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Abstract

We study the small-time controllability problem on the Lie groups SL2(R) and SL2(R)⋉
Hd (R) with Lie bracket methods (here Hd (R) denotes the (2d+1)-dimensional real Heisen-
berg group). Then, using unitary representations of SL2(R)⋉ Hd (R) on L2(Rd ,C) and
Lr (T ∗Rd ,R),r ∈ [1,∞], we recover small-time reachability properties of the Schrödinger
PDE for the quantum harmonic oscillator, and find new small-time reachability proper-
ties of the Liouville PDE for the classical harmonic oscillator.

Keywords: Geometric control, unitary representations, harmonic oscillator, Schrödinger
PDE, Liouville PDE.

1 Introduction

1.1 The model

Let G be a connected Lie group with Lie algebra g. In this paper, we study left-invariant con-
trol affine systems of the form

q̇(t ) = q(t )

(
a +

k∑
i=1

ui (t )bi

)
∈ Tq(t )G , q(t ) ∈G , a,bi ∈ g, t ∈ [0,T ]. (1)

The controls are real-valued and piece-wise constant, u = (u1, ...,uk ) ∈ PWC([0,T ],Rk ). The
solution of (1) associated with the initial condition q0 and the control u at time t is denoted
by q(q0,u, t ). When the initial condition q0 = idG is the identity of G , we drop it from the
notation and simply write the associated solution as q(u, t ).

Definition 1. — An element q ∈ G is reachable by system (1) if there exist T > 0 and u ∈
PWC([0,T ],Rk ) such that q(u,T ) = q. The set of reachable elements is denoted by A .
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— An element q ∈ G is approximately reachable by system (1) if for every ε > 0 there ex-
ist T ≥ 0 and u ∈ PWC([0,T ],Rk ) such that |q(u,T )− q | < ε. The set of approximately
reachable elements is denoted by A .

— An element q ∈ G is small-time reachable by system (1) if for every T > 0, there exist
τ ∈ [0,T ] and u ∈ PWC([0,τ],Rk ) such that q(u,τ) = q. The set of small-time reachable
elements is denoted by Ast .

— An element q ∈G is small-time approximately reachable by system (1) if for every ε> 0
there exist τ ∈ [0,ε] and u ∈ PWC([0,τ],Rk ) such that |q(u,τ)− q | < ε. The set of small-
time approximately reachable elements is denoted by Ast .

The system is said to be controllable (respectively approximately controllable) if A =G (resp.
if A =G). The system is said to be small-time controllable (respectively small-time approxi-
mately controllable) if Ast =G (resp. if Ast =G).

Note that the set A presented in Definition 1 is the attainable set from the identity. Since
system (1) is left invariant, it is controllable from the identity if and only if it is controllable
from any point of the group. The same statement holds true for small-time controllability.

Note that one could also define the reachable sets w.r.t. L∞ controls. Then, the (small-
time) approximately reachable sets w.r.t. piecewise constant controls, or L∞ controls, are the
same. This is a consequence of the density of piecewise constant functions in L∞, and the
continuity of the endpoint map L∞([0,τ],Rk ) ∋ u 7→ q(u,τ) ∈G .

1.2 Good Lie brackets

In this work we use the following notions of geometric control theory.

Definition 2. An element X ∈ g is said to be a good Lie bracket for system (1) if ev X ∈ Ast for
every v ∈R.

Definition 3. An element X ∈ g is said to be compatible with system (1) (at time t) if e X ∈
A for (1) (at time t). Another control system is said to be compatible with system (1) if its
approximately reachable set is contained in A .

It is well-known that every element in the Lie algebra l := Lie {b1, ...,bk }, generated by
b1, ...,bk , is a good Lie bracket (see e.g. [10, Lemma 6.2] and [8, Theorem 3.3]).

It is also well-known that, if the drift of (1) is recurrent or Poisson stable, then −va, v > 0,
is compatible with the system for a time large enough (see e.g. [3, Proposition 8.2]). In this
work, we shall study systems where the drift a is a good Lie bracket, a stronger property than
compatibility, since the system is able to displace along the drift not only with positive and
negative coefficients, but also in arbitrarily small times. The notion of good Lie bracket was
recently introduced by the first author for more general control affine systems [4], and studied
also in the context of bilinear Schrödinger PDEs by Karine Beauchard and the third author
[6, 5].
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1.3 A small-time controllability result on SL2 ⋉Hd

We introduce the following Lie algebras:

— sl2(R) := {M ∈ Mat2(R) | tr(M) = 0};

— hd (R) :=


0 x⃗ z
0 0d y⃗†

0 0 0

 ∈ Matd+2(R) | x⃗, y⃗ ∈Rd , z ∈R
.

