
Di�erential geometry and optimal 
ontrol problems

�

A.Agra
hev

Consider a 
ontrol system

_q = f(q; u) q 2M;u 2 U; (1)

where M and U are smooth manifolds. An admissible traje
tory is any traje
tory of the di�erential equation (1) with

�xed 
ontrol fun
tion u(�); u(t) 2 U .

Fixing a point q

0

2 M we de�ne for T 2 R an attainable set A

q

0

(T ) as a set of all points in M whi
h 
ould be

rea
hed from q

0

by an admissible traje
tory in time t 6 T :

q

0

Also, we shall refer to the set f(q

0

; U) � T

q

0

M as to an in�nitesimal attainable set.

Our main goal is to 
hara
terize traje
tories going to the boundary of the attainable set (extremals).

We shall make use of the fundamental notion of the so-
alled feedba
k equivalen
e of 
ontrol systems. So, two

systems of type (1) with the right hand sides f;

~

f , and with u belonging to U;

~

U respe
tively, are feedba
k equivalent

if there exists a map ' : M � U !

~

U , being a di�eomorphism of U and

~

U for any �xed q 2 M , su
h that

~

f(q; u) =

f(q; '(q; u)).

Example Let M be a Riemannian surfa
e, i.e. a 2-dimensional manifold with a Riemannian metri
 h; i

q

. Choose an

orthonormal lo
al frame e

1

(q); e

2

(q) 2 T

q

M; he

i

; e

i

i � 1; he

1

; e

2

i � 0, and 
onsider the following 
ontrol system:

_q = u

1

e

1

(q) + u

2

e

2

(q); u

2

1

+ u

2

2

= 1:

Here the attainable set is a ball of radius T and traje
tories going to the boundary are geodesi
s.

Note that the 
urvature, whi
h is a basi
 invariant here, does not depend on 
hanges of 
oordinates and of the

frame (feedba
k invariant).

Now we make the following additional assumption:

f(q; U) = 
onv f(q; U):

De�ne the Hamiltonian H : T

�

M ! R of (1) as

H(�) = max

u2U

h�; f(q; u)i; � 2 T

�

q

M (2)

(here h; i denotes the 
anoni
al pairing of the tangent and 
otangent spa
e). This fun
tion does not depend on u thus

being also a feedba
k invariant.

�

�

�

��

-

A

A

A

AU

q

�

f(q; U)

�

Le
tures given on the s
hool "Geometri
 
ontrol theory" whi
h was held in the International Stefan Bana
h Center of Mathemati
al

S
ien
es (Warsaw, September 15-20, 2002); written by A.Panasyuk
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As usual, (assuming that H is smooth) we de�ne the 
orresponding Hamiltonian ve
tor �eld

~

H(�) 2 T

�

(T

�

M) by

d

�

H = �(�;

~

H(�)), where � is the 
anoni
al symple
ti
 form on T

�

M , and the 
orresponding Hamiltonian system

_

� =

~

H(�), or in lo
al 
oordinates

_q =

�H(p; q)

�p

_p = �

�H(p; q)

�q

: (3)

Re
all a 
elebrated result 
alled Pontryagin's Maximum Prin
iple:

Theorem 1 Assume q(t); t 2 [0; T ℄, is an admissible traje
tory of the system (1) su
h that q(0) = q

0

; q(T ) 2 �A

q

0

(T ).

Then there exists a "
otangent lift" of q(t), i.e. a 
urve � : [0; T ℄ ! T

�

M with �(t) = (p(t); q(t)), satisfying system

(3).

In other words, in order to des
ribe A

q

0

(T ) it is suÆ
ient to solve Hamiltonian system (3). We have to 
onsider

all traje
tories of (3) starting from T

�

q

0

M , up to time T , then to proje
t them to M by the 
anoni
al proje
tion

� : T

�

M !M .

T

�

q

0

M

q

0

�A

q

0

(T )

?

