
Strong Minimality of Abnormal Geodesi
s for 2-Distributions

Andrei A. Agra
hev

�

Andrei V. Sary
hev

y

Abstra
t

We investigate the lo
al length minimality (by the W

1;1

or H

1

-topology) of abnor-

mal sub-Riemannian geodesi
s for rank 2 distributions. In parti
ular, we demonstrate

that this kind of lo
al minimality is equivalent to the rigidity for generi
 abnormal

geodesi
s, and introdu
e an appropriate Ja
obi equation in order to 
ompute 
onjugate

points. As a 
orollary, we obtain a re
ent result of Sussmann and Liu about the global

length minimality of short pie
es of the abnormal geodesi
s.

1 Introdu
tion

In this paper we study abnormal sub-Riemannian geodesi
s. Let us re
all that a sub-

Riemannian stru
ture on a Riemannian manifoldM is de�ned by a bra
ket generating (or

a possessing full Lie rank) distribution D onM: A lo
ally Lips
hitzian path q(�) (� 2 [0; T ℄)

is admissible if its tangents lie in D for almost all � 2 [0; T ℄: Given two points q

0

and q

1

one 
an set out the problem of �nding minimal (i.e. length-minimizing) admissible path


onne
ting q

0

with q

1

:

An essential distin
tion of this setting from the 
lassi
al Riemannian 
ase is that the

spa
e of all lo
ally Lips
hitzian paths 
onne
ting q

0

with q

1

has a stru
ture of Bana
h

manifold with minimal paths being 
riti
al points of the length fun
tional, or Riemannian

geodesi
s on the manifold M , whereas the spa
e of admissible paths is not, in general,

a manifold and may have singularities. These singularities 
orrespond to the so-
alled

abnormal geodesi
s. In fa
t these abnormal geodesi
s do not depend on the Riemannian

stru
ture and are determined by the distribution D.

The term 'abnormal' 
omes from the 
al
ulus of variations sin
e the problem of �nding

minimal admissible paths 
an be reformulated as the Lagrange problem of the 
al
ulus

of variations. The Euler-Lagrange equation for the Lagrange problem is 
alled a geodesi


equation; its solutions are extremals of the Lagrange problem or sub-Riemannian geodesi
s.

In parti
ular, abnormal extremals with a vanishing Lagrange multiplier for the (length)

fun
tional are abnormal geodesi
s.

For a long time abnormal sub-Riemannian geodesi
s were not treated by geometers as

proper 
andidates for minimizers until Montgomery gave in [15℄ an example of a mini-

mal admissible path whi
h does not 
orrespond to any normal sub-Riemannian geodesi
.
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Later another example was 
onstru
ted by Kupka ([13℄), and Sussmann established in [19℄

the minimality of short abnormal geodesi
 subar
s for generi
 2-distributions in R

4

. Later

Sussmann and Liu generalized the last result to the

2-distributions in R

n

([20℄).

Another approa
h to the investigation of weak (i.e. W

1;1

-lo
al)

1

minimality of ab-

normal extremals of the Lagrange problem and the abnormal sub-Riemannian geodesi
s

was suggested by the authors in [5, 6℄. It is a kind of Legendre-Ja
obi-Morse-type theory

of a se
ond variation for abnormal extremals of the Lagrange problem and the abnormal

geodesi
s and, therefore, deals with geodesi
s of an arbitrary length. Among the results

established in [6℄ are se
ond order Ja
obi-type 
onditions of weak minimality for abnormal

geodesi
s, whi
h turned out to be also 
onditions of rigidity for the 
orresponding abnor-

mal geodesi
 paths. Re
all that rigidity means that an admissible path is isolated (up to a

reparametrization) in W

1;1

�topology of in the set of all admissible paths 
onne
ting the

given points q

0

; q

1

2M , see [7℄. As it was demonstrated in [6℄, the rigidity 
onditions fol-

low from a general ne
essary/suÆ
ient 
onditions for 
riti
al points of a smooth mapping

to be isolated at the 
orresponding 
riti
al level. Developing in [6℄ the Ja
obi-Morse-type

approa
h to abnormal geodesi
s, the authors introdu
ed the notions of Morse index and

nullity and derived expli
it formulas for these invariants. This made it possible to establish

lo
al rigidity of an abnormal geodesi
 meeting th Strong Generalized Legendre Condition.

In this paper we are going to establish suÆ
ient 
onditions for W

1;1

-lo
al minimality of

abnormal sub-Riemannian geodesi
 paths. We 
all it strong minimality, although it di�ers

from the traditional de�nition of strong minimality in the 
al
ulus of variations, whi
h is

C

0

-lo
al minimality.

It turns out that unlike a weak minimality a strong minimality does not, in general,

result from positive de�niteness of the se
ond variation unless the distribution D has rank

2. We 
hoose to limit our 
onsideration to the s
ope of se
ond order 
onditions and,

therefore, deal with abnormal geodesi
s of rank 2 distributions.

The paper is organized in the following way. Se
tion 2 
ontains preliminary material.

In Se
tion 3 we redu
e the problem of strong minimality of admissible paths to time

optimal 
ontrol problem, present the Hamilton-Pontryagin form of the geodesi
 equation

and de�ne normal and abnormal sub-Riemannian geodesi
s. In Se
tion 4 we de�ne the

�rst and the se
ond variations along an abnormal geodesi
, introdu
e the Generalized

Legendre Conditions, the Ja
obi equation and 
onjugate points. Se
tion 5 
ontains all

substantial results of the paper. Thus Theorem 3 provides suÆ
ient strong (=W

1;1

-lo
al)

minimality 
onditions for abnormal geodesi
 paths. Sin
e suÆ
iently short subar
s of a

strongly minimal path are automati
ally globally minimal, we 
an establish (Corollary 4)

with the aid of the previous theorem, the global minimality of short geodesi
 ar
s whi
h

satisfy the Strong Generalized Legendre Condition. It was already mentioned that the

weak (= W

1;1

-lo
al) minimality was often realized in the form of rigidity or isolation

(up to a reparametrization) of an abnormal geodesi
 path in W

1;1

-topology. On the


ontrary, as follows from the proof of the Rashevsky-Chow theorem (Theorem 2.1), an

admissible path of a distribution of full Lie rank is never isolated in W

1;1

-topology in the

1

By W

1;k

[0; T ℄; k = 1; 2; : : :1 we denote the spa
es of absolutely 
ontinuous (ve
tor-) fun
tions on

[0; T ℄ (T <1) whose derivatives belong to L

k

[0; T ℄: They be
ome Bana
h spa
es when provided with the

norms: kw(�)k

1;k

= (jw(0)j

2

+ k _w(�)k

2

L

k

)

1=2

: In parti
ular, W

1;1

[0; T ℄ is the spa
e of absolutely 
ontinuous

fun
tions, W

1;2

is Sobolev spa
e H

1

[0; T ℄.
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spa
e of admissible paths with given end{points. Nevertheless, for a generi
 abnormal

geodesi
 of rank 2 distribution the intervals of its rigidity and strong minimality 
oin
ide

(Theorem 5), i.e., the property of strong minimality does not depend on the Riemannian

stru
ture. It 
an be explained by the that for a generi
 geodesi
 strong minimality is

equivalent to strong 
onstrained rigidity. Theorem 1 that gives suÆ
ient 
onditions for

strong 
onstrained rigidity is proved in Se
tion 7, and Se
tion 6 
ontains a redu
ed form

of the Ja
obi equation for abnormal geodesi
s satisfying some regularity 
onditions and

also some examples of strongly minimal abnormal geodesi
 paths.

We are grateful to F. Silva Leite who suggested some improvements of the text and

espe
ially to M. Zhitomirskii for the detailed reviewing of the manus
ript and a number

of helpful remarks and advi
e.

2 Preliminaries

Below we use notation and te
hni
al tools of 
hronologi
al 
al
ulus developed by Agra
hev

and Gamkrelidze (see [3, 4℄).

We identify C

1

di�eomorphisms P : M ! M with automorphisms of the algebra

C

1

(M) of smooth fun
tions onM : �(�) 7! P� = �(P (�)). The image of point q 2M under

the di�eomorphism P will be denoted by qÆP: Ve
tor �elds onM are �rst-order di�erential

operators on M or arbitrary derivations of the C

1

(M) algebra, i.e., R-linear mappings

X : C

1

(M) �! C

1

(M), that obey the Leibnitz rule: X(��) = (X�)� + �(X�). The

value X(q) of the ve
tor �eld X at the point q 2 M lies in the spa
e T

q

M tangent to

the manifold M at the point q. We denote by [X

1

;X

2

℄ the Lie bra
ket or 
ommutator

X

1

ÆX

2

�X

2

ÆX

1

of the ve
tor �elds X

1

;X

2

. It is again a �rst order di�erential operator

whi
h 
an be presented in lo
al 
oordinates on M as

[X

1

;X

2

℄ = [

n

X

i=1

X

1

i

�=�x

i

;

n

X

i=1

X

2

i

�=�x

i

℄ =

n

X

i=1

(�X

2

i

=�xX

1

� �X

1

i

=�xX

2

)�=�x

i

:

This operation introdu
es, in the spa
e of ve
tor �elds, a stru
ture of Lie algebra, whi
h

is denoted by Ve
t M . For X 2 Ve
tM the notation ad X is used for the inner derivation

of Ve
t M : (adX)X

0

= [X;X

0

℄;8X

0

2 Ve
tM .

For a di�eomorphism P we use the notation AdP for the following inner automorphism

of the Lie algebra Ve
t M : AdPX = P Æ X Æ P

�1

= P

�1

�

X. The last notation is used

for the result of translation of the ve
tor �eld X by means of the di�erential P

�1

�

of the

di�eomorphism P

�1

.

A 
ow on M is an absolutely 
ontinuous with respe
t to � 2 R 
urve � 7! P

�

in the

group of di�eomorphisms Di� M subje
t to the 
ondition P

0

= I (where I is the identi
al

di�eomorphism). We assume all time-dependent ve
tor �elds X

�

to be lo
ally integrable

(see [3℄) with respe
t to � . The time-dependent ve
tor �eld X

�

de�nes the ordinary

di�erential equation _q = X

�

(q(�)); q(0) = q

0

on the manifold M ; if any solutions of this

di�erential equation exist for all q

0

2 M; � 2 R, then the ve
tor �eld X

�

is said to be


omplete and de�nes a 
ow on M , being the unique solution of the (operator) di�erential

equation

dP

�

=d� = P

�

ÆX

�

; P

0

= I: (2.1)
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We denote this solution by P

t

=

�!

exp

R

t

0

X

�

d� , and 
all it (see [3, 4℄) a right 
hronologi
al

exponential of X

�

. If the ve
tor �eld X

�

� X is time-independent, then the 
orresponding


ow is denoted by P

t

= e

tX

.

