Computing new directions B(g01, ḡ),B(ḡ01, g) we note that due to the

equality |n| = |`| they coincide with B(g01, sin(k · x)),B(ḡ01, cos(k · x)) re-
spectively, and their span coincide with the span of functions

ḡ12 = sin((k + n) · x)), ḡ10 = sin((k − n) · x)) = sin(` · x))

Similarly span of the directions

B(g01, g),B(ḡ01, ḡ)

coincides with the span of functions

g12 = cos((k + n) · x)), g10 = cos((k − n) · x) = cos(` · x).

Then g − g10 = cos(k · x), ḡ − ḡ10 = sin(k · x).
These two functions together with the functions g01, ḡ01 form a quadruple,

which satis�es the assumptions of the Corollary 5.2. Hence our system is
accessible by means of 2 controls. �

Remark 5.1. It is plausible that strong accessibility of Galerkin approxima-
tion can be achieved by one control. �

5.2. Controllability of Galerkin approximations. What regards con-
trollability, then in general bracket generating property is not su�cient for
it. One has to select Lie brackets, which lead to Lie extensions, meanwhile
in the previous example {g,∆−1g}, {ḡ,∆−1ḡ} a priori do not correspond to
Lie extensions.

Even in the �nite-dimensional case one needs a stronger result of Proposi-
tion 3.10 to prove controllability property for the Galerkin approximations.
This has been accomplished in [4, 27] in @D and 3D cases.

Theorem 5.3. Let k, ` satisfy (26). For any subset M ⊂ Z2 there exists a
larger setM′ such that GalerkinM′-approximation controlled by the forcing

cos(k · x)vk(t) + sin(k · x)wk(t) + cos(` · x)v`(t) + sin(` · x)w`(t),

is globally controllable. �

The proof of this controllability result consists of iterated application of
Lie extension described in the Proposition 3.10. At each step we extend
the system by new controlled vector �elds which according to fkl0) and (25)
correspond to fm±` = cos((m± `) · x), f̄m±` = sin((m± `) · x).

At the end of the iterated procedure we arrive to the system with extended
set of controls - one for each observed mode. This latter system evidently
would be controllable.

An important case when controllability of Galerkin approximation is im-
plied by bracket generating property regards 2D Euler equation for incom-
pressible ideal �uid (ν = 0).

Indeed in this case the drift (zero control) dynamics is Hamiltonian and
it evolves on a compact energy level. By Liouville and Poincare theorems
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Poisson-stable points of this dynamics are dense and one can apply Lobry-
Bonnard theorem ([2, 19]to establish

Theorem 5.4. For ν = 0 the Galerkin approximation of the 2D Euler system
controlled is globally controllable by means of the forcing (28). �

We trust that in the case of ideal �uid the controllability of Galerkin
approximation of 2D Euler system can be achieved by scalar control.

6. Steady state controlled directions: abstract
controllability result for NS system

We can not apply Proposition 3.10 to in�nite dimensions directly. Still
the main idea of adding new controlled directions is valid for NS systems.
Now we want to formulate an abstract controllability criterion, based on
Lie extensions and on the computation of Lemma 4.1. This criterion will
be employed in forthcoming Sections for establishing controllability of NS
system on various 2D domains.

Theorem 6.1 (controllability of NS systen via saturation of controls). Let

span{f1, . . . , f r} = S = D1

be a �nite dimensional space of controlled directions. Assume f1, . . . f r to
be steady motions of Euler equation (24). For each pair of linear subspaces
L1,L2 consider the span of the image B(L1,L2) of the bilinear map (23).
De�ne successively

Dj+1 = Dj + spanB(Sj ,Dj), j = 1, 2, . . .

where Sj ⊆ Dj is a linear subspace spanned by steady motions. If
⋃
j Dj

is dense in the Sobolev space H2(M), then the NS system is controllable in
�nite-dimensional projections and L2-approximately controllable. �

As far as D1 consists of steady motions then Dj+1 ⊇ Dj + spanB(D1,Dj).
Introduce the sequence of spaces

(29) Dj+1
1 = Dj1 + spanB(D1,Dj1).

