Differential geometry and optimal control problems*

A.Agrachev

Consider a control system
q=flg,u) g€ M,uel, (1)

where M and U are smooth manifolds. An admissible trajectory is any trajectory of the differential equation (1) with
fixed control function u(-),u(t) € U.

Fixing a point g0 € M we define for T' € R an attainable set Ay, (T') as a set of all points in M which could be
reached from ¢g by an admissible trajectory in time ¢ < T':

Also, we shall refer to the set f(qo,U) C Ty, M as to an infinitesimal attainable set.

Our main goal is to characterize trajectories going to the boundary of the attainable set (extremals).

We shall make use of the fundamental notion of the so-called feedback equivalence of control systems. So, two
systems of type (1) with the right hand sides f, f, and with « belonging to U, U respectively, are feedback equivalent
if there exists a map ¢ : M x U — U, being a diffeomorphism of U and U for any fixed ¢ € M, such that f(q7 u) =

f(g,0(q,u)).

Example Let M be a Riemannian surface, i.e. a 2-dimensional manifold with a Riemannian metric (,),. Choose an
orthonormal local frame e1(g),e2(q) € Ty M, (e;,e;) = 1, {e1,e2) =0, and consider the following control system:

¢=wei(q) +uzes(q), ui+u;=1L

Here the attainable set is a ball of radius 7" and trajectories going to the boundary are geodesics.
Note that the curvature, which is a basic invariant here, does not depend on changes of coordinates and of the
frame (feedback invariant).

Now we make the following additional assumption:
f(q,U) = conv f(q,U).
Define the Hamiltonian H : T*M — R of (1) as

HO) =max(\, f(g,0), A€ T;M 2)

(here {,) denotes the canonical pairing of the tangent and cotangent space). This function does not depend on u thus
being also a feedback invariant.

f(q,U)
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As usual, (assuming that H is smooth) we define the corresponding Hamiltonian vector field H(\) € Tx\(T*M) by

dyH = o(-,H()\)), where o is the canonical symplectic form on T*M, and the corresponding Hamiltonian system

A= H(A), or in local coordinates

. _O0H(p,q) .  0H(p,q)
1= =5 =g ?

Recall a celebrated result called Pontryagin’s Mazimum Principle:

Theorem 1 Assume g(t),t € [0,T], is an admissible trajectory of the system (1) such that q(0) = qo, ¢(T) € 0A4 (T).
Then there exists a ”cotangent lift” of q(t), i.e. a curve A :[0,T] = T*M with A(t) = (p(t),q(t)), satisfying system
(3).

In other words, in order to describe Ay, (T') it is sufficient to solve Hamiltonian system (3). We have to consider

all trajectories of (3) starting from T, M, up to time T', then to project them to M by the canonical projection
m:T*M — M.

T M

Putting E; := T M, so that T*M = |J, Ey, one can say that invariants (curvature e.t.c.) come from the pair

(Eq, H()\) (we can’t rectify H()) saving fibers).
Now we are ready to give a basic definition of these lectures.
Definition 1 Let ¢! : T*M — T*M denote the flow generated by H, in particular %etﬁ(x\) = H(etA(\)), e ()\) =
A. Let A C T(T*M) denote the ”vertical” distribution: Ay :=T\E, C T\(T*M),q = n(A). Put
J,\(t) = e;tHAe“q(A).
For any A we get a family Jy(¢t) C T\(T*M) of n-dimensional subspaces in the 2n-dimensional space, i.e. a curve
t — Jx(t) in the Grassmannian G(T»(T* M), n) which we will call a Jacobi curve.
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We are going to study geometry of this curve. To do this it would be desirable to assume that for small ¢ # 0
Jx(t) N Jx(0) = {0} (4)

This condition would allow us to study geometry of Jy(t) in terms of the projection . : Jx(t) = Trx)M, which is
one-to-one if (4) holds. However, this is never the case for Hamiltonians of the form (2).

Indeed, in our Hamiltonian H(A\) = maxy,cu (A, f(¢,u)) = max,cu(p, f(g,u)) (we put A = (p,q)) the ingredient
(p, f(g,u)) is linear in p, hence H is homogeneous of degree 1 in fibers: H(aX) = aH(A),a > 0. Consequently the
Euler vector field 8 = ) p;0p, is contained in Jy(¢) for all ¢.