Here, 0d denotes the d-dimensional square zero matrix, x⃗ is a row d-dimensional vector and
y⃗† is a column d-dimensional vector. To ease notations, we shall simply denote them as hd

and sl2. Let der(hd ) denote the derivations over the algebra hd . We define a homomorphism
ρ : sl2 → der(hd ) as

ρ

(
α β

γ −α
)0 x⃗ z

0 0d y⃗†

0 0 0

=
0 αx⃗ +βy⃗ 0

0 0d γx⃗† −αy⃗†

0 0 0

 .

It induces a semi-direct product structure on sl2 ⊕hd , called sl2 ⋉ρ hd , with bracket

[(a, X ), (b,Y )] = ([a,b], [X ,Y ]+ρ(a)Y −ρ(b)X ), ∀a,b ∈ sl2, X ,Y ∈ hd . (2)

We shall simply denote this Lie algebra by sl2 ⋉hd , and its associated Lie group by SL2(R)⋉
Hd (R) or simply SL2 ⋉Hd . We also fix basis {a,b,c} of sl2 and {X1,Y1, . . . , Xd ,Yd , Z } of hd in
such a way that the following commutation relations are satisfied

[b, a] = c, [a,c] = 2a, [b,c] =−2b,

[Xi ,Yi ] = Z , [Xi , Z ] = [Yi , Z ] = 0, i = 1, . . . ,d .

We first study the controllability of the following left-invariant control-affine system:

d

d t
q(t ) = q(t )

(
a +u0(t )b +

d∑
i=1

ui (t )Xi + r (t )Z

)
, q(t ) ∈ SL2 ⋉Hd . (3)

System (3) can be lifted to Mn⋉Hd for every n ∈N∪{∞}, where Mn denotes the covering space
of SL2 of degree n ∈N, and M∞ denotes the universal cover (see Section 3 for the definition
of the covering spaces).

Our first result is the following small-time controllability property.

Theorem 1. Equation (3) is small-time controllable on SL2⋉Hd and also on Mn⋉Hd , for any
n ∈N. Moreover, equation (3) with ui ,r ≡ 0 for i ∈ {1, . . . ,d} is small-time controllable on SL2

and also on Mn , for any n ∈N.

As it will be clear from the proof given in Section 4, both statements of Theorem 1 are false
on the universal covers M∞⋉Hd and M∞. We remark that the second part of the theorem
states the small-time controllability of a scalar-input system with drift on a non-compact
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connected Lie group, SL2: such a result would be impossible on compact Lie groups such
as SUN (C), N ≥ 2, where scalar-input systems with drift are never small-time controllable
(see, e.g., [2, 1] and we refer also to [9] for recent advances on the subject). To the best of
our knowledge, Theorem 1 is new. The large-time controllability of system (3) could also be
proved by evoking the Lie bracket generating condition in combination with the periodicity of
e t (a−b), but the small-time controllability property is more subtle and necessitates a different
proof inspired by the recently developed techniques of good Lie brackets [4].

1.4 Consequences for harmonic oscillator Schrödinger equation

The choice of studying SL2⋉Hd in this article is motivated by the description of two physical
systems, namely the quantum and the classical harmonic oscillators. In this section we state
the consequences for the quantum harmonic oscillator. The relation between SL2 and the
Schrödinger equation for the harmonic oscillator is known as the Weil representation (see
e.g. [11, Chapter XI]).

The Schrödinger equation for the quantum harmonic oscillator is given by

i∂tψ(t , x) =
(
−∆

2
+u0(t )

|x|2
2

+
d∑

j=1
u j (t )x j

)
ψ(t , x), ψ(t = 0) =ψ0 ∈ L2(Rd ,C), (4)

with control u = (u0, . . . ,ud ) ∈ PWC([0,T ],Rd+1). The control u0 models the frequency tuning
of the trapping potential, and the u j , j = 1, . . . ,d model the dipolar interaction with the spa-
cial positions of the oscillator. Such system is among the most relevant quantum dynamics,
widely used in physics and chemistry to model a variety of situations, such as atoms trapped
in optical cavities or vibrational dynamics of molecular bonds.