Evidently Dj1 ⊆ Dj and density of
⋃
j D

j
1 in H2(M) guarantees controllabil-

ity.
Let for fs ∈ D1, Dfs = B(fs, ·):

Dfs = {∆−1·, fs}+ {∆−1fs, ·}.
The iterated computations (29) correspond to iterated applications of the
operators Dfs to f

1, . . . f r and taking linear span.

Corollary 6.2. Let F be the minimal common invariant linear subspace
of the operators Df1 , . . . , Dfl which contains f1, . . . , fk. If F is everywhere
dense in L2(M), then the system is L2-approximately controllable and solidly
controllable in �nite dimensional projections. �
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7. Navier-Stokes and Euler System on T2

In this Section we formulate results regarding controllability in �nite-
dimensional projections and L2-approximate controllability on T2. Namely
we describe sets of controlled directions which satisfy criterion provided by
Theorem 6.1.

We take the basis of complex eigenfunctions
(
eik·x

)
of the Laplacian on

T2 and take the Fourier expansion of the vorticity w(t, x) =
∑

k qk(t)e
ik·x

and control v(t, x) =
∑

k∈K1 vk(t)e
ik·x; here k ∈ Z2. As far as w and f are

real-valued, we have q̄n = q−n, v̄n = v−n. We assume v0 = 0 and q0 = 0.
Using the computation (25) we write the in�nite system of ODE (13) as

(30) q̇k =
∑

m+n=k,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn − |k|2qk + v̂k(t).

The controls vk are nonvanishing only in the equations for the variables
qk indexed by symmetric set K1 ⊂ Z2 \ {0}. For k 6∈ K1 the dynamics is

(31) q̇k =
∑

m+n=k,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn − |k|2qk, k 6∈ K1.

There is a symmetric set of observed modes Ko ⊃ K1, which we want
to steer to some preassigned values. In the only interesting case where K1

is proper subset of Ko, the equations indexed by k ∈ Ko \ K1 are of the
form (31). They do not contain controls and need to be controlled via state
variables.

We give a hint of how this can be done; it is an in�nite-dimensional version
of Proposition 3.10 for NS system on T2.

Let r, s ∈ K1, r ∧ s 6= 0, |r| < |s|, and k = r + s 6∈ K1. The equations for
qr, qs contains controls v̂r, v̂s, while the equation for qk does not.

Take Lipschitzian functions vr(t), vs(t), (vr(0) = vs(0) = 0) and substitute
v̂r, v̂s in the equations for qr, qs by ε

−1v̇r(t) + ṽr and εv̇s(t) + ṽs. We obtain
the equations

q̇r =
∑

m+n=r,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn − |r|2qr + ε−1v̇r(t) + ṽr;

q̇s =
∑

m+n=s,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn − |s|2qs + εv̇s(t) + ṽs.

Introduce variables q∗r = qr−ε−1vr(t), q
∗
s = qs−εvs(t). Assuming vr(T ) =

vs(T ) = 0 we conclude qr(T ) = q∗r (T ), qs(T ) = q∗s(T ).
Let us rewrite the in�nite system of ODE (30)-(31) via q∗r , q

∗
s in place of

qr, qs. The right-hand side of the equation for qk = qr+s gains the addend

(r ∧ s)(|r|−2 − |s|−2)(q∗r + ε−1vr(t))(q
∗
s + εvs(t))

and we see that the controls vr, vs enter this equation via product vr(t)vs(t).
Same vr, vs enter this and all other equations linearly.
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Substitute vj(t) for j = r, s by vj(t) = 21/2 sin(t/ε2)v̄j(t) with v̄j(t) having
bounded variations. Then the right-hand side of the equation for qk will gain
the product

2 sin2(t/ε2)v̄r(t)v̄s(t) = (1− 2 cos(2t/ε2))v̄r(t)v̄s(t).