We also introdu
e a Volterra expansion (or Volterra series) for the 
hronologi
al expo-

nential. It is (see [3, 4℄)

�!

exp

Z

t

0

X

�

d� � I +

1

X

i=1

Z

t

0

d�

1

Z

�

1

0

d�

2

: : :

Z

�

i�1

0

d�

i

(X

�

i

Æ � � � ÆX

�

1

)

�

� I +

Z

t

0

X

�

1

d�

1

+

Z

t

0

d�

1

Z

�

1

0

d�

2

(X

�

2

ÆX

�

1

) + � � � : (2.2)

For time-independent X we obtain

e

tX

�

1

X

i=0

(t

k

=k!)X Æ � � � ÆX

| {z }

k

� I + tX + (t

2

=2)X ÆX + � � � (2.3)

One more formula of 
hronologi
al 
al
ulus will be intensively used. It is a "generalized

variational formula" for a 
hronologi
al exponential

�!

exp

R

t

0

(

^

X

�

+X

�

)d� of a "perturbed"

ve
tor �eld

^

X

�

+ X

�

: We give two (left and right) variants of the formula (see [3, 4℄ for

their drawing):

�!

exp

Z

t

0

(

^

X

�

+X

�

)d� =

�!

exp

Z

t

0

^

X

�

d�Æ

�!

exp

Z

t

0

Ad(

�!

exp

Z

�

t

^

X

�

d�)X

�

d� =

=

�!

exp

Z

t

0

Ad(

�!

exp

Z

�

0

^

X

�

d�)X

�

d�Æ

�!

exp

Z

t

0

^

X

�

d�: (2.4)

By applying the operator Ad(

�!

exp

R

�

0

^

X

�

d�) to a ve
tor �eld Y and di�erentiating

Ad(

�!

exp

R

�

0

^

X

�

d�)Y = (

�!

exp

R

�

0

^

X

�

d�) Æ Y Æ (

�!

exp

R

�

0

^

X

�

d�)

�1

with respe
t to � , we 
ome to

the relation (see [3, 4℄)

d

d�

Ad(

�!

exp

Z

�

0

^

X

�

d�Y ) = Ad(

�!

exp

Z

�

0

^

X

�

d�) ad

^

X

�

Y;

whi
h is of the same form as (2.1). Therefore Ad(

�!

exp

R

�

0

^

X

�

d�) 
an be presented (at

least formally) as an operator 
hronologi
al exponential

�!

exp

R

t

0

ad

^

X

�

d� whi
h for the

time-independent ve
tor �eld

^

X

�

�

^

X 
an be written as e

t ad

^

X

:

A

ording to this new notation, the generalized variational relation (2.4) 
an be repre-

sented as

�!

exp

Z

t

0

(

^

X

�

+X

�

)d� =

�!

exp

Z

t

0

^

X

�

d�Æ

�!

exp

Z

t

0

(

�!

exp

Z

�

t

ad

^

X

�

d�)X

�

d� =

=

�!

exp

Z

t

0

(

�!

exp

Z

�

0

ad

^

X

�

d�)X

�

d�Æ

�!

exp

Z

t

0

^

X

�

d�: (2.5)

The exponentials

�!

exp

R

t

0

ad

^

X

�

d� and e

t ad

^

X

also admit the Volterra expansions

�!

exp

Z

t

0

adX

�

d� � I +

1

X

i=1

Z

t

0

d�

1

Z

�

1

0

d�

2

: : :

Z

�

i�1

0

d�

i

(adX

�

i

Æ � � � adX

�

1

)

�

� I +

Z

t

0

adX

�

1

d�

1

+

Z

t

0

d�

1

Z

�

1

0

d�

2

(adX

�

2

Æ adX

�

1

) + � � � (2.6)
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and

e

t adX

� I + t adX + (t

2

=2) adX Æ adX + � � � : (2.7)

We 
all a r-distribution D on M the spa
e of smooth se
tions of a sub-bundle of the

tangent bundle TM ; dimD

q

� r is 
onstant for all q 2M . A generalization of the 
on
ept

of distribution is a di�erential system or a distribution with singularities, whi
h is a spa
e of

se
tions of a sub-bundle with non
onstant dimD

q

. In other words, the di�erential systems

D are C

1

(M)-submodules of Ve
tM; while the distributions 
orrespond to proje
tive

C

1

(M)-submodules. Lo
ally one 
an treat the germ of a distribution as a free module.

If D is a di�erential system, then, taking theC

1

-modules generated by the Lie bra
kets

of order � k; k = 1; : : : ; of the ve
tor �elds subje
t to D, we obtain an expanding sequen
e

of di�erential systems:

D � D

2

= [D;D℄ � � � � D

k

= [D;D

k�1

℄ � � � � :

For any q 2M the sequen
e of subspa
es

D

q

� � � � D

k

q

� T

q

M

is 
alled a 
ag of the di�erential system D at the point q 2M , and the sequen
e n

1

(q) �

� � �n

k

(q) � � � �, where n

i

(q) = dimD

i

q

, is 
alled a growth ve
tor of the di�erential system

D at the point q. A di�erential system is bra
ket generating or having full Lie rank at a

point q 2M if D

�

k

q

= T

q

M for a 
ertain

�

k. A di�erential system is bra
ket generating or or

having full Lie rank if D

k

q

q

= T

q

M for a 
ertain k

q

and all q 2M:

A fundamental property of the full-Lie-rank di�erential systems is established by the

following theorem.

Theorem 2.1 (Rashevsky-Chow Theorem; see [14℄) If a di�erential system has a

full Lie rank on the manifold M , then any two points of M 
an be 
onne
ted by an admis-

sible path. 2

If D is a distribution (n

1

(q) � 
onst), then D

k

may still have singularities sin
e the growth

ve
tor of a distribution 
hanges, in general, with q. A distribution is 
alled regular if its

growth ve
tor is 
onstant for all q.

Below we use some standard (see, for example, [9℄) 
on
epts of symple
ti
 geometry. A

symple
ti
 stru
ture in an even-dimensional linear spa
e � is de�ned by a nondegenerate

bilinear skew-symmetri
 2-form �(�; �): Two ve
tors �

1

; �

2

2 � are skew-orthogonal, written

�

1

[�

2

; if �(�

1

; �

2

) = 0: If N is a subspa
e of �, then N

[

is its skeworthogonal 
omplement:

N

[

= f� 2 � j �(�; �) = 0;8� 2 Ng: Obviously, dimN + dimN

[

= dim�: A subspa
e

� � � is isotropi
 when � � �

[

; and 
oisotropi
 when � � �

[

: A subspa
e � � � is

Lagrangian if �

[

= �: If � is a Lagrangian subspa
e and � is isotropi
, then it is easy to

prove that (� \ �

[

) + � = (� + �) \ �

[

is a Lagrangian subspa
e. We denote it by �

�

:

3 Minimal Paths, Geodesi
s, Abnormal Geodesi
s

Re
all that the problem we started with is: given a rank 2 distributionD on a Riemannian

manifold M; establish whether a given admissible nonsel�nterse
ting path t 7! q̂(t); t 2

[0; T ℄; 
onne
ting points q

0

= q̂(0); q

1

= q̂(T ) 2M; is a W

1;1

-lo
al length-minimizer in the

5



set of all admissible paths 
onne
ting q

0

and q

1

: In order to pose the problem properly, we

have to de�ne the W

1;1

-neighborhood of the given Lips
hitzian path t 7! q̂(t); t 2 [0; T ℄:

Let us 
onsider the graph (t; q̂(t)) : [0; T ℄! [0; T ℄�M of this path. In the suÆ
iently

small neighborhood 
 of this graph in R �M we 
an 
hoose a basis B

t;q

: T

q

M ! R

n

of T

q

M 
ontinuously depending on (t; q) 2 W: Then any Lips
hitzian path q(�) on M

parametrized by [0; T ℄ 
orresponds to a R

n

-valued ve
tor fun
tion t 7! B

t;q(t)

_q(t) de�ned

almost everywhere on [0; T ℄: We shall identify _q(t) with B

t;q(t)

_q(t): Assuming that the

distan
e � between two points of M is de�ned by the Riemannian metri
, we 
an de�ne a

W

1;1

-norm lo
ally in a small C

0

-neighborhood of q̂(�):

kq

1

(�)� q

2

(�)k

1;1

= �(q

1

(0); q

2

(0)) +

Z

T

0

j _q

1

(t)� _q

2

(t)jdt:

De�nition 3.1 A nonsel�nterse
ting admissible path t 7! q̂(t); t 2 [0; T ℄ of the distribu-

tion D with the end-points q

0

and q

1

is W

1;1

�lo
al minimizer if, for some neighborhood of

q̂(�)j

[0;T

0

℄

in W

1;1

[0; T

0

℄; the points q

0

and q

1


annot be 
onne
ted by a shorter admissible

path t 7! �q(t); t 2 [0; T ℄ belonging to this neighborhood. 2

The problem of �nding a minimal admissible path for a 2-dimensional distribution 
an

be represented as the following time-optimal 
ontrol problem:

T �! min; (3.1)

_q = g

1

(q)u

1

(�) + g

2

u

2

(�); q(0) = q

0

; u

2

1

+ u

2

2

� 1; (3.2)

q(T ) = q

1

; (3.3)

where g

1

(q); g

2

(q) are smooth ve
tor �elds, whi
h form a basis of the distribution D in

a small neighborhood of the given nonsel�nterse
ting admissible path q̂(�) on M: We

denote G(q) = (g

1

(q); g

2

(q)). The admissible 
ontrols u(�) = (u

1

(�); u

2

(�)) are measurable

fun
tions with the values in the unit ball B � R

2

; the set of admissible 
ontrols is denoted

by U : U � L

1

.

The following proposition establishes the equivalen
e of the optimal 
ontrol problem

(3.1-3.3) with the one of �nding W

1;1

-lo
ally minimal admissible path.

Lemma 3.1 (Redu
tion Lemma) An admissible path parametrized by the length of ar


� 7! q̂(�); 0 � � � T is a W

1;1

-lo
al minimizer if and only if the 
orresponding 
ontrol

û(�) is an L

1

-lo
al minimizer for the time-optimal problem ( 3.1)-(3.3). The 
orresponding

minimal time T is the length of the minimal admissible path. 2

Proof. a) We start with establishing the following inequality for the Eu
lidean norm

j � j in R

n

:

v; w 2 R

n

; jwj = 1; v 6= 0) jw �

v

jvj

j � 2jw � vj: (3.4)

Indeed, by arranging the terms in the equivalent inequality

(w �

v

jvj

) � (w �

v

jvj

) � 4(w � v) � (w � v)

and dividing it by 2; we transform it into

1� 4w � v +

w � v

jvj

+ 2jvj

2

� 0;

6



or, if � is the 
osine of the angle between v and w;

1� 4jvj 
os � + 
os � + 2jvj

2

� 0:

When 
os� � 0; the last inequality follows from the obvious inequalities 1 + 
os � � 0

and �4jvj 
os � + 2jvj

2

� 0: If, on the 
ontrary, 
os � � 0; then 1 + 
os � � 2 
os

2

� and,

therefore

1 + 
os � + 2jvj

2

� 2(
os

2

� + jvj

2

) � 4jvj 
os �

by virtue of the arithmeti
-geometri
 mean inequality.

Before proving the equivalen
e of time-optimality of û(�) and strong minimality of q̂(�);

we �x a monotoni
 sequen
e f"

k

g > 0; lim

k!1

"

k

= 0: Note that when the 
ontrols

u

k

(�) tend to û(�) in the L

1

-norm, then the 
orresponding traje
tories of the systems

_y

k

= G(y

k

)u

k

(t); y

k

(0) = q

0

tend to q̂(�) in the W

1;1

-norm and hen
e in the C

0

-norm as

well.