The Lie algebra generated by the linear operators Lie{ i∆
2 , i |x|2

2 } equipped with the commu-
tator is isomorphic to sl2(R), the algebra of real 2×2 traceless matrices, and the Lie algebra

generated by Lie { i∆
2 , i |x|2

2 , i x1, . . . , i xd } is isomorphic to sl2 ⋉ hd . We thus have introduced
infinite-dimensional representations of the algebras sl2,sl2 ⋉hd acting on L2(Rd ,C).

Quantum states are defined up to global phases, hence we shall say that a state ψ1 is
reachable if there exists a number θ ∈ [0,2π) such that e iθψ1 is reachable. Since the generator

−1
2∆+u0

|x|2
2 +∑d

j=1 u j x j is essentially self-adjoint on C∞
c (Rd ,C) for any u0, . . . ,ud ∈Rd+1 (see,

e.g., [13, Corollary page 199]), equation (4) is globally-in-time well-posed, meaning that for
any ψ0 ∈ L2(Rd ,C),u ∈ PWC(R,Rd+1) there exists a unique mild solution (t 7→ ψ(t ,u,ψ0)) ∈
C (R,L2(Rd ,C)) of (4).

Definition 4. A state ψ1 ∈ L2(Rd ,C) is said to be small-time reachable from ψ0 ∈ L2(Rd ,C) for
system (4) if for every time T > 0 there exist τ ∈ [0,T ], a control u ∈ PWC([0,τ],Rd+1) and a
global phase θ ∈ [0,2π) such that the solution ψ of (4) satisfies ψ(τ,u,ψ0) = e iθψ1. The set of
small-time reachable states from ψ0 ∈ L2(Rd ,C) is denoted by Rst (ψ0).

As a first consequence of Theorem 1, we have the following characterization of the small-
time reachable set of (4).
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Theorem 2. For any ψ0 ∈ L2(Rd ,C), system (4) satisfies

Rst (ψ0) = {e i s(∆−|x|2)e i (α|x|2+px)σd/2ψ0(σx +β), s,α ∈R, p,β ∈Rd ,σ> 0}.

Intuitively, the control of each component p j and β j is obtained thanks to the presence
of the control operator x j , while the control of σ,α, and s follows from the presence of |x|2.

Such a result was already found in [6, Theorem 23] with analytical methods, and we pro-
pose here a geometric proof, based on an infinite-dimensional representation of SL2 ⋉Hd .
The statement of this theorem tells that we can control in small-times some physically rel-
evant quantities, such as position, momentum, and spread of the initial state. We cannot
control the global phase of the wavefunction with system (4). However, in order to recover
the control on the global phase, it suffices to add an additional constant-in-space control of
the form ud+1(t )·1 to (4). The corresponding controllability analysis for system (4) with u0 ≡ 1
was performed in [12], and a weaker statement was obtained in [14]. More general small-time
controllability properties of Schrödinger PDEs were recently obtained in [5].

1.5 Consequences for harmonic oscillator Liouville equation

In this section we state the consequences for the classical harmonic oscillator. The Liouville
equation for the classical harmonic oscillator is given by the transportation of a density ρ ∈
Lr (T ∗Rd ,R) along a Hamiltonian vector field

∂tρ(t , q, p) =−→
H uρ(t , q, p), ρ(t = 0) = ρ0 ∈ Lr (T ∗Rd ), (5)

where the Hamiltonian function is given by

Hu(q, p) = |p|2
2

+u0(t )
|q|2

2
+

d∑
j=1

u j (t )q j , (6)

and the Hamiltonian vector field is the first-order differential operator defined as

