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Abstract

We investigate the local length minimality (by the W1 1 or Hi-topology) of abnor-
mal sub-Riemannian geodesics for rank 2 distributions. In particular, we demonstrate
that this kind of local minimality is equivalent to the rigidity for generic abnormal
geodesics, and introduce an appropriate Jacobi equation in order to compute conjugate
points. As a corollary, we obtain a recent result of Sussmann and Liu about the global
length minimality of short pieces of the abnormal geodesics.

1 Introduction

In this paper we study abnormal sub-Riemannian geodesics. Let us recall that a sub-
Riemannian structure on a Riemannian manifold M is defined by a bracket generating (or
a possessing full Lie rank) distribution D on M. A locally Lipschitzian path ¢(7) (7 € [0,T1])
is admissible if its tangents lie in D for almost all 7 € [0,T]. Given two points ¢° and ¢
one can set out the problem of finding minimal (i.e. length-minimizing) admissible path
connecting ¢ with ¢'.

An essential distinction of this setting from the classical Riemannian case is that the
space of all locally Lipschitzian paths connecting ¢ with ¢' has a structure of Banach
manifold with minimal paths being critical points of the length functional, or Riemannian
geodesics on the manifold M, whereas the space of admissible paths is not, in general,
a manifold and may have singularities. These singularities correspond to the so-called
abnormal geodesics. In fact these abnormal geodesics do not depend on the Riemannian
structure and are determined by the distribution D.

The term ’abnormal’ comes from the calculus of variations since the problem of finding
minimal admissible paths can be reformulated as the Lagrange problem of the calculus
of variations. The Fuler-Lagrange equation for the Lagrange problem is called a geodesic
equation; its solutions are extremals of the Lagrange problem or sub-Riemannian geodesics.
In particular, abnormal extremals with a vanishing Lagrange multiplier for the (length)
functional are abnormal geodesics.

For a long time abnormal sub-Riemannian geodesics were not treated by geometers as
proper candidates for minimizers until Montgomery gave in [15] an example of a mini-
mal admissible path which does not correspond to any normal sub-Riemannian geodesic.
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Later another example was constructed by Kupka ([13]), and Sussmann established in [19]
the minimality of short abnormal geodesic subarcs for generic 2-distributions in R*. Later
Sussmann and Liu generalized the last result to the
2-distributions in R™ ([20]).

Another approach to the investigation of weak (i.e. Wi -local) ! minimality of ab-
normal extremals of the Lagrange problem and the abnormal sub-Riemannian geodesics
was suggested by the authors in [5, 6]. It is a kind of Legendre-Jacobi-Morse-type theory
of a second variation for abnormal extremals of the Lagrange problem and the abnormal
geodesics and, therefore, deals with geodesics of an arbitrary length. Among the results
established in [6] are second order Jacobi-type conditions of weak minimality for abnormal
geodesics, which turned out to be also conditions of rigidity for the corresponding abnor-
mal geodesic paths. Recall that rigidity means that an admissible path is isolated (up to a
reparametrization) in Wi o, —topology of in the set of all admissible paths connecting the
given points ¢¥, ¢* € M, see [7]. As it was demonstrated in [6], the rigidity conditions fol-
low from a general necessary/sufficient conditions for critical points of a smooth mapping
to be isolated at the corresponding critical level. Developing in [6] the Jacobi-Morse-type
approach to abnormal geodesics, the authors introduced the notions of Morse index and
nullity and derived explicit formulas for these invariants. This made it possible to establish
local rigidity of an abnormal geodesic meeting th Strong Generalized Legendre Condition.

In this paper we are going to establish sufficient conditions for W 1-local minimality of
abnormal sub-Riemannian geodesic paths. We call it strong minimality, although it differs
from the traditional definition of strong minimality in the calculus of variations, which is
CP-local minimality.

It turns out that unlike a weak minimality a strong minimality does not, in general,
result from positive definiteness of the second variation unless the distribution D has rank
2. We choose to limit our consideration to the scope of second order conditions and,
therefore, deal with abnormal geodesics of rank 2 distributions.

The paper is organized in the following way. Section 2 contains preliminary material.
In Section 3 we reduce the problem of strong minimality of admissible paths to time
optimal control problem, present the Hamilton-Pontryagin form of the geodesic equation
and define normal and abnormal sub-Riemannian geodesics. In Section 4 we define the
first and the second wvariations along an abnormal geodesic, introduce the Generalized
Legendre Conditions, the Jacobi equation and conjugate points. Section 5 contains all
substantial results of the paper. Thus Theorem 3 provides sufficient strong (= W ;-local)
minimality conditions for abnormal geodesic paths. Since sufficiently short subarcs of a
strongly minimal path are automatically globally minimal, we can establish (Corollary 4)
with the aid of the previous theorem, the global minimality of short geodesic arcs which
satisfy the Strong Generalized Legendre Condition. It was already mentioned that the
weak (= W o-local) minimality was often realized in the form of rigidity or isolation
(up to a reparametrization) of an abnormal geodesic path in Wi o-topology. On the
contrary, as follows from the proof of the Rashevsky-Chow theorem (Theorem 2.1), an
admissible path of a distribution of full Lie rank is never isolated in W; 1-topology in the

'By Wi x[0,T], k = 1,2,...0c0 we denote the spaces of absolutely continuous (vector-) functions on
[0,T] (T < 0o) whose derivatives belong to L[0,T]. They become Banach spaces when provided with the
norms: [|w(-)||1,e = (|w(0)|” + [lw()||7,)"?. In particular, W1 1[0, T] is the space of absolutely continuous
functions, Wi 2 is Sobolev space H1[0,T].



space of admissible paths with given end-points. Nevertheless, for a generic abnormal
geodesic of rank 2 distribution the intervals of its rigidity and strong minimality coincide
(Theorem 5), i.e., the property of strong minimality does not depend on the Riemannian
structure. It can be explained by the that for a generic geodesic strong minimality is
equivalent to strong constrained rigidity. Theorem 1 that gives sufficient conditions for
strong constrained rigidity is proved in Section 7, and Section 6 contains a reduced form
of the Jacobi equation for abnormal geodesics satisfying some regularity conditions and
also some examples of strongly minimal abnormal geodesic paths.

We are grateful to F. Silva Leite who suggested some improvements of the text and
especially to M. Zhitomirskii for the detailed reviewing of the manuscript and a number
of helpful remarks and advice.

2 Preliminaries

Below we use notation and technical tools of chronological calculus developed by Agrachev
and Gamkrelidze (see [3, 4]).

We identify C* diffeormorphisms P : M — M with automorphisms of the algebra
C*°(M) of smooth functions on M: ¢(-) — P¢p = ¢(P(-)). The image of point ¢ € M under
the diffeomorphism P will be denoted by go P. Vector fields on M are first-order differential
operators on M or arbitrary derivations of the C°°(M) algebra, i.e., R-linear mappings
X : C®(M) — C*°(M), that obey the Leibnitz rule: X(af) = (Xa)B8 + a(XB). The
value X (g) of the vector field X at the point ¢ € M lies in the space T,M tangent to
the manifold M at the point q. We denote by [X*1, X?] the Lie bracket or commutator
X'oX?2 - X2%20X" of the vector fields X!, X?. It is again a first order differential operator
which can be presented in local coordinates on M as

n n n
(XL, X2 =) X[0/0x:, > X}0)0w] = > (0X7 )0z X" — X} |02X?)0/0x;.
=1 =1 =1

This operation introduces, in the space of vector fields, a structure of Lie algebra, which
is denoted by Vect M. For X € VectM the notation ad X is used for the inner derivation
of Vect M: (adX)X' = [X, X'],VX' € Vect M.

For a diffeomorphism P we use the notation Ad P for the following inner automorphism
of the Lie algebra Vect M: AdPX = Po X o P! = P/1X. The last notation is used
for the result of translation of the vector field X by means of the differential P! of the
diffeomorphism P~

A flow on M is an absolutely continuous with respect to 7 € R curve 7 — P, in the
group of diffeomorphisms Diff M subject to the condition Py = I (where I is the identical
diffeomorphism). We assume all time-dependent vector fields X, to be locally integrable
(see [3]) with respect to 7. The time-dependent vector field X, defines the ordinary
differential equation ¢ = X, (q(7)),q(0) = ¢° on the manifold M; if any solutions of this
differential equation exist for all ¢° € M, € R, then the vector field X, is said to be
complete and defines a flow on M, being the unique solution of the (operator) differential
equation

dP;/dr = P, o X, Py =1. (2.1)



We denote this solution by P; :e)Tf) fot X,dr, and call it (see [3, 4]) a right chronological
exponential of X;. If the vector field X; = X is time-independent, then the corresponding
flow is denoted by P, = .