To avoid this obstruction we shall make a kind of symplectic reduction. Take the unit level of the Hamiltonian
H~ (1) C T*M and define the restricted vertical distribution as A} := T\H (1) NT\(T; M), X € H '(1),q = w()).
Note that dim A} =n — 1. Further on we define the restricted Jacobi curve

K= e AT, | CTHT() (5)

)
(a curve in the Grassmannian G(ThH ~'(1),n—1),dim ThH !(1) = 2n—1). The last step is the projection of J% (¢) with
respect to the canonical projection ThH 1(1) = £, := TxH 1(1)/RH (). Note that the inclusion H(\) C ThH (1)
and also (5) follow from the elementary symplectic geometry (the flow of the Hamiltonian vector field preserves the
Hamiltonian). Moreover, ¥ is endowed with a symplectic form which is a reduction of o and which we will denote by
the same letter. This fact will play a role later when we will consider a problem of conjugate points.

The projected Jacobi curve Jy(t) C Xy (we use the same notation as for the initial curve) is free from the above
disadvantage: the Euler vector field being transversal to the level sets of the Hamiltonian ”disappears” after the
restriction to T\ H (1) and from now on we may have

Ja(t) N Jx(0) = {0}

for small ¢ # 0.

Now we can realize our idea and the geometry of the Jacobi curve in terms of the projection operators. So consider
a curve J(t) C ¥ of m-dimensional subspaces in a 2m-dimensional space with the transversality condition (4).

Let us choose coordinates (p, ¢) in ¥ in such a way that J(0) = {(p,0) | p € R™}. Then J(¢) = {(p,S(t)p) | p € R™},
where S(t) is a m x m-matrix satisfying the conditions: S(0) = 0 and ¢ # 0 then det S(¢) # 0 if ¢ # 0 (cf. the figure).
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The matrix

0 0

represents in our coordinates the projector my : £ — J(0) onto J(0) along J(t). Note that all projectors onto J(0)
form an affine space, thus we get a curve t — o in the affine space.

So 0 is an isolated root of det S(¢). Now we make an additional assumption that this is a root of a finite order. This
implies that S™!(¢) has a pole at 0: —S~(¢) = ;2 , t'S; for some constant matrices S;. On 7o this decomposition

reflects as
= [0 5 I S
= > [0 ][0 ]
i=—k,i0

o = { I =St }

where { é %0 ] can be regarded as a fixed point in the affine space of all projectors and { 8 Si } as points in the

associated linear space. In a more compact form

T = Ztim’ + 7o,
i£0
where 7y : ¥ — J(0) is a projection along some transversal to J(0) subspace J°.
An analogous construction can be applied to any subspace J(tg) for to > 0 small, instead of J(0). As a result we

get a new subspace J°(#p) of dimension m, and moreover, a new curve ¢t — J°(¢) which will be called a derivative
curve.



Exercise 1 1. Prove that

TI(r)d(t) =

S7tS(r) -S
St)SS(r) —=St)S; |’
where S;¢ = S(7) — S(¢).
2. Show that if S(0) = 0, det(S(0)) # 0, then S~1(¢) has a simple pole and S~(t) = 157(0)-15-1(0)S(0)S~1(0)+
O(t). Derive from here and from 1. the formula

0 ={(-357 0505 00) ac .

Note that for small different to,¢; the subspaces J(to), J°(to), J(t1), J°(t1) are in general position and this allows
us to apply a multidimensional version of the classical notion of the cross-ratio, which we will recall now.

Definition 2 Given four m-dimensional subspaces Jy, ..., Js in general position in a 2m-dimensional space X, let m;;
denote a projector onto J; along J;, 7,5 =0,...,3. The cross-ratio of the subspaces Jy, ..., Js is the operator

[Jo, Ji, J2, J3] := (mor 72z g, © J1 — Ji).
3

Note that Tij + T = 1, Tik Tk = Tk, TijMik = Tij-
Now, the idea to define curvature is as follows: take J(t), J(t + €), J°(t), J°(t + €) and compute the first term of
the cross-ratio as € tends to 0.

