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Abstrat

It was reently shown that a family of exponentially stable linear systems whose matries gener-

ate a solvable Lie algebra possesses a quadrati ommon Lyapunov funtion, whih implies that the

orresponding swithed linear system is exponentially stable for arbitrary swithing. In this paper we

prove that the same properties hold under the weaker ondition that the Lie algebra generated by given

matries an be deomposed into a sum of a solvable ideal and a subalgebra with a ompat Lie group.

The orresponding loal stability result for nonlinear swithed systems is also established. Moreover,

we demonstrate that if a Lie algebra fails to satisfy the above ondition, then it an be generated by

a family of stable matries suh that the orresponding swithed linear system is not stable. Relevant

fats from the theory of Lie algebras are olleted at the end of the paper for easy referene.

1 Introdution

A swithed system an be desribed by a family of ontinuous-time subsystems and a rule that orhestrates

the swithing between them. Suh systems arise, for example, when di�erent ontrollers are being plaed

in the feedbak loop with a given proess, or when a given proess exhibits a swithing behavior aused

by abrupt hanges of the environment. For a disussion of various issues related to swithed systems, see

the reent survey artile [13℄.

To de�ne more preisely what we mean by a swithed system, onsider a family ff

p

: p 2 Pg of

suÆiently regular funtions from R

n

to R

n

, parameterized by some index set P. Let � : [0;1) ! P be

a pieewise onstant funtion of time, alled a swithing signal. A swithed system is then given by the

following system of di�erential equations in R

n

:

_x = f

�

(x): (1)

We assume that the state of (1) does not jump at the swithing instants, i.e., the solution x(�) is everywhere

ontinuous. Note that in�nitely fast swithing (hattering), whih alls for a onept of generalized solution,

is not onsidered in this paper. In the partiular ase when all the individual subsystems are linear (i.e.,

f

p

(x) = A

p

x where A

p

2 R

n�n

for eah p 2 P), we obtain a swithed linear system

_x = A

�

x: (2)

�
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This paper is onerned with the following problem: �nd onditions on the individual subsystems

whih guarantee that the swithed system is asymptotially stable for an arbitrary swithing signal �. In

fat, a somewhat stronger property is desirable, namely, asymptoti or even exponential stability that is

uniform over the set of all swithing signals. Clearly, all the individual subsystems must be asymptotially

stable, and we will assume this to be the ase throughout the paper. Note that it is not hard to onstrut

examples where instability an be ahieved by swithing between asymptotially stable systems (Setion 4

ontains one suh example), so one needs to determine what additional requirements must be imposed.

This question has reently generated onsiderable interest, as an be seen from the work reported in

[9, 12, 16, 17, 18, 19, 21, 22℄.

Commutation relations among the individual subsystems play an important role in the ontext of

the problem posed above. This an be illustrated with the help of the following example. Consider the

swithed linear system (2), take P to be a �nite set, and suppose that the matries A

p

ommute pairwise:

A

p

A

q

= A

q

A

p

for all p; q 2 P. Then it is easy to show diretly that the swithed linear system is

exponentially stable, uniformly over all swithing signals. Alternatively, one an onstrut a quadrati

ommon Lyapunov funtion for the family of linear systems

_x = A

p

x; p 2 P (3)

as shown in [18℄, whih is well known to lead to the same onlusion.

In this paper we undertake a systemati study of the onnetion between the behavior of the swithed

system and the ommutation relations among the individual subsystems. In the ase of the swithed

linear system (2), a useful objet that reveals the nature of these ommutation relations is the Lie algebra

g := fA

p

: p 2 Pg

LA

generated by the matries A

p

, p 2 P (with respet to the standard Lie braket

[A

p

; A

q

℄ := A

p

A

q

�A

q

A

p

). The observation that the struture of this Lie algebra is relevant to stability of

(2) goes bak to the paper by Gurvits [9℄. That paper studied the disrete-time ounterpart of (2) taking

the form

x(k + 1) = A

�(k)

x(k) (4)

where � is a funtion from nonnegative integers to a �nite index set P and A

p

= e

L

p

, p 2 P for some

matries L

p

. Gurvits onjetured that if the Lie algebra fL

p

: p 2 Pg

LA

is nilpotent (whih means that

Lie brakets of suÆiently high order equal zero), then the system (4) is asymptotially stable for any

swithing signal �. He was able to prove this onjeture for the partiular ase when P = f1; 2g and the

third-order Lie brakets vanish: [L

1

; [L

1

; L

2

℄℄ = [L

2

; [L

1

; L

2

℄℄ = 0.