We also introduce a Volterra expansion (or Volterra series) for the chronological expo-
nential. It is (see [3, 4])

N t 0 t T1 Ti—1
exp/ XTdeI—{—Z/ dﬁ/ dTQ.../ dTi(Xﬂo---oXn)x
0 =170 0 0

t t T1
xI—i—/ Xﬁdﬁ+/ dﬁ/ drs(Xsy 0 X)) £+ (2.2)
0 0 0
For time-independent X we obtain
o0
e = ;(tk/k!)Xo---oX =T+tX + (t*/2)X o X +--- (2.3)
i= k

One more formula of chronological calculus will be intensively used. It is a ” generalized
variational formula” for a chronological exponential e?p fot (XT + X;)dr of a "perturbed”
vector field X, + X,. We give two (left and right) variants of the formula (see [3, 4] for
their drawing):

t t . t T
eﬁa/ (X, + X, )dr :&f)/ XTdrera/ Ad(ei’)/ Xod0) X, dr =
0 0 0 t
t T t
=exp / Ad(exp / Xpdb) X dro exp / X, dr. (2.4)
0 0 0

By applying the operator Ad(e)Tf) N X,gd@) to a vector field Y and differentiating
Ad(éxp [y Xgd0)Y = (éxp [T Xgdf) o Y o (éxp [T Xypdf) ! with respect to 7, we come to
the relation (see [3, 4])

d

T

Ad(exp / Xpd8Y) = Ad(exp / Xpdf) ad XY,
0 0

which is of the same form as (2.1). Therefore Ad(exp J7 Xpdf) can be presented (at

least formally) as an operator chronological exponential ex_f) fg ad Xyd# which for the

time-independent vector field X, = X can be written as e’ ad X

According to this new notation, the generalized variational relation (2.4) can be repre-
sented as

t t t T .
exp / (Xr + X;)dr =exp / X, dro exp / (exp / ad Xpdf) X dr =
0 0 0 t

t T . [
—exp | (exp / ad Xpdf) X, dro exp / X, dr. (2.5)
0 0 0

The exponentials e?f) fot ad Xyd6 and et ad X jls0 admit the Volterra expansions

N t 0 t T1 Ti—1
exp/ ad X, dr <1+ 2/ dﬁ/ de.../ dri(ad X, o---adXTl) =
0 i1 70 0 0
t t T1
=1+ / ad X, dry +/ dﬁ/ dro(ad X;, ocad X7 ) + - -+ (2.6)
0 0 0
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and
X < T+ tad X 4 (12/2)ad X ocad X +---. (2.7)

We call a r-distribution D on M the space of smooth sections of a sub-bundle of the
tangent bundle 7M; dimD, = r is constant for all ¢ € M. A generalization of the concept
of distribution is a differential system or a distribution with singularities, which is a space of
sections of a sub-bundle with nonconstant dimD,. In other words, the differential systems
D are C*°(M)-submodules of Vect M, while the distributions correspond to projective
C*°(M)-submodules. Locally one can treat the germ of a distribution as a free module.

If D is a differential system, then, taking theC'*°-modules generated by the Lie brackets
oforder < k, kK =1,..., of the vector fields subject to D, we obtain an expanding sequence
of differential systems:

DCD’=[D,D]---CD¥ = [D, D] C ...
For any ¢ € M the sequence of subspaces
D, C. Dt CTM

is called a flag of the differential system D at the point ¢ € M, and the sequence ni(q) <
omg(q) < ---, where ni(q) = dim Dy, is called a growth vector of the differential system
D at the point q. A differential system is bracket generating or having full Lie rank at a

point ¢ € M if D(’; = TqM for a certain k. A differential system is bracket generating or or

having full Lie rank if D,’;q = TyM for a certain k4 and all ¢ € M.
A fundamental property of the full-Lie-rank differential systems is established by the
following theorem.

Theorem 2.1 (Rashevsky-Chow Theorem; see [14]) If a differential system has a
full Lie rank on the manifold M, then any two points of M can be connected by an admis-
sible path. O

If D is a distribution (n;(¢) = const), then D¥ may still have singularities since the growth
vector of a distribution changes, in general, with ¢. A distribution is called regular if its
growth vector is constant for all ¢.

Below we use some standard (see, for example, [9]) concepts of symplectic geometry. A
symplectic structure in an even-dimensional linear space X is defined by a nondegenerate
bilinear skew-symmetric 2-form o (-, -). Two vectors &1, &y € X are skew-orthogonal, written
£1b&s, if (€1, &) = 0. If N is a subspace of X, then N’ is its skeworthogonal complement:
N’ ={¢e€x|o(v) =0,Yv € N} Obviously, dim N + dim N” = dim X. A subspace
[ C X is isotropic when T' C I, and coisotropic when ' D T”. A subspace A C ¥ is
Lagrangian if A> = A. If A is a Lagrangian subspace and I' is isotropic, then it is easy to
prove that (ANT?) 4+ T = (A +T') NI’ is a Lagrangian subspace. We denote it by AL

3 Minimal Paths, Geodesics, Abnormal Geodesics

Recall that the problem we started with is: given a rank 2 distribution D on a Riemannian
manifold M, establish whether a given admissible nonselfintersecting path ¢t — §(t), t €
[0, 7], connecting points ¢° = §(0), ¢ = G(T') € M, is a W 1-local length-minimizer in the



set of all admissible paths connecting ¢° and ¢'. In order to pose the problem properly, we
have to define the W, ;-neighborhood of the given Lipschitzian path ¢t — §(t), t € [0,T].

Let us consider the graph (¢,§(t)) : [0,7] — [0,T] x M of this path. In the sufficiently
small neighborhood §2 of this graph in R x M we can choose a basis By, : T,M — R"
of TyM continuously depending on (¢,q) € W. Then any Lipschitzian path ¢(-) on M
parametrized by [0,7] corresponds to a R"-valued vector function ¢t — By ,;)¢(t) defined
almost everywhere on [0,7]. We shall identify ¢() with By 4;)G(t). Assuming that the
distance p between two points of M is defined by the Riemannian metric, we can define a
Wi 1-norm locally in a small C’-neighborhood of §(-):

lg* () = ()1 = pla! )+ / 2(4)|dt.

Definition 3.1 A nonselfintersecting admissible path t — ¢(t), t € [0,T] of the distribu-
tion D with the end-points ¢° and ¢' is Wi 1 —local minimizer if, for some neighborhood of
4o, in W11[0,T"], the points q° and ¢ cannot be connected by a shorter admissible
path t — q(t), t € [0,T] belonging to this neighborhood. O

The problem of finding a minimal admissible path for a 2-dimensional distribution can
be represented as the following time-optimal control problem:

T — min, (3.1)
¢ = g*(q)ui(1) + g%ua2(7), q(0) = ¢°, uf +uj <1, (3.2)
q(T) = ¢, (3.3)

where ¢'(q), g%(¢) are smooth vector fields, which form a basis of the distribution D in
a small neighborhood of the given nonselfintersecting admissible path ¢(-) on M. We
denote G(q) = (9'(q), 9%(¢q)). The admissible controls u(7) = (u1(7),u2(7)) are measurable
functions with the values in the unit ball B C R?; the set of admissible controls is denoted
byl : U C Ly

The following proposition establishes the equivalence of the optimal control problem
(3.1-3.3) with the one of finding W ;-locally minimal admissible path.

Lemma 3.1 (Reduction Lemma) An admissible path parametrized by the length of arc
T = (1), 0 <7 < T is a Wy -local minimizer if and only if the corresponding control
a(-) is an Lq-local minimizer for the time-optimal problem ( 8.1)-(3.3). The corresponding
minimal time T is the length of the minimal admissible path. O

Proof. a) We start with establishing the following inequality for the Euclidean norm
|-|in R":
v,we R |w|=1v#0=|w— o ||<2|w v|. (3.4)

Indeed, by arranging the terms in the equivalent inequality

(w—

i).(w_

g

|Z—|)§4(w—v)-(w—v)

and dividing it by 2, we transform it into

1— 4w - v+—+2\v\2>0
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or, if 6 is the cosine of the angle between v and w,
1 — 4|v|cos 6 + cos @ + 2|v|* > 0.

When cosf < 0, the last inequality follows from the obvious inequalities 1 + cos@ > 0
and —4|v| cos @ + 2|v|? > 0. If, on the contrary, cos® > 0, then 1 + cosf > 2cos? 0 and,
therefore

14 cos 6 + 2|v|? > 2(cos? @ + |v]|?) > 4|v| cos 0

by virtue of the arithmetic-geometric mean inequality.

Before proving the equivalence of time-optimality of 4(-) and strong minimality of ¢(-),
we fix a monotonic sequence {ex} > 0, limy_,.er = 0. Note that when the controls
uF(-) tend to 4(-) in the Li-norm, then the corresponding trajectories of the systems
g% = G(y*)uk(t), y*(0) = ¢° tend to ¢(-) in the Wi ;-norm and hence in the C%-norm as
well.