�

Putting E

q

:= T

�

q

M , so that T

�

M =

S

q

E

q

, one 
an say that invariants (
urvature e.t.
.) 
ome from the pair

(E

q

;

~

H(�)) (we 
an't re
tify

~

H(�) saving �bers).

Now we are ready to give a basi
 de�nition of these le
tures.

De�nition 1 Let e

t

~

H

: T

�

M ! T

�

M denote the 
ow generated by

~

H , in parti
ular

�

�t

e

t

~

H

(�) =

~

H(e

t

~

H

(�)); e

0

~

H

(�) =

�. Let � � T (T

�

M) denote the "verti
al" distribution: �

�

:= T

�

E

q

� T

�

(T

�

M); q = �(�). Put

J

�

(t) := e

�t

~

H

�

�

e

t

~

H

(�)

:

For any � we get a family J

�

(t) � T

�

(T

�

M) of n-dimensional subspa
es in the 2n-dimensional spa
e, i.e. a 
urve

t 7! J

�

(t) in the Grassmannian G(T

�

(T

�

M); n) whi
h we will 
all a Ja
obi 
urve.

�

�

H

Hj

H

Hj

A

A

A

A

A

A

A

A

A

A

�

�

�

e

t

~

H

(�)

J

�

(t)

e

t

~

H

(�)

�
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We are going to study geometry of this 
urve. To do this it would be desirable to assume that for small t 6= 0

J

�

(t) \ J

�

(0) = f0g: (4)

This 
ondition would allow us to study geometry of J

�

(t) in terms of the proje
tion �

�

: J

�

(t) ! T

�(�)

M , whi
h is

one-to-one if (4) holds. However, this is never the 
ase for Hamiltonians of the form (2).

Indeed, in our Hamiltonian H(�) = max

u2U

h�; f(q; u)i = max

u2U

hp; f(q; u)i (we put � = (p; q)) the ingredient

hp; f(q; u)i is linear in p, hen
e H is homogeneous of degree 1 in �bers: H(��) = �H(�); � > 0. Consequently the

Euler ve
tor �eld � =

P

p

i

�

p

i

is 
ontained in J

�

(t) for all t.

To avoid this obstru
tion we shall make a kind of symple
ti
 redu
tion. Take the unit level of the Hamiltonian

H

�1

(1) � T

�

M and de�ne the restri
ted verti
al distribution as �

r

�

:= T

�

H

�1

(1) \ T

�

(T

�

q

M); � 2 H

�1

(1); q = �(�).

Note that dim�

r

�

= n� 1. Further on we de�ne the restri
ted Ja
obi 
urve

J

r

�

(t) = e

�t

~

H

�

�

r

e

t

~

H

(�)

� T

�

H

�1

(1) (5)

(a 
urve in the GrassmannianG(T

�

H

�1

(1); n�1); dimT

�

H

�1

(1) = 2n�1). The last step is the proje
tion of J

r

�

(t) with

respe
t to the 
anoni
al proje
tion T

�

H

�1

(1)! �

�

:= T

�

H

�1

(1)=R

~

H (�). Note that the in
lusion

~

H(�) � T

�

H

�1

(1)

and also (5) follow from the elementary symple
ti
 geometry (the 
ow of the Hamiltonian ve
tor �eld preserves the

Hamiltonian). Moreover, � is endowed with a symple
ti
 form whi
h is a redu
tion of � and whi
h we will denote by

the same letter. This fa
t will play a role later when we will 
onsider a problem of 
onjugate points.

The proje
ted Ja
obi 
urve J

�

(t) � �

�

(we use the same notation as for the initial 
urve) is free from the above

disadvantage: the Euler ve
tor �eld being transversal to the level sets of the Hamiltonian "disappears" after the

restri
tion to T

�

H

�1

(1) and from now on we may have

J

�

(t) \ J

�

(0) = f0g

for small t 6= 0.

Now we 
an realize our idea and the geometry of the Ja
obi 
urve in terms of the proje
tion operators. So 
onsider

a 
urve J(t) � � of m-dimensional subspa
es in a 2m-dimensional spa
e with the transversality 
ondition (4).