It was reently shown in [12℄ that the swithed linear system (2) is exponentially stable for arbitrary

swithing if the Lie algebra g is solvable (see Setion A.3 for the de�nition). The proof relied on the

fats that matries in a solvable Lie algebra an be simultaneously put in the upper-triangular form (Lie's

Theorem) and that a family of linear systems with stable upper-triangularmatries has a quadrati ommon

Lyapunov funtion. For the result to hold, the index set P does not need to be �nite (although a suitable

ompatness assumption is required). One an derive the orresponding result for disrete-time systems in

similar fashion, thereby on�rming and diretly generalizing the statement onjetured by Gurvits (beause

every nilpotent Lie algebra is solvable).

In the present paper we ontinue the line of work initiated in the above referenes. Our main theorem

is a diret extension of the one proved in [12℄. The new result states that one still has exponential stability

for arbitrary swithing if the Lie algebra g is a semidiret sum of a solvable ideal and a subalgebra with a

ompat Lie group (whih amounts to saying that all the matries in this seond subalgebra have purely

imaginary eigenvalues). The orresponding loal stability result for the nonlinear swithed system (1) is

also established. Being formulated in terms of the original data, suh Lie-algebrai stability riteria have

an important advantage over results that depend on a partiular hoie of oordinates, suh as the one

reported in [16℄. Moreover, we demonstrate that the above ondition is in some sense the strongest one
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that an be given on the Lie algebra level. Loosely speaking, we show that if a Lie algebra does not satisfy

this ondition, then it ould be generated by a swithed linear system that is not stable.

More preisely, the main ontributions of the paper an be summarized as follows (see the appendix for

an overview of relevant de�nitions and fats from the theory of Lie algebras). Given a matrix Lie algebra

^

g whih ontains the identity matrix, we are interested in the following question: Is it true that any set

of stable generators for

^

g gives rise to a swithed system that is exponentially stable, uniformly over all

swithing signals? We disover that this property depends only on the struture of

^

g as a Lie algebra, and

not on the hoie of a partiular matrix representation of

^

g. The following equivalent haraterizations of

the above property an be given:

1. The fator algebra

^

g mod r, where r denotes the radial, is a ompat Lie algebra.

2. The Killing form is negative semide�nite on [

^

g;

^

g℄.

3. The Lie algebra

^

g does not ontain any subalgebras isomorphi to sl(2;R).

We will also show how the investigation of stability (in the above sense) of a swithed linear system in

R

n

, n > 2, whose assoiated Lie algebra is low-dimensional, an be redued to the investigation of stability

of a swithed linear system in R

2

. For example, take P = f1; 2g, and de�ne

~

A

i

:= A

i

�

1

n

trae(A

i

)I,

i = 1; 2. Assume that all iterated Lie brakets of the matries

~

A

1

and

~

A

2

are linear ombinations of

~

A

1

,

~

A

2

, and [

~

A

1

;

~

A

2

℄. This means that if we onsider the Lie algebra g = fA

1

; A

2

g

LA

and add to it the

identity matrix (if it is not already there), the resulting Lie algebra

^

g has dimension at most 4. In this

ase, the following algorithm an be used to verify that the swithed linear system generated by A

1

and

A

2

is uniformly exponentially stable or, if this is not possible, to onstrut a seond-order swithed linear

system whose uniform exponential stability is equivalent to that of the original one.

Step 1. If [

~

A

1

;

~

A

2

℄ is a linear ombination of

~

A

1

and

~

A

2

, stop: the system is stable. Otherwise, write down

the matrix of the Killing form for the Lie algebra

~

g := f

~

A

1

;

~

A

2

g

LA

relative to the basis given by

~

A

1

,

~

A

2

, and [

~

A

1

;

~

A

2

℄. (This is a symmetri 3� 3 matrix; see Setion A.4 for the de�nition of the Killing

form.)

Step 2. If this matrix is degenerate or negative de�nite, stop: the system is stable. Otherwise, ontinue.