If ε→ +0 this product tends to v̄r(t)v̄s(t) in relaxation metric. In all other
equations v̄r(t) and v̄s(t) enter linearly and are multiplied by fast oscillating
functions. Therefore the corresponding terms tend to 0 in relaxation metric.

Therefore one can pass (as ε → 0) to a limit system which now contains
'new' control v̄rs = v̄r(t)v̄s(t) in the equation for qk = qr+s. (This control
corresponds to the control v12 from the Proposition 3.10).

A di�cult analytic part is justi�cation of this passage to the limit. It is
accomplished in [6, 7] for T2 and in [23, 24] for rectangular and other kinds
of regular 2D domains. We refer interested readers to these publications.

Note that the new controlled direction corresponds to complex exponential
which is an eigenfunction of the Laplacian on T2. Hence we can model Lie
extensions and formulate controllability results in terms of indices k ∈ Z2 of
controlled modes.

De�ne a sequence of sets Kj ⊂ Z2 iteratively as follows:

j = 2, . . . ,(32)

Kj = Kj−1
⋃
{m+ n| m,n ∈ Kj−1

∧
‖m‖ 6= ‖n‖

∧
m ∧ n 6= 0}.

De�nition 7.1. A �nite set K1 ⊂ Z2 \ {0} of forcing modes is called satu-
rating if

⋃∞
j=1Kj = Z2 \ {0}, where Kj are de�ned by (32). �

Theorem 7.2. (controllability in �nite-dimensional projection) Let K1 be a
saturating set of controlled forcing modes and L be any �nite-dimensional
subspace of H2(T2). Then for any T > 0 the NS/Euler system on T2 is
time-T solidly controllable in �nite-dimensional projections and time-T L2-
approximately controllable. �

As we see the saturating property is crucial for controllability. In [7] the
following characterization of this property has been established.

Theorem 7.3. For a symmetric �nite set K1 = {m1, . . . ,ms} ⊂ Z2 the
following properties are equivalent:

i) K1 is saturating;
ii) the greatest common divisor of the numbers dij = mi ∧ mj , i, j ∈

{1, . . . , s} equals 1 and there exist mα,mβ ∈ K1, which are not collinear and
have di�erent lengths. �

Corollary 7.4. The set K1 = {(1, 0), (−1, 0), (1, 1), (−1,−1)} ⊂ Z2 is sat-
urating. Solid controllability in any �nite-dimensional projection and L2-
approximately controllability can be achieved by forcing 4 modes. �
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8. Controllability of 2D NS system on a rectangular domain

The study of controllability in �nite-dimensional projections and of L2-
approximate controllability on a rectangular domain has been accomplished
by S.Rodrigues in [23, 24]. The main idea is similar to the one employed for
the periodic case, but the computations are more intricate. The reason is
twofold: i) the algebraic properties of the bilinear operation calculated for
the eigenfunctions of the Laplacian are more complex, and ii) one needs to
care about boundary conditions.

For a velocity �eld u on a rectangular R with sides of lengths a, b (a 6= b)
we assume Lions boundary conditions to hold. In terms of the vorticity w
they can be written as (11).

The (vorticity) eigenfunctions φk of the Laplacian are

(33) φk = sin
(π
a
k1x1

)
sin
(π
b
k2x2

)
, (k = (k1, k2) ∈ Z2.

To �nd extending controlled direction one needs to pick two eigenfunctions
f1 = φk, f2 = φ`, k, ` ∈ Z2 and to proceed with the computation (23). This
results in a linear combination of at most 4 eigenfunctions W s.

Then again one can follow Lie extensions on two-dimensional lattice Z2

of Fourier exponents k = (k1, k2). If the controlled modes are indexed by
k ∈ K1 = {(k1, k2)| 1 ≤ k1, k2 ≤ 3, k 6= (3, 3)}, then one can verify that after
m Lie extensions the set of extended controlled directions will contain all the
modes (k1, k2) with k1, k2 ≤ m+ 3 with the exception of (m+ 3,m+ 3).