−→
H u := {Hu , ·} = p ·∇q −u0(t )q ·∇p −

m∑
j=1

u j (t )∂p j , (7)

and {·, ·} denotes the Poisson bracket on T ∗Rd (that is, { f , g } = ∇p f · ∇q g −∇q f · ∇p g for
any f = f (q, p), g = g (q, p) ∈ C∞(T ∗Rd )). The Lie algebra of smooth functions generated

by Lie { |p|
2

2 , |q|
2

2 , q1, . . . , qd }, equipped with the Poisson bracket, is also isomorphic to sl2 ⋉hd .
Since the vector field (7) is globally Lipschitz, the solution of the Liouville equation ρ(t ) is
globally-in-time well-posed, meaning that for any ρ0 ∈ Lr (T ∗Rd ,R),u ∈ PWC(R,Rd+1) there
exists a unique mild solution (t 7→ ρ(t ,u,ρ0)) ∈C (R,Lr (T ∗Rd ,R)) of (5). Such a solution writes
as ρ(t ,u,ρ0) = ρ0 ◦Φt

Hu
(q, p) where Φt

Hu
is the flow solving the Hamiltonian equations on

T ∗Rd ,
dΦt

Hu
(q, p)

d t
=

(
∇p Hu(Φt

Hu
(q, p))

−∇q Hu(Φt
Hu

(q, p))

)
, Φt=0

Hu
(q, p) = (q, p). (8)

Notice thatΦt
Hu

is an Hamiltonian diffeomorphism hence orientation- and volume-preserving.
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Definition 5. A state ρ1 ∈ Lr (T ∗Rd ,R),r ∈ [1,∞], is said to be small-time reachable from ρ0 ∈
Lr (T ∗Rd ) for system (5) if for every T > 0 there exist τ ∈ [0,T ] and u ∈ PWC([0,τ],Rd+1) such
that the solution ρ of (5) satisfies ρ(τ,u,ρ0) = ρ1. The set of small-time reachable states from
ρ0 ∈ Lr (T ∗Rd ,R) is denoted by Rst (ρ0).

As a second consequence of Theorem 1, we have the following characterization of the
small-time reachable sets of (5).

Theorem 3. For any ρ0 ∈ Lr (T ∗Rd ,R), system (5) satisfies

Rst (ρ0) =
{ρ0(α(q + s)cos(t )+α−1(p + r q +w)sin(t ),−α(q + s)sin(t )+α−1(p + r q +w)cos(t )) |
α> 0, t ,r ∈R, s, w ∈Rd }.

To the best of our knowledge, Theorem 3 is new, and gives some first insights on the con-
trollability of Liouville Hamiltonian equations, a research direction almost unexplored. It is
obtained thanks to the specific nature of the Hamiltonian function (6). Extensions of such
technique to more general Hamiltonians will be the subject of future investigations.

A study on the relation between classical and quantum controllability appeared in [7];
however, their work deals with the control of a single classical particle following Hamilton
equations, while here we consider the control of a density of classical particles described
by ρ following the Liouville equation. In particular, the harmonic oscillator equation of a
single classical particle (described by (8)) is clearly globally controllable, while the associated
Liouville equation is not (as we can only reach the states described in Theorem 3). In this
perspective, our geometric approach based on the representations of SL2 ⋉Hd highlights an
analogy between classical and quantum controllability of quadratic Hamiltonians.

The article is organised as follows: in Section 2 we recall a useful compatibility property
for system (1); in Section 3 we recall the covering spaces of SL2(R); in Section 4 we prove a
slightly more general version of Theorem 1; in Sections 5 and 6 we prove resp. Theorems 2
and 3.

2 Compatible elements on Lie groups

In this section we recall a property (found by the first author in [4, Corollary 1] for general
control affine systems) in the specific Lie group framework introduced above.

We associate to the Lie algebra l := Lie {b1, ...,bk } its Lie group

L := {e t1 X1 ...e tm Xm |m ∈N∗, X1, ..., Xm ∈ l, t1, ..., tm ∈R}.

The following result is a particular case of [4, Corollary 1].

Theorem 4. For τ ≥ 0, every convex combination of elements of the form AdL(τa)+ l is com-
patible with system (1) at time τ.
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Proof. The driftless system

q̇(t ) = q(t )
k∑

i=1
ui (t )bi q(t ) ∈G ,bi ∈ g,ui (t ) ∈R, (9)

is compatible with system (1). More precisely, every q ∈ L is small-time approximately reach-
able by (1): indeed, thanks to [10, Lemma 6.2], q = e sN biN . . .e s1bi1 for some s1, . . . , sN ∈ R, N ∈
N, {i1, . . . , iN } ⊂ {1, . . . ,k}. Consider then a piecewise constant control u defined as ui1 (t ) ≡
s1/t1 for a time interval [0, t1], ..., uiN (t ) ≡ sN /tN for a time interval [0, tN ]: the associated
solution writes q(t1 + ·· · + tN ,u) = e tN a+sN biN . . .e t1a+s1bi1 hence for t1, . . . , tN small enough
q(t1 +·· ·+ tN ,u) is close to q .

