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Abstract—In this semi-expository paper we disclose hidden symmetries of a classical nonholo-
nomic kinematic model and try to explain the geometric meaning of the basic invariants of
vector distributions.
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1. INTRODUCTION

The paper is dedicated to Vladimir Igorevich Arnold on the occasion of his 70th birthday. This
is just a small mathematical souvenir, but I hope that Vladimir Igorevich will get some pleasure
looking it over. The content of the paper is well described by the cryptogram below. Figure 1
represents the root system of the exceptional Lie group G2 (the automorphism group of octonions)
and two circles touching each other whose diameters are in the ratio 3 : 1.

Our starting point is a classical nonholonomic kinematic system that is rather important in
robotics: a rigid body rolling over a surface without slipping or twisting. The surface is supposed
to be the surface of another rigid body, so that the situation is, in fact, symmetric: one body is
rolling over another. We also assume that the surfaces of the bodies are smooth and cannot touch
each other at more than one point.

This system has a five-dimensional configuration space: the coordinates of the points on each
surface at which the surfaces touch each other give four parameters; the fifth parameter measures
the mutual orientation of the bodies at the touching point.

Now assume that one of the bodies is immovable and the other rolls along it. It is rather clear
that given an initial configuration, one can roll the movable body in a unique way along any curve
on the immovable surface starting from the initial touching point. In other words, for a given
initial configuration, admissible motions are parameterized by the curves on the two-dimensional
surface with a fixed initial point. On the other hand, it is not hard to prove (see [2, Ch. 24]) that
admissible motions allow one to reach any configuration from any other provided that two bodies
are not congruent. We are thus in a typical nonholonomic situation since the configuration space is
five-dimensional.

Now turn to mathematics. Admissible velocities (i.e., the velocities of admissible motions) form
a rank 2 vector distribution on the configuration space. This distribution is involutive if and only
if our bodies are balls of equal radii. More precisely, let vector fields f and g form a local basis
of our distribution, [f, g] be the commutator (Lie bracket) of the fields, and q be a point of the
configuration space. It turns out that the vectors f(q), g(q), and [f, g](q) are linearly independent
if and only if the curvatures of the two surfaces are not equal at their touching points corresponding
to the configuration q. Moreover, if these curvatures are not equal, then

f(q) ∧ g(q) ∧ [f, g](q) ∧ [f, [f, g]](q) ∧ [g, [g, f ]](q) �= 0. (1)
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14 A.A. AGRACHEV

Fig. 1.

In other words, the basis fields and their first- and second-order Lie brackets are all linearly inde-
pendent. All these calculations are presented in [2, Ch. 24].

The germs of rank 2 distributions in R
5 with property (1) were first studied by Elie Cartan in his

famous paper [6]. A simple count of parameters demonstrates that 5 is the lowest dimension where
the classification of generic germs of distributions must have functional invariants. This happens
for rank 2 and rank 3 distributions in R

5; moreover, the classifications for these two values of the
rank are essentially equivalent, and it is sufficient to study the case of rank 2.

Cartan found a fundamental tensor invariant that is a degree 4 symmetric form on the distribu-
tion: the desired functional invariant is just the cross-ratio of the roots of this form. There is exactly
one equivalence class for which Cartan’s form is identically zero. We call the germs from this class
flat ; a germ of the distribution is flat if and only if it admits a basis generating a five-dimensional
nilpotent Lie algebra. Cartan showed that the symmetry group of a flat distribution is the real split
form of the 14-dimensional exceptional simple Lie group G2. In all other cases, the dimension of
the symmetry group does not exceed 7.

How all this is related to the rolling bodies? It is rather obvious that the group of symmetries of
the “no-slipping no-twisting distribution” is trivial for generic bodies. This group acts transitively
on the configuration space if and only if the surfaces of both bodies have constant curvatures. Let
us restrict ourselves to the case of constant nonnegative curvatures, so that the surfaces are spheres
(one of them may be a plane, i.e., a sphere of infinite radius).