This leads to the following controllability result.

Theorem 8.1 (controllability on rectangular domain). Let 8 controlled di-
rections correspond to the functions (33) with k ∈ {(k1, k2)| 1 ≤ k1, k2 ≤
3, k 6= (3, 3)}.Then the NS system de�ned on the rectangular domain un-
der Lions boundary condition is controllable in �nite-dimensional projections
and L2-approximately controllable. �

9. Controllability on a generic Riemannian surface
diffeomorphic to a disc

In this section we consider NS system under boundary conditions (11) on
a Riemannian surface M . We manage to prove that for a generic surface
(exact meaning of genericity will be speci�ed in a moment) di�eomorphic
to a disc one can choose 3 controlled directions, corresponding to eigen-
functions (modes) of the Laplacian on M , which provide controllability in
�nite-dimensional projections.

In what follows we assume M to have C∞-smooth boundary and to be
endowed with Riemannian metric.

The di�eomorphism Φ : M 7→ D induces a C∞-smooth metrics on the disc
D, and instead of speaking of various Riemannian surfaces we will speak of
various Riemannian metrics on the �xed discD. Generic Riemannian surface
corresponds to a generic smooth Riemannian metric on D, meaning a metric
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which belongs to a residual subset of topological space of C∞ metrics. A
subset is residual if it contains an intersection of countable family of open
dense subsets of a topological space.

We will take as controlled 'directions' the modes or the eigenfunctions of
the Laplace-Beltrami operator ∆ corresponding to each metrics: ∆−1fs =
λ−1
s fs, s = 1, . . . , l. To apply the abstract controllability criterion formu-

lated as Corollary 6.2 it su�ces to verify that the iterated applications of
Dfs = {∆−1·, fs}+ {∆−1fs, ·} to fj result in a dense subset of H2(M).

Theorem 9.1. For a generic Riemannian surface M di�eomorphic to a
disc there exist 3 eigenfunctions (modes) f1, f2, f3 of the Laplace-Beltrami
operator ∆ on M such that the NS system on M is controllable in �nite-
dimensional projections by means of controlled forcing applied to these modes.
�

Sketch of the proof. As we showed before [7] it su�ces to establish con-
trollability in projection on any �nite-dimensional coordinate subspace L
spanned by a �nite number of eigenfunctions of the Laplace-Beltrami opera-
tor. According to the Corollary 6.2 we have to verify the nonnullity of some
determinant, denoted DetL, which is calculated via the (iterated) Poisson
brackets of the functions f1, f2, f3.

Assume for the moment that for some smooth metric µ0 on D this deter-
minant DetL is nonvanishing. Take an analytic metrics which approximates
µ0 (analytic metrics are dense in the space of smooth metrics) and for which
DetL is nonvanishing; we denote it by µ0 again.

Then taking any analytic Riemannian metrics µ1 on D, we construct a
linear homotopy µt between µ0 and µ1:

µt |q (ξ, ξ) == (1− t)µ0 |q (ξ, ξ) + tµ1 |q (ξ, ξ), 0 ≤ t ≤ 1.

Recall that the 'values' of Riemannian metrics at each point q ∈ M are
positive de�nite quadratic forms, which form a convex cone.

The dependence on t of the Laplacians ∆(t) corresponding to the metrics
µt is analytic.

We want to trace the evolution of a �nite number of the eigenvalues
λtj , (j ∈ J- �nite set) and of the corresponding eigenfunctions of ∆(t) with

t varying in [0, 1]. This allows us to study the restriction of ∆(t) onto a
�nite-dimensional space (see [20, Ch. 7]).

By classical result of perturbation theory (see [20, Ch. 2, Ch. 7]) eigen-
values λtj of an analytic family t 7→ At of linear operators are analytic with

respect to t beyond �nite number of exceptional points in [0, 1]. Any mo-
ment t for which the eigenvalues λtj , (j ∈ J) are pairwise distinct is nonex-

ceptional. Singularities of the function t 7→ λtj may occur when λtj become
multiple. The eigenvectors and respective eigenprojections may have poles
at the exceptional points.