Let us 
hoose 
oordinates (p; q) in � in su
h a way that J(0) = f(p; 0) j p 2 R

m

g. Then J(t) = f(p; S(t)p) j p 2 R

m

g,

where S(t) is a m�m-matrix satisfying the 
onditions: S(0) = 0 and t 6= 0 then detS(t) 6= 0 if t 6= 0 (
f. the �gure).

6

-

�

�

�

�

�

�

�

�

p

q

-

S(t)

The matrix

�

t0

=

�

I �S

�1

(t)

0 0

�

represents in our 
oordinates the proje
tor �

t0

: � ! J(0) onto J(0) along J(t). Note that all proje
tors onto J(0)

form an aÆne spa
e, thus we get a 
urve t 7! �

t0

in the aÆne spa
e.

So 0 is an isolated root of detS(t). Now we make an additional assumption that this is a root of a �nite order. This

implies that S

�1

(t) has a pole at 0: �S

�1

(t) =

P

1

i=�k

t

i

S

i

for some 
onstant matri
es S

i

. On �

t0

this de
omposition

re
e
ts as

�

t0

=

1

X

i=�k;i6=0

t

i

�

0 S

i

0 0

�

+

�

I S

0

0 0

�

;

where

�

I S

0

0 0

�


an be regarded as a �xed point in the aÆne spa
e of all proje
tors and

�

0 S

i

0 0

�

as points in the

asso
iated linear spa
e. In a more 
ompa
t form

�

t0

=

X

i6=0

t

i

�

i

+ �

0

;

where �

0

: �! J(0) is a proje
tion along some transversal to J(0) subspa
e J

Æ

.

An analogous 
onstru
tion 
an be applied to any subspa
e J(t

0

) for t

0

> 0 small, instead of J(0). As a result we

get a new subspa
e J

Æ

(t

0

) of dimension m, and moreover, a new 
urve t 7! J

Æ

(t) whi
h will be 
alled a derivative


urve.
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Exer
ise 1 1. Prove that

�

J(�)J(t)

=

�

S

�1

�t

S(�) �S

�1

�t

S(t)S

�1

�t

S(�) �S(t)S

�1

�t

�

;

where S

�t

= S(�)� S(t).

2. Show that if S(0) = 0; det(

_

S(0)) 6= 0, then S

�1

(t) has a simple pole and S

�1

(t) =

1

t

_

S

�1

(0)�

1

2

_

S

�1

(0)

�

S(0)

_

S

�1

(0)+

O(t). Derive from here and from 1. the formula

J

Æ

(t) =

��

�

1

2

_

S

�1

(0)

�

S(0)

_

S

�1

(0)q; q

�

: q 2 R

m

�

:

Note that for small di�erent t

0

; t

1

the subspa
es J(t

0

); J

Æ

(t

0

); J(t

1

); J

Æ

(t

1

) are in general position and this allows

us to apply a multidimensional version of the 
lassi
al notion of the 
ross-ratio, whi
h we will re
all now.

De�nition 2 Given four m-dimensional subspa
es J

0

; : : : ; J

3

in general position in a 2m-dimensional spa
e �, let �

ij

denote a proje
tor onto J

j

along J

i

, i; j = 0; : : : ; 3. The 
ross-ratio of the subspa
es J

0

; : : : ; J

3

is the operator

[J

0

; J

1

; J

2

; J

3

℄ := (�

01

�

23

j

J

1

: J

1

�! J

1

):




























�

�

�

�

�

�

�

�

�














�








�

�

�

�

�

�I

�

�

�I

0

1

2

3

Note that �

ij

+ �

ji

= I; �

ik

�

jk

= �

jk

; �

ij

�

ik

= �

ij

.

Now, the idea to de�ne 
urvature is as follows: take J(t); J(t + "); J

Æ

(t); J

Æ

(t + ") and 
ompute the �rst term of

the 
ross-ratio as " tends to 0.