Moreover, eτa is reachable in time T = τ, using a free evolution of the system (i.e. a control
u = 0 on a time interval of size τ). Let q ∈ L, then qeτa q−1 is approximately reachable in time
T = τ+ε for every ε> 0. Thanks to the properties of the exponential map on a Lie group,

qeτa q−1 = eAdq (τa).

Thus Adq (τa) is compatible with (1). Finally, according to standard relaxation technique,
every convex combination of compatible vector fields is also compatible (see e.g. [3, Propo-
sition 8.1]).

To pass from approximate to exact controllability, we shall need the following corollary of
Krener’s theorem (see e.g. [3, Corollary 8.1]).

Proposition 1. If a system defined on a finite-dimensional manifold is approximately control-
lable and Lie Bracket Generating, then it is controllable.

3 Covering spaces of SL2(R)

In this section we recall for completeness some properties of SL2(R) that we shall need. Their
proofs are standard and we thus omit them (see, e.g., [11, Chapters II & III] for details).

The representation formula given in the Proposition below is known as the Iwasawa de-
composition.

Proposition 2. Every element g ∈ SL2(R) has a unique representation g = kan, k ∈ K , a ∈
A, n ∈ N , where

K =
{(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [0,2π)

}
, A =

{(
r 0
0 r−1

)
, r ∈R>0

}
, N =

{(
1 x
0 1

)
, x ∈R

}
.

The covering spaces of SL2(R) are defined in terms of the Iwasawa decomposition.

Proposition 3. The function χ :R3 → SL2(R) defined as

χ(θ,r, x) =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
er 0
0 e−r

)(
1 x
0 1

)
(10)

is the universal cover of SL2(R).
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Definition 6. The covering space Mn of degree n ∈N of SL2(R) is obtained by identifying (θ+
2kπ,r, x) ∈R3 with (θ,r, x) ∈R3 for every k ∈ nZ. The cover M2 of degree 2 of SL2(R) is called the
metaplectic group. The cover M1 of degree 1 is identified with SL2(R), and the universal cover
M∞ is identified with R3.

4 Proof of Theorem 1

4.1 Proof of the second statement of Theorem 1

Owing to (2), we have

[a, Xi ] = Yi , [b, Xi ] = 0,[c, Xi ] = Xi , [a,Yi ] = 0,[b,Yi ] = Xi , [c,Yi ] =−Yi , i = 1, . . . ,d ,

[a, Z ] = [b, Z ] = [c, Z ] = 0,

where we simply denote a and X the elements (a,0) and (0, X ) for any a ∈ sl2, X ∈ hd . Thanks
to Proposition 2, every element of SL2 can be written in the form e t1(a−b)e t2c e t3b where t1, t2, t3 ∈
R, and this decomposition is unique.

System (3) can then be lifted to every covering space of SL2⋉Hd (notice that Hd is simply
connected).

Theorem 5. The elements b and c are good Lie brackets and for every t1 ≥ 0, e t1(a−b) is small-
time approximately reachable for system (3) defined on any covering space Mn ,n ∈N∪ {∞}, of
SL2. System (3) with ui ,r ≡ 0, i ∈ {1, . . . ,d} is small-time controllable on every covering space
Mn ,n ∈N, of SL2 but not on the universal one M∞.

Proof. We apply Theorem 4 with l= Span {b} and L = {evb | v ∈ R}. Every element of the form
Adevb (τa)+ub with u, v ∈ R,τ> 0 is compatible. Thanks to the properties of the exponential
map on a Lie group,

Adevb (τa) = eadvb (τa) =
+∞∑
k=0

vk

k !
(adb)k (τa) = τa + vτc − v2τb.