(b)Suppose that the 
ontrol û(�) produ
ing the admissible path q̂(�) is not L

1

-lo
ally

optimal for Problem (3.1)-(3.3). Then there exists a sequen
e of admissible (with their

values in the unit ball of R

2

) 
ontrols u

k

(�) belonging to the "

k

-neighborhoods of û(�) in

L

2

1

and steering system (3.2) from q

0

to q

1

in the time T

k

< T along the paths y

k

(�):

Obviously, length(y

k

(�)) < length(q̂(�)) = T: Without loss of generality, we 
an assume

that T

k


onverges. If lim

k!1

T

k

= T

0

< T then, sin
e lim

k!1

ku

k

� uj

[0;T

k

℄

k

L

1

= 0; we

�nd that q

1

= lim

k!1

y

k

(T

k

) = q̂(T

0

) and, therefore, q̂(�) must be sel�nterse
ting. If

lim

k!1

T

k

= T; then, 
hoosing k su
h that ku

k

� uj

[0;T

k

℄

k

L

1

� "=2; T � T

k

� "=2 and

de�ning y

k

(t) = q

1

for t 2 [T

k

; T ℄; we obtain shorter admissible path between q

0

and q

1

whi
h belongs to the "-neighborhood of q̂(�) in the W

1;1

-metri
.

(
) If now q̂(�) is not a W

1;1

-lo
ally minimal path, then there exist admissible paths

y

k

(�); parametrized by [0; T ℄; whi
h are "

k

-
lose to q̂(�) in the W

1;1

-metri
 and have

thelength(y

k

(�)) < length(q̂(�) = T: Obviously, lim

k!1

l

k

= T: The relations _y

k

(t) =

G(y

k

(t))u

k

(t); t 2 [0; T ℄ unequely de�ne u

k

(�); k = 1; : : : The 
ontrols u

k

(�) may have

values outside of the unit ball in R

2

: Parametrizing ea
h y

k

(�) by the length of ar,
 we

represent them as traje
tories of the di�erential equations

_y

k

= G(q)u

k

(t

k

(�))=ku

k

(t

k

(�))k; � [0; l

k

℄;

where t

k

(�) is the inverse to the fun
tion �

k

(t) =

R

t

0

ku

k

(s)kds: Then, by virtue of (3.4)

Z

l

k

0

�

�

�

�

�

u

k

(t

k

(�))

ju

k

(t

k

(�))j

� u

k

(�)

�

�

�

�

�

d� � 2

Z

l

k

0

ju

k

(t

k

(�))� u

k

(�)jd� �

� 2

 

Z

l

k

0

ju

k

(t

k

(�))� u

k

(�)jd� +

Z

l

k

0

ju

k

(�)� u(�)jd�

!

:

The se
ond term on the right-hand side obviously tends to zero as k ! 1 and, sin
e

ft

k

(�)g 
onverges uniformly to t(�) � � on any subinterval [0; T

0

℄ � [0; T ℄; the �rst term

tends to zero as well. 2

A �rst-order ne
essary minimality 
ondition for the time-optimal 
ontrol problem ( 3.1)-

(3.3) is provided by the Pontryagin Maximum Prin
iple. We assume the lo
al 
oordinates

(t; q) = (t; q

1

; : : : ; q

n

) to be de�ned in some neighborhood of the 
urve (t; q̂(t)); t 2 [0; T ℄:

7



Theorem 3.2 (Pontryagin Maximum Prin
iple; [16℄) If û(�) is a weak (= L

1

-lo-


al) minimizer for Problem ( 3.1)-(3.3), then there exists a nonvanishing absolutely 
ontin-

uous 
ove
tor-fun
tion

^

 (�)) on [0; T ℄ su
h that

^

 (�) 2 T

�

q̂(�)

M and, in the lo
al 
oordinates

(t; q), the 4-tuple (û(�); q̂(�);

^

 (�); T )

(1) satis�es the Hamiltonian system

_q =

�H

� 

; q(0) = q

0

; q(T ) = q

1

; (3.5)

_

 = �

�H

�q

; (3.6)

with the Hamiltonian

H(u; q;  ) =  �G(q)u; (3.7)

(2) obeys the maximality 
ondition a.e. on [0; T ℄ :

0 � 
onst = H(û(�); q̂(�);

^

 (�)) = maxfH(u; q̂(�);

^

 (�)) j u 2 R

2

; kuk � 1g: 2 (3.8)

De�nition 3.2 The 4-tuple (û(�); q̂(�);

^

 (�); T ) subje
t to the 
onditions of the Pontryagin

Maximum Prin
iple is an extremal of the optimal 
ontrol problem (3.1)-(3.3) or a sub-

Riemannian geodesi
. A sub-Riemannian geodesi
 is normal if H > 0 and abnormal, if

H = 0: The 
orresponding triple (û(�); q̂(�); T ) is 
alled sub-Riemannian geodesi
 path. 2

Remark. Obviously for any normal or abnormal sub-Riemannian geodesi


(û(�); q̂(�);

^

 (�); T ) its restri
tion (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) to the subinterval [0; t℄ �

[0; T ℄ is also a normal or abnormal sub-Riemannian geodesi
 
orrespondingly. 2

Remark. Several geodesi
s with di�erent

^

 (�) may 
orrespond to the geodesi
 path

(û(�); q̂(�); T ): 2

De�nition 3.3 The geodesi
 path (û(�); q̂(�); T ) is a 
orank k abnormal geodesi
 path if

the spa
e of

^

 (�), whi
h, together with (û(�); q̂(�); T ); satis�es Theorem 3.2 with H � 0, is

k-dimensional. 2

When a geodesi
 is abnormal, i.e., H = 0 in the Pontryagin Maximum Prin
iple, then

the maximality 
ondition (3.8) be
omes maxf

^

 (�)G(q̂(�))u j u 2 R

2

; kuk � 1g = 0; whi
h

is equivalent to

H(u; q̂(�);

^

 (�)) =

^

 (�)G(q̂(�))u � 0;8u 2 R

2

: (3.9)

This means that

^

 (�) is orthogonal to the distribution D at q̂(�): Therefore we have one

more equivalent de�nition of abnormality.

De�nition 3.4 The geodesi
 (û(�); q̂(�);

^

 (�); T ) is abnormal if

^

 (�) ? D(q̂(�)) at every

point q̂(�): 2

We 
an see that the de�nition of an abnormal geodesi
 does not depend on a Riemannian

stru
ture but is only de�ned by the distribution D:

Abnormal admissible geodesi
 paths of a distribution often exhibit a phenomenon 
alled

rigidity.

8



De�nition 3.5 The admissible path q(�) of the distribution D with end-points q

0

and q

1

is rigid if it is isolated (up to a reparametrization) in the topology of W

1;1

in the set of

all admissible paths 
onne
ting q

0

with q

1

: 2

Remark. Paper [6℄ 
ontains detailed 
onsideration of the rigidity phenomenon for distri-

butions and di�erential systems. 2

In [6℄ some ne
essary weak minimality 
onditions for abnormal geodesi
s are estab-

lished. First, di�erentiating identity (3.9) with respe
t to �; we derive

^

 (�) � [Gû(�); Gw℄(q̂(�)) = 0; 8w 2 R

2

; a.e. on [0; T ℄;

for almost all � 2 [0; T ℄; whi
h means that for all � 2 [0; T ℄ we have

^

 (�) � [Gv;Gw℄(q̂(�)) = 0 8v; w 2 R

2

; (3.10)

i.e., at every point q̂(�) of the abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ) the 
ove
tor

^

 (�)

annihilates the distribution [D;D℄(q̂(�)), spanned by the ve
tor �elds f; g from D and

their Lie bra
ket [f; g℄:

The following Generalized Legendre Condition (see [11, 2, 12℄)

2

is ne
essary for the

weak and therefore also strong minimality of an abnormal geodesi
 path: for some

^

 (�)

satisfying Pontryagin Maximum Prin
iple (Theorem 3.2) we have

�

�u

d

2

d�

2

�H

�u

�

�

�

û(�)

(v; v) = 


�

(v; v) =

^

 (�) � [Gv; [Gû(�); Gv℄℄(q̂(�)) � 0: (3.11)

for all � 2 [0; T ℄; and v ? û(�).

In order to set out Ja
obi-type minimality 
onditions, we introdu
e Strong Generalized

Legendre Condition: for some � > 0 and for all � 2 [0; T ℄ and v ? û(�) : we have




�

(v; v) =

^

 (�) � [Gv[Gû(�); Gv℄℄(q̂(�)) � �kvk

2

: (3.12)

The last 
ondition also implies the smoothness of the geodesi
.

Theorem 3.3 (Smoothness of Abnormal Geodesi
s; see [6, Theorem 4.4℄) If the Strong

Generalized Legendre Condition (3.12) holds along the abnormal geodesi


(û(�); q̂(�);

^

 (�); T ); then û(�); q̂(�);

^

 (�) are smooth on [0; T ℄: 2

Note that (3.10) and (3.12) imply

^

 (�) 2 D

2

q̂(�)

n D

3

q̂(�)

; 8� 2 [0; T ℄. On the other hand,

di�erentiating (3.10) w.r.t. �; we derive

^

 (�) � [Gû(�); [Gv;Gw℄℄(q̂(�)) = 0 8v; w 2 R

2

:

Therefore, if

^

 (�) 2 D

2

q̂(�)

nD

3

q̂(�)

; 8� 2 [0; T ℄ for the smooth abnormal extremal (û(�); q̂(�);

^

 (�)),

then the Strong Generalized Legendre Condition holds either for (û(�); q̂(�);

^

 (�)) or for the

abnormal extremal (û(�); q̂(�);�

^

 (�)).

The abnormal extremals whi
h are subje
t to the 
onditions

^

 (�) 2 D

2

q̂(�)

nD

3

q̂(�)

; 8� 2

[0; T ℄ are 
alled regular abnormal biextremals in [20℄. Therefore, the 
lass of abnormal

2

also 
alled Generalized Legendre-Klebs
h Condition, or Kelley Condition
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extremals whi
h satis�es 
ondition (3.10) together with the Strong Generalized Legendre

Condition 
oin
ides with the 
lass of "regular abnormal biextremals" introdu
ed in [20℄.

