
Di�erential geometry and optimal ontrol problems

�

A.Agrahev

Consider a ontrol system

_q = f(q; u) q 2M;u 2 U; (1)

where M and U are smooth manifolds. An admissible trajetory is any trajetory of the di�erential equation (1) with

�xed ontrol funtion u(�); u(t) 2 U .

Fixing a point q

0

2 M we de�ne for T 2 R an attainable set A

q

0

(T ) as a set of all points in M whih ould be

reahed from q

0

by an admissible trajetory in time t 6 T :

q

0

Also, we shall refer to the set f(q

0

; U) � T

q

0

M as to an in�nitesimal attainable set.

Our main goal is to haraterize trajetories going to the boundary of the attainable set (extremals).

We shall make use of the fundamental notion of the so-alled feedbak equivalene of ontrol systems. So, two

systems of type (1) with the right hand sides f;

~

f , and with u belonging to U;

~

U respetively, are feedbak equivalent

if there exists a map ' : M � U !

~

U , being a di�eomorphism of U and

~

U for any �xed q 2 M , suh that

~

f(q; u) =

f(q; '(q; u)).

Example Let M be a Riemannian surfae, i.e. a 2-dimensional manifold with a Riemannian metri h; i

q

. Choose an

orthonormal loal frame e

1

(q); e

2

(q) 2 T

q

M; he

i

; e

i

i � 1; he

1

; e

2

i � 0, and onsider the following ontrol system:

_q = u

1

e

1

(q) + u

2

e

2

(q); u

2

1

+ u

2

2

= 1:

Here the attainable set is a ball of radius T and trajetories going to the boundary are geodesis.

Note that the urvature, whih is a basi invariant here, does not depend on hanges of oordinates and of the

frame (feedbak invariant).

Now we make the following additional assumption:

f(q; U) = onv f(q; U):

De�ne the Hamiltonian H : T

�

M ! R of (1) as

H(�) = max

u2U

h�; f(q; u)i; � 2 T

�

q

M (2)

(here h; i denotes the anonial pairing of the tangent and otangent spae). This funtion does not depend on u thus

being also a feedbak invariant.

�

�

�

��

-

A

A

A

AU

q

�

f(q; U)

�

Letures given on the shool "Geometri ontrol theory" whih was held in the International Stefan Banah Center of Mathematial

Sienes (Warsaw, September 15-20, 2002); written by A.Panasyuk
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As usual, (assuming that H is smooth) we de�ne the orresponding Hamiltonian vetor �eld

~

H(�) 2 T

�

(T

�

M) by

d

�

H = �(�;

~

H(�)), where � is the anonial sympleti form on T

�

M , and the orresponding Hamiltonian system

_

� =

~

H(�), or in loal oordinates

_q =

�H(p; q)

�p

_p = �

�H(p; q)

�q

: (3)

Reall a elebrated result alled Pontryagin's Maximum Priniple:

Theorem 1 Assume q(t); t 2 [0; T ℄, is an admissible trajetory of the system (1) suh that q(0) = q

0

; q(T ) 2 �A

q

0

(T ).

Then there exists a "otangent lift" of q(t), i.e. a urve � : [0; T ℄ ! T

�

M with �(t) = (p(t); q(t)), satisfying system

(3).

In other words, in order to desribe A

q

0

(T ) it is suÆient to solve Hamiltonian system (3). We have to onsider

all trajetories of (3) starting from T

�

q

0

M , up to time T , then to projet them to M by the anonial projetion

� : T

�

M !M .

T

�

q

0

M

q

0

�A

q

0

(T )

?

�

Putting E

q

:= T

�

q

M , so that T

�

M =

S

q

E

q

, one an say that invariants (urvature e.t..) ome from the pair

(E

q

;

~

H(�)) (we an't retify

~

H(�) saving �bers).

Now we are ready to give a basi de�nition of these letures.

De�nition 1 Let e

t

~

H

: T

�

M ! T

�

M denote the ow generated by

~

H , in partiular

�

�t

e

t

~

H

(�) =

~

H(e

t

~

H

(�)); e

0

~

H

(�) =

�. Let � � T (T

�

M) denote the "vertial" distribution: �

�

:= T

�

E

q

� T

�

(T

�

M); q = �(�). Put

J

�

(t) := e

�t

~

H

�

�

e

t

~

H

(�)

:

For any � we get a family J

�

(t) � T

�

(T

�

M) of n-dimensional subspaes in the 2n-dimensional spae, i.e. a urve

t 7! J

�

(t) in the Grassmannian G(T

�

(T

�

M); n) whih we will all a Jaobi urve.