(b)Suppose that the control 4(-) producing the admissible path ¢(-) is not Li-locally
optimal for Problem (3.1)-(3.3). Then there exists a sequence of admissible (with their
values in the unit ball of R?) controls u*(-) belonging to the e;-neighborhoods of 4(-) in
L? and steering system (3.2) from ¢° to ¢' in the time T} < T along the paths y*(-).
Obviously, length(y*(-)) < length(4(-)) = T. Without loss of generality, we can assume
that T} converges. If limy_,oTp = T' < T then, since limy_,q |[|u* — uljo,ry)llz, = 0, we
find that ¢" = limy_,o v*(Tk) = ¢(T") and, therefore, §(-) must be selfintersecting. If
limy_,o Ty = T, then, choosing k such that ||u* — uljorylle, < €/2, T — Ty < /2 and
defining y*(t) = ¢' for t € [T, T], we obtain shorter admissible path between ¢° and ¢'
which belongs to the e-neighborhood of ¢(-) in the Wj j-metric.

(c) If now ¢(-) is not a Wi i-locally minimal path, then there exist admissible paths
y*(-), parametrized by [0,7], which are ex-close to §(-) in the Wjj-metric and have
thelength(y*()) < length(§(-) = T. Obviously, limj_,olp = T. The relations y*(t) =
G(y*(t))uk(t), t € [0,T] unequely define u*(-), k = 1,... The controls u*(-) may have
values outside of the unit ball in R?. Parametrizing each y*(-) by the length of ar,c we
represent them as trajectories of the differential equations

g = G(a)u* (tr(r)/|lu* (ta (D), 7[0, L],

where t1,(7) is the inverse to the function 71 (t) = [J ||u¥(s)||ds. Then, by virtue of (3.4)

/ P (ty (7))
0

Juk (te(r)]

§2<Amhﬁﬁﬁﬂ)—u \m=+/ b (r ﬂm).

The second term on the right-hand side obviously tends to zero as k — oo and, since
{tk(7)} converges uniformly to ¢(7) = 7 on any subinterval [0,7"] C [0,T7], the first term
tends to zero as well. O

A first-order necessary minimality condition for the time-optimal control problem ( 3.1)-
(3.3) is provided by the Pontryagin Mazimum Principle. We assume the local coordinates
(t,q) = (t,q1,--.,qn) to be defined in some neighborhood of the curve (¢,¢(t)), t € [0,T].

T<2/ [t (14 (7)) — ub (1) dr <




Theorem 3.2 (Pontryagin Maximum Principle; [16]) If 4(-) is a weak (= Loo-lo-
cal) minimizer for Problem ( 3.1)-(3.3), then there exists a nonvanishing absolutely contin-
uous covector-function (-)) on [0,T] such that ¢(7) € TorM and, in the local coordinates

(ta Q)z the 4-tuple (ﬁ()a @()7 &()aT)
(1) satisfies the Hamiltonian system

. OH 0 1
q aw,Q(O) q, qo(T)=q, (3.5)
oH
V== (36)
with the Hamiltonian

H(u,q,%) =4 - G(q)y; (3.7)

(2) obeys the mazimality condition a.e. on [0,T)]
0 < const = H(a(r),§(7), (7)) = max{H (u,4(7),9(r)) |u € R |lu| <1}. O (3.8)

Definition 3.2 The 4-tuple (ﬂ(),(j(),zﬁ(),T) subject to the conditions of the Pontryagin
Mazimum Principle is an extremal of the optimal control problem (3.1)-(3.8) or a sub-
Riemannian geodesic. A sub-Riemannian geodesic is normal if H > 0 and abnormal, if
H =0. The corresponding triple (4(-),q(-),T) is called sub-Riemannian geodesic path. O

Remark. Obviously for any normal or abnormal sub-Riemannian geodesic
(@(-),q(-),¥(:),T) its restriction (a(-) [Ovt]uqA(')HO,tbq/}(')hO,t},t) to the subinterval [0,¢] C
[0,77] is also a normal or abnormal sub-Riemannian geodesic correspondingly. O

Remark. Several geodesics with different zﬁ() may correspond to the geodesic path
(ﬁ’()a qA()a T) U

Definition 3.3 The geodesic path (i(-),q(-),T) is a corank k abnormal geodesic path if
the space of ¥ (-), which, together with (u(-),q(-),T), satisfies Theorem 3.2 with H =0, is
k-dimensional. O

When a geodesic is abnormal, i.e., H = 0 in the Pontryagin Maximum Principle, then
the maximality condition (3.8) becomes max{t(7)G(¢(1))u | u € R?,|ju| < 1} = 0, which
is equivalent to . .

H(u,{(1),(1)) = (1)G(G(1))u = 0,Vu € R?. (3.9)
This means that ¢(7) is orthogonal to the distribution D at (7). Therefore we have one
more equivalent definition of abnormality.

Definition 3.4 The geodesic (i(-),q(-),¥(-),T) is abnormal if P(r) L D(G(r)) at every
point ¢(7). O

We can see that the definition of an abnormal geodesic does not depend on a Riemannian
structure but is only defined by the distribution D.

Abnormal admissible geodesic paths of a distribution often exhibit a phenomenon called
rigidity.



Definition 3.5 The admissible path q(-) of the distribution D with end-points ¢° and ¢*
is rigid if it is isolated (up to a reparametrization) in the topology of W1 in the set of
all admissible paths connecting ¢° with ¢'. O

Remark. Paper [6] contains detailed consideration of the rigidity phenomenon for distri-
butions and differential systems. O

In [6] some necessary weak minimality conditions for abnormal geodesics are estab-
lished. First, differentiating identity (3.9) with respect to 7, we derive

P(7) - [Ga(r), Gw](4(r)) = 0, Yw € R?, a.e. on [0,T],
for almost all 7 € [0, 7], which means that for all 7 € [0,7] we have

P(7) - [Gv, Gw](§(7)) = 0 Vv, w € R?, (3.10)

~

i.e., at every point §(r) of the abnormal geodesic (a(-),q(-),%(-),T) the covector 4 (r)
annihilates the distribution [D,D](¢(7)), spanned by the vector fields f,¢ from D and
their Lie bracket [f, g].

The following Generalized Legendre Condition (see [11, 2, 12]) ? is necessary for the
weak and therefore also strong minimality of an abnormal geodesic path: for some 1/3()
satisfying Pontryagin Maximum Principle (Theorem 3.2) we have

0 d*> OH
Ou dr? Ou

for all 7 € [0,T], and v L 4(7).
In order to set out Jacobi-type minimality conditions, we introduce Strong Generalized
Legendre Condition: for some > 0 and for all 7 € [0,7] and v L 4(7) : we have

¥r (v,0) = P(7) - [Gu]Ga(r), Go]l(d(r) = Bllv]>. (3.12)

a(r)(0,0) = 7 (v,0) = P(7) - [Gv, [Ga(7), Go]](G(7)) > 0. (3.11)

The last condition also implies the smoothness of the geodesic.

Theorem 3.3 (Smoothness of Abnormal Geodesics; see [6, Theorem 4.4]) If the Strong
Generalized  Legendre  Condition  (3.12) holds along the abnormal geodesic

(@(-),4(-), % (), T), then @(r),4(-), 4 (-) are smooth on [0,T]. O

Note that (3.10) and (3.12) imply 9(7) € DZ,) \ D3y, V7 € [0,T]. On the other hand,
differentiating (3.10) w.r.t. 7, we derive

b (7) - [Ga(r), [Gv, Gul](4(7)) = 0 Vv, w € R*.

Therefore, if (1) € DS(T)\DS’( V7 € [0, T] for the smooth abnormal extremal (4 (-), §(-), ¥(-)),
)

then the Strong Generalized Legendre Condition holds either for (@(-),G(-),(-)) or for the
abnormal extremal (i(-),G(-), = (-)).

The abnormal extremals which are subject to the conditions 9(7) € DS(T) \Dg(T), VT €
[0,T] are called regular abnormal biextremals in [20]. Therefore, the class of abnormal

2also called Generalized Legendre-Klebsch Condition, or Kelley Condition



extremals which satisfies condition (3.10) together with the Strong Generalized Legendre
Condition coincides with the class of "regular abnormal biextremals” introduced in [20].