By taking v = r /τ, the elements τa + r c are compatible for every r ∈ R, hence c is a good Lie
bracket. Then, the following system

q̇ = q(a +ub + vc) u, v ∈R, (11)

is compatible with system (1). We apply Theorem 4 to the system (11), with l = Span {b,c}.
Then every element of the form Adeub+vc (a)+ sb + tc, u, v, s, t ∈R is compatible. In particular,
Adevc (a) = exp(advc (a)) = e−2v a is compatible for every v ∈ R. Thus w a is also compatible
for every w > 0. Then every element of the form e t1(a−b)e t2c e t3b , t1 ≥ 0, t2, t3 ∈ R is small-
time approximately reachable by the compatible system, thus it is small-time approximately
reachable by system (1). If the considered covering space is not the universal one, for every
t ∈ R there exists t ′ ≥ 0 such that e t (a−b) = e t ′(a−b). Hence (1) is small-time approximately
controllable on every covering space Mn ,n ∈N, but not on the universal one M∞. Moreover,
system (3) is Lie Bracket Generating so, according to Proposition 1, it is small-time control-
lable on every covering space Mn ,n ∈N, of SL2, but not on the universal one M∞.
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4.2 Proof of the first statement of Theorem 1

Thanks to [10, Lemma 6.2], and since (3) is Lie Bracket Generating, we are left to prove that
Xi ,Yi , i = 1, . . . ,d and Z are good Lie brackets. It is clear that Xi , i ∈ {1, . . . ,d}, Z are good Lie
brackets. Thanks to Theorem 4, every element of the form Adev Xi (a)+uZ with u, v ∈ R is
compatible. Thanks to the properties of the exponential map on a Lie group,

Adev Xi (τa) = eadv Xi (τa) =
+∞∑
k=0

vk

k !
(adXi )k (τa) = τa + vτYi − v2τ

2
Z .

By taking v = r /τ,u = v2τ/2, the elements τa+r Yi are compatible for every r ∈R,τ> 0, hence
by taking τ small enough Yi is a good Lie bracket.

5 Proof of Theorem 2

For any ψ ∈C∞
c (Rd ), we compute

[i∆, i |x|2]ψ :=−∆(|x|2ψ)+|x|2(∆ψ) =−2dψ−4x ·∇ψ= (−2d −4x ·∇)ψ.

Analogously, one checks that [i∆, d
2 +x ·∇] is proportional (as an operator acting on test func-

tions) to i∆ and [i |x|2, d
2 +x ·∇] is proportional to i |x|2. Hence,

Lie

{
i∆

2
,

i |x|2
2

}
= span

{
i∆

2
,

i |x|2
2

,
d

2
+x ·∇

}
.

Every element of this Lie algebra is an essentially skew-adjoint operator on L2(Rd ,C) with

domain C∞
c (Rd ,C). Moreover, the application π : sl2(R) → Lie { i∆

2 , i |x|2
2 } defined by π(a) = i∆

2 ,

π(b) = i |x|2
2 , π(c) = d

2 +x ·∇ and extended by linearity, is a Lie algebra isomorphism.
In Theorem 5 we showed the small-time controllability on every covering space of SL2

(except the universal one). In the following section we translate this property for the Schrödinger
equation (4). We denote with U(X ) the group of linear unitary operators on a normed space
X .

5.1 Unitary representation of SL2

The construction of the following group morphism, sometimes called the Weil representa-
tion, is standard hence we omit the details (see, e.g., [11, Chapter XI]).

Proposition 4. There exists a group morphism f from the universal cover M∞ of SL2 toU(L2(Rd ,C))
such that f (ea) = eπ(a) for every a ∈ sl(2).

The following lemma tells that it is possible to restrict the representation from the univer-
sal cover to lower degree covers.
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Lemma 1. If d is even, there exists a unitary representation f : Mn → U(L2(Rd )) such that
f (ea) = eπ(a) for every covering space Mn ,n ∈ N∪ {∞}, of SL2. If d is odd, such a unitary rep-
resentation f is obtained if M2n is a covering space of even degree 2n,n ∈ N, or the universal
cover M∞. In particular, if d is odd, we have a unitary representation from the metaplectic
group M2.