J°(1)
Jo(t+¢)
Definition 3 A curvature (of a curve ¢t — J(t)) is an operator R(t) : J(t) — J(t) given by the formula
Om g2 1) (r) 072 (1) (r) 0*m o (1) (r) 0*myo (1) (r)
R(t) = ot 5 lr=tllse) = _[7TJ°(t)J(t)W|T=t]|J(t) = _[W|T=tﬂJ°(t)J(t)]|J(t):

where the last two equalities are obtained by the differentiation of the identities 7 yo(4) 50T o (t)s(r) = To(1)s(0) and
T o) J(r)Tae (0)J(r) = TJo(9)J(r) with respect to ¢ and 7.

Exercise 2 Compute E(t) of a curve J(t) = {(p, S(t)p) | p € R™} under an assumption det S(t) # 0.
Answer: R(t) = ((25)719)" — ((25)715)? = (1/2)S718"" — (3/4)(S~1S)? (matrix version of Schwartzian derivative
coinciding with the classical one if S is scalar).

Now we come back to the setting of control theory and Jacobi curves. Our next aim is to characterize the so-called
conjugate points in terms of the Jacobi curves and discuss their relations with curvature.



Definition 4 We say that et*g()\) is conjugate to A (or t, is conjugate to 0) if

eHAT NAT () £0.

et+H

Obviously, this condition is equivalent to A} N e*_t*ﬁ AN (M) # 0. The first term in the left hand side is Jy(0) while
the second one is Jy(t,). This allows us to say that ¢, is conjugate to o if

J(to) N J(t.) #0.

Now recall that the space ¥ where our Jacobi curve ¢t — J(t) takes values has the symplectic form o (the reduction
of the canonical symplectic form on T*M) and that a subspace J C ¥ of dimension (1/2) dim ¥ is called Lagrangian
if 0’|J =0.

Exercise 3 1. Show that if J(¢) is a Jacobi curve (constructed from some control system) J(t) is Lagrangian for
any t.

2. Let ¥ = R?™ with the standard symplectic form dp A dg. Show that a subspace A = {(p,Sp) | p € R™} is
Lagrnagian if and only if S is symmetric. Deduce from this that dimension of the space L(X) of all Lagrangian
subspaces (Lagrangian Grassmannian) equals m(m + 1)/2.

Given any Jacobi curve J(t) = {(p,S(t)p) | p € R™},S(0) = 0, one can intrinsically identify its velocity .J(t) with a
quadratic form on J(t):

J(t) : X a(A, 88—7_/\7|T:t) :J({#) - R

(here A; is any smooth curve belonging to J(r)).

In particular J(0) : p — (p, S(0)p). We say that J(t) is monotonic if J(t) > 0 (J(t) < 0).

Exercise 4 1. Prove that S(0) = —%2721 and Jy(t) ~ _%2721|e“?(>\) (~ means equivalence of quadratic forms with
respect to linear changes of variables). Conclusion: if H is convex then J(t) is monotonic.

2. If J(t) is an Euclidean structure then the curvature operator R(t) is symmetric in it (and we also can distinguish
the definite cases: R(t) >< 0).

Theorem 2 Assume we are in the regular situation: J(t) > 0. Then R(t) < 0 implies nonexistence of conjugate
points.

In particular, for m =1 (¥ is a plane) there exist some limiting lines to which tend J(t) and JO(¢):

J(t)

JO(t)



Exercise 5 Prove that the condition R(t) < 0 is equivalent to J°(¢) < 0.

Hint: We have ¥ = J(t) ® J°(t) and symplectic form on ¥ defines a non degenerate pairing of J(t) and J°(t) so
that Jeire(t) = J(t)*, J(t) = Jeirc(t)*. Velocity J(t) is identified with a quadratic form on the space J(t) or, in other
words, with a self-adjoint linear mapping from J(t) to J(¢)*. We obtain:

)
J) () > JOT =) () TE) - Jo)
Jo(t): J°(0) = J(t)  R(t) =J°@) () J(t) = ().

Theorem 3 (Comparison Theorem,)
1. If R(t) < C1d (all eigenvalues are less or equal to C) and points to,t, are conjugate, then |t; — to| > n/V/C.

2. If (1/m) tr R(t) > C, then for any ty and for any t > to the segment [t,t + m//C] contains a point t; conjugate
to to.

Now we will discuss the special case of constant curvature:
R(t)=C1d. (6)

If C =0,ie. R(t) =0, then J°(t) = const. This corresponds to the case of ”straight lines”: J(t) = {(p,tp) | p € R™ }.