Below we assume the Strong Generalized Legendre Condition to hold and our abnormal
geodesic (@(+),G(-),¥(-),T) to be smooth. Then we can choose smooth vector fields f,g
spanning the distribution D in some neighborhood of the curve ¢(7), 0 < 7 < T such that
the abnormal geodesic path §(-) = ¢° o !/ starts at the ¢° trajectory of the vector field f
(other trajectories of f need not be geodesics). It is more convenient from the technical
point of view to introduce new notations for system (3.2), namely, we shall consider the
admissible paths of the distribution D starting at ¢° as trajectories of the affine control
system

i = fl@)(1+5(r) + g(a)i(r), q(0) =¢°, (3.13)

where u(7) = (v(7),w(7)) is a vector function treated as control; u(0) = 0. What we
have to do is to find out when the reference control & = 0 shifting the affine control
system (3.13) from ¢” to ¢* is Wy j-locally time optimal among the controls subject to the
constraint

(1+9)* +uw? < 1. (3.14)

4 The First and Second Variations along Abnormal Geodesics

Let us introduce a family of input/state mappings Fy for the control system (3.13). It is
defined in a neighborhood of the origin of W7 [0, (we ignore for the timebeing the
restrictions imposed on the control): F; maps the input u(-) into the point ¢(t) € M of
the trajectory q(-) of the differential equation ¢ = f(q)(1 + 9(7)) + g(q)w(7), ¢(0) = ¢°.
Obviously, F;(0) = §(t) and Fr(0) = ¢*.

In order to study F;(u(-)), we represent it as a chronological exponential:

Fiu() = ¢ éxb [ "t () + gui(r)dr.

Rearranging the vector field f(1+0) + gw as the sum f + (fv+ guw) and applying the first
of the generalized variational formulas (2.5), we transform the exponential into

Rw() =g o efoexb [ (fotr) + Vigi(r)ir, (@)

where
}/7'5,7_ — e(T—t)adfg‘

Taking into account ¢° o et/ = §(t) and applying the second of the relations (2.5) to the
chronological exponential in (4.1) , we obtain

t
Fy(u(-)) = §(t)o exp / BAIO)Y, i(r)dr 0 el (4.2)
0

Let us denote
Y, =Yy, =" g B = Ry (4.3)

obviously, Y = g.
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The first and second variations along the chosen abnormal extremal are, correspond-
ingly, first and second differentials of the input/state mapping F' at the origin (see [6]).
Using the Volterra expansions (2.2)-(2.7), we derive (see [6] for details) the expression

T
Floul) = £(g')o(T) + / Yolq'yi(r)dr =
Fa () + (g olT) ~ [Volg' e, (44)

where Y; = [f,Y;] by virtue of (4.3) , for the first differential.
If 0 is a critical point of F, i.e., Im F'|g # T, M, then there exists a nonzero covector

&T € 7;*1M that annihilates Im F’|y. This implies

dr - fg") = o - g(¢") = Pr - Yi(q") = 0,a.e. on [0,7]. (4.5)

The critical character of 0 € W{_[0,T] for F is another formulation of & = 0 which
is an abnormal extremal control or ¢(-) which is an abnormal geodesic path. Indeed, we
can easily establish the equivalence of conditions (4.5) and (3.9). If we take the covector
¢r from (4.5) and choose the solution 4(-) of the adjoint equation (3.6) with the end-
point value ¢(T) = 47, then (¢) annihilates the distribution D at any point §(¢) of the
abnormal geodesic path.

Definition 4.1 The first differential F'|y : W3 0ol0, T = T M, deﬁned by relation (4.4)
is called the first variation along the abnormal geodesic path G(t) = ¢® oetf| t €[0,T). O

Let us introduce the second variation along the abnormal geodesic
(4(-),G(-),% (), T). This is a Hessian, or a quadratic differential of F' at 0 € Wﬁoo[O, T]. It is
a quadratic form whose domain is the kernel of the first variation. Choosing a smooth func-
tion x : M — R, such that dx|, = Py, we consider the function ¢(u(-)) = x(F(u(-))).
Since zﬁT annihilates ImF”|y, it follows that 0 is a critical point for this function.

Let us compute the quadratic term of the Taylor expansion for ¢(u(-)) at 0. Using the
Volterra expansion ( 2.2) for the chronolological and ordinary exponent in (4.2), we derive

¢"lo(u(-)) = ((Jy J3 Yeub(€)dE o Yyub(7)dr +

+5fo(T) o fu(T) + [§ Yrir(r)dr o fo(T))x)(d")- (4.6)
When carrying out the computation we took into account the relations
([f, Y21 -20(d") = drlf, Yol(d") = drYr(d') = 0. (4.7)

If we restrict the quadratic form (4.6) to the kernel of F'|(p 4y, we can subtract from
(4.6) the vanishing value of

3o + [ veitrydn o (folm) + [ Yeatrynyoah

and, arranging the terms and taking (4.7) into account, transform (4.6) into
1 T T . . 1
([ 1] Yeale)de, Ye(rylar o 0 (a")

11



The last expression does not depend on the choice of x but only on zﬁT = dx|, and,
therefore, we can write it as

Flofu() = [ Yealr)dr Y 0)(a ) (4.9

where u(-) = (v(-), w(-)) satisfies the equality

£ D) + gl ylD) — [ ¥rtaulr)ar =0, (49)

To get rid of the derivatives of w(-), we twice integrate (4.8) by parts transforming it into
a quadratic form in w(-):

.
Flou()) = [V, Yil(a w0t +
[drlgw(r) + [Vouw(r)an, Yiw0)ia)ar (4.0
0 0

Definition 4.2 The quadratic form (4.10)-(4.9) is called the second variation along the
abnormal geodesic (a(-),q(-),v(-),T). O

Note that the quadratic form ¢7[Y;, ¥;](¢')w?, which appears in relation (4.10), coin-
cides with the form y;w? appearing in the Generalized Legendre Conditions (3.11)-(3.12).
Recall that we assumed the Strong Generalized Legendre Condition to be fulfilled, i.e.,
v >k > 0,Vt € 0,7

Next we introduce (as in [6]) a symplectic representation of the second variation (4.10)—
(4.9) along the abnormal geodesic. Let us set

W = span{f(q') Ug(q") U{Y;(¢")|7 € [0,T]} C TuM}. (4.11)

Obviously, W coincides with the image Im F”| of the first variation (4.4) and ¢ annihi-
lates W by virtue of (4.5).

Let us take the space &y of the vector fields, whose values at ¢' lie in W, and consider
the skew-symmetric bilinear form on &y :

g - [X, X')(q), VX, X' € Ew. (4.12)
This form has a kernel of finite codimension in Eyy; it is defined by the relations
X(q") = 04 - (0X/0¢)(¢") = 0,¥¢ € W.

Taking the quotient of &y with respect to this kernel, we obtain a (induced from (4.12))
nondegenerate skew-symmetric bilinear form o (-, -) on the finite-dimensional quotient space
3, which defines the symplectic structure on . A direct calculation gives dim3 =
2dimW = 2(n — k). We denote by X the image of the X € &y under the canonical
projection &y — 3.

Choosing local coordinates (z1,...%,) : O — R™ in some neghborhood O of ¢! in M
such that (1) z;(¢*) = 0, (i = 1,...n), (2) the subspace W is defined by the equalities
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zy = - =z = 0and (3) Yvr = (Y1,...,9%,0,...0), we can represent the canonical
projection X — X as

X = Z?:l Xz(a;)a/aa;l =X =
(X541(0), ... X0 (0), 0K, 405 X:) /O, - - - Oy i Xi) [ Oxnlo).- (4.13)

The symplectic form o(X,Y) can now be represented as

o(X,Y) = Z Z% )/0z;5l0 — sz )/0zjlo)-

Let us denote by II the image under the canonical projection of the space of the vector
fields which vanish at ¢'. Since the Lie bracket for two vector fields vanishing at ¢' also
vanishes at ¢', IT is a Lagrangian subspace (see Section 2).

Using the notation introduced above we can represent the second variation (4.10)-(4.9)
as the quadratic form

25| (u / o (7)dr + /O g(gw(T) + /0 Y w(r)dn Y w®)dt (4.14)
with the domain
T
{u() = (v(), w()|fo(T) + gw(T) —/0 Y w(r)dr €11}, (4.15)

Let us extend the domain of the second variation by considering not only the absolutely
continuous but also arbitrary w(-) € L2[0, 7] such that

/OT Y, w(r)dr € I + span{f, g}, (4.16)

or, equivalently,
T .
for + gwr — / Y w(r)dr €11,
= = 0

where v, wp are uniquely defined linear continuous (by Lj-norm) functionals in w(:) :
v = a(w(+)), wr = B(w(-)). The quadratic form (4.14) becomes

26", / o d¢+/ ng+/ Y w(r)dr, Y (b)) de (4.17)
with wp = B(w(+)). Relation (4.16) can be represented as a system of relations:
T .
/ 0w, Y Yw(r)dr = 0, Yo € LA {f, g}, (4.18)
o RN
Since o(g, f) = 0¥y, f) = 0, ie., all the vectors that appear in (4.17)-(4.15) are

skew-orthogonal to f, we can make a reduction taking, instead of the symplectic space
3}, the quotient of its subspace f by f; we denote it by »/. From now on we consider
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I/ =1In f "+ R f instead of II and preserve the same notations for the vectors g and Zt
treated further modulo Rf. Relation (4.18) becomes

T .
/ o, Y )w(t)dr =0, Vv eIl/ n¢’. (4.19)
o 9

Recall that the Legendre-Jacobi necessary/sufficient minimality conditions for normal
extremals in the Calculus of Variations amount to the nonnegativeness/positive definite-
ness of the second variation. The positive definiteness is also essential for the minimality
of abnormal geodesics.