�

�

H

Hj

H

Hj

A

A

A

A

A

A

A

A

A

A

�

�

�

e

t

~

H

(�)

J

�

(t)

e

t

~

H

(�)

�
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We are going to study geometry of this urve. To do this it would be desirable to assume that for small t 6= 0

J

�

(t) \ J

�

(0) = f0g: (4)

This ondition would allow us to study geometry of J

�

(t) in terms of the projetion �

�

: J

�

(t) ! T

�(�)

M , whih is

one-to-one if (4) holds. However, this is never the ase for Hamiltonians of the form (2).

Indeed, in our Hamiltonian H(�) = max

u2U

h�; f(q; u)i = max

u2U

hp; f(q; u)i (we put � = (p; q)) the ingredient

hp; f(q; u)i is linear in p, hene H is homogeneous of degree 1 in �bers: H(��) = �H(�); � > 0. Consequently the

Euler vetor �eld � =

P

p

i

�

p

i

is ontained in J

�

(t) for all t.

To avoid this obstrution we shall make a kind of sympleti redution. Take the unit level of the Hamiltonian

H

�1

(1) � T

�

M and de�ne the restrited vertial distribution as �

r

�

:= T

�

H

�1

(1) \ T

�

(T

�

q

M); � 2 H

�1

(1); q = �(�).

Note that dim�

r

�

= n� 1. Further on we de�ne the restrited Jaobi urve

J

r

�

(t) = e

�t

~

H

�

�

r

e

t

~

H

(�)

� T

�

H

�1

(1) (5)

(a urve in the GrassmannianG(T

�

H

�1

(1); n�1); dimT

�

H

�1

(1) = 2n�1). The last step is the projetion of J

r

�

(t) with

respet to the anonial projetion T

�

H

�1

(1)! �

�

:= T

�

H

�1

(1)=R

~

H (�). Note that the inlusion

~

H(�) � T

�

H

�1

(1)

and also (5) follow from the elementary sympleti geometry (the ow of the Hamiltonian vetor �eld preserves the

Hamiltonian). Moreover, � is endowed with a sympleti form whih is a redution of � and whih we will denote by

the same letter. This fat will play a role later when we will onsider a problem of onjugate points.

The projeted Jaobi urve J

�

(t) � �

�

(we use the same notation as for the initial urve) is free from the above

disadvantage: the Euler vetor �eld being transversal to the level sets of the Hamiltonian "disappears" after the

restrition to T

�

H

�1

(1) and from now on we may have

J

�

(t) \ J

�

(0) = f0g

for small t 6= 0.

Now we an realize our idea and the geometry of the Jaobi urve in terms of the projetion operators. So onsider

a urve J(t) � � of m-dimensional subspaes in a 2m-dimensional spae with the transversality ondition (4).

Let us hoose oordinates (p; q) in � in suh a way that J(0) = f(p; 0) j p 2 R

m

g. Then J(t) = f(p; S(t)p) j p 2 R

m

g,

where S(t) is a m�m-matrix satisfying the onditions: S(0) = 0 and t 6= 0 then detS(t) 6= 0 if t 6= 0 (f. the �gure).

6

-

�

�

�

�

�

�

�

�

p

q

-

S(t)

The matrix

�

t0

=

�

I �S

�1

(t)

0 0

�

represents in our oordinates the projetor �

t0

: � ! J(0) onto J(0) along J(t). Note that all projetors onto J(0)

form an aÆne spae, thus we get a urve t 7! �

t0

in the aÆne spae.

So 0 is an isolated root of detS(t). Now we make an additional assumption that this is a root of a �nite order. This

implies that S

�1

(t) has a pole at 0: �S

�1

(t) =

P

1

i=�k

t

i

S

i

for some onstant matries S

i

. On �

t0

this deomposition

reets as

�

t0

=

1

X

i=�k;i6=0

t

i

�

0 S

i

0 0

�

+

�

I S

0

0 0

�

;

where

�

I S

0

0 0

�

an be regarded as a �xed point in the aÆne spae of all projetors and

�

0 S

i

0 0

�

as points in the

assoiated linear spae. In a more ompat form

�

t0

=

X

i6=0

t

i

�

i

+ �

0

;

where �

0

: �! J(0) is a projetion along some transversal to J(0) subspae J

Æ

.