�

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

X

J

Æ

(t+ ")

J

Æ

(t)

J(t+ ")

J(t)

De�nition 3 A 
urvature (of a 
urve t 7! J(t)) is an operator R(t) : J(t)! J(t) given by the formula

R(t) = [

��

J

Æ

(t)J(�)

�t

��

J

Æ

(t)J(�)

��

j

�=t

℄j

J(t)

= �[�

J

Æ

(t)J(t)

�

2

�

J

Æ

(t)J(�)

�t��

j

�=t

℄j

J(t)

= �[

�

2

�

J

Æ

(t)J(�)

�t��

j

�=t

�

J

Æ

(t)J(t)

℄j

J(t)

;

where the last two equalities are obtained by the di�erentiation of the identities �

J

Æ

(t)J(�)

�

J

Æ

(t)J(�)

= �

J

Æ

(t)J(�)

and

�

J

Æ

(t)J(�)

�

J

Æ

(�)J(�)

= �

J

Æ

(�)J(�)

with respe
t to t and � .

Exer
ise 2 Compute R(t) of a 
urve J(t) = f(p; S(t)p) j p 2 R

m

g under an assumption det

_

S(t) 6= 0.

Answer: R(t) = ((2

_

S)

�1

�

S)

0

� ((2

_

S)

�1

�

S)

2

= (1=2)

_

S

�1

S

000

� (3=4)(

_

S

�1

�

S)

2

(matrix version of S
hwartzian derivative


oin
iding with the 
lassi
al one if S is s
alar).

Now we 
ome ba
k to the setting of 
ontrol theory and Ja
obi 
urves. Our next aim is to 
hara
terize the so-
alled


onjugate points in terms of the Ja
obi 
urves and dis
uss their relations with 
urvature.
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De�nition 4 We say that e

t

�

~

H

(�) is 
onjugate to � (or t

�

is 
onjugate to 0) if

e

t

�

~

H

�

�

r

�

\�

r

e

t

�

~

H

(�) 6= 0:

Obviously, this 
ondition is equivalent to �

r

�

\ e

�t

�

~

H

�

�

r

e

t

�

~

H

(�) 6= 0. The �rst term in the left hand side is J

�

(0) while

the se
ond one is J

�

(t

�

). This allows us to say that t

�

is 
onjugate to t

0

if

J(t

0

) \ J(t

�

) 6= 0:

Now re
all that the spa
e � where our Ja
obi 
urve t 7! J(t) takes values has the symple
ti
 form � (the redu
tion

of the 
anoni
al symple
ti
 form on T

�

M) and that a subspa
e J � � of dimension (1=2) dim� is 
alled Lagrangian

if �j

J

= 0.

Exer
ise 3 1. Show that if J(t) is a Ja
obi 
urve (
onstru
ted from some 
ontrol system) J(t) is Lagrangian for

any t.

2. Let � = R

2m

with the standard symple
ti
 form dp ^ dq. Show that a subspa
e � = f(p; Sp) j p 2 R

m

g is

Lagrnagian if and only if S is symmetri
. Dedu
e from this that dimension of the spa
e L(�) of all Lagrangian

subspa
es (Lagrangian Grassmannian) equals m(m+ 1)=2.

Given any Ja
obi 
urve J(t) = f(p; S(t)p) j p 2 R

m

g; S(0) = 0, one 
an intrinsi
ally identify its velo
ity

_

J(t) with a

quadrati
 form on J(t):

_

J(t) : � 7! �(�;

�

��

�

�

j

�=t

) : J(t)! R

(here �

�

is any smooth 
urve belonging to J(�)).

6

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J(�)

�

�

�

J(�)

In parti
ular

_

J(0) : p 7! hp;

_

S(0)pi. We say that J(t) is monotoni
 if

_

J(t) > 0 (

_

J(t) 6 0).