Step 3. Find three matries h, e, and f in

~

g with ommutation relations [h; e℄ = 2e, [h; f ℄ = �2f , and

[e; f ℄ = h (this is always possible in the present ase). We an then write

~

A

i

= �

i

e+

i

f + Æ

i

h, where

�

i

; �

i

; 

i

are onstants, i = 1; 2.

Step 4. Compute the largest eigenvalue of h. It will be an integer; denote it by k. Then the given system

is stable if and only if so is the swithed linear system generated by the 2� 2 matries

^

A

1

:=

 

trae(A

1

)

nk

� Æ

1

��

1

�

1

trae(A

1

)

nk

+ Æ

1

!

;

^

A

2

:=

 

trae(A

2

)

nk

� Æ

2

��

2

�

2

trae(A

2

)

nk

+ Æ

2

!

:

All the steps in the above redution proedure involve only elementary matrix operations (addition, multi-

pliation, and omputation of eigenvalues and eigenvetors). Details and justi�ation are given in Setion 4.

Before losing the Introdution, we make one more remark to further motivate the work reported here

and point out its relationship to a more lassial branh of ontrol theory. Assume that P is a �nite set,

say, P = f1; : : : ;mg. The swithed system (1) an then be reast as

_x =

m

X

i=1

f

i

(x)u

i

(5)
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where the admissible ontrols are of the form u

k

= 1, u

i

= 0 8i 6= k (this orresponds to � = k). In

partiular, the swithed linear system (2) gives rise to the bilinear system

_x =

m

X

i=1

A

i

xu

i

:

It is intuitively lear that asymptoti stability of (1) for arbitrary swithing orresponds to lak of ontrol-

lability for (5). Indeed, it means that for any admissible ontrol funtion the resulting solution trajetory

must approah the origin. Lie-algebrai tehniques have reeived a lot of attention in the ontext of the

ontrollability problem for systems of the form (5). As for the literature on stability analysis of swithed

systems, despite the fat that it is vast and growing, Lie-algebrai methods do not yet seem to have

penetrated it. The present work an be onsidered as a step towards �lling this gap.

The rest of the paper is organized as follows. In Setion 2 we establish a suÆient ondition for stability

(Theorem 2) and disuss its various impliations. In Setion 3 we prove a onverse result (Theorem 4).

Setion 4 ontains a detailed analysis of swithed systems whose assoiated Lie algebras are isomorphi to

the Lie algebra gl(2;R) of real 2� 2 matries. This leads, among other things, to the redution algorithm

skethed above and to a di�erent (and arguably more illuminating) proof of Theorem 4. To make the paper

self-ontained, in the appendix we provide an overview of relevant fats from the theory of Lie algebras.

2 SuÆient onditions for stability

The swithed system (1) is alled (loally) uniformly exponentially stable if there exist positive onstants

M ,  and � suh that for any swithing signal � the solution of (1) with kx(0)k �M satis�es

kx(t)k � e

��t

kx(0)k 8t � 0: (6)

The term \uniform" is used here to desribe uniformity with respet to swithing signals. If there exist

positive onstants  and � suh that the estimate (6) holds for any swithing signal � and any initial

ondition x(0), then the swithed system is alled globally uniformly exponentially stable. Similarly, one

an also de�ne the property of uniform asymptoti stability, loal or global. For swithed linear systems

all the above onepts are equivalent (see [15℄). In fat, as shown in [1℄, in the linear ase global uniform

exponential stability is equivalent to the seemingly weaker property of asymptoti stability for any swithing

signal.

In the ontext of the swithed linear system (2), we will always assume that fA

p

: p 2 Pg is a ompat

(with respet to the usual topology in R

n�n

) set of real n � n matries with eigenvalues in the open left

half-plane. Let g be the Lie algebra de�ned by g = fA

p

: p 2 Pg

LA

as before. The following stability

riterion was established in [12℄. It will be ruial in proving Theorem 2 below.

Theorem 1 [12℄ If g is a solvable Lie algebra, then the swithed linear system (2) is globally uniformly

exponentially stable.

Remark 1. The proof of this result given in [12℄ relies on a onstrution of a quadrati ommon Lyapunov

funtion for the family of linear systems (3). The existene of suh a funtion atually implies global uniform

exponential stability of the time-varying system _x = A

�

x with � not neessarily pieewise onstant. This

observation will be used in the proof of Theorem 2.