Natural symmetries are isometries of the spheres; they form a six-dimensional compact Lie
group. It was Robert Bryant who first claimed that the no-slipping no-twisting distribution is flat
in the case of spheres whose radii are in the ratio 3 : 1. He insisted that he just followed Cartan’s
method and never published this fact in a paper or a preprint. It also remained absolutely unclear
what the nature of hidden additional symmetries is (the dimension of the symmetry group jumps
from 6 to 14 when the ratio of the radii becomes 3 : 1!). Unfortunately, Cartan’s method does not
give much in this regard: the construction of the fundamental invariant is based on the involved
reduction–prolongation procedures in jet spaces, and any connection with the original geometric
problem is lost quite far from the end of the way.

The goal of this note is to finally untwine this puzzle. In Section 2 we give a simple twistor
model for the configuration space of the rolling balls problem and for the no-slipping no-twisting
distribution; the role of the group G2 is not yet clear from this model.

The split form of G2 is the group of automorphisms of split-octonions, a hyperbolic version of
usual octonions, where a positive definite quadratic form (the square of the norm of octonions) is
replaced by a nondegenerate sign-indefinite quadratic form. Split-octonions have nontrivial divisors
of zero (the zero locus of the sign-indefinite form). A simple quadratic transformation demonstrates
that the no-slipping no-twisting distribution is equivalent to the “divisors-of-zero distribution” of
split-octonions if the radii of the balls are in the ratio 3 : 1. This is the subject of Section 3.
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ROLLING BALLS AND OCTONIONS 15

In Section 4 we outline a recently developed variational way to construct differential invariants of
vector distributions in order to put the rolling bodies model in a broader framework and to explain
the meaning of the basic invariants.

2. TWISTOR MODEL

We study admissible motions of two balls Br and BR rolling one over another without slipping
or twisting. Here r and R are the radii of the balls. The instantaneous configuration of the system
of two balls is determined by an orientation-preserving isometry of the tangent planes to the spheres
Sr = ∂Br and SR = ∂BR at the points where the balls touch each other. In other words, the state
space of our kinematic system is

MR,r =
{
µ : Tq1Sr → Tq2SR | q1 ∈ Sr, q2 ∈ SR, and µ is an isometry of oriented planes

}
.

It is easy to see that MR,r is a smooth five-dimensional manifold. The motions of the system
are families of isometries µ(t) : Tq1(t)Sr → Tq2(t)SR, t ∈ R. The no-slipping condition reads

µ(t)(q̇1(t)) = q̇2(t).

The no-twisting condition requires that µ(t) transforms parallel vector fields along q1(t) into parallel
vector fields along q2(t).

These two conditions define a rank 2 vector distribution DR,r on MR,r. We have DR,r =⋃
µ∈MR,r

DR,r
µ , where DR,r

µ is a two-dimensional subspace of TµMR,r; the admissible motions of the
two-ball system are exactly the integral curves of the distribution DR,r. Given an initial configu-
ration, the ball Br can be rolled in a unique way along any smooth curve on SR, and the same is
true if we interchange r and R. In the formal geometric language this observation just means that
the subspace DR,r

µ ⊂ TµMR,r, where µ : Tq1 → Tq2 , is projected one-to-one onto Tq1SR and Tq2Sr

∀µ ∈ MR,r.
In what follows, we treat Sr and SR as unit spheres in R

3 with rescaled metrics:

MR,r =
{
µ : q⊥1 → q⊥2 | qi ∈ R

3, |qi| = 1, i = 1, 2, R|µ(v)| = r|v| ∀v ∈ q⊥1
}
.

Let ρ = R
r ; the homothety ιρ : µ �→ ρµ, µ ∈ MR,r, transforms MR,r into M1,1. We set Dρ = ιρ∗DR,r.