Let us start with an observation that the Strong Generalized Legendre Condition (3.12)
provides positive definiteness of the second variation for sufficiently small 7" > 0. Indeed,
since [wr| = O(|lw()l|z,) = O(VT|wl|L,), the term

T t . .
| otgwr + [ Yowlrdn )i
o = 0
of (4.17) admits the upper estimate c(fOT lw(t)|dt)? < cT fOT |w(t)|*dt. Since y; > k > 0 on
[0, T it follows that
T
2F" |o(u(+)) > (k — cT)/ lw(t)|*dt (4.20)
0

for some constant x > 0 and therefore is positive definite for small 7" > 0.
Following the Jacobi approach, we introduce the notion of conjugate points for abnormal
geodesics.

Definition 4.3 The conjugate points of an abnormal geodesic are the time instants T for
which the (depending on T') quadratic form (4.17) with the domain determined by (4.15)
has a nontrivial kernel; the dimension of this kernel is the multiplicity of the conjugate
point. O

It follows from the aforesaid that under the Strong Generalized Legendre Condition
(3.12) the conjugate points of abnormal geodesic are isolated from 0 € [0, T'.

In order to derive a condition for conjugate points, let us first note that the kernel of
the quadratic form consists of all (v¥(-), w’(+)) such that w®(-) satisfy (4.19) and

T t . .
| G0+ ol [ guh + Yo (r)ar, Yyu(tyat = o
0 0

for any w(-) satisfying (4.19). This means that
t . . .
Y (t) + o(/gw% +Y W' (r)dr,Y,) = o(—v,Y) for some v € II/ N g’. (4.21)
0 9

If we set z(t) = fot Y, w®(7)dr + gw + v, then the integral equation (4.21) is equivalent
to the equation Jacobi differential equation

&= to(Yy, 7)Yy, (0) € 1179, (4.22)
where II/9 =11/ N gb + span{g}. Condition (4.15) turns into the inclusion
«(T) e IV, (4.23)

The boundary value problem (4.22)-(4.23) has a nontrivial solution if and only if the second
variation is degenerate. Therefore, Definition 4.3 is equivalent to the following definition.
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Definition 4.4 The time momemt T > 0 is a conjugate point for an abnormal geodesic if
there exists a nontrivial solution of the boundary value problem (4.22)-(4.23) on [0,T]. O

The evolution of the second variation with the growth of T' was studied in [10] (see
also [17]). It was shown that, provided the Strong Generalized Legendre Condition (3.12)
was fullfilled, the minimal eigenvalue of the self-adjoint operator, which corresponded to
the quadratic form (4.17)-(4.16), was a continuous nonincreasing function of 7. Since the
quadratic form is positive definite for sufficiently small 7" > 0, the conjugate points are
isolated from 0. If a conjugate point appears, then the second variation cannot again
become positive definite with a further growth of 7. This means that the second variation
possesses a lower estimate of the kind of(4.20) on [0, 7] if and only if there are no conjugate
points on [0, 7.

In Sec.6 we shall derive, essentially following [6], another, reduced, representation of
the Jacobi equation (4.22) for the abnormal extremals of the 2-dimensional distributions
which satisfy some additional regularity conditions.

Now we are ready to formulate the main results of the paper.

5 Main Results

In the Section 3 we have reduced the problem of finding a minimal admissible path for the
distribution D to the time optimal control problem for the 2-input affine control system
(3.13) with the inputs (v, w) subjected to the constraint: (1 + ©)% + %? < 1. Note that
the reference control 4 = (v, w) = 0, which we investigate, is an extremal control for the
affine system (3.13); its values lie on the boundary of the constraints.

The authors established in the[6] rigidity conditions for extremals of affine control
systems with unconstrained controls or with the reference control lying in the relative
interior of the constraints. Recall that rigidity means that 4(-) is isolated by Loo-metric (up
to a reparametrization) in the set of controls which steer the affine system from the given
initial point to the given end-point. It was already mentioned that when dim Lie{f, g} =
dim M at every point of §(-), then, by virtue of Rashevsky-Chow Theorem, 4(-) is never
isolated by the Lj-metric (strongly isolated). It turns out that for affine systems with
constrained controls such an isolation may occur. We call it a strong constrained rigidity.
The following theorem provides sufficient condition for the strong constrained rigidity.

Theorem 1 (Strong Constrained Rigidity for Affine Control Systems) Let an abnor-
mal geodesic (qA(t),q,/;(t)) of a 2-dimensional distribution D = span{f, g} satisfy the Strong
Generalized Legendre Condition (3.12) and §(t) be the trajectory of the vector field f start-
ing at q°. Suppose that the set U C R? is convex and bounded and

(0,0) ¢ intU, intU N (R x {0}) # 0.

If there are no conjugate points of the abnormal geodesic on [0,t], then, for some € > 0,
we have

doib [ £0+i(r) +girr)dr # (0 (5.1)
provided that (v(1),w(r)) € U, for T € [0,t] and
0 < /Ot \(0(r), ir(7))|dr < e, (5.2)
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where |(0,0)] = (0% +w?)Y/2. O

Remark. Conditions (5.1)-(5.2) mean that for sufficiently small ¢ > 0 there is no
admissible control from the e-neighborhood of the origin in L; which steers in time ¢ the
affine system ¢ = f(q)(1+9(7)) +g(q)w(7) from ¢" to §(t), i.e., the trajectory §(-) exhibits
strong constrained rigidity. O

We shall prove of the theorem in the next section and shall now derive an important
corollary.

Corollary 2 Suppose that the abnormal geodesic (§(t), zﬁ(t)), where §(t) = qPoelt | satisfies
the Strong Generalized Legendre Condition (3.12). Then for the arbitrary norm || - || in
R? there exists t > 0 (depending on the norm) such that ¥t € [0,%], Vs > 0 the relations

7 oexp/ Fi*(7) + gu(r)dr = (1), (5.3)

/ 1o (7)lldm < [I(1,0)||¢ (5.4)
can only hold if v*(1) =1, w(r) =0, on [0,s]. O

Proof. According to the aforesaid there are no conjugate points on [0, £] for sufficiently
small ¢ > 0. Without loss of generality, we can assume that [|(1,0)]] = 1. We can also
rescale the time variable in the chronological exponential of (5.3) and in the integral of
(5.4) in such a way that ||(0*(t),w(¢)|] = 1, there by transforming inequality (5.4) into
s < t for the rescaled s.

Let us consider the convex bounded set U = {u € R?|||(1,0) + u| < 1} and assume
that |u| < c||lul|, Vu € R%. If we extend (9*(¢),(t)) by means of zero from [0, s] onto [0, ¢]
and set 0(7) = v*(7) — 1, then

/Ot|(1')(7' |dr_/ (6 7)) = (1,0)]dr <

/ |(0 Tdr+t<ecs+t<(c+ 1)t

Choosing a positive ¢ < -1, we satisfy the upper inequality of (5.2) and use (5.1) to prove
the Corollary. O

The previous results do not depend on any Riemannian structure on M but only depend
on the distribution D. Suppose now that M possesses a Riemannian structure. The
following two theorems are direct corollaries of the results that we formulated above.

Theorem 3 (The Sufficient Condition of Strong Minimality for Abnormal Geodesics)
If an abnormal sub-Riemannian geodesic satisfies the Strong Generalized Legendre Con-
dition (3.12), there are no conjugate points in its domain [0,T], and the corresponding
geodesic path connecting the points ¢° and q' is nonselfintersecting, then it is strongly
(= W ,1-locally) minimal. O

Proof. We can assume that the abnormal geodesic path ¢(7), 0 < 7 < T, is a
trajectory of the vector field f and f,g form an orthonormal basis of the distribution D
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in its neighborhood. Then the length of the geodesic path is T. Considering the convex
bounded set U = {u € R?| |u+ (1,0)] < 1}, we can apply the Theorem 1 and infer
that there is not a single control u(-) = (u1(+),u2(+)) which is e-close by Li-metric to
() = (1,0) and different from a(-) with the values |u(7)| < 1 and which can steer the
control system ¢ = fu; + gus from q° to ¢! in time < T. Now the strong (W171—local)
minimality follows from the Reduction Lemma 3.1. O

Remark. Note that we derive the strong minimality from the strong constrained
rigidity and since the sufficient condition for the Strong Constrained Rigidity established
in Theorem 1 is valid for the arbitrary convex bounded set U, the abnormal geodesic
path satisfying the conditions of Theorem 3 is W i-locally minimal for any choice of the
Riemannian metric. O

From Corollary 2 we can find the sufficient condition for the global minimality of the
abnormal geodesic arcs established in [20, Theorem 6.