The picture is much more regular for normal operators and in particular
for Laplacians, which are self-adjoint. In this case the eigenvalues and the
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eigenfunctions are known to depend analytically on t everywhere on [0, 1]
([20, Ch.2, Th.1.10]). Also the dependence of the derivatives of the eigen-
functions on t ∈ [0, 1] is analytic. Hence the determinant DetL is analytic
function of t. As far as it is nonvanishing for t = 0, it may vanish only at a
�nite number of points t ∈ [0, 1].

Take µt corresponding to all nonexceptional t ∈ [0, 1] for which DetL
is nonvanishing. Among those there exist ts arbitrarily close to 1. The
metrics µts are arbitrarily close to µ1 in C∞-metrics; for the corresponding
∆(ts) the eigenvalues of interest are distinct and DetL is nonvanishing. The
dependence of the eigenfunctions and of their derivatives on metric µ is
continuous in C∞-metric in a neighborhood of µts . Hence DetL is nonzero
for all µ from small C∞-neighborhoods of these µts . Taking union of these
neighborhoods we get an open set whose closure contains µ1. Repeating the
homotopy argument for each analytic metric µ1 on D we get an open dense
in C∞ set of metrics for which DetL is nonvanishing.

There remains still one unsettled problem: to �nd a metric µ0 on D for
which the determinant DetL is nonvanishing.

This problem is by no means minor. To construct such a metric we use
a result of the Remark 10.1 from the next Section. This result, obtained by
S.Rordigues [26] establishes controllability of NS/Euler system on the half-
sphere S2

+ under Navier (and in particular under Lions) boundary conditions.
The metric on S2

+ is inherited from the embracing Euclidean space R3.
The degenerate control is applied to 3 modes - spherical harmonics which

are eigenfunctions of the Laplacian on S2
+. This system is proved to be

controllable in any �nite-dimensional projection.
Mapping S2

+ onto the disc D analytically we obtain the corresponding
metric µ0 and the Laplacian on D for which the determinant DetL is nonva-
nishing.

Remark 9.1. The construction of a residual set of Riemannian metrics
can be transferred (almost) without alterations to the torus T2, for which we
studied controllability of NS/Euler system in the Section 7. The conclusion
claims that there exists a residual set of smooth Riemannian metrics on T2

such that the assumptions of the Corollary 6.2 are veri�ed and therefore the
NS system is controllable in �nite-dimensional projections by forcing 4 modes
on T2 endowed with any of these metrics. �

A pertinent question would be whether the result of the Theorem 9.1 holds
for a generic sub-domain Q with analytic boundary in R2 endowed with
Euclidean metric. By Riemann mapping theorem we can �nd an analytic
map Q 7→ D which transforms the Euclidean metric on Q in a metric (34)
on D. The latter possesses zero curvature and we may think that it has a
conformal form ([12, Vol. 1, ��11-13]):

(34) µ = ea(x1,x2)(dx2
1 + dx2

2).
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Note that the curvature of (34) equals K = (1/2)e−a(x1,x2)(∂
2a
∂x21

+ ∂2a
∂x22

);

therefore plane metrics are distinguished by the condition

(35)
∂2a

∂x2
1

+
∂2a

∂x2
2

= 0.

On the contrary if D possesses a Riemannian metric µ of form (34), which
satis�es (35), then D can be isometrically and analytically mapped onto a
2D domain Q with Euclidean metric.

We may de�ne the corresponding homotopy between µ0 = ea0(x1,x2)(dx2
1 +

dx2
2) and µ1 = ea1(x1,x2)(dx2

1 + dx2
2) as

µt = e(1−t)a0(x1,x2)+ta1(x1,x2)(dx2
1 + dx2

2),

and advance as in the previous proof.
The only problem would be constructing a plane domain Q with analytic

boundary and Euclidean metric for which controllability in �nite-dimensional
projection holds.