Below we assume the Strong Generalized Legendre Condition to hold and our abnormal

geodesi
 (û(�); q̂(�);

^

 (�); T ) to be smooth. Then we 
an 
hoose smooth ve
tor �elds f; g

spanning the distribution D in some neighborhood of the 
urve q̂(�); 0 � � � T su
h that

the abnormal geodesi
 path q̂(�) = q

0

Æ e

tf

starts at the q

0

traje
tory of the ve
tor �eld f

(other traje
tories of f need not be geodesi
s). It is more 
onvenient from the te
hni
al

point of view to introdu
e new notations for system (3.2), namely, we shall 
onsider the

admissible paths of the distribution D starting at q

0

as traje
tories of the aÆne 
ontrol

system

_q = f(q)(1 + _v(�)) + g(q) _w(�); q(0) = q

0

; (3.13)

where u(�) = (v(�); w(�)) is a ve
tor fun
tion treated as 
ontrol; u(0) = 0. What we

have to do is to �nd out when the referen
e 
ontrol û � 0 shifting the aÆne 
ontrol

system (3.13) from q

0

to q

1

is W

1;1

-lo
ally time optimal among the 
ontrols subje
t to the


onstraint

(1 + _v)

2

+ _w

2

� 1: (3.14)

4 The First and Se
ond Variations along Abnormal Geodesi
s

Let us introdu
e a family of input/state mappings F

t

for the 
ontrol system (3.13). It is

de�ned in a neighborhood of the origin of W

2

1;1

[0; T ℄ (we ignore for the timebeing the

restri
tions imposed on the 
ontrol): F

t

maps the input u(�) into the point q(t) 2 M of

the traje
tory q(�) of the di�erential equation _q = f(q)(1 + _v(�)) + g(q) _w(�); q(0) = q

0

:

Obviously, F

t

(0) = q̂(t) and F

T

(0) = q

1

:

In order to study F

t

(u(�)); we represent it as a 
hronologi
al exponential:

F

t

(u(�)) = q

0

Æ

�!

exp

Z

t

0

f(1 + _v(�)) + g _w(�)d�:

Rearranging the ve
tor �eld f(1+ _v)+ g _w as the sum f +(f _v+ g _w) and applying the �rst

of the generalized variational formulas (2.5), we transform the exponential into

F

t

(u(�)) = q

0

Æ e

tf

Æ

�!

exp

Z

t

0

(f _v(�) + Y

t;�

_w(�))d�; (4.1)

where

Y

t;�

= e

(��t)adf

g:

Taking into a

ount q

0

Æ e

tf

= q̂(t) and applying the se
ond of the relations (2.5) to the


hronologi
al exponential in (4.1) , we obtain

F

t

(u(�)) = q̂(t)Æ

�!

exp

Z

t

0

e

adfv(�)

Y

t;�

_w(�)d� Æ e

fv(t)

: (4.2)

Let us denote

Y

�

= Y

T;�

= e

(��T )adf

g; F

T

= F ; (4.3)

obviously, Y

T

= g:

10



The �rst and se
ond variations along the 
hosen abnormal extremal are, 
orrespond-

ingly, �rst and se
ond di�erentials of the input/state mapping F at the origin (see [6℄).

Using the Volterra expansions (2.2)-(2.7), we derive (see [6℄ for details) the expression

F

0

j

0

u(�) = f(q

1

)v(T ) +

Z

T

0

Y

�

(q

1

) _w(�)d� =

f(q

1

)v(T ) + g(q

1

)w(T )�

Z

T

0

_

Y

�

(q

1

)w(�)d�; (4.4)

where

_

Y

�

= [f; Y

�

℄ by virtue of (4.3) , for the �rst di�erential.

If 0 is a 
riti
al point of F; i.e., ImF

0

j

0

6= T

q

1
M; then there exists a nonzero 
ove
tor

^

 

T

2 T

�

q

1

M that annihilates ImF

0

j

0

: This implies

^

 

T

� f(q

1

) =

^

 

T

� g(q

1

) =

^

 

T

�

_

Y

t

(q

1

) = 0; a.e. on [0; T ℄. (4.5)

The 
riti
al 
hara
ter of 0 2 W

2

1;1

[0; T ℄ for F is another formulation of û � 0 whi
h

is an abnormal extremal 
ontrol or q̂(�) whi
h is an abnormal geodesi
 path. Indeed, we


an easily establish the equivalen
e of 
onditions (4.5) and (3.9). If we take the 
ove
tor

^

 

T

from (4.5) and 
hoose the solution

^

 (�) of the adjoint equation (3.6) with the end-

point value

^

 (T ) =

^

 

T

; then

^

 (t) annihilates the distribution D at any point q̂(t) of the

abnormal geodesi
 path.

De�nition 4.1 The �rst di�erential F

0

j

0

: W

2

1;1

[0; T ℄ ! T

q

1
M; de�ned by relation (4.4)

is 
alled the �rst variation along the abnormal geodesi
 path q̂(t) = q

0

Æ e

tf

; t 2 [0; T ℄: 2

Let us introdu
e the se
ond variation along the abnormal geodesi


(û(�); q̂(�);

^

 (�); T ). This is a Hessian, or a quadrati
 di�erential of F at 0 2W

2

1;1

[0; T ℄: It is

a quadrati
 form whose domain is the kernel of the �rst variation. Choosing a smooth fun
-

tion � : M �! R; su
h that d�j

q

1
=

^

 

T

; we 
onsider the fun
tion �(u(�)) = �(F (u(�))):

Sin
e

^

 

T

annihilates ImF

0

j

0

; it follows that 0 is a 
riti
al point for this fun
tion.

Let us 
ompute the quadrati
 term of the Taylor expansion for �(u(�)) at 0: Using the

Volterra expansion ( 2.2) for the 
hronolologi
al and ordinary exponent in (4.2), we derive

�

00

j

0

(u(�)) = ((

R

T

0

R

�

0

Y

�

_w(�)d� Æ Y

�

_w(�)d� +

+

1

2

fv(T ) Æ fv(T ) +

R

T

0

Y

�

_w(�)d� Æ fv(T ))�)(q

1

): (4.6)

When 
arrying out the 
omputation we took into a

ount the relations

([f; Y

�

℄ � �)(q

1

) =

^

 

T

[f; Y

�

℄(q

1

) =

^

 

T

_

Y

�

(q

1

) � 0: (4.7)

If we restri
t the quadrati
 form (4.6) to the kernel of F

0

j

(T;û(�))

; we 
an subtra
t from

(4.6) the vanishing value of

1

2

((fv(T ) +

Z

T

0

Y

�

_w(�)d�) Æ (fv(T ) +

Z

T

0

Y

�

_w(�)d�)�)(q

1

);

and, arranging the terms and taking (4.7) into a

ount, transform (4.6) into

1

2

((

Z

T

0

[

Z

�

0

Y

�

_w(�)d�; Y

�

_w(�)℄d� Æ �)(q

1

):
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The last expression does not depend on the 
hoi
e of � but only on

^

 

T

= d�j

q

1 and,

therefore, we 
an write it as

F

00

j

0

(u(�)) =

^

 

T

Z

T

0

[

Z

t

0

Y

�

_w(�)d�; Y

t

_w(t)℄(q

1

)dt; (4.8)

where u(�) = (v(�); w(�)) satis�es the equality

f(q

1

)v(T ) + g(q

1

)w(T )�

Z

T

0

_

Y

�

(q

1

)w(�)d� = 0: (4.9)

To get rid of the derivatives of w(�); we twi
e integrate (4.8) by parts transforming it into

a quadrati
 form in w(�):

F

00

j

0

(u(�)) =

Z

T

0

^

 

T

[

_

Y

t

; Y

t

℄(q

1

)w

2

(t)dt+

Z

T

0

^

 

T

[gw(T ) +

Z

t

0

_

Y

�

w(�)d�;

_

Y

t

w(t)℄(q

1

)dt: (4.10)

De�nition 4.2 The quadrati
 form (4.10)-(4.9) is 
alled the se
ond variation along the

abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ): 2

Note that the quadrati
 form

^

 

T

[

_

Y

t

; Y

t

℄(q

1

)w

2

; whi
h appears in relation (4.10), 
oin-


ides with the form 


t

w

2

appearing in the Generalized Legendre Conditions (3.11)-(3.12).

Re
all that we assumed the Strong Generalized Legendre Condition to be ful�lled, i.e.,




t

� � > 0;8t 2 [0; T ℄:

Next we introdu
e (as in [6℄) a symple
ti
 representation of the se
ond variation (4:10)�

(4:9) along the abnormal geodesi
. Let us set

W = spanff(q

1

) [ g(q

1

) [ f

_

Y

�

(q

1

)j� 2 [0; T ℄g � T

q

1
Mg: (4.11)

Obviously, W 
oin
ides with the image ImF

0

j

0

of the �rst variation (4.4) and

^

 

T

annihi-

lates W by virtue of (4.5).

Let us take the spa
e E

W

of the ve
tor �elds, whose values at q

1

lie in W; and 
onsider

the skew-symmetri
 bilinear form on E

W

:

^

 

T

� [X;X

0

℄(q

1

); 8X;X

0

2 E

W

: (4.12)

This form has a kernel of �nite 
odimension in E

W

; it is de�ned by the relations

X(q

1

) = 0;

^

 

T

� (�X=��)(q

1

) = 0;8� 2W:

Taking the quotient of E

W

with respe
t to this kernel, we obtain a (indu
ed from (4.12))

nondegenerate skew-symmetri
 bilinear form �(�; �) on the �nite-dimensional quotient spa
e

�; whi
h de�nes the symple
ti
 stru
ture on �: A dire
t 
al
ulation gives dim� =

2dimW = 2(n � k): We denote by X the image of the X 2 E

W

under the 
anoni
al

proje
tion E

W

�! �:

Choosing lo
al 
oordinates (x

1

; : : : x

n

) : O �! R

n

in some neghborhood O of q

1

in M

su
h that (1) x

i

(q

1

) = 0; (i = 1; : : : n); (2) the subspa
e W is de�ned by the equalities

12



x

1

= � � � = x

k

= 0 and (3)

^

 

T

= ( 

1

; : : : ;  

k

; 0; : : : 0); we 
an represent the 
anoni
al

proje
tion X 7! X as

X =

P

n

i=1

X

i

(x)�=�x

i

7! X =

(X

k+1

(0); : : : X

n

(0); �(

P

k

i=1

 

i

X

i

)=�x

k+1

j

0

; : : : �(

P

k

i=1

 

i

X

i

)=�x

n

j

0

): (4.13)

The symple
ti
 form �(X;Y ) 
an now be represented as

�(X;Y ) =

n

X

j=k+1

(X

j

(0)�(

k

X

i=1

 

i

Y

i

)=�x

j

j

0

� Y

j

(0)�(

k

X

i=1

 

i

X

i

)=�x

j

j

0

):

Let us denote by � the image under the 
anoni
al proje
tion of the spa
e of the ve
tor

�elds whi
h vanish at q

1

: Sin
e the Lie bra
ket for two ve
tor �elds vanishing at q

1

also

vanishes at q

1

, � is a Lagrangian subspa
e (see Se
tion 2).

Using the notation introdu
ed above we 
an represent the se
ond variation (4.10)-(4.9)

as the quadrati
 form

2F

00

j

0

(u(�)) =

Z

T

0




�

w

2

(�)d� +

Z

T

0

�(gw(T ) +

Z

t

0

_

Y

�

w(�)d�;

_

Y

t

w(t))dt (4.14)

with the domain

fu(�) = (v(�); w(�))jfv(T ) + gw(T )�

Z

T

0

_

Y

�

w(�)d� 2 �g: (4.15)

Let us extend the domain of the se
ond variation by 
onsidering not only the absolutely


ontinuous but also arbitrary w(�) 2 L

2

[0; T ℄ su
h that

Z

T

0

_

Y

�

w(�)d� 2 � + spanff; gg; (4.16)

or, equivalently,

fv

T

+ gw

T

�

Z

T

0

_

Y

�

w(�)d� 2 �;

where v

T

; w

T

are uniquely de�ned linear 
ontinuous (by L

1

-norm) fun
tionals in w(�) :

v

T

= �(w(�)); w

T

= �(w(�)): The quadrati
 form (4.14) be
omes

2F

00

j

0

(u(�)) =

Z

T

0




�

w

2

(�)d� +

Z

T

0

�(gw

T

+

Z

t

0

_

Y

�

w(�)d�;

_

Y

t

w(t))dt (4.17)

with w

T

= �(w(�)): Relation (4.16) 
an be represented as a system of relations:

Z

T

0

�(�;

_

Y

�

)w(�)d� = 0; 8� 2 � \ ff; gg

[

: (4.18)

Sin
e �(g; f) = �(Y

t

; f) � 0, i.e., all the ve
tors that appear in (4.17)-(4.15) are

skew-orthogonal to f; we 
an make a redu
tion taking, instead of the symple
ti
 spa
e

�, the quotient of its subspa
e f

[

by f ; we denote it by �

f

. From now on we 
onsider
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�

f

= � \ f

[

+Rf instead of � and preserve the same notations for the ve
tors g and

_

Y

t

treated further modulo Rf . Relation (4.18) be
omes

Z

T

0

�(�;

_

Y

�

)w(�)d� = 0; 8� 2 �

f

\ g

[

: (4.19)

Re
all that the Legendre-Ja
obi ne
essary/suÆ
ient minimality 
onditions for normal

extremals in the Cal
ulus of Variations amount to the nonnegativeness/positive de�nite-

ness of the se
ond variation. The positive de�niteness is also essential for the minimality

of abnormal geodesi
s.