Corollary 4 (The Sufficient Condition for The Global Minimality of Abnormal Geo-
desic Subarcs). If the abnormal sub-Riemannian geodesic (qA(),q,/;()) satisfies the Strong
Generalized Legendre Condition (3.12) and the corresponding geodesic path is nonselfin-
tersecting, then there exists t > 0 such that ¥t € (0,%) the restriction §(-)|j,q is globally
minimal among the admissible paths connecting the point ¢° with the point §(t). O

Proof. We can again assume that §(-) is the trajectory of the vector field f or, all the
same, of the control system ¢ = f(q)0* + g(q)w driven by the control & = (v,w) = (1,0).
Taking |lul| = |ul, |(1,0)] = 1, we derive from Corollary 2 the existence of ¢ such that for
any t € (0,%] the system cannot be steered in time < ¢ from ¢° to §(t) by any other control
than 4(-) with the values in the unit ball |u| < 1. This means that the restriction ¢(-)|og
is a strictly minimal path connecting ¢° with §(¢). O

Remark. In contrast to the previous remark, here the interval [0,¢] depends on the
choice ofthe Riemannian structure. O

The following theorem is a corollary of Theorem 1 and of the rigidity conditions for
abnormal geodesic paths derived in [6] . Here rigidity is understood in accordance with
Definition 3.5.

Theorem 5 (Minimality and Rigidity) Suppose that the Strong Generalized Legendre
Condition holds for the abnormal geodesic path §(t), t € [0,T], and its restrictions G(-)[(s, 1)
on any nontrivial interval [t1,t2] have corank 1. Then:

(1) if q()ljo,r) is rigid then Vt € [0,T) the restriction 4(-)|jo,q s a strict Wy 1-local
length-minimizer in the set of the admissible paths connecting q° with §(t);

(2) if 4(-)ljo,r) s not a nmormal geodesic path and is a Wi o-local length-minimizer
in the set of the admissible paths connecting ¢° with §(T), then 4()lo,g s rigid for any
te(0,7). O

Proof. 1) If the corank 1 geodesic path ¢(-)|(o,7] is rigid, then, as it was established in
[6, Theorem 4.1], the second variation along the geodesic must be nonnegative. Since a
restriction of the abnormal geodesic path ¢(-) on any nontrivial interval [¢, t2] has corank
1, i.e., the so-called strong regularity condition (see [17]) holds, then (see [10, 17]) the
absence of conjugate points on (0,7') is necessary for the nonnegativeness and we can
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apply Theorem 3 to establish the strict Wy ;-local minimality of the restriction (-)|o 4 on
any t € (0,T).

(2) If a corank 1 abnormal geodesic path ¢(-)[jo,r) is a Wi -locally minimal, then,
as it was established in [6, Theorem 4.2] the second variation along the geodesic must
be nonnegative. Together with the strong regularity condition, it implies the absence
of conjugate points on (0,7") and positive definiteness of the second variation along any
restriction ¢(-)|jo,q with ¢ € (0, 7). According to [6, Theorem 4.8], all these restrictions are
rigid. O

6 A Reduced Form of the Jacobi Equation for Regular Dis-
tributions. Examples

In this section we introduce (essentially following [6]) another form of the Jacobi equa-
tion for the 2-dimensional distributions which satisfy some regularity condition and also
provide some examples of strongly minimal abnormal geodesics for 2-dimensional smooth
distributions on 3- and 4-dimensional manifolds (compare with [15, 7, 20]).

Let us consider a 2-dimensional distribution D on the (n + 2)—dimensional manifold
M; let the vector fields f,g € Vect M span D. Suppose that:

(i) the vector fields

£9.1f,9,-- (adf)" g

are linearly independent at every point of the domain that we consider;
(ii) (adf)"g can be presented as a linear combination with C°°-coefficients of these
n + 1 vector fields:

n—1

(adf)"g = Bf + ) a'(adf)'g (B,a" € C=(M)). (6.1)
1=0

Then the trajectories of the vector field f are corank 1 abnormal geodesics for the distri-
bution D.
Let us consider the distribution (free C'°°(M)-module of vector fields)

V =span{f,g,[f.g],-.. (adf)" g}

and assume that:
(iii) in the domain being considered we have

[[f,9l9l(q) & V(a)-

Let 9 be a 1-form defined in the domain by the conditions

Y LV, Y[f,glg] = 1.

We shall derive the Jacobi equation for the abnormal geodesic, which corresponds to
the vector field f. We denote by §(-) = ¢® o !/ the trajectory of f; starting at ¢° = G(0)
4(T) = ¢*. Following the approach Section 4 we shall consider the skew-symmetric bilinear
form (vy,ve) = 9 - [v1,v2](q), v1,v2 € V. Taking the quotient of V with respect to the
kernel of this form, we obtain a 2(n + 1)-dimensional symplectic space X'. We reduce the
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symplectic space by taking the (2n + 1)-dimensional skew-orthogonal complement of the
canonical projection f of the vector field f onto X' and then, by taking its quotient with
respect to span{ f}. The result is denoted by ¥/; it is a 2n-dimensional symplectic space
with a skew-scalar product denoted by 0. We again denote by Y the image of the vector
field Y € V under the canonical projection V — %/,

We are going to introduce special coordinates in 2/ and derive one more representation
of the Jacobi equation (4.22).

Let us set

Y, = elt-Tadf g Y = e(th)adf(adf)ig — 9'Y, /0t

v =1 VYY) = $O[f, 9], (ad f)'g)(d(2)
for 4 > 0.
Returning to relation (6.1), we set o = of(4(t)) (i =0,...n — 1), B = B(4(t)), and
derive

Y"(q") = Bef(¢) + Z oY/ (g

from (6.1)
Lemma 6.1
n—1 o
YP =Y afyi. o (6:2)
=0

Proof. Chosing coordinates in 3/ as in (4.13) (with k = 1) we only need to establish
that

n—1

O - Y1) 0wl = > 4o - Y{) [ 0x|a + B0 - f)] 0|
1=0

for the local coordinates © = (z1,...2,) in the neighborhood of ¢* € M. But this follows
directly from (6.1) and the identities (¢Y")[1 =0, i =0,...n— 1. O

Let IT be the image under the canonical projection of the vector fields Y, which satisfy
the condition 4 - [f,Y](¢") = 0 and vanish at ¢'; II is a Lagrangian plane in X/, It
follows from (6.1)-(6.2) that =/ = II @ span{Y,,t € R} and for any 7 € R the vectors
Y., YL, . Y™ ! form a basis of the subspace span{Y,,t € R} = A. It should be emphasize,
that the subspace A is not Lagrangian and o defines a nondegenerate coupling between
IT and A.

Representing z € 2/ as ¢ = 2z + &, where z € A, € € II, we can write the Jacobi
equation (see (4.22)) in these coordinates as

WE+E) =0,z +0Y}

or
Wi=0(Y],2)Y] +0o(Y;, Yy, £=0. (6.3)

Obviously, one of the solutions of this equation is 2z =Y, & = 0.
The point ¢ is a conjugate point of multiplicity k > 0 for the abnormal geodesic ¢(t) =
¢ o el if, for Eq. (6.3), the space of solutions which satisfy the boundary conditions

z0 =0, z; H Yy, 0(27 50) =0, (64)
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is k-dimensional.

n—1
Let us set ¢ = 0(Y,, &) and present z; in the form z, = Zzi_i Then the equation
i=0

(6.3) can be transformed into the following system

n—1
-1 1. n—1 i ] - 1
WE+ a2l ™) =D A + G, 2 =0,
j=2

Aol =—2"1 2 =0 j=2. .n-1, (6.5)

n—1 )
¢ =3, =0
1=0

(the equation for 2%, which does not appear neither in (6.4) nor in (6.5), is omitted)
The multiplicity of the conjugate point is equal to the dimension of the space of the
solutions of system (6.5) which satisfy the conditions

2t=0,i=1,...n— 1. (6.6)

Summarizing the aforesaid, we can formulate the following theorem (compare with [6,
Theorem 7.1}).