The distribution Dρ on M1,1 is determined by the “rescaled” no-slipping condition

µ(q̇1(t)) = ρq̇2(t)

and the no-twisting condition; the latter remains unchanged.
From now on we will deal with the fixed space M1,1 endowed with the family of distributions Dρ

instead of the family of pairs (MR,r,D
R,r). In order to explicitly describe the distributions Dρ, we

use a classical quaternion parameterization of the spherical bundle p : S → S2 of the unit sphere
S2 ⊂ R

3, where

S =
{
(q, v) ∈ R

3 × R
3 | |q| = |v| = 1, 〈q, v〉 = 0

}
, p(q, v) = q.

Let us recall this parameterization. We identify R
3 with the space of imaginary quaternions:

R
3 = {αi + βj + γk | α, β, γ ∈ R} ⊂ H.

Let S3 = {w ∈ H | |w| = 1} be the group of unitary quaternions; then h : S3 → S2, h(w) = w̄iw is
the classical Hopf bundle, and the mapping

Ψ: S3 → S, Ψ(w) = (w̄iw, w̄jw)
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16 A.A. AGRACHEV

is a double covering. Moreover, the diagram

S3 Ψ−−−−→ S⏐⏐�h

⏐⏐�p

S2 S2

is commutative; hence, Ψ is a fiberwise mapping of the bundle h : S3 S1

−→ S2 onto the bundle
p : S S1

−→ S2 which induces a double covering of the fibers. The fibers of the bundle h : S3 → S2 are
the residue classes {eiθw | θ ∈ R mod2π} of the one-parameter subgroup generated by i.

The vectors orthogonal to the fibers form a distribution

span{jw, kw} ⊂ TwS3, w ∈ S3,

which is a connection on the principal bundle h : S3 → S2. It is easy to see that Ψ transforms
this connection into the Levi-Civita connection on the bundle p : S → S2, which defines a standard
parallel translation on S2.

We are now ready to give a quaternion model of the rolling balls configuration space M1,1 (more
precisely, of a double covering of M1,1) and of the no-slipping no-twisting distributions Dρ. For any
w1, w2 ∈ S3 there exists a unique orientation-preserving isometry of the fiber

h−1(h(w1)) = {eiθw1 | θ ∈ R mod2π}

onto the fiber h−1(h(w2)) that sends w1 to w2. This isometry sends eiθw1 to eiθw2. Moreover, pairs
(w1, w2) and (w′

1, w
′
2) define the same isometry if and only if w′

1 = eiθ′w1 and w′
2 = eiθ′w2 (with

the same θ′). Hence, the coset space of S3 × S3 by the action (w1, w2) �→ (eiθw1, e
iθw2) of the

one-parameter group {eiθ | θ ∈ R mod2π} is a double covering of M1,1. We use the symbol M for
this coset space and π : S3 × S3 → M for the canonical projection. By Dρ =

⋃
x∈D Dρ

x we denote
the rank 2 distribution on M that is the pullback of Dρ under the double covering M → M1,1.
Then

Dρ
π(w1,w2)

= π∗ span{(jw1, ρjw2), (kw1, ρkw2)} ∀w1, w2 ∈ S3.

Let us now treat the quaternionic space H
2 = {(w1, w2) | wi ∈ H} as C

4, where w1 = z1 + z2j
and w2 = z3 + z4j, zl ∈ C, l = 1, . . . , 4. We see that M is nothing else but a complex projective
conic,

M =
{
z1 : z2 : z3 : z4 | |z1|2 + |z2|2 = |z3|2 + |z4|2

}
⊂ CP3.

This conic is often called the “space of isotropic twistors.” Moreover,

Dρ
π(w1,w2)

= π∗Cj(w1, ρw2).