Let us start with an observation that the Strong Generalized Legendre Condition (3.12)

provides positive de�niteness of the se
ond variation for suÆ
iently small T > 0: Indeed,

sin
e jw

T

j = O(kw(�)k

L

1

) = O(

p

Tkwk

L

2

); the term

Z

T

0

�(gw

T

+

Z

t

0

_

Y

�

w(�)d�;

_

Y

t

w(t))dt

of (4.17) admits the upper estimate 
(

R

T

0

jw(t)jdt)

2

� 
T

R

T

0

jw(t)j

2

dt: Sin
e 


t

� � > 0 on

[0; T ℄ it follows that

2F

00

j

0

(u(�)) � (�� 
T )

Z

T

0

jw(t)j

2

dt (4.20)

for some 
onstant � > 0 and therefore is positive de�nite for small T > 0:

Following the Ja
obi approa
h, we introdu
e the notion of 
onjugate points for abnormal

geodesi
s.

De�nition 4.3 The 
onjugate points of an abnormal geodesi
 are the time instants T for

whi
h the (depending on T ) quadrati
 form (4.17) with the domain determined by (4.15)

has a nontrivial kernel; the dimension of this kernel is the multipli
ity of the 
onjugate

point. 2

It follows from the aforesaid that under the Strong Generalized Legendre Condition

(3.12) the 
onjugate points of abnormal geodesi
 are isolated from 0 2 [0; T ℄:

In order to derive a 
ondition for 
onjugate points, let us �rst note that the kernel of

the quadrati
 form 
onsists of all (v

0

(�); w

0

(�)) su
h that w

0

(�) satisfy (4.19) and

Z

T

0

(


t

w

0

(t) + �(

Z

t

0

gw

0

T

+

_

Y

�

w

0

(�)d�;

_

Y

t

))w(t)dt = 0

for any w(�) satisfying (4.19). This means that




t

w

0

(t) + �(

Z

t

0

gw

0

T

+

_

Y

�

w

0

(�)d�;

_

Y

t

) = �(��;

_

Y

�

) for some � 2 �

f

\ g

[

: (4.21)

If we set x(t) =

R

t

0

_

Y

�

w

0

(�)d� +gw

0

T

+�; then the integral equation (4.21) is equivalent

to the equation Ja
obi di�erential equation

_x = 


�1

t

�(

_

Y

t

; x)

_

Y

t

; x(0) 2 �

f;g

; (4.22)

where �

f;g

= �

f

\ g

[

+ spanfgg: Condition (4.15) turns into the in
lusion

x(T ) 2 �

f

: (4.23)

The boundary value problem (4.22)-(4.23) has a nontrivial solution if and only if the se
ond

variation is degenerate. Therefore, De�nition 4.3 is equivalent to the following de�nition.
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De�nition 4.4 The time momemt T > 0 is a 
onjugate point for an abnormal geodesi
 if

there exists a nontrivial solution of the boundary value problem (4.22)-(4.23) on [0; T ℄: 2

The evolution of the se
ond variation with the growth of T was studied in [10℄ (see

also [17℄). It was shown that, provided the Strong Generalized Legendre Condition (3.12)

was full�lled, the minimal eigenvalue of the self-adjoint operator, whi
h 
orresponded to

the quadrati
 form (4.17)-(4.16), was a 
ontinuous nonin
reasing fun
tion of T: Sin
e the

quadrati
 form is positive de�nite for suÆ
iently small T > 0; the 
onjugate points are

isolated from 0: If a 
onjugate point appears, then the se
ond variation 
annot again

be
ome positive de�nite with a further growth of T . This means that the se
ond variation

possesses a lower estimate of the kind of(4.20) on [0; T ℄ if and only if there are no 
onjugate

points on [0; T ℄.

In Se
.6 we shall derive, essentially following [6℄, another, redu
ed, representation of

the Ja
obi equation (4.22) for the abnormal extremals of the 2-dimensional distributions

whi
h satisfy some additional regularity 
onditions.

Now we are ready to formulate the main results of the paper.

5 Main Results

In the Se
tion 3 we have redu
ed the problem of �nding a minimal admissible path for the

distribution D to the time optimal 
ontrol problem for the 2-input aÆne 
ontrol system

(3.13) with the inputs (v; w) subje
ted to the 
onstraint: (1 + _v)

2

+ _w

2

� 1: Note that

the referen
e 
ontrol û = (v; w) � 0; whi
h we investigate, is an extremal 
ontrol for the

aÆne system (3.13); its values lie on the boundary of the 
onstraints.

The authors established in the[6℄ rigidity 
onditions for extremals of aÆne 
ontrol

systems with un
onstrained 
ontrols or with the referen
e 
ontrol lying in the relative

interior of the 
onstraints. Re
all that rigidity means that û(�) is isolated by L

1

-metri
 (up

to a reparametrization) in the set of 
ontrols whi
h steer the aÆne system from the given

initial point to the given end-point. It was already mentioned that when dimLieff; gg =

dimM at every point of q̂(�); then, by virtue of Rashevsky-Chow Theorem, û(�) is never

isolated by the L

1

-metri
 (strongly isolated). It turns out that for aÆne systems with


onstrained 
ontrols su
h an isolation may o

ur. We 
all it a strong 
onstrained rigidity.

The following theorem provides suÆ
ient 
ondition for the strong 
onstrained rigidity.

Theorem 1 (Strong Constrained Rigidity for AÆne Control Systems) Let an abnor-

mal geodesi
 (q̂(t);

^

 (t)) of a 2-dimensional distribution D = spanff; gg satisfy the Strong

Generalized Legendre Condition (3.12) and q̂(t) be the traje
tory of the ve
tor �eld f start-

ing at q

0

. Suppose that the set U � R

2

is 
onvex and bounded and

(0; 0) 62 intU; intU \ (R� f0g) 6= ;:

If there are no 
onjugate points of the abnormal geodesi
 on [0; t℄; then, for some " > 0,

we have

q

0

Æ

�!

exp

Z

t

0

f(1 + _v(�)) + g _w(�)d� 6= q̂(t) (5.1)

provided that ( _v(�); _w(�)) 2 U; for � 2 [0; t℄ and

0 <

Z

t

0

j( _v(�); _w(�))jd� < "; (5.2)
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where j( _v; _w)j = ( _v

2

+ _w

2

)

1=2

: 2

Remark. Conditions (5.1)-(5.2) mean that for suÆ
iently small " > 0 there is no

admissible 
ontrol from the "-neighborhood of the origin in L

1

whi
h steers in time t the

aÆne system _q = f(q)(1+ _v(�))+g(q) _w(�) from q

0

to q̂(t), i.e., the traje
tory q̂(�) exhibits

strong 
onstrained rigidity. 2

We shall prove of the theorem in the next se
tion and shall now derive an important


orollary.

Corollary 2 Suppose that the abnormal geodesi
 (q̂(t);

^

 (t)); where q̂(t) = q

0

Æe

tf

; satis�es

the Strong Generalized Legendre Condition (3.12). Then for the arbitrary norm k � k in

R

2

there exists

�

t > 0 (depending on the norm) su
h that 8t 2 [0;

�

t℄; 8s > 0 the relations

q

0

Æ

�!

exp

Z

s

0

f _v

?

(�) + g _w(�)d� = q̂(t); (5.3)

Z

s

0

k( _v

?

(�); _w(�)kd� � k(1; 0)kt (5.4)


an only hold if _v

?

(�) � 1; _w(�) � 0; on [0; s℄: 2

Proof. A

ording to the aforesaid there are no 
onjugate points on [0;

�

t℄ for suÆ
iently

small

�

t > 0. Without loss of generality, we 
an assume that k(1; 0)k = 1: We 
an also

res
ale the time variable in the 
hronologi
al exponential of (5.3) and in the integral of

(5.4) in su
h a way that k( _v

?

(t); _w(t)k � 1; there by transforming inequality (5.4) into

s � t for the res
aled s:

Let us 
onsider the 
onvex bounded set U = fu 2 R

2

jk(1; 0) + uk � 1g and assume

that juj � 
kuk;8u 2 R

2

. If we extend ( _v

?

(t); _w(t)) by means of zero from [0; s℄ onto [0; t℄

and set _v(�) = _v

?

(�)� 1, then

Z

t

0

j( _v(�); _w(�))jd� =

Z

t

0

j( _v

?

(�); _w(�)) � (1; 0)jd� �

�

Z

s

0

j( _v

?

(�); _w(�))jd� + t � 
s+ t � (
+ 1)t:

Choosing a positive

�

t <

"


+1

; we satisfy the upper inequality of (5.2) and use (5.1) to prove

the Corollary. 2

The previous results do not depend on any Riemannian stru
ture onM but only depend

on the distribution D: Suppose now that M possesses a Riemannian stru
ture. The

following two theorems are dire
t 
orollaries of the results that we formulated above.

Theorem 3 (The SuÆ
ient Condition of Strong Minimality for Abnormal Geodesi
s)

If an abnormal sub-Riemannian geodesi
 satis�es the Strong Generalized Legendre Con-

dition (3.12), there are no 
onjugate points in its domain [0; T ℄; and the 
orresponding

geodesi
 path 
onne
ting the points q

0

and q

1

is nonsel�nterse
ting, then it is strongly

(=W

1;1

-lo
ally) minimal. 2

Proof. We 
an assume that the abnormal geodesi
 path q̂(�); 0 � � � T; is a

traje
tory of the ve
tor �eld f and f; g form an orthonormal basis of the distribution D
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in its neighborhood. Then the length of the geodesi
 path is T: Considering the 
onvex

bounded set U = fu 2 R

2

j ju + (1; 0)j � 1g; we 
an apply the Theorem 1 and infer

that there is not a single 
ontrol u(�) = (u

1

(�); u

2

(�)) whi
h is "-
lose by L

1

-metri
 to

û(�) � (1; 0) and di�erent from û(�) with the values ju(�)j � 1 and whi
h 
an steer the


ontrol system _q = fu

1

+ gu

2

from q

0

to q

1

in time � T . Now the strong (W

1;1

-lo
al)

minimality follows from the Redu
tion Lemma 3.1. 2

Remark. Note that we derive the strong minimality from the strong 
onstrained

rigidity and sin
e the suÆ
ient 
ondition for the Strong Constrained Rigidity established

in Theorem 1 is valid for the arbitrary 
onvex bounded set U; the abnormal geodesi


path satisfying the 
onditions of Theorem 3 is W

1;1

-lo
ally minimal for any 
hoi
e of the

Riemannian metri
. 2

From Corollary 2 we 
an �nd the suÆ
ient 
ondition for the global minimality of the

abnormal geodesi
 ar
s established in [20, Theorem 6℄.