Theorem 6.1 Suppose that conditions (i),(ii) and (iii) hold for the trajectory ¢(t) =
¢ o et of the 2-dimensional distribution on an (n + 2)-dimensional manifold starting at
q" . Then:

(1) g(t), t €[0,T], is corank 1 abnormal geodesic path of the distribution;

(2) it has a finite number (which can be zero) of conjugate points t; and the multiplicity
of the conjugate point t is equal to the dimension of the space of solutions of system (6.5)
which satisfy the boundary conditions (6.6);

(3) for the abnormal geodesic path to be strongly minimal, it is necessary (corr. suffi-
cient) that (0,T") (corr. (0,T]) does not contain conjugate points. O

Proof. Statement (1) was established at the beginning of the section, and the finiteness
of the set of conjugate points follows from the strong regularity (see [17]) of the abnormal
geodesic path ¢(-). Finally, for a strongly regular abnormal extremal (see the proof of
Theorem 5) the absence of conjugate points on [0,7) is necessary for the rigidity of every
restriction of the corresponding geodesic path on [0, ¢] C [0,T] and, therefore, by virtue of
Theorem 5, is necessary for strong minimality. The sufficiency of the absence of conjugate
points on [0, 7] for the strong minimality follows from Theorem 3. O

Example 6.1

Let us consider in greater detail the 2-dimensional distributions on 4-dimensional man-
ifolds. Here the vector field f, which satisfies the condition (6.1), exists and is unique
for any 2-dimensional distribution D of maximal growth; such distributions define the so-
called Engel structure on 4-dimensional manifolds (readers can find in [8] a detailed survey
of various problems connected with these structures). For n = 2 system (6.5) takes the
form .

3= —oz%zl + %, zé =0,
Vi
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(= +ail, ¢o=0,(0=1. (6.7)
In addition,
-0 1 _ 2 _ 1.0 0 __
Yy = d@[Yy, Vi) /dt =Y, Y] = ey, 0 =1

o
Hence Y = elo 2747 “and therefore
t 1 t o1 .. t 1
1 — | aydf — | ozdr
Zj :/ —5€ fr 0 (rdT = (e fo .
0 Vr

We can see that £ is a conjugate point if and only if ( = 0. The multiplicity of any
conjugate point is 1.

Therefore, for the abnormal geodesic path to be strongly minimal it is necessary (corr.
sufficient) that there are no zeros of the solution ¢(-) of (6.7) on (0,7 (corr. on (0,7]). O

Example 6.2.

Suppose now that D is a 2-dimensional distribution on a 3-dimensional Riemannian
manifold M. Let us define

N ={qe M|D, = D] # D}}.

Then N is either empty or a smooth 2-dimensional submanifold of M.

In order to prove it, let us take any point of N and choose a basis {f,g} of D in the
neighborhood W of this point. We assume that Dg # Dg’ in W and choose local coordinates
gi, 1 =1,2,3,in W. Then NNW is determined by the equation ®(q) = (fAgA[f,g])(g) =0
and we only have to establish that 0 is a regular value of .

Since Dg #* D;;’, it follows that there exists a vector field X subjected to D such that
(X,D?), ¢ Dg; without loss of generality we can assume that X = f and, changing the
coordinates in W, transform f into a constant vector field. Then, obviously, (fo®)(q) # 0
in W, i.e., every ¢ € W is a regular point of ®. At the same time we have proved that
f(q) is transversal to N at every point ¢ € N and, hence, D,|n are transversal to T;N.
Actually D has the well-known Martinet canonical form in the neighborhood of ¢ € N.

The intersections D,NT, N define the 1-dimensional distribution on N and the equality
(f ANgAN[f,g])(¢) = 0 implies that the integral curves of this distribution are corank 1
abnormal geodesics in M. Note that they do not satisfy condition (i) of regularity for
2-distributions formulated at the beginning of this section.

To establish their strong minimality, we shall apply Theorem 3 and the Jacobi equation
(4.22). In this case the symplectic space 7/ is 2-dimensional and, therefore, any solution of
(4.22) that satisfies the boundary condition (4.23) must vanish identically. Hence there are
no conjugate points and every subarc of these abnormal geodesics is a strong minimizer.
O

7 Proof of Theorem 1

The proof is based on the following result which is a modification of [6, Theorem 9.5].

Theorem 7.1 (Isolated Points at Critical Levels of Smooth Mappings: A Sufficient
Condition) Let U be a closed conver subset of the normed space X, which is densely
embedded into o separable Hilbert space H : X — H. Suppose that the mapping F : X —
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R™ is twice Frechet differentiable at & € U and & is a critical point of F, i.e., A\AF'(Z) =0
for some A € R™ \ 0. We denote by KzU a cone tangent to U at &. Assume that:

() |1F (@ + z) - F(&) = F'(@)z] = o()llzllu, as[lz]x — 0; (7.1)

(2) |INF'(z)z]| = OW)||z||u, as ||z]|x — O; for an arbitrary z € X; (7.2)

(3) the quadratic form AF"(%)(&,€) admits a continuous extension from ker F'(Z) to the
completion of ker F'() in H and is H-positive definite on ker F'(&) N IC;U, i.e.,

AF"(£)(€,€) > 2v/|€l|7, V€ € (ker F'(2) N KU); (7.3)

4) [MF(@ + &) - F(2)) - %AF"(«%)(S,S))H = o(L)lI€lFs as ll€llx =0, (T4)

for some v > 0. Then % is an isolated point in X of the level set F~1(F(£))NU. O

Remark. The cone Kzl tangent to the convex set U at £ is a conic hull of U — Z;
obviously, U C 2+ K;U. O

Proof of Theorem 7.1. Without loss of generality we cany assume that F(z) = 0
and £ is the origin of X. We are going to establish that ||F(z)|| > p||z||% for some pu > 0
and all z from some small neighborhood of the origin of X.

Let us take for Z a finite-dimensional complement of ker F'(0) in X; F'(0) isomorphi-
cally maps Z onto the image F'(0)X and

|1E7(0)z]| > c||z]| V2 € Z for some ¢ > 0. (7.5)

We defining N = {y € R™|\ -y = 0} and choose a vector n € R such that A-n = 1.
Then R™ = Rn+ N and ImF’(0) C N.
If £ = z + &, then, using the Hadamard lemma, we can present F(z) as

F(z) = ®(&) + F'(0)z + A(x)=.
Here A(z)z = [} (F'(& +tz) — F'(0))zdt. By virtue of (7.1),
12(€) + A(z)z| = o(V) (]l + ll2]]), as[lz]lx =0,
and by virtue of (7.2),
[AA(2)z| = O)[zllmllz]], Yz € Z, as ||z]|x — 0.
Let us consider the projections of F'(x) onto the vector n and the subspace N; they are
A (@(&) + A(z)z)n and R(z) = F'(0)z + ®x (&) + An(z)z correspondingly.

Fixing arbitrarily small € > 0 we may choose a small neighborhood V of X such that
for £ € V and a certain positive k we have

1
1PN (&) + An(@)2ll < ellzllu, X (2(8) = 5F"(0)(8,€) + A@)2)| < kllz]ullell + ell€ll7-
It follows from (7.5) that

[B(x)[| = max(0, (¢ - e)l|z]| — €lléllm), Ve eV,
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IN@(8) + A2)2)] = max(0, (v = e)l|&llF; — kllzllmlz1)-

Settin ¢ = ¢ — €, v =7y — €, we obtain
17 (z)]| > a(max(0, cl|z]| — ell€]lr)) + max(0,v[€l|F — kllzllall=[])

for a certain a > 0. Without loss of generality, we can assume that k(1 +4e/c)de/c < /2.
Now, if ¢||z]| > 4€||€]|zz, then

1 ()| = a(%HZH +ellélm) > aale, o)ll= ]

with a(e, c) > 0.
Otherwise, if ¢||z|| < 4€||€||n, then

1 (@) = a(l€lE — kllellmll=l) > alyllElG — 117 kL + 4e/c)de/c) >

> (av/2)€llE = aBly.c, )llzl%

with 5(y,c,€) > 0. 0
Theorem 1 follows if we apply Theorem 7.1 to the end-point mapping

Fo(),w() =

= ¢ exp /OTf(l +9(7)) + g (7)dr = q'o exp /Osz')(T) + Y w(r)dr. (7.6)

Since our consideration is local, we fix local coordinates in the neighborhood of ¢* € M
and treat the input/state mapping F' as a mapping into R".