3. SPLIT-OCTONIONS

We also treat H
2 as the algebra Ô = {w1 + 	w2 | wi ∈ H} of split-octonions, where

(a + 	b)(c + 	d) = (ac + db̄) + 	(ād + cb). (2)

Let x = w1 + 	w2, x̄ = w̄1 − 	w̄2, and Q(x) = x̄x = |w1|2 − |w2|2. Then Q(xy) = Q(x)Q(y) and
x−1 = x̄

Q(x) as soon as Q(x) �= 0; the cone Q−1(0) consists of the divisors of zero.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 258 2007



ROLLING BALLS AND OCTONIONS 17

The automorphism group of the algebra Ô is the split form of the exceptional Lie group G2 [10].
These automorphisms preserve the quadratic form Q and hence its polarization Q(x, y) =
1
4(Q(x + y) − Q(x − y)). In particular, these automorphisms preserve the subspace R

7 =
{
x ∈ Ô |

Q(1, x) = 0
}

and the conic

K = {x ∈ R
7 | Q(x) = 0} =

{
x ∈ Ô | xx = 0

}
.

Moreover, the automorphism group of Ô acts transitively on the “spherization” K = {R+x |
x ∈ K \ 0} = S2 × S3 of the cone K.

With any x ∈ K \ 0 there is associated a three-dimensional subspace of divisors of zero,

∆x = {y ∈ R
7 | xy = 0};

the “spherization” turns ∆x into a two-dimensional subspace ∆x ⊂ TxK, where x = R+x. Obvi-
ously, the automorphism group of Ô preserves the vector distribution ∆ = {∆x}x∈K.

Proposition 1. The mapping Φ: (w1+	w2) �→ (w−1
1 iw1+	(w−1

1 w2)) induces a diffeomorphism
of M onto K. Moreover, the differential of this diffeomorphism transforms the no-slipping no-
twisting distribution D3 into the divisors-of-zero distribution ∆.

Proof. Let Φ̂ : M → K be the mapping induced by Φ. We give an explicit formula for Φ̂−1:
take v1 ∈ S2, v1 = h(w1); then

Φ̂−1(v1 + 	v2) = π(w1 + 	(w1v2)) ∀v2 ∈ S3.

Now we must prove that Φ(x)(DxΦy) = 0 for any x = w1 + 	w2 and y = zjw1 + 3	(zjw2) such
that |w1| = |w2| and z ∈ C. It is sufficient to make calculation in the case of |w1| = |w2| = 1. We
have

Dw1+�w2Φ(zjw1 + 	(zjw2)) = 2w̄1zkw1 + 2	(w̄1zjw2).

The desired result now follows from the multiplication rule (2).
Let us give an explicit parameterization of the distribution ∆ on K. First, we parameterize K

itself:
K =

{
v1 + 	v2 | v1 ∈ R

3, v2 ∈ H, |v1| = |v2| = 1
}
.

Then ∆v1+�v2 = {v1u + 	(uv2) | u, (v1u) ∈ R
3}; this is a simple corollary to the multiplication

rule (2). Let v ∈ R
3 with |v| = 1; the mapping w �→ w + vwv maps H onto the subspace

{u | u, (vu) ∈ R
3}. Now we replace u by w + v1wv1 in the above description of ∆v1+�v2 and obtain

the final parameterization

∆v1+�v2 =
{
[v1, w] + 	((w + v1wv1)v2) | w ∈ H

}
.

4. JACOBI CURVES

In this section we briefly describe the variational approach to differential invariants of vector
distributions (see [1, 3, 11]) in order to put the rolling balls model in a wider perspective. This
approach is based on the contemporary optimal control techniques and suggests an alternative to
the classical equivalence method (see [6–8]) of Elie Cartan.

A rank k vector distribution ∆ on the n-dimensional smooth manifold M is just a smooth vector
subbundle of the tangent bundle TM :

∆ =
⋃

q∈M

∆q, ∆q ⊂ TqM, dim ∆q = k.
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18 A.A. AGRACHEV

Distributions ∆ and ∆′ are called locally equivalent at q0 ∈ M if there exists a neighborhood
Oq0 ⊂ M of q0 and a diffeomorphism Φ: Oq0 → Oq0 such that Φ∗∆q = ∆′

Φ(q) ∀q ∈ Oq0 .
A local basis of ∆ is a k-tuple of smooth vector fields f1, . . . , fk ∈ Vec M such that

∆q = span{f1(q), . . . , fk(q)}, q ∈ Oq0.