Corollary 4 (The SuÆ
ient Condition for The Global Minimality of Abnormal Geo-

desi
 Subar
s). If the abnormal sub-Riemannian geodesi
 (q̂(�);

^

 (�)) satis�es the Strong

Generalized Legendre Condition (3.12) and the 
orresponding geodesi
 path is nonsel�n-

terse
ting, then there exists

�

t > 0 su
h that 8t 2 (0;

�

t) the restri
tion q̂(�)j

[0;t℄

is globally

minimal among the admissible paths 
onne
ting the point q

0

with the point q̂(t): 2

Proof. We 
an again assume that q̂(�) is the traje
tory of the ve
tor �eld f or, all the

same, of the 
ontrol system _q = f(q) _v

?

+ g(q) _w driven by the 
ontrol û = ( _v; _w) � (1; 0):

Taking kuk = juj; j(1; 0)j = 1; we derive from Corollary 2 the existen
e of

�

t su
h that for

any t 2 (0;

�

t℄ the system 
annot be steered in time � t from q

0

to q̂(t) by any other 
ontrol

than û(�) with the values in the unit ball juj � 1: This means that the restri
tion q̂(�)j

[0;t℄

is a stri
tly minimal path 
onne
ting q

0

with q̂(t): 2

Remark. In 
ontrast to the previous remark, here the interval [0;

�

t℄ depends on the


hoi
e ofthe Riemannian stru
ture. 2

The following theorem is a 
orollary of Theorem 1 and of the rigidity 
onditions for

abnormal geodesi
 paths derived in [6℄ . Here rigidity is understood in a

ordan
e with

De�nition 3.5.

Theorem 5 (Minimality and Rigidity) Suppose that the Strong Generalized Legendre

Condition holds for the abnormal geodesi
 path q̂(t); t 2 [0; T ℄; and its restri
tions q̂(�)j

[t

1

;t

2

℄

on any nontrivial interval [t

1

; t

2

℄ have 
orank 1: Then:

(1) if q̂(�)j

[0;T ℄

is rigid then 8t 2 [0; T ) the restri
tion q̂(�)j

[0;t℄

is a stri
t W

1;1

-lo
al

length-minimizer in the set of the admissible paths 
onne
ting q

0

with q̂(t);

(2) if q̂(�)j

[0;T ℄

is not a normal geodesi
 path and is a W

1;1

-lo
al length-minimizer

in the set of the admissible paths 
onne
ting q

0

with q̂(T ); then q̂(�)j

[0;t℄

is rigid for any

t 2 (0; T ): 2

Proof. 1) If the 
orank 1 geodesi
 path q̂(�)j

[0;T ℄

is rigid, then, as it was established in

[6, Theorem 4.1℄, the se
ond variation along the geodesi
 must be nonnegative. Sin
e a

restri
tion of the abnormal geodesi
 path q̂(�) on any nontrivial interval [t

1

; t

2

℄ has 
orank

1; i.e., the so-
alled strong regularity 
ondition (see [17℄) holds, then (see [10, 17℄) the

absen
e of 
onjugate points on (0; T ) is ne
essary for the nonnegativeness and we 
an
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apply Theorem 3 to establish the stri
t W

1;1

-lo
al minimality of the restri
tion q̂(�)j

[0;t℄

on

any t 2 (0; T ):

(2) If a 
orank 1 abnormal geodesi
 path q̂(�)j

[0;T ℄

is a W

1;1

-lo
ally minimal, then,

as it was established in [6, Theorem 4.2℄ the se
ond variation along the geodesi
 must

be nonnegative. Together with the strong regularity 
ondition, it implies the absen
e

of 
onjugate points on (0; T ) and positive de�niteness of the se
ond variation along any

restri
tion q̂(�)j

[0;t℄

with t 2 (0; T ): A

ording to [6, Theorem 4.8℄, all these restri
tions are

rigid. 2

6 A Redu
ed Form of the Ja
obi Equation for Regular Dis-

tributions. Examples

In this se
tion we introdu
e (essentially following [6℄) another form of the Ja
obi equa-

tion for the 2-dimensional distributions whi
h satisfy some regularity 
ondition and also

provide some examples of strongly minimal abnormal geodesi
s for 2-dimensional smooth

distributions on 3- and 4-dimensional manifolds (
ompare with [15, 7, 20℄).

Let us 
onsider a 2-dimensional distribution D on the (n + 2)�dimensional manifold

M ; let the ve
tor �elds f; g 2 Ve
tM span D. Suppose that:

(i) the ve
tor �elds

f; g; [f; g℄; : : : (adf)

n�1

g

are linearly independent at every point of the domain that we 
onsider;

(ii) (adf)

n

g 
an be presented as a linear 
ombination with C

1

-
oeÆ
ients of these

n+ 1 ve
tor �elds:

(adf)

n

g = �f +

n�1

X

i=0

�

i

(adf)

i

g (�; �

i

2 C

1

(M)): (6.1)

Then the traje
tories of the ve
tor �eld f are 
orank 1 abnormal geodesi
s for the distri-

bution D.

Let us 
onsider the distribution (free C

1

(M)-module of ve
tor �elds)

V = spanff; g; [f; g℄; : : : (adf)

n�1

gg

and assume that:

(iii) in the domain being 
onsidered we have

[[f; g℄g℄℄(q) 62 V (q):

Let  be a 1-form de�ned in the domain by the 
onditions

 ? V;  [[f; g℄g℄ = 1:

We shall derive the Ja
obi equation for the abnormal geodesi
, whi
h 
orresponds to

the ve
tor �eld f . We denote by q̂(�) = q

0

Æ e

tf

the traje
tory of f ; starting at q

0

= q̂(0)

q̂(T ) = q

1

: Following the approa
h Se
tion 4 we shall 
onsider the skew-symmetri
 bilinear

form (v

1

; v

2

) 7!  � [v

1

; v

2

℄(q

1

); v

1

; v

2

2 V: Taking the quotient of V with respe
t to the

kernel of this form, we obtain a 2(n+ 1)-dimensional symple
ti
 spa
e �

0

: We redu
e the

18



symple
ti
 spa
e by taking the (2n + 1)-dimensional skew-orthogonal 
omplement of the


anoni
al proje
tion f of the ve
tor �eld f onto �

0

and then, by taking its quotient with

respe
t to spanffg. The result is denoted by �

f

; it is a 2n-dimensional symple
ti
 spa
e

with a skew-s
alar produ
t denoted by �. We again denote by Y the image of the ve
tor

�eld Y 2 V under the 
anoni
al proje
tion V ! �

f

.

We are going to introdu
e spe
ial 
oordinates in �

f

and derive one more representation

of the Ja
obi equation (4.22).

Let us set

Y

t

= e

(t�T )adf

g; Y

i

t

= e

(t�T )adf

(adf)

i

g = �

i

Y

t

=�t

i

;




i

t

=

^

 � [Y

1

t

; Y

i

t

℄(q

1

) =

^

 (t)[[f; g℄; (adf)

i

g℄(q̂(t))

for i � 0:

Returning to relation (6.1), we set �

i

t

= �

i

(q̂(t)) (i = 0; : : : n � 1); �

t

= �(q̂(t)); and

derive

Y

n

t

(q

1

) = �

t

f(q

1

) +

n�1

X

i=0

�

i

t

Y

i

t

(q

1

)

from (6.1)

Lemma 6.1

Y

n

t

=

n�1

X

i=0

�

i

t

Y

i

t

: 2 (6.2)

Proof. Chosing 
oordinates in �

f

as in (4.13) (with k = 1) we only need to establish

that

�( � Y

n

t

)=�xj

q

1
=

n�1

X

i=0

�

i

t

�( � Y

i

t

)=�xj

q

1
+ �

t

�( � f)=�xj

q

1

for the lo
al 
oordinates x = (x

1

; : : : x

n

) in the neighborhood of q

1

2M . But this follows

dire
tly from (6.1) and the identities ( Y

i

t

)j

q

1
� 0; i = 0; : : : n� 1: 2

Let � be the image under the 
anoni
al proje
tion of the ve
tor �elds Y , whi
h satisfy

the 
ondition  � [f; Y ℄(q

1

) = 0 and vanish at q

1

; � is a Lagrangian plane in �

f

: It

follows from (6.1)-(6.2) that �

f

= � � spanfY

t

; t 2 Rg and for any � 2 R the ve
tors

Y

�

; Y

1

�

: : : Y

n�1

�

form a basis of the subspa
e spanfY

t

; t 2 Rg = �: It should be emphasize,

that the subspa
e � is not Lagrangian and � de�nes a nondegenerate 
oupling between

� and �.

Representing x 2 �

f

as x = z + �; where z 2 �; � 2 �; we 
an write the Ja
obi

equation (see (4.22)) in these 
oordinates as




0

t

( _z +

_

�) = �(Y

1

t

; z + �)Y

1

t

or




0

t

_z = �(Y

1

t

; z)Y

1

t

+ �(Y

1

t

; �)Y

1

t

;

_

� = 0: (6.3)

Obviously, one of the solutions of this equation is z

t

� Y

t

; �

t

= 0:

The point

�

t is a 
onjugate point of multipli
ity k > 0 for the abnormal geodesi
 q̂(t) =

q

0

Æ e

tf

, if, for Eq. (6.3), the spa
e of solutions whi
h satisfy the boundary 
onditions

z

0

= 0; z

�

t

k Y

�

t

; �(g; �

0

) = 0; (6.4)
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is k-dimensional.

Let us set �

t

= �(Y

t

; �

0

) and present z

t

in the form z

t

=

n�1

X

i=0

z

i

t

Y

i

t

: Then the equation

(6.3) 
an be transformed into the following system




0

t

( _z

1

t

+ �

1

t

z

n�1

t

) =

n�1

X

j=2




j

t

z

j

t

+

_

�

t

; z

1

0

= 0;

_z

j

t

+ �

j

t

z

n�1

t

= �z

j�1

t

; z

j

0

= 0; j = 2; : : : n� 1; (6.5)

�

(n)

=

n�1

X

i=0

�

i

t

�

(i)

t

; �

0

= 0

(the equation for z

0

, whi
h does not appear neither in (6.4) nor in (6.5), is omitted)

The multipli
ity of the 
onjugate point is equal to the dimension of the spa
e of the

solutions of system (6.5) whi
h satisfy the 
onditions

z

i

�

t

= 0; i = 1; : : : n� 1: (6.6)

Summarizing the aforesaid, we 
an formulate the following theorem (
ompare with [6,

Theorem 7.1℄).