Exer
ise 4 1. Prove that

_

S(0) = �

�

2

H

�p

2

and

_

J

�

(t) � �

�

2

H

�p

2

j

e

t

~

H

(�)

(� means equivalen
e of quadrati
 forms with

respe
t to linear 
hanges of variables). Con
lusion: if H is 
onvex then J(t) is monotoni
.

2. If

_

J(t) is an Eu
lidean stru
ture then the 
urvature operator R(t) is symmetri
 in it (and we also 
an distinguish

the de�nite 
ases: R(t) >6 0).

Theorem 2 Assume we are in the regular situation:

_

J(t) > 0. Then R(t) 6 0 implies nonexisten
e of 
onjugate

points.

In parti
ular, for m = 1 (� is a plane) there exist some limiting lines to whi
h tend J(t) and J

0

(t):

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

J(t)

?

6

J

0

(t)

5



Exer
ise 5 Prove that the 
ondition R(t) 6 0 is equivalent to

_

J

0

(t) 6 0.

Hint: We have � = J(t) � J

Æ

(t) and symple
ti
 form on � de�nes a non degenerate pairing of J(t) and J

Æ

(t) so

that J




ir
(t)

�

=

J(t)

�

, J(t)

�

=

J




ir
(t)

�

. Velo
ity

_

J(t) is identi�ed with a quadrati
 form on the spa
e J(t) or, in other

words, with a self-adjoint linear mapping from J(t) to J(t)

�

. We obtain:

_

J(t) : J(t)! J(t)

�

�

=

J

Æ

(t)

_

J(t) : J(t)! J

Æ

(t)

_

J

Æ

(t) : J

Æ

(t)! J(t) R(t) =

_

J

Æ

(t)

_

J(t) : J(t)! J(t):

Theorem 3 (Comparison Theorem)

1. If R(t) 6 C Id (all eigenvalues are less or equal to C) and points t

0

; t

1

are 
onjugate, then jt

1

� t

0

j > �=

p

C.

2. If (1=m) trR(t) > C, then for any t

0

and for any t > t

0

the segment [t; t+ �=

p

C℄ 
ontains a point t

1


onjugate

to t

0

.

Now we will dis
uss the spe
ial 
ase of 
onstant 
urvature:

R(t) = C Id : (6)

If C = 0, i.e. R(t) = 0, then J

Æ

(t) = 
onst. This 
orresponds to the 
ase of "straight lines": J(t) = f(p; tp) j p 2 R

m

g.

If C 6= 0 (note that J

Æ

(t)\J(t) = f0g; J

ÆÆ

(t)\J

Æ

(t) = f0g) 
ondition (6) implies J

ÆÆ

(t) = J(t). In general, solutions

of the equation J

ÆÆ

(t) = J(t) have normal forms in
luding the 
ase (6). In Riemannian geometry J

ÆÆ

(t) = J(t)


orresponds to symmetri
 spa
es.

Exer
ise 6 If J(t) = f(p; S(t)p) j p 2 R

m

g, S(0) = 0,

_

S(0) = I then the 
ondition J

ÆÆ

(t) � J(t) implies S(t) =

(2R)

�1=2

tan(t(2R)

1=2

) (S(t) is symmetri
, hen
e

p

� is well-de�ned) and the 
omparison theorem is sharp for the


onstant 
urvature.

We 
on
lude with the dis
ussion how to 
onstru
t a Ja
obi 
urve in the degenerate 
ase. Come ba
k to a 
ontrol

system (1) and assume that

f(q; u) = f

0

(q) +

X

i

u

i

f

i

(q); U = R

n

:

Re
all that an \optimal" traje
tory is one going to the boundary of the attainable set. Put F

t

: u(�) 7! q(q

0

; u(�); t),

where q(q

0

; u(�); t) is the traje
tory with the initial 
ondition q

0

and 
ontrol u evaluated at time t, and 
all it input-

state mapping. So the attainable set is the image of F

t

and if u(�) is an \optimal" 
ontrol then it is a 
riti
al point

of F

t

, i.e. imD

u(�)

F

t

6= T

q(t)

M , or equivalently, there exists �

t

2 T

�

q(t)

M;�

t

6= 0, su
h that �

t

D

u(�)

F

t

= 0. In turn, if

u(t) is 
riti
al for F

t

then for any � 6 t, uj

[0;� ℄

is 
riti
al for F

�

, or there exists a nontrivial �

�

2 T

�

q(�)

M su
h that

�

�

D

uj

[0;�℄

F

�

= 0.