Given a local basis, one may compute the flag of the distribution :

∆l
q = span

{
(ad fij . . . ad fi1fi0)(q) | 0 ≤ j < l

}
, l = 1, 2, . . . ,

where ad fg
def= [f, g] is the Lie bracket.

It is easy to see that the subspaces ∆l
q do not depend on the local basis. We set ∆l =

⋃
q∈M ∆l

q, a
growing sequence of subsets in TM . This sequence stabilizes as soon as ∆l+1 = ∆l. The distribution
is involutive if and only if ∆2 = ∆ and is completely nonholonomic (our subject) if ∆l = TM for
sufficiently large l. Generic distributions are, of course, completely nonholonomic.

The integral curves of a distribution are often called horizontal paths. It is convenient to consider
all paths of class H1 rather than only smooth ones. We thus have a Hilbert manifold Ω∆ of horizontal
paths:

Ω∆ =
{
γ ∈ H1([0, 1];M) | γ̇(t) ∈ ∆γ(t) for a.e. t ∈ [0, 1]

}
.

Now consider boundary mappings
∂t : Ω∆ → M × M

defined by the formula ∂t(γ) = (γ(0), γ(t)). It is easy to show that ∂t are smooth mappings.
The critical points of the mapping ∂1 are called singular curves of ∆. Any singular curve is

automatically a critical point of ∂t ∀t ∈ [0, 1]. Moreover, any singular curve possesses a singular
extremal, i.e., an H1-curve λ : [0, 1] → T ∗M in the cotangent bundle to M such that

λ(t) ∈ T ∗
γ(t)M \ {0}, (λ(t),−λ(0))Dγ∂t = 0 ∀t ∈ [0, 1].

We set
∆⊥

q = {ν ∈ T ∗
q M | 〈ν,∆q〉 = 0, ν �= 0}, ∆⊥ =

⋃
q∈M

∆⊥
q .

Obviously, ∆⊥ is a smooth (n + k)-dimensional submanifold of T ∗M (the annihilator of ∆).
Let σ be the canonical symplectic structure on T ∗M . The Pontryagin maximum principle

implies that a curve λ in T ∗M is a singular extremal if and only if it is a characteristic curve of the
form σ|∆⊥ ; in other words,

λ(t) ∈ ∆⊥, λ̇(t) ∈ ker
(
σ|∆⊥

)
, 0 ≤ t ≤ 1.

All singular extremals are contained in the characteristic variety

C∆ =
{
z ∈ ∆⊥ | ker σz|∆⊥ �= 0

}
.

We have C∆ = ∆2⊥ if k = 2 and C∆ = ∆⊥ if k is odd; typically, C∆ is a codimension 1 submanifold
of ∆⊥ if k is even.

A complete description of singular extremals is a difficult task; to simplify the job, we focus only
on the regular part of the characteristic variety. We set

C0
∆ =

{
z ∈ C∆ | dimker σz|∆⊥ ≤ 2, dim

(
ker σz|∆⊥ ∩ TzC∆

)
= 1

}
(see Fig. 2). If k = 2, then C0

∆ = ∆2⊥ \ ∆3⊥.
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C0
∆

kerσz|∆⊥

Fig. 2.

C0
∆

M



�

T ∗
q M ∩ C0

∆

Singular extremals

Singular curves

Fig. 3.

Note that C0
∆ is a smooth submanifold of ∆⊥; it is foliated by singular extremals and by the

fibers T ∗
q M ∩ C0

∆.
A motion along singular extremals defines a local flow on C0

∆; typically, this flow is not fiberwise,
i.e., it does not transform fibers into fibers (see Fig. 3).