Proof. We denote f : M∞ → U(L2) the unitary representation of the universal cover, which
exists according to Proposition 4 and which verifies f (ea) = eπ(a). In order to obtain a repre-
sentation of a covering space Mm ,m ∈ N, of SL2, we have to check that f is well-defined on
every homotopy class of loops. Every loop t 7→ γ(t ) ∈ SL2 is homotopic to one of the loops
[0,1] ∋ t 7→ wk (t ) = e2πkt (a−b),k ∈N. If L2(Rd ,C) ∋ϕ= ∑

j∈Nd
c jϕ j is decomposed on the Hilbert

basis of Hermite functions {ϕ j } j∈Nd , then

e
i t (∆−|x|2)

2 ϕ= ∑
( j1,..., jd )∈Nd

e−i t ( j1+...+ jd+ d
2 )c jϕ j . (12)

According to (12), we obtain f (wk (1)) = e iπk(∆−|x|2) = (−1)kd I . If d is even, then the definition
of f coincide on every wk ,k ∈N∗. If d is odd, this is true for the loops of even degree, and so
we obtain a representation of the covering space of degree 2m, m ∈N∗.

5.2 Conclusion of the proof of Theorem 2

Let M2 be the metaplectic group, for which there exists a unitary representation whatever the
dimension d of the space is (cf. Lemma 1). Since Hd is simply connected, the strongly con-
tinuous unitary representation f can be extended in a standard way to M2 ⋉Hd . It satisfies
f (e t Xi ) = e i t xi , f (e tYi ) = e t∂xi ,e t Z = e i t , t ∈R.

Given any ψ1 of the form e i s(∆−|x|2)e i (α|x|2+px)σd/2ψ0(σx +β), for some s,α ∈ R, p,β ∈
Rd ,σ > 0, there exists an element g in M2 ⋉ Hd such that ψ1 = f (g )ψ0. Since the element
g is small-time reachable for system (3) (cf. Theorem 1), for any T > 0 there exists a control
u ∈ PWC([0,τ],Rd+1),τ ∈ [0,T ], such that q(u,τ) = g . Since f is a morphism and u is piecewise
constant, ψ(u,τ,ψ0) = f (q(u,τ))ψ0 = f (g )ψ0 = ψ1, hence ψ1 ∈ Rst (ψ0). Conversely, given
any ψ1 ∈Rst (ψ0) there exists n ∈N and t1, . . . , tn ≥ 0,u1

i , . . . ,un
i ∈ R, i = 0, . . . ,d such that ψ1 =∏n

j=1 e i (t j∆/2−u j
0 |x|2/2−∑d

k=1 u j
k xk )ψ0. Hence, ψ1 = f (g )ψ0 where g = ∏n

j=1 e−t j a+u j
0 b+∑d

k=1 u j
k Xk .

Since g can be written as in Proposition 2,ψ1 has the form e i s(∆−|x|2)e i (α|x|2+px)σd/2ψ0(σx+β),
for some s,α ∈R, p,β ∈Rd ,σ> 0.

The proof of Theorem 2 is concluded.

6 Proof of Theorem 3

For proving Theorem 3, one follows the same exact lines of the proof of Theorem 2; we only
point out the needed modifications. First of all a direct computation shows that

Lie{|p|2/2, |q|2/2, q1, . . . , qd } = span{|p|2/2, |q|2/2, q1, . . . , qd , p ·q, p1, . . . , pd ,1}.
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We thus have an isomorphism of Lie algebras π : sl2⋉hd → Lie{|p|2/2, |q |2/2, q1, . . . , qd }, and a
group morphism f : M∞⋉Hd →U(Lr (T ∗Rd )) satisfying f (ea) =Φ1

π(a) for any a ∈ sl2⋉hd , and

Φt
H(p,q) acts on ρ0 ∈ Lr (T ∗Rd ) as ρ0 ◦Φt

H(p,q). Finally, as a slight difference w.r.t. to Lemma 1,

notice thatΦt
(p2−q2)/2

(q0, p0) = (q0 cos(t )+p0 sin(t ),−q0 sin(t )+p0 cos(t )) henceΦ2πk
(p2−q2)/2

= I ,

irrespectively of d being odd or even; the corresponding Lemma 1 for the Liouville represen-
tation f : Mn ⋉Hd →U(Lr (T ∗Rd )) hence holds for covering spaces of even and odd dimen-
sions n ∈N∪ {∞}.
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