Theorem 6.1 Suppose that 
onditions (i),(ii) and (iii) hold for the traje
tory q̂(t) =

q

0

Æ e

tf

of the 2-dimensional distribution on an (n + 2)-dimensional manifold starting at

q

0

. Then:

(1) q̂(t); t 2 [0; T ℄; is 
orank 1 abnormal geodesi
 path of the distribution;

(2) it has a �nite number (whi
h 
an be zero) of 
onjugate points

�

t

i

and the multipli
ity

of the 
onjugate point

�

t is equal to the dimension of the spa
e of solutions of system (6.5)

whi
h satisfy the boundary 
onditions (6.6);

(3) for the abnormal geodesi
 path to be strongly minimal, it is ne
essary (
orr. suÆ-


ient) that (0; T ) (
orr. (0; T ℄) does not 
ontain 
onjugate points. 2

Proof. Statement (1) was established at the beginning of the se
tion, and the �niteness

of the set of 
onjugate points follows from the strong regularity (see [17℄) of the abnormal

geodesi
 path q̂(�). Finally, for a strongly regular abnormal extremal (see the proof of

Theorem 5) the absen
e of 
onjugate points on [0; T ) is ne
essary for the rigidity of every

restri
tion of the 
orresponding geodesi
 path on [0; t℄ � [0; T ℄ and, therefore, by virtue of

Theorem 5, is ne
essary for strong minimality. The suÆ
ien
y of the absen
e of 
onjugate

points on [0; T ℄ for the strong minimality follows from Theorem 3. 2

Example 6.1

Let us 
onsider in greater detail the 2-dimensional distributions on 4-dimensional man-

ifolds. Here the ve
tor �eld f; whi
h satis�es the 
ondition (6.1), exists and is unique

for any 2-dimensional distribution D of maximal growth; su
h distributions de�ne the so-


alled Engel stru
ture on 4-dimensional manifolds (readers 
an �nd in [8℄ a detailed survey

of various problems 
onne
ted with these stru
tures). For n = 2 system (6.5) takes the

form

_z

1

= ��

1

t

z

1

+

_

�




0

t

; z

1

0

= 0;
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::

�= �

0

t

� + �

1

t

_

�; �

0

= 0;

_

�

0

= 1: (6.7)

In addition,

_


0

t

= d( [Y

1

t

; Y

t

℄)=dt =  [Y

2

t

; Y

t

℄ = �

1

t




0

t

; 


0

0

= 1:

Hen
e 


0

t

= e

R

t

0

�

1

�

d�

; and therefore

z

1

t

=

Z

t

0

1




0

�

e

�

R

t

�

�

1

�

d�

_

�

�

d� = �

t

e

�

R

t

0

�

1

�

d�

:

We 
an see that

�

t is a 
onjugate point if and only if �

�

t

= 0: The multipli
ity of any


onjugate point is 1.

Therefore, for the abnormal geodesi
 path to be strongly minimal it is ne
essary (
orr.

suÆ
ient) that there are no zeros of the solution �(�) of (6.7) on (0; T ) (
orr. on (0; T ℄): 2

Example 6.2.

Suppose now that D is a 2-dimensional distribution on a 3-dimensional Riemannian

manifold M . Let us de�ne

N = fq 2M jD

q

= D

2

q

6= D

3

q

g:

Then N is either empty or a smooth 2-dimensional submanifold of M:

In order to prove it, let us take any point of N and 
hoose a basis ff; gg of D in the

neighborhoodW of this point. We assume that D

2

q

6= D

3

q

inW and 
hoose lo
al 
oordinates

q

i

; i = 1; 2; 3; inW: ThenN\W is determined by the equation �(q) = (f^g^[f; g℄)(q) = 0

and we only have to establish that 0 is a regular value of �:

Sin
e D

2

q

6= D

3

q

; it follows that there exists a ve
tor �eld X subje
ted to D su
h that

[X;D

2

℄

q

6� D

2

q

; without loss of generality we 
an assume that X = f and, 
hanging the


oordinates inW; transform f into a 
onstant ve
tor �eld. Then, obviously, (f Æ�)(q) 6= 0

in W; i.e., every q 2 W is a regular point of �: At the same time we have proved that

f(q) is transversal to N at every point q 2 N and, hen
e, D

q

j

N

are transversal to T

q

N:

A
tually D has the well-known Martinet 
anoni
al form in the neighborhood of q 2 N:

The interse
tions D

q

\T

q

N de�ne the 1-dimensional distribution on N and the equality

(f ^ g ^ [f; g℄)(q) = 0 implies that the integral 
urves of this distribution are 
orank 1

abnormal geodesi
s in M: Note that they do not satisfy 
ondition (i) of regularity for

2-distributions formulated at the beginning of this se
tion.

To establish their strong minimality, we shall apply Theorem 3 and the Ja
obi equation

(4.22). In this 
ase the symple
ti
 spa
e �

f

is 2-dimensional and, therefore, any solution of

(4.22) that satis�es the boundary 
ondition (4.23) must vanish identi
ally. Hen
e there are

no 
onjugate points and every subar
 of these abnormal geodesi
s is a strong minimizer.

2

7 Proof of Theorem 1

The proof is based on the following result whi
h is a modi�
ation of [6, Theorem 9.5℄.

Theorem 7.1 (Isolated Points at Criti
al Levels of Smooth Mappings: A SuÆ
ient

Condition) Let U be a 
losed 
onvex subset of the normed spa
e X; whi
h is densely

embedded into a separable Hilbert spa
e H : X ,! H: Suppose that the mapping F : X !
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R

m

is twi
e Fre
het di�erentiable at x̂ 2 U and x̂ is a 
riti
al point of F; i.e., �F

0

(x̂) = 0

for some � 2 R

m

�

n 0: We denote by K

x̂

U a 
one tangent to U at x̂: Assume that:

(1) kF (x̂+ x)� F (x̂)� F

0

(x̂)xk = o(1)kxk

H

; as kxk

X

! 0; (7.1)

(2) k�F

0

(x)zk = O(1)kxk

H

; as kxk

X

! 0; for an arbitrary z 2 X; (7.2)

(3) the quadrati
 form �F

00

(x̂)(�; �) admits a 
ontinuous extension from kerF

0

(x̂) to the


ompletion of kerF

0

(x̂) in H and is H-positive de�nite on kerF

0

(x̂) \ K

x̂

U ; i.e.,

�F

00

(x̂)(�; �) � 2
k�k

2

H

; 8� 2 (kerF

0

(x̂) \ K

x̂

U); (7.3)

4) k�(F (x̂+ �)� F (x̂))�

1

2

�F

00

(x̂)(�; �))k = o(1)k�k

2

H

; as k�k

X

! 0; (7.4)

for some 
 > 0: Then x̂ is an isolated point in X of the level set F

�1

(F (x̂)) \ U : 2

Remark. The 
one K

x̂

U tangent to the 
onvex set U at x̂ is a 
oni
 hull of U � x̂;

obviously, U � x̂+K

x̂

U : 2

Proof of Theorem 7.1. Without loss of generality we 
any assume that F (x̂) = 0

and x̂ is the origin of X: We are going to establish that kF (x)k � �kxk

2

H

for some � > 0

and all x from some small neighborhood of the origin of X.

Let us take for Z a �nite-dimensional 
omplement of kerF

0

(0) in X; F

0

(0) isomorphi-


ally maps Z onto the image F

0

(0)X and

kF

0

(0)zk � 
kzk 8z 2 Z for some 
 > 0: (7.5)

We de�ning N = fy 2 R

m

j� � y = 0g and 
hoose a ve
tor � 2 R

m

su
h that � � � = 1:

Then R

m

= R� +N and ImF

0

(0) � N:

If x = z + �, then, using the Hadamard lemma, we 
an present F (x) as

F (x) = �(�) + F

0

(0)z +A(x)z:

Here A(x)z =

R

1

0

(F

0

(� + tz)� F

0

(0))zdt. By virtue of (7.1),

k�(�) +A(x)zk = o(1)(k�k

H

+ kzk); askxk

X

! 0;

and by virtue of (7.2),

j�A(x)zj = O(1)kxk

H

kzk; 8z 2 Z; as kxk

X

! 0:

Let us 
onsider the proje
tions of F (x) onto the ve
tor � and the subspa
e N ; they are

� � (�(�) +A(x)z)� and R(x) = F

0

(0)z +�

N

(�) +A

N

(x)z 
orrespondingly.

Fixing arbitrarily small � > 0 we may 
hoose a small neighborhood V of X su
h that

for x 2 V and a 
ertain positive k we have

k�

N

(�) +A

N

(x)zk � �kxk

H

; j� � (�(�)�

1

2

F

00

(0)(�; �) +A(x)z)j � kkxk

H

kzk+ �k�k

2

H

:

It follows from (7.5) that

kR(x)k � max(0; (
 � �)kzk � �k�k

H

); 8x 2 V;
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j�(�(�) +A(x)z)j � max(0; (
 � �)k�k

2

H

� kkxk

H

kzk):

Settin 
 = 
� �; 
 = 
 � �; we obtain

kF (x)k � a(max(0; 
kzk � �k�k

H

)) + max(0; 
k�k

2

H

� kkxk

H

kzk)

for a 
ertain a > 0: Without loss of generality, we 
an assume that k(1+4�=
)4�=
 � 
=2:

Now, if 
kzk � 4�k�k

H

; then

kF (x)k � a(




2

kzk + �k�k

H

) � a�(�; 
)kxk

2

H

with �(�; 
) > 0:

Otherwise, if 
kzk � 4�k�k

H

; then

kF (x)k � a(
k�k

2

H

� kkxk

H

kzk) � a(
k�k

2

H

� k�k

2

H

k(1 + 4�=
)4�=
) �

� (a
=2)k�k

2

H

� a�(
; 
; �)kxk

2

H

with �(
; 
; �) > 0: 2

Theorem 1 follows if we apply Theorem 7.1 to the end-point mapping

F (v(�); w(�)) =

= q

0

Æ

�!

exp

Z

T

0

f(1 + _v(�)) + g _w(�)d� = q

1

Æ

�!

exp

Z

T

0

f _v(�) + Y

�

_w(�)d�: (7.6)

Sin
e our 
onsideration is lo
al, we �x lo
al 
oordinates in the neighborhood of q

1

2 M

and treat the input/state mapping F as a mapping into R

n

:

We denote by U the set of Lips
hitzian ve
tor fun
tions u(�) = (v(�); w(�)) su
h that

u(0) = (v(0); w(0)) = 0; and ( _v(�); _w(�)) belongs to the set U from the statement of

Theorem 1. Sin
e U is 
onvex, bounded and 
losed,it follows that U is a 
onvex bounded


losed subset of both W

2

1;1

[0; T ℄ and W

2

1;1

[0; T ℄; we 
hoose the normed spa
e X whi
h

is W

2

1;1

[0; T ℄ equipped with the norm of W

2

1;1

[0; T ℄: Introdu
ing in X the s
alar produ
t

hu

1

(t); u

2

(t)i = u

1

(T )u

2

(T ) +

R

T

0

u

1

(�)u

2

(�)d� and taking the 
ompletion of W

2

1;1

[0; T ℄

with respe
t to the 
orresponding norm denoted by k � k

2

; we obtain a Hilbert spa
e H;

whi
h 
an be identi�ed with the Sobolev spa
e H

2

�1

[0; T ℄: Obviously isolation of û(�) in

F

�1

(q

1

)\U with respe
t to the metri
 of W

2

1;1

[0; T ℄ is equivalent to the strong 
onstrained

rigidity, and, therefore, all that we need is to 
he
k whether the input/state mapping F

satis�es the assumptions of Theorem 7.1.

First note that the input/state mapping F is smooth in W

1;1

[0; T ℄ (see [3, 4℄), and

the abnormal extremal 
ontrol û � 0; is, by de�nition, a 
riti
al point of F ; � =

^

 

T

annihilates ImF

0

(0): Then �F

00

(0) 
oin
ides with the se
ond variation (4.17)-(4.15) along

the abnormal extremal. Due to the absen
e of 
onjugate points on [0; T ℄ and the Strong

Generalized Legendre Condition (3.12) the se
ond variation (4.17) is positive de�nite and,

hen
e, the 
ondition (7.3) is ful�lled.