A good candidate could be an analytically perturbed (smoothened) rect-
angularRε, ε > 0. Controllability on the rectangularR has been established
in the Section 8. We are con�dent that controllability holds also for Rε with
small ε > 0, but there are still some analytic problems to be settled in the
proof.

10. NS/Euler system on the sphere S2

The controlled vector �elds we employ in the case of S2 correspond to
the eigenfunctions of the corresponding spherical Laplacian or to so called
spherical harmonics. We start with their brief description.

10.1. Spherical Harmonics. In this subsection we introduce some notions
and results regarding spherical harmonics; our source was mainly the book
[9, Ch. 10,11] by V.I.Arnold.

Consider sphere S2 equipped with the Riemannian metrics inherited from
R3 and with area 2-form σ. the latter de�nes symplectic structure on S2.

The eigenfunctions of the spherical Laplacian are described by the fol-
lowing classical result. Recall that a function g is homogeneous of degree s
on Rn \ 0, if g(κx) = κsg(x) for each κ > 0. A function g is harmonic in
Rn \ 0 if ∆g = 0; where ∆ is the euclidean Laplacian. It is known that a
harmonic homogeneous function of degree s > 0 is extendable by continuity
(g(0) = 0) to a harmonic function on Rn. This harmonic function is smooth
and therefore it must be homogeneous polynomial of integer degree s > 0.

Theorem 10.1 ([9]). Constants are eigenfunctions of spherical Laplacian
(of degree 0). If a (smooth) harmonic function de�ned on Rn \ 0 is homoge-
neous of degree s > 0, then its restriction onto sphere is eigenfunction of the
spherical Laplacian ∆̃ with the eigenvalue −s(s + n − 2). Vice versa every

eigenfunction of ∆̃ is a restriction onto Sn of a homogeneous polynomial. �
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Another famous result is the Maxwell's theorem ([9]), which holds in R3.

It states that if ρ(x) = (x2
1 + x2

2 + x2
3)−1/2 is a fundamental solution of

the Laplace equation in R3, then any spherical harmonic a on S2 can be
represented as iterated directional derivative of ρ:

a = l1 ◦ · · · ◦ lnρ,

where l1, . . . , ln ∈ R3 and the set {l1, . . . , ln} is uniquely determined by a.
Our controlled directions will correspond to spherical harmonics on S2,

which are the restrictions to S2 of homogeneous functions on R3. In par-
ticular we invoke so called zonal spherical harmonics, which are iterated
directional derivatives of ρ with respect to a �xed direction l.

Let a, b be smooth (not necessarily homogeneous) functions on R3; the
Poisson bracket of their restrictions to S2 can be computed as follows:

(36) {a|S2 , b|S2}(x) = 〈x,∇xa,∇xb〉,

where 〈x, η, ζ〉 stays for "mixed product" in R3, calculated as the determinant
of the 3×3-matrix whose columns are x, η, ζ. From now on we omit the sign
of restriction |S2 while writing Poisson bracket.

Linear functions (l, x) are, of course, spherical harmonics. We denote by
~l the Hamiltonian �eld on S2 associated to the Hamiltonian 〈l, x〉, x ∈ S2.

Obviously, ~l generates rotation of the sphere around the axis l. According

to the aforesaid ~la = 〈x, l,∇a〉 is the Poisson bracket of the functions 〈l, x〉
and a restricted to S2.

The group of rotations acts (by the change of variables) on the space of
homogeneous harmonic polynomials of �xed degree n. It is well-known that
this action is irreducible for any n (see [9] for a sketch of the proof). In other
words, the following result holds.

Proposition 10.2. Given a nonzero degree n homogeneous harmonic poly-
nomial a, the space

span{~l1 ◦ · · · ◦~lka : k ≥ 0}

coincides with the space of all degree n homogeneous harmonic polynomials.