An analogous onstrution an be applied to any subspae J(t

0

) for t

0

> 0 small, instead of J(0). As a result we

get a new subspae J

Æ

(t

0

) of dimension m, and moreover, a new urve t 7! J

Æ

(t) whih will be alled a derivative

urve.
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Exerise 1 1. Prove that

�

J(�)J(t)

=

�

S

�1

�t

S(�) �S

�1

�t

S(t)S

�1

�t

S(�) �S(t)S

�1

�t

�

;

where S

�t

= S(�)� S(t).

2. Show that if S(0) = 0; det(

_

S(0)) 6= 0, then S

�1

(t) has a simple pole and S

�1

(t) =

1

t

_

S

�1

(0)�

1

2

_

S

�1

(0)

�

S(0)

_

S

�1

(0)+

O(t). Derive from here and from 1. the formula

J

Æ

(t) =

��

�

1

2

_

S

�1

(0)

�

S(0)

_

S

�1

(0)q; q

�

: q 2 R

m

�

:

Note that for small di�erent t

0

; t

1

the subspaes J(t

0

); J

Æ

(t

0

); J(t

1

); J

Æ

(t

1

) are in general position and this allows

us to apply a multidimensional version of the lassial notion of the ross-ratio, whih we will reall now.

De�nition 2 Given four m-dimensional subspaes J

0

; : : : ; J

3

in general position in a 2m-dimensional spae �, let �

ij

denote a projetor onto J

j

along J

i

, i; j = 0; : : : ; 3. The ross-ratio of the subspaes J

0

; : : : ; J

3

is the operator

[J

0

; J

1

; J

2

; J

3

℄ := (�

01

�

23

j

J

1

: J

1

�! J

1

):




























�

�

�

�

�

�

�

�

�














�








�

�

�

�

�

�I

�

�

�I

0

1

2

3

Note that �

ij

+ �

ji

= I; �

ik

�

jk

= �

jk

; �

ij

�

ik

= �

ij

.

Now, the idea to de�ne urvature is as follows: take J(t); J(t + "); J

Æ

(t); J

Æ

(t + ") and ompute the �rst term of

the ross-ratio as " tends to 0.

�

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

X

J

Æ

(t+ ")

J

Æ

(t)

J(t+ ")

J(t)

De�nition 3 A urvature (of a urve t 7! J(t)) is an operator R(t) : J(t)! J(t) given by the formula

R(t) = [

��

J

Æ

(t)J(�)

�t

��

J

Æ

(t)J(�)

��

j

�=t

℄j

J(t)

= �[�

J

Æ

(t)J(t)

�

2

�

J

Æ

(t)J(�)

�t��

j

�=t

℄j

J(t)

= �[

�

2

�

J

Æ

(t)J(�)

�t��

j

�=t

�

J

Æ

(t)J(t)

℄j

J(t)

;

where the last two equalities are obtained by the di�erentiation of the identities �

J

Æ

(t)J(�)

�

J

Æ

(t)J(�)

= �

J

Æ

(t)J(�)

and

�

J

Æ

(t)J(�)

�

J

Æ

(�)J(�)

= �

J

Æ

(�)J(�)

with respet to t and � .

Exerise 2 Compute R(t) of a urve J(t) = f(p; S(t)p) j p 2 R

m

g under an assumption det

_

S(t) 6= 0.

Answer: R(t) = ((2

_

S)

�1

�

S)

0

� ((2

_

S)

�1

�

S)

2

= (1=2)

_

S

�1

S

000

� (3=4)(

_

S

�1

�

S)

2

(matrix version of Shwartzian derivative

oiniding with the lassial one if S is salar).

Now we ome bak to the setting of ontrol theory and Jaobi urves. Our next aim is to haraterize the so-alled

onjugate points in terms of the Jaobi urves and disuss their relations with urvature.

4



De�nition 4 We say that e

t

�

~

H

(�) is onjugate to � (or t

�

is onjugate to 0) if

e

t

�

~

H

�

�

r

�

\�

r

e

t

�

~

H

(�) 6= 0:

Obviously, this ondition is equivalent to �

r

�

\ e

�t

�

~

H

�

�

r

e

t

�

~

H

(�) 6= 0. The �rst term in the left hand side is J

�

(0) while

the seond one is J

�

(t

�

). This allows us to say that t

�

is onjugate to t

0

if

J(t

0

) \ J(t

�

) 6= 0:

Now reall that the spae � where our Jaobi urve t 7! J(t) takes values has the sympleti form � (the redution

of the anonial sympleti form on T

�

M) and that a subspae J � � of dimension (1=2) dim� is alled Lagrangian

if �j

J

= 0.