This 
an be expressed as the following system of equations:

_

�

�

=

~

h(�; u(�))

�h

�u

(�; u(�)) = 0;

where h(�; u) = h�; f(q; u)i. In 
oordinates we have � = (p; q); h(�; u) = pf(q; u) and

_p = �

�h

�q

(p; q; u) _q =

�h

�p

(p; q; u)

�h

�u

(p; q; u) = 0:

If det

�

2

h

�u

2

6= 0 then the last equation 
an be solved at least lo
ally, i.e. there exists u(�) su
h that

�h

�u

(�; u(�)) = 0. If,

in addition,

�

2

h

�u

2

< 0 this u maximizes h(�; �): h(�; u(�)) = H(�), so we 
ome to the situation des
ribed earlier (see

(2)). In general non degenerate 
ase we 
an substitute u(�) into �rst two equations of the system and pro
eed as we

did for H in order to 
onstru
t the Ja
obi 
urve.

Now, if

�

2

h

�u

2

is degenerate (it is identi
al 0 for the above aÆne in 
ontrol system) we need to linearize the system

�rst and then to 
onstru
t the Ja
obi 
urve. This way we 
ome to a notion of an L-derivative.

Let W be a smooth (possibly in�nite-dimensional) manifold, F :W !M be a smooth map. Consider the system

�D

w

F = 0 � 2 T

�

F (w)

M; (7)

whi
h in 
oordinates (� = (p; q)) 
an be rewritten as

p

�F

�w

= 0 q = F (w):
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Let us try to linearize it:

p

0

�F

�w

+ p

�

2

F

�w

2

w

0

= 0 q

0

=

�F

�w

w

0

:

De�ne L

(w;�)

F � T

�

(T

�

M) as

L

(w;�)

F =

��

p

0

q

0

�

: 9w

0

s.t. p

0

�F

�w

+ p

�

2

F

�w

2

w

0

= 0; q

0

=

�F

�w

w

0

�

:

Proposition If dimW <1, then L

(w;�)

F is a Lagrangian subspa
e of T

�

(T

�

M).

In the in�nite-dimensional 
ase

�

2

F

�w

2

may have a non-
losed image; more pre
isely, the image is 
losed if and only if

we are in the regular situation. So we need to 
hange the de�nition.

By the proposition above for any �nite-dimensional submanifold V � W and any w 2 V the subspa
e �

V

:=

L

(w;�)

(F j

V

) is Lagrangian in T

�

(T

�

F (w)

M). The set of all �nite-dimensional submanifolds of W is partially ordered by

� and �

V

form a generalized sequen
e; we 
an try to pass to the limit.

Theorem 4 The limit lim

V

�

V

=: L

(w;�)

F exists if and only if the Hessian Hess

w

�F has �nite positive or negative

inertia index.

To 
ompute the L-derivative one should approximate W by �nite-dimensional manifolds.

Now return to a 
ontrol system (1) and de�ne a map G

�

: v(�) 7! q̂(0), where v(�) is in a spa
e of 
ontrols and

dq̂

d�

= f(q̂; v(�)); q̂(�) = q(�). Then for any � 2 [0; t℄ we 
an write a variant of system (7) for G

�

�(0)D

u(�)j

[0;�℄

G

�

= 0

and then linearize it in order to 
onstru
t an L-derivative.

Finally, the Ja
obi 
urve we are looking for is de�ned as J

�(0)

(�) = L

(u(�);�(0))

G

�

(J(�) is a Lagrangian subspa
e

of T

�(0)

(T

�

M)).
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