If C' # 0 (note that J°(¢)NJ(t) = {0}, J°°(t)NJ°(t) = {0}) condition (6) implies J°°(¢) = J(t). In general, solutions
of the equation J°°(¢t) = J(¢) have normal forms including the case (6). In Riemannian geometry J°°(t) = J(¢)
corresponds to symmetric spaces.

Exercise 6 If J(t) = {(p,S(t)p) | p € R™}, S(0) = 0, S(0) = I then the condition J°°(t) = J(t) implies S(t) =
(2R)~/? tan(t(2R)'/?) (S(t) is symmetric, hence /- is well-defined) and the comparison theorem is sharp for the
constant curvature.

We conclude with the discussion how to construct a Jacobi curve in the degenerate case. Come back to a control
system (1) and assume that

flg,u) = folg) + Zuifi(q>, U=R".

Recall that an “optimal” trajectory is one going to the boundary of the attainable set. Put F}; : u(-) — q(go,u(-);1),
where g(go, u();t) is the trajectory with the initial condition gy and control u evaluated at time ¢, and call it input-
state mapping. So the attainable set is the image of F} and if u(-) is an “optimal” control then it is a critical point
of Fy, i.e. imDy)Fy # Ty4)yM, or equivalently, there exists \; € T, (t)M A¢ # 0, such that Ay Dy Fy = 0. In turn, if
u(t) is critical for Fy then for any 7 < t, ulp,r is critical for F,, or there exists a nontrivial A, € T;(T)M such that
Ar Dy, Fr = 0.

This can be expressed as the following system of equations:

b =Fu) B Ou(n) =0,

where h(\,u) = (A, f(¢,v)). In coordinates we have A = (p,q), h(\,u) = pf(g,u) and

~on . oh oh -
p= _aq(p7Q7u) q= 8p(p7Q7u) 8U(p’q,U) =0.

If det g%’; # 0 then the last equation can be solved at least locally, i.e. there exists u(A) such that %()\, u(A)) =0. If,
in addition, 227’5 < 0 this w maximizes h(A,-): h(A,u(N)) = H(A), so we come to the situation described earlier (see
(2)). In general non degenerate case we can substitute u(\) into first two equations of the system and proceed as we
did for H in order to construct the Jacobi curve.

Now, if 2272 is degenerate (it is identical 0 for the above affine in control system) we need to linearize the system
first and then to construct the Jacobi curve. This way we come to a notion of an L-derivative.

Let W be a smooth (possibly infinite-dimensional) manifold, F' : W — M be a smooth map. Consider the system

AD,F =0 X€Tp,M, (7)
which in coordinates (A = (p, q)) can be rewritten as

8F



Let us try to linearize it:

OF | PF L _OF
P ow " Pauz? 7= 3w
Define L, 3 F C TA(T*M) as
P’ ’ IaF O*F ' ’ OF ’
y F = = .U. -_— e =0, = —
L (w,x) {[ 7 ] w' s.t. p 50 +p8w2w 0, ¢q (9ww

Proposition If dim W < oo, then L, ) F is a Lagrangian subspace of T(1*M).
In the infinite-dimensional case gjf; may have a non-closed image; more precisely, the image is closed if and only if
we are in the regular situation. So we need to change the definition.

By the proposition above for any finite-dimensional submanifold V' C W and any w € V the subspace Ay :=
L (Fly) is Lagrangian in TA(T;(w)M ). The set of all finite-dimensional submanifolds of W is partially ordered by
C and Ay form a generalized sequence; we can try to pass to the limit.

Theorem 4 The limit li‘r/n Av =: Loy F exists if and only if the Hessian Hess, AF' has finite positive or negative

inertia index.

To compute the L-derivative one should approximate W by finite-dimensional manifolds.
~ Now return to a control system (1) and define a map G, : v(:) = ¢(0), where v(-) is in a space of controls and
% = f(4,v(d)),q(r) = q(r). Then for any 7 € [0,t] we can write a variant of system (7) for G,

A0)Dy( g, Gr = 0

lio,71
and then linearize it in order to construct an L-derivative.

Finally, the Jacobi curve we are looking for is defined as Jy(0)(7) = L(u(.),70)Gr (J(7) is a Lagrangian subspace
of TA(O) (T*M))
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