Exerise 3 1. Show that if J(t) is a Jaobi urve (onstruted from some ontrol system) J(t) is Lagrangian for

any t.

2. Let � = R

2m

with the standard sympleti form dp ^ dq. Show that a subspae � = f(p; Sp) j p 2 R

m

g is

Lagrnagian if and only if S is symmetri. Dedue from this that dimension of the spae L(�) of all Lagrangian

subspaes (Lagrangian Grassmannian) equals m(m+ 1)=2.

Given any Jaobi urve J(t) = f(p; S(t)p) j p 2 R

m

g; S(0) = 0, one an intrinsially identify its veloity

_

J(t) with a

quadrati form on J(t):

_

J(t) : � 7! �(�;

�

��

�

�

j

�=t

) : J(t)! R

(here �

�

is any smooth urve belonging to J(�)).

6

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J(�)

�

�

�

J(�)

In partiular

_

J(0) : p 7! hp;

_

S(0)pi. We say that J(t) is monotoni if

_

J(t) > 0 (

_

J(t) 6 0).

Exerise 4 1. Prove that

_

S(0) = �

�

2

H

�p

2

and

_

J

�

(t) � �

�

2

H

�p

2

j

e

t

~

H

(�)

(� means equivalene of quadrati forms with

respet to linear hanges of variables). Conlusion: if H is onvex then J(t) is monotoni.

2. If

_

J(t) is an Eulidean struture then the urvature operator R(t) is symmetri in it (and we also an distinguish

the de�nite ases: R(t) >6 0).

Theorem 2 Assume we are in the regular situation:

_

J(t) > 0. Then R(t) 6 0 implies nonexistene of onjugate

points.

In partiular, for m = 1 (� is a plane) there exist some limiting lines to whih tend J(t) and J

0

(t):

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

J(t)

?

6

J

0

(t)

5



Exerise 5 Prove that the ondition R(t) 6 0 is equivalent to

_

J

0

(t) 6 0.

Hint: We have � = J(t) � J

Æ

(t) and sympleti form on � de�nes a non degenerate pairing of J(t) and J

Æ

(t) so

that J



ir(t)

�

=

J(t)

�

, J(t)

�

=

J



ir(t)

�

. Veloity

_

J(t) is identi�ed with a quadrati form on the spae J(t) or, in other

words, with a self-adjoint linear mapping from J(t) to J(t)

�

. We obtain:

_

J(t) : J(t)! J(t)

�

�

=

J

Æ

(t)

_

J(t) : J(t)! J

Æ

(t)

_

J

Æ

(t) : J

Æ

(t)! J(t) R(t) =

_

J

Æ

(t)

_

J(t) : J(t)! J(t):

Theorem 3 (Comparison Theorem)

1. If R(t) 6 C Id (all eigenvalues are less or equal to C) and points t

0

; t

1

are onjugate, then jt

1

� t

0

j > �=

p

C.

2. If (1=m) trR(t) > C, then for any t

0

and for any t > t

0

the segment [t; t+ �=

p

C℄ ontains a point t

1

onjugate

to t

0

.

Now we will disuss the speial ase of onstant urvature:

R(t) = C Id : (6)

If C = 0, i.e. R(t) = 0, then J

Æ

(t) = onst. This orresponds to the ase of "straight lines": J(t) = f(p; tp) j p 2 R

m

g.

If C 6= 0 (note that J

Æ

(t)\J(t) = f0g; J

ÆÆ

(t)\J

Æ

(t) = f0g) ondition (6) implies J

ÆÆ

(t) = J(t). In general, solutions

of the equation J

ÆÆ

(t) = J(t) have normal forms inluding the ase (6). In Riemannian geometry J

ÆÆ

(t) = J(t)

orresponds to symmetri spaes.

Exerise 6 If J(t) = f(p; S(t)p) j p 2 R

m

g, S(0) = 0,

_

S(0) = I then the ondition J

ÆÆ

(t) � J(t) implies S(t) =

(2R)

�1=2

tan(t(2R)

1=2

) (S(t) is symmetri, hene

p

� is well-de�ned) and the omparison theorem is sharp for the

onstant urvature.