We denote by U the set of Lipschitzian vector functions u(-) = (v(-),w(-)) such that
u(0) = (v(0),w(0)) = 0, and (v(7),w(7)) belongs to the set U from the statement of
Theorem 1. Since U is convex, bounded and closed,it follows that ¢/ is a convex bounded
closed subset of both W7 [0,7] and W{,[0,7]; we choose the normed space X which
is Wﬁoo[O, T] equipped with the norm of Wﬁl[O, T]. Introducing in X the scalar product
(ur(t),uz(t)) = ur(T)ux(T) + fOT uy(7)uz(7)dr and taking the completion of W¢[0,T]
with respect to the corresponding norm denoted by || - ||2, we obtain a Hilbert space H,
which can be identified with the Sobolev space H2,[0,T]. Obviously isolation of 4(-) in
F~1(¢g")NU with respect to the metric of W£,[0, T is equivalent to the strong constrained
rigidity, and, therefore, all that we need is to check whether the input/state mapping F'
satisfies the assumptions of Theorem 7.1.

First note that the input/state mapping F' is smooth in Wi [0,7] (see [3, 4]), and
the abnormal extremal control & = 0, is, by definition, a critical point of F; A = QﬁT
annihilates Im F'(0). Then AF"(0) coincides with the second variation (4.17)-(4.15) along
the abnormal extremal. Due to the absence of conjugate points on [0, 7] and the Strong
Generalized Legendre Condition (3.12) the second variation (4.17) is positive definite and,
hence, the condition (7.3) is fulfilled.

We have to verify estimates (7.1), (7.2) and (7.4) for the mapping (7.6). Since U is
convex, we can always transform the basis f, g of D into f,g+ af in such a way that after
the corresponding transformation of R? the set U will lie either in the left or in the right
half-plane. Since the two cases are similar we choose the first one, i.e., from now on

(0,%) €U = < 0.
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We also assume that (v,w) € U = || < a and without loss of generality can take ¢ = T" in
the formulation of Theorem 1 since we can reduce the case of arbitrary ¢ < 7' to this one
by extending (9(-),w(-)) by means of zero from [0, ] to [0,T]. Recall that Y, = e(7-T)adfg4
and §(T) = ¢® o e/ = ¢.

Introducing the notation

B(t) = o(t) — vr = o(t) — /OTiJ(t)dt, wp = /OTu')(t)dt,

we apply successively the two variants of the generalized variational formula (2.5) to the
chronological exponential ¢% exp fOT F(1+9(t)) + guw(t)dt and obtain

T T
¢’ exp / F(L+0(t) +gui(t)dt = ¢ o exp / (14 0(t))e?® 249 £t o w19 =
0 N> 0

perturbation

— g% éxp /OT (L+6(0) (" OM9f — F) +(1+0(t)) fdt o €79 =

'

perturbation

— q0 oelf oevrfo e?f) /(ji +,l-)(t))(eﬁ(t)adfe(t—T)adfew(t) adgf _ f)dto eWTd —
0
ql o evao e;f) /T(l +’0(t))(ef)(t)adfew(t)adytf _ f)dto e?Ty — ql o e’UTf o
0
T
o e?p/o (L+0(0) (wt)[Ye, f]+ (w? () /2)[Ys, [V, fI] + 0w (t)[f, [Ye, F1))dt

0T + o(1)(lur [* + [lw()13), as (6(),w(-))llz, =0

(recall that |vr| = fOT |0(T)|dT, since v(0) = 0, and v(7) < 0). Choosing local coordinates
in the neighborhood of ¢' € M and using the Volterra expansions for the ordinary and
chronological exponentials, we derive, from the last formula,

e : : 1 g 1
Qo exp [F(L+0(0) + g0t~ a' = (for -+ gur + [ Ve flw(t)dt) (') +
0 0

T
+(fvTo/0Tm’ dt+/ Y, f] dtong+/ Vil Yé,f]]wz(t)d“‘
1 9 1 9 T )
+5wr)*(fo f) ++5(wr) (909)) +/[fa [y, fll5(t)w(t)dt+ (7.7)

+ [ve Al + | / Yo Fu(r)ir o Y, flut)at ') +

Y[V, Do @ 4, Y, Yo (t)a(H)w(t)dt
+ [ % Al 32 +\/0[f,[ 2 A Ot +

»

~" "

3 4
+o(1)(lor|* + lw()]3)
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(when establishing the estimate for the other term, we have used the estimate
t
. L 11/2
vee0.1]: [ i < il ul,

which is valid when |9(7)| < a on [0,7]). To establish estimate (7.1) for mapping (7.6),
we must only note that, if the terms marked by ”1” in relation (7.7) vanish, then the

1
remainder is O(([[0]|Z, + [[w]l2)llwll2) as [lu(-)l|lz, = 0.

To find estimate (7.4) for mapping (7.6), let us first note that in the last relation the
underbraced terms marked by ”1” correspond to the first variation (first differential of F')
whereas those marked by ”2” correspond to the second differential; all the other forms of
the second order are the terms which we have to estimate. The term marked by 74" is
annihilated by ¥z = X and, hence, does not perturb estimate (7.4). The main obstacle
is the "principal” third-order term marked by ”3” , which, in general, does not admit
estimate (7.4) (see [18]); in this particular case we achieve the result by using essentially
the sign definiteness of v(-).

Indeed, integrating the principal term by parts, we derive

w?(t) _ 1 w%_
9 ,U(t)dt - [YT7 [YT7 f]](q ),UT 9
————

T
| 5, 1)

’lU2
- [ o0 e At~ [ e 7@ 00 (0

The first two terms on the right-hand side admit an estimate O(1)|o(-)||z, [|w(-)||3, and
the last integral can be estimated from above as

T T
\/O[YJ:, Ve, (@ v(w(t)w(t)] < sup (II[Y{s,[Yi,f]](ql)ll\v(t)!)/O!w(t)\!w(t)\dt-

0<t<T

Since v(t) is @ monotonically decreasing function and v(0) = 0, it follows that maxo<;<r [v(t)| =
|or|. Denoting b = supy<;<r I[Y%, [Y2, f1](¢%) ]| and applying the Cauchy-Schwartz inequal-
ity to the last integral, we find the upper estimate blvr|||w||2||w||L, for the principal term,
which is o(1) (Jur|?+||w||3) as |||z, — 0. Therefore we come to estimate (7.4) for mapping
(7.6).

To find estimate (7.2), we have to compute the first differential of the input/state
mapping (7.6) at the point u’(-) = (v°(-),w"(:)). Substituting u°(-) + u(-) for u(-) in
relation (4.1), we obtain

P00 +u)) = a0 &b [ (F67(r) +0(r) + V2 () + i)

Setting
0 _ ¢:0 -0 0o_— [" o
Xy = fo'(t) + Yzu ' (t), P —exp/ X dr
0

and applying the generalized variational formula (2.5), we obtain

T
F(u’(-) +u(-)) = ¢' o Ppo exp /0 (X7 o(t) + X" (t))de,
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where

X! =AdPf, X} = AdPYY;.
The first differential of F at u%(-) is given by the relation

T
F'lyo = g o PY / (XVo(t) + Xab(t))dt
0
and, in particular,
T
Flo=dq"o [ (fo(t) + Yiir(®)dr
00

We know that 97 F’|g = 0 and therefore ¢y F'|,0 = 7 F' |0 — Y F'|o.
We obtain

T T
(F'lo = F'lo)ut) = g* o (PRo | (X7o(0) + X de = (Fo(0) + Ve ()dt) =

1 0 T v . wo_ . 0 T . .
"o (PR of (X7 = £)i(0) + (X7 = Yu®)dt +(Pf = 1) of (£5(2) + Viab(t))dt. (78)

To find (7.2) we fix (0(t),w(t)) € U C L.
Let us estimate (X}’ —Y;), (X{ — f). By definition,

X7 = YD) = (AP = DYilg)| = | [ AQPad(7"(r) + Yt (r))dr i) =
= | Ad P o ad(fo°(t) + Yy’ (t))Yi(q) — /0 t(Ad PYY w0 (7) +
FAAP 0 ad XO(Fo°(r) + You®(1))drYi(g)] < O (1), w¥(0)] + [600), () 0.

When deriving the last inequality, we have used the fact that for any k > 0 and a compact
K C R" the diffeomorphisms PP and the vector fields X{ and their derivatives in g of
order < k are bounded on [0,7] x K by a constant depending on k, K and independent
of u®(-) € U (see [3]). Obviously, (X} — f) admits a similar estimate and, recalling that
the values ofo(t), w(t) are bounded by the constant a, we infer that the first term on the
right-hand side of (7.8) admits the estimate

OMI(" (), w’ Nz, = O (), ())l2- (7.9)
To estimate the second term we compute
T
g o PR ' = [ q"o PP o (£°(0) + Yi()dt =
0

= "o (PR (Fo(0) + ¥ruP() —[ (P o XD o (Fo"(0) + Yo (6)) + PP o Vo)t =
= 0 @), (D] + 10" 0°()lza) = OWIE () ()]l

and, using again the boundedness of v(t),w(t),Vt we find estimate (7.9) for the second
term of (7.8) and complete the proof of Theorem 1. O
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