Given z ∈ C0
∆ and an appropriate small neighborhood C0

z of z in C0
∆, we consider the canonical

projection

F : C0
z → C0

z/{Singular extremals foliation}

of C0
z onto the space of singular extremals contained in C0

z .
Assume that λ is a singular extremal that passes through z and is associated with a singular

curve γ; i.e., λ(0) = z and λ(t) ∈ T ∗
γ(t)M . Consider a family of subspaces

J0
λ(t) = TλF

(
T ∗

γ(t)M ∩ C0
z

)
of the space

TλC0
z/{Singular extremals foliation} ∼= TzC

0
∆/Tzλ.
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20 A.A. AGRACHEV

Then t �→ J0
λ(t) is a smooth curve in the corresponding Grassmann manifold. The geometry of the

curves t �→ J0
λ(·) reflects the dynamics of the fibers along singular extremals and contains important

information about the distribution ∆.

In what follows we assume that k = 2, n ≥ 5, and ∆2
q and ∆3

q have maximum possible dimensions,
i.e., dim∆2

q = 3 and dim ∆3
q = 5.

I. First we consider the case n = 5, which was studied by Cartan (see the Introduction). Let
z ∈ T ∗

q M and π : Tz(T ∗M) → TqM be the differential at z of the projection T ∗M → M ; then
π(J0

λ(t)) ⊂ z⊥ ⊂ TqM . Moreover, Tqγ ⊂ π(J0
λ(t)) and t �→ π(J0

λ(t)) is a curve in the projective
plane P(z⊥/Tqγ).

Proposition 2 (see [4]). A rank 2 distribution ∆ on the five-dimensional manifold is flat if
and only if the curve π(J0

λ(·)) is a quadric for any singular extremal λ.

In general, π(J0
λ(·)) is not a quadric. Let q = γ(0) and Kz(q) ⊂ z⊥ be the best approximating

quadric for the curve π(J0
λ(·)) near the point corresponding to the zero value of the parameter t

(the osculating quadric of classical projective geometry); then Kz(q) is the zero locus of a signature
(2, 1) quadratic form on z⊥/Tqγ. We can, of course, treat Kz(q) as the zero locus of a degenerate
quadratic form on z⊥. Finally, K(q) =

⋃
z∈∆2⊥

q
Kz(q) is the zero locus of a (3, 2) quadratic form on

TqM (see [4] for details).
The family of quadratic cones K(q), q ∈ M , is a conformal structure on M intrinsically “raised”

from ∆, and ∆q ⊂ K(q). This conformal structure was first found by Nurowski [9], who applied
Cartan’s equivalence method.

Remark. Nurowski’s conformal structure has a particularly simple description for the divisors-
of-zero distribution ∆ from Section 3. Namely, K(x) = Q−1(0) ∩ TxK, x ∈ K, in this case.

II. From now on n is any integer greater than or equal to 5. Let z ∈ C0
∆, λ be the singular

extremal through z, and γ be the corresponding singular curve. We set

Jλ(t) = DλF
(
π−1∆γ(t)

)
⊂ TzC

0
∆/Tzλ.

Then Jλ(t) ⊃ J0
λ(t) and Jλ(t) is a Lagrangian subspace of the symplectic space TzC

0
∆/Tzλ. In other

words, Jλ(t)∠ = Jλ(t), where

S∠ def=
{
ζ ∈ TzC

0
∆ : σ(ζ,S) = 0

}
, S ⊂ Tz.

If s ∈ R \ {0}, then sλ is a singular extremal through sz ∈ C0
∆. Hence, Tz(Rz) ⊂ Jλ(t) ∀t

and Jλ(t) ⊂ Tz(Rz)∠. This inclusion allows one to make another useful reduction. Namely, we set
Σz = Tz(Rz)∠/TzRz, a symplectic space of dimension 2(n−3); then Jλ(t) is a Lagrangian subspace
of Σz.

Let L(Σz) be the Lagrange Grassmannian, i.e., the manifold formed by all Lagrangian subspaces
of Σz. The curve t �→ Jλ(t) considered as a curve in L(Σz) is called the Jacobi curve associated
with the extremal λ.