We have to verify estimates (7.1), (7.2) and (7.4) for the mapping (7.6). Sin
e U is


onvex, we 
an always transform the basis f; g of D into f; g+ af in su
h a way that after

the 
orresponding transformation of R

2

the set U will lie either in the left or in the right

half-plane. Sin
e the two 
ases are similar we 
hoose the �rst one, i.e., from now on

( _v; _w) 2 U ) _v � 0:
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We also assume that ( _v; _w) 2 U ) j _vj � a and without loss of generality 
an take t = T in

the formulation of Theorem 1 sin
e we 
an redu
e the 
ase of arbitrary t � T to this one

by extending ( _v(�); _w(�)) by means of zero from [0; t℄ to [0; T ℄: Re
all that Y

�

= e

(��T ) ad f

g

and q̂(T ) = q

0

Æ e

Tf

= q

1

:

Introdu
ing the notation

�v(t) = v(t)� v

T

= v(t)�

Z

T

0

_v(t)dt; w

T

=

Z

T

0

_w(t)dt;

we apply su

essively the two variants of the generalized variational formula (2.5) to the


hronologi
al exponential q

0

Æ

�!

exp

R

T

0

f(1 + _v(t)) + g _w(t)dt and obtain

q

0

Æ

�!

exp

Z

T

0

f(1 + _v(t))

| {z }

perturbation

+g _w(t)dt = q

0

Æ

�!

exp

Z

T

0

(1 + _v(t))e

w(t) ad g

fdt Æ e

w

T

g

=

= q

0

Æ

�!

exp

Z

T

0

(1 + _v(t))(e

w(t) ad g

f � f)

| {z }

perturbation

+(1 + _v(t))fdt Æ e

w

T

g

=

= q

0

Æ e

Tf

Æ e

v

T

f

Æ

�!

exp

Z

T

0

(1 + _v(t))(e

�v(t) ad f

e

(t�T ) ad f

e

w(t) ad g

f � f)dt Æ e

w

T

g

=

q

1

Æ e

v

T

f

Æ

�!

exp

Z

T

0

(1 + _v(t))(e

�v(t) ad f

e

w(t) adY

t

f � f)dt Æ e

w

T

g

= q

1

Æ e

v

T

f

Æ

Æ

�!

exp

Z

T

0

(1 + _v(t))(w(t)[Y

t

; f ℄ + (w

2

(t)=2)[Y

t

; [Y

t

; f ℄℄ + �v(t)w(t)[f; [Y

t

; f ℄℄)dt

Æe

w

T

g

+ o(1)(jv

T

j

2

+ kw(�)k

2

2

); as k( _v(�); _w(�))k

L

1

! 0

(re
all that jv

T

j =

R

T

0

j _v(�)jd� , sin
e v(0) = 0; and _v(�) � 0): Choosing lo
al 
oordinates

in the neighborhood of q

1

2 M and using the Volterra expansions for the ordinary and


hronologi
al exponentials, we derive, from the last formula,

q

0

Æ

�!

exp

Z

T

0

f(1 + _v(t)) + g _w(t)dt� q

1

= (fv

T

+ gw

T

+

Z

T

0

[Y

t

; f ℄w(t)dt)(q

1

)

| {z }

1

+

+(fv

T

Æ

Z

T

0

[Y

t

; f ℄w(t)dt +

Z

T

0

[Y

t

; f ℄w(t)dt Æ gw

T

+

Z

T

0

[Y

t

; [Y

t

; f ℄℄

w

2

(t)

2

dt+

| {z }

2

+

1

2

(v

T

)

2

(f Æ f) + +

1

2

(w

T

)

2

(g Æ g)) +

Z

T

0

[f; [Y

t

; f ℄℄�v(t)w(t)dt+

| {z }

2

(7.7)

+

Z

T

0

[Y

t

; f ℄ _v(t)w(t)dt +

Z

T

0

Z

t

0

[Y

�

; f ℄w(�)d� Æ [Y

t

; f ℄w(t)dt)(q

1

)

| {z }

2

+

+

Z

T

0

[Y

t

; [Y

t

; f ℄℄(q

1

) _v(t)

w

2

(t)

2

dt

| {z }

3

+

Z

T

0

[f; [Y

t

; f ℄℄(q

1

) _v(t)�v(t)w(t)dt

| {z }

4

+

+o(1)(jv

T

j

2

+ kw(�)k

2

2

)
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(when establishing the estimate for the other term, we have used the estimate

8t 2 [0; T ℄ :

Z

t

0

j _v(�)w(�)jd� � k _vk

1=2

L

1

a

1=2

kwk

L

2

whi
h is valid when j _v(�)j � a on [0; T ℄). To establish estimate (7.1) for mapping (7.6),

we must only note that, if the terms marked by "1" in relation (7.7) vanish, then the

remainder is O((k _vk

1

2

L

1

+ kwk

2

)kwk

2

) as ku(�)k

L

1

! 0:

To �nd estimate (7.4) for mapping (7.6), let us �rst note that in the last relation the

underbra
ed terms marked by "1" 
orrespond to the �rst variation (�rst di�erential of F )

whereas those marked by "2" 
orrespond to the se
ond di�erential; all the other forms of

the se
ond order are the terms whi
h we have to estimate. The term marked by "4" is

annihilated by

^

 

T

= � and, hen
e, does not perturb estimate (7.4). The main obsta
le

is the "prin
ipal" third-order term marked by "3" , whi
h, in general, does not admit

estimate (7.4) (see [18℄); in this parti
ular 
ase we a
hieve the result by using essentially

the sign de�niteness of _v(�):

Indeed, integrating the prin
ipal term by parts, we derive

Z

T

0

[Y

t

; [Y

t

; f ℄℄(q

1

)

w

2

(t)

2

_v(t)dt

| {z }

= [Y

T

; [Y

T

; f ℄℄(q

1

)v

T

w

2

T

2

�

�

Z

T

0

v(t)

w

2

(t)

2

d

dt

[Y

t

; [Y

t

; f ℄℄(q

1

)dt�

Z

T

0

[Y

t

; [Y

t

; f ℄℄(q

1

)v(t)w(t) _w(t)dt:

The �rst two terms on the right-hand side admit an estimate O(1)k _v(�)k

L

1

kw(�)k

2

2

; and

the last integral 
an be estimated from above as

j

Z

T

0

[Y

t

; [Y

t

; f ℄℄(q

1

)v(t)w(t) _w(t)j � sup

0�t�T

(k[Y

t

; [Y

t

; f ℄℄(q

1

)kjv(t)j)

Z

T

0

jw(t)jj _w(t)jdt:

Sin
e v(t) is a monotoni
ally de
reasing fun
tion and v(0) = 0; it follows that max

0�t�T

jv(t)j =

jv

T

j. Denoting b = sup

0�t�T

k[Y

t

; [Y

t

; f ℄℄(q

1

)k and applying the Cau
hy-S
hwartz inequal-

ity to the last integral, we �nd the upper estimate bjv

T

jkwk

2

k _wk

L

2

for the prin
ipal term,

whi
h is o(1)(jv

T

j

2

+kwk

2

2

) as k _wk

L

1

! 0: Therefore we 
ome to estimate (7.4) for mapping

(7.6).

To �nd estimate (7.2), we have to 
ompute the �rst di�erential of the input/state

mapping (7.6) at the point u

0

(�) = (v

0

(�); w

0

(�)): Substituting u

0

(�) + u(�) for u(�) in

relation (4.1), we obtain

F (u

0

(�) + u(�)) = q

1

Æ

�!

exp

Z

t

0

(f( _v

0

(�) + _v(�)) + Y

�

( _w

0

(�) + _w(�))d�:

Setting

X

0

t

= f _v

0

(t) + Y

�

_w

0

(t); P

0

t

=

�!

exp

Z

t

0

X

0

�

d�

and applying the generalized variational formula (2.5), we obtain

F (u

0

(�) + u(�)) = q

1

Æ P

0

T

Æ

�!

exp

Z

T

0

(X

v

t

_v(t) +X

w

t

_w(t))dt;
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where

X

v

t

= AdP

0

t

f; X

w

t

= AdP

0

t

Y

t

:

The �rst di�erential of F at u

0

(�) is given by the relation

F

0

j

u

0
= q

1

Æ P

0

T

Æ

Z

T

0

(X

v

t

_v(t) +X

w

t

_w(t))dt

and, in parti
ular,

F

0

j

0

= q

1

Æ

Z

T

00

(f _v(t) + Y

t

_w(t))dt:

We know that

^

 

T

F

0

j

0

= 0 and therefore

^

 

T

F

0

j

u

0
=

^

 

T

F

0

j

u

0
�

^

 

T

F

0

j

0

:

We obtain

(F

0

j

u

0
� F

0

j

0

)u(�) = q

1

Æ (P

0

T

Æ

Z

T

0

(X

v

t

_v(t) +X

w

t

_w(t))dt �

Z

T

0

(f _v(t) + Y

t

_w(t))dt) =

q

1

Æ (P

0

T

Æ

Z

T

0

((X

v

t

� f) _v(t) + (X

w

t

� Y

t

) _w(t))dt +(P

0

T

� I) Æ

Z

T

0

(f _v(t) + Y

t

_w(t))dt: (7.8)

To �nd (7.2) we �x ( _v(t); _w(t)) 2 U � L

1

:

Let us estimate (X

w

t

� Y

t

); (X

v

t

� f). By de�nition,

j(X

w

t

� Y

t

)(q)j = j(AdP

0

t

� I)Y

t

(q)j = j

Z

t

0

AdP

0

�
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0

(�) + Y

�
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(�))d�Y

t
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= jAdP
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0
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t

w
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Z
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0

(AdP

0

�

_
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w
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t
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0

(t); w

0

(t))j + k(v

0

(�); w

0

(�))k

L

1

):

When deriving the last inequality, we have used the fa
t that for any k � 0 and a 
ompa
t

K � R

n

the di�eomorphisms P

0

t

and the ve
tor �elds X

0

t

and their derivatives in q of

order � k are bounded on [0; T ℄ �K by a 
onstant depending on k;K and independent

of u

0

(�) 2 U (see [3℄). Obviously, (X

v

t

� f) admits a similar estimate and, re
alling that

the values of _v(t); _w(t) are bounded by the 
onstant a; we infer that the �rst term on the

right-hand side of (7.8) admits the estimate

O(1)k(v

0

(�); w

0

(�))k

L

1

= O(1)k(v

0

(�); w

0

(�))k

2

: (7.9)

To estimate the se
ond term we 
ompute

jq

1
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� q

1
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1

Æ P

0

t

Æ (f _v

0

(t) + Y

t

_w

0

(t))dt =
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Æ (fv

0

(t) + Y

t

w

0

(t)) + P

0

t

Æ

_

Y

t

w

0

(t))dt =

= O(1)(j(v

0

(T ); w

0

(T ))j+ k(v

0

(�); w

0

(�))k

L

2

) = O(1)k(v

0

(�); w

0

(�))k

2

and, using again the boundedness of _v(t); _w(t);8t we �nd estimate (7.9) for the se
ond

term of (7.8) and 
omplete the proof of Theorem 1. 2
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