10.2. Poisson brackets of spherical harmonics and controllability.
Calculating Lie extensions according to the formula (23) we obtain iterated
Poisson brackets of spherical harmonic polynomials, which in general need
not to be harmonic.

The following Lemma shows that there is a way of �nding some harmonic
polynomials among them.

Lemma 10.3. For each n > 2 there exist a harmonic homogeneous poly-
nomial q of degree 2, and harmonic homogeneous polynomial p of degree
n > 2 such that their Poisson bracket is again harmonic (and homogeneous
of degree n+ 1) polynomial.
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Proof. Let us take so called quadratic zonal harmonic function q = ∂2ρ
∂x23

.

Being restricted to the sphere S2 this function coincides with Legendre poly-
nomial q(x3) = 3x2

3 − 1.
Consider homogeneous harmonic polynomials of variables x1, x2. In polar

coordinates they are known to have representation rm cosmϕ or alterna-
tively as Re(x1 + ix2)m, m = 1, 2, . . .. We pick the nth degree polynomial
p(x1, x2) = Re(x1 + ix2)n.

According to (36) the Poisson bracket of q, p equals

{q, p} = 〈x,∇q,∇pn〉 =

∣∣∣∣∣∣
x1 0 p′x1
x2 0 p′x2
x3 6x3 0

∣∣∣∣∣∣ = −6x3

∣∣∣∣∣∣
x1 0 p′x1
x2 0 p′x2
x3 1 0

∣∣∣∣∣∣ .
By (36) the latter determinant coincides with ~e3p(x1, x2), where e3 =

(0, 0, 1) is the standard basis vector of R3. Hence by Proposition 10.2 the
value of this determinant is a harmonic polynomial of degree n; it equals
p̃(x1, x2) = −x1p

′
x2 + x2p

′
x1 and therefore does not depend on x3.

Then {q, p} = −6x3p̃(x1, x2). Since both −6x3 and p̃ are harmonic, we
get ∆{q, p} = 2∇(−6x3) · ∇p̃ = −12∂p̃/∂x3 = 0. �

Theorem 10.4. Consider NS/Euler system on sphere S2. Let (constant)
controlled vector �elds correspond to three independent linear spherical har-
monics l1, l2, l3, one quadratic harmonic q and one cubic harmonic c. Then
this set of controlled vector �elds is saturating and the NS/Euler system is
controllable in �nite-dimensional projections. �

Proof. It su�ces to verify the assumption of the Corollary 6.2. Without lack
of generality we may think that q = q̃ - the second degree zonal harmonic
from the previous lemma. Indeed otherwise we may transform q into q̃ by
taking iterated Poisson brackets with the linear harmonics l1, l2, l3.

In fact taking iterated Poisson brackets of q and c respectively, with
l1, l2, l3 we obtain all quadratic and cubic harmonics. Thus we manage to
obtain all the harmonics of degrees ≤ 3.

Let us proceed by induction with respect to the degree of harmonics.
Assume that all harmonics of degrees ≤ n are already obtained by taking
iterated Poisson brackets of {l1, l2, l3, q, s}. Pick the harmonic polynomial
p constructed in Lemma 10.3; its Poisson bracket with q is homogeneous
harmonic polynomial p̄ of degree n+ 1. Taking iterated Poisson brackets of
p̄ with l1, l2, l3 we obtain all polynomials of degree n+ 1. �

Remark 10.1. Following the lines of the previous proof S.Rodrigues estab-
lished [26] controllability of NS/Euler system on the half-sphere S2

+. One can
force 3 modes - spherical harmonics on S2

+ - in order to guarantee control-
lability in �nite-dimensional projections. The details will appear elsewhere.
�

Remark 10.2. Applying the argument similar to the one involved in the
previous Section one can conclude that there exists a residual set of smooth
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Riemannian metrics on S2 such that the assumptions of the Corollary 6.2
are veri�ed and therefore the NS system is controllable in �nite-dimensional
projections by forcing 5 modes on S2 endowed with any of these metrics. �
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