The dimension of a Lagrangian subspace is one-half of the dimension of the ambient symplectic
space. In particular, a generic pair of Lagrangian subspaces has zero intersection. Jacobi curves are
not at all generic; nevertheless, under very mild regularity assumption on the distribution (see [11]),
they satisfy the following important property: Jλ(t) ∩ Jλ(τ) = 0 for sufficiently small |t − τ | �= 0.

Let πtτ be the linear projector of Σz onto Jλ(τ) along Jλ(t). In other words, πtτ : Σz → Σz and

πtτ

∣∣
Jλ(t)

= 0, πtτ

∣∣
Jλ(τ)

= 1.
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ROLLING BALLS AND OCTONIONS 21

Lemma 1 (see [3]). We have

tr
(

∂2πtτ

∂t ∂τ

∣∣∣∣
Jλ(τ)

)
=

(n − 3)2

(t − τ)2
+ gλ(t, τ),

where gλ(t, τ) is a symmetric function of (t, τ) that is smooth in a neighborhood of (t, t) for all t
outside a discrete subset of the domain of Jλ(·).

In what follows, we tacitly assume that the value of t is taken outside the discrete subset men-
tioned in the lemma. A basic invariant of the parameterized singular extremal λ is the generalized
Ricci curvature

rλ(λ(t)) def= gλ(t, t).

The generalized Ricci curvature depends on the parameterization of the extremal; this depen-
dence is controlled by the following chain rule. Let ϕ : R → R be a change of the parameter;
then

rλ◦ϕ(λ(ϕ(t))) = rλ(λ(ϕ(t)))ϕ̇2(t) + (n − 3)2S(ϕ),

where S(ϕ) =
...
ϕ (t)
2ϕ̇(t) −

3
4

( ϕ̈(t)
ϕ̇(t)

)2 is the Schwarzian derivative. The chain rule implies that the gener-
alized Ricci curvature rλ can always be made zero by a local reparameterization of the extremal λ.
We say that a local parameter t is a projective parameter if rλ(t) ≡ 0; such a parameter is defined
up to a Möbius transformation.

Let t be a projective parameter; then the quantity

A(λ(t)) =
∂2g

∂τ2
(t, τ)

∣∣∣∣
τ=t

(dt)4

is a well-defined degree 4 differential on λ; we call it the fundamental form on λ.
Under an arbitrary, not necessarily projective, parameterization, the fundamental form has the

following expression:

A(λ(t)) =
(

∂2g

∂τ2

∣∣∣∣
τ=t

− 3
5(n − 3)2

rλ(t)2 − 3
2
r̈λ(t)

)
(dt)4.

Assume that A(λ(t)) �= 0; then the identity
∣∣A(λ(s))

(
d
ds

)∣∣ = 1 defines a unique (up to a translation)
normal parameter s.

Let z ∈ C0
∆ and λs be the normally parameterized singular extremal through z. We set

r̄(z) = rλs(z).

The function z �→ r̄(z) defined on C0
∆ depends only on ∆ and is called the projective generalized

Ricci curvature.

Now come back to the case of k = 2 and n = 5. In this case, the fundamental form A is reduced
to the famous Cartan’s degree-four form on the distribution constructed in [6] by the method of
equivalence. The distribution is flat if and only if A ≡ 0.

Zelenko [11] performed detailed calculations for the rolling balls model. As before, let ρ be the
ratio of the radii of the balls. We assume that 1 < ρ ≤ +∞. It turns out that

sgn(A) = sgn(ρ − 3).
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Singular curves are just rolling motions along geodesics (i.e., along great circles). The symmetry
group acts transitively on the space of geodesics; therefore, the function r must be constant in this
case. We have

r̄ =
4
√

35(ρ2 + 1)
3
√

(ρ2 − 9)(9ρ2 − 1)
.

In particular, the distributions corresponding to different ρ are mutually nonequivalent, and only
the distribution corresponding to ρ = 3 is flat.
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