We onlude with the disussion how to onstrut a Jaobi urve in the degenerate ase. Come bak to a ontrol

system (1) and assume that

f(q; u) = f

0

(q) +

X

i

u

i

f

i

(q); U = R

n

:

Reall that an \optimal" trajetory is one going to the boundary of the attainable set. Put F

t

: u(�) 7! q(q

0

; u(�); t),

where q(q

0

; u(�); t) is the trajetory with the initial ondition q

0

and ontrol u evaluated at time t, and all it input-

state mapping. So the attainable set is the image of F

t

and if u(�) is an \optimal" ontrol then it is a ritial point

of F

t

, i.e. imD

u(�)

F

t

6= T

q(t)

M , or equivalently, there exists �

t

2 T

�

q(t)

M;�

t

6= 0, suh that �

t

D

u(�)

F

t

= 0. In turn, if

u(t) is ritial for F

t

then for any � 6 t, uj

[0;� ℄

is ritial for F

�

, or there exists a nontrivial �

�

2 T

�

q(�)

M suh that

�

�

D

uj

[0;�℄

F

�

= 0.

This an be expressed as the following system of equations:

_

�

�

=

~

h(�; u(�))

�h

�u

(�; u(�)) = 0;

where h(�; u) = h�; f(q; u)i. In oordinates we have � = (p; q); h(�; u) = pf(q; u) and

_p = �

�h

�q

(p; q; u) _q =

�h

�p

(p; q; u)

�h

�u

(p; q; u) = 0:

If det

�

2

h

�u

2

6= 0 then the last equation an be solved at least loally, i.e. there exists u(�) suh that

�h

�u

(�; u(�)) = 0. If,

in addition,

�

2

h

�u

2

< 0 this u maximizes h(�; �): h(�; u(�)) = H(�), so we ome to the situation desribed earlier (see

(2)). In general non degenerate ase we an substitute u(�) into �rst two equations of the system and proeed as we

did for H in order to onstrut the Jaobi urve.

Now, if

�

2

h

�u

2

is degenerate (it is idential 0 for the above aÆne in ontrol system) we need to linearize the system

�rst and then to onstrut the Jaobi urve. This way we ome to a notion of an L-derivative.

Let W be a smooth (possibly in�nite-dimensional) manifold, F :W !M be a smooth map. Consider the system

�D

w

F = 0 � 2 T

�

F (w)

M; (7)

whih in oordinates (� = (p; q)) an be rewritten as

p

�F

�w

= 0 q = F (w):

6



Let us try to linearize it:

p

0

�F

�w

+ p

�

2

F

�w

2

w

0

= 0 q

0

=

�F

�w

w

0

:

De�ne L

(w;�)

F � T

�

(T

�

M) as

L

(w;�)

F =

��

p

0

q

0

�

: 9w

0

s.t. p

0

�F

�w

+ p

�

2

F

�w

2

w

0

= 0; q

0

=

�F

�w

w

0

�

:

Proposition If dimW <1, then L

(w;�)

F is a Lagrangian subspae of T

�

(T

�

M).

In the in�nite-dimensional ase

�

2

F

�w

2

may have a non-losed image; more preisely, the image is losed if and only if

we are in the regular situation. So we need to hange the de�nition.

By the proposition above for any �nite-dimensional submanifold V � W and any w 2 V the subspae �

V

:=

L

(w;�)

(F j

V

) is Lagrangian in T

�

(T

�

F (w)

M). The set of all �nite-dimensional submanifolds of W is partially ordered by

� and �

V

form a generalized sequene; we an try to pass to the limit.

Theorem 4 The limit lim

V

�

V

=: L

(w;�)

F exists if and only if the Hessian Hess

w

�F has �nite positive or negative

inertia index.

To ompute the L-derivative one should approximate W by �nite-dimensional manifolds.

Now return to a ontrol system (1) and de�ne a map G

�

: v(�) 7! q̂(0), where v(�) is in a spae of ontrols and

dq̂

d�

= f(q̂; v(�)); q̂(�) = q(�). Then for any � 2 [0; t℄ we an write a variant of system (7) for G

�

�(0)D

u(�)j

[0;�℄

G

�

= 0

and then linearize it in order to onstrut an L-derivative.

Finally, the Jaobi urve we are looking for is de�ned as J

�(0)

(�) = L

(u(�);�(0))

G

�

(J(�) is a Lagrangian subspae

of T

�(0)

(T

�

M)).

Referenes: Journal of Dynamial and Control Systems, 3(1997), 343{389; 4(1998), 583{604; 8(2002), 93{140,

167{215.
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