The above ondition an always be heked diretly in a �nite number of steps if P is a �nite set.

Alternatively, one an use the standard riterion for solvability in terms of the Killing form. Similar

riteria exist for heking the other onditions to be presented in this paper|see Setions A.3 and A.4 for

details.

4



We now onsider a Levi deomposition of g, i.e., we write g = r � s, where r is the radial and s is a

semisimple subalgebra (see Setion A.4). Our �rst result is the following generalization of Theorem 1.

Theorem 2 If s is a ompat Lie algebra, then the swithed linear system (2) is globally uniformly expo-

nentially stable.

Proof. For an arbitrary p 2 P, write A

p

= r

p

+ s

p

with r

p

2 r and s

p

2 s. Let us show that r

p

is a stable

matrix. Writing

e

(r

p

+s

p

)t

= e

s

p

t

B

p

(t) (7)

we have the following equation for B

p

(t):

_

B

p

(t) = e

�s

p

t

r

p

e

s

p

t

B

p

(t); B

p

(0) = I: (8)

To verify (8), di�erentiate the equality (7) with respet to t, whih gives

(r

p

+ s

p

)e

(r

p

+s

p

)t

= s

p

e

s

p

t

B

p

+ e

s

p

t

_

B

p

:

Using (7) again, we have

r

p

e

s

p

t

B

p

+ s

p

e

s

p

t

B

p

= s

p

e

s

p

t

B

p

+ e

s

p

t

_

B

p

hene (8) holds. De�ne 

p

(t) := e

�s

p

t

r

p

e

s

p

t

. Clearly, spe(

p

(t)) = spe(r

p

) for all t. It is well known that

for any two matries A and B one has

e

�A

Be

A

= e

adA

(B) = B + [A;B℄ +

1

2

[A; [A;B℄℄ + : : : (9)

hene we obtain the expansion



p

(t) = r

p

+ [s

p

t; r

p

℄ +

1

2

[s

p

t; [s

p

t; r

p

℄℄ + : : :

Sine [s; r℄ � r, we see that 

p

(t) 2 r. Aording to Lie's Theorem, there exists a basis in whih all matries

from r are upper-triangular. Combining the above fats, it is not hard to hek that spe(B

p

(t)) = e

tspe(r

p

)

.

Now it follows from (8) that spe(r

p

) lies in the open left half of the omplex plane. Indeed, as t!1 we

have e

(r

p

+s

p

)t

! 0 beause the matrix A

p

is stable. Sine s is ompat, there exists a onstant C > 0 suh

that we have je

s

xj � Cjxj for all s 2 s and x 2 R

n

, thus we annot have e

s

p

t

x ! 0 for x 6= 0. Therefore,

B

p

(t)! 0, and so r

p

is stable.

Sine p 2 P was arbitrary, we see that all the matries r

p

, p 2 P are stable. Theorem 1 implies that the

swithed linear system generated by these matries is globally uniformly exponentially stable. Moreover, the

same property holds for matries in the extended set

�

r := f

�

A : 9 p 2 P and s 2 s suh that

�

A = e

�s

r

p

e

s

g.

This is true beause the matries in this set are stable and beause they belong to r (the last statement

follows from the expansion (9) again sine [s; r℄ � r). Now, the transition matrix of the original swithed

linear system (2) at time t takes the form

�(t; 0) = e

(r

p

k

+s

p

k

)t

k

� � � e

(r

p

1

+s

p

1

)t

1

= e

s

p

k

t

k

B

p

k

(t

k

) � � � e

s

p

1

t

1

B

p

1

(t

1

)

where t

1

, t

1

+ t

2

, : : : , t

1

+ t

2

+ � � � + t

k�1

< t are swithing instants, t

1

+ � � � + t

k

= t, and as before

_

B

p

i

(t) = e

�s

p

i

t

r

p

i

e

s

p

i

t

B

p

i

(t), i = 1; : : : ; k. To simplify the notation, let k = 2 (in the general ase one an

adopt the same line of reasoning or use indution on k). We an then write

�(t; 0) = e

s

p

2

t

2

e

s

p

1

t

1

e

�s

p

1

t

1

B

p

2

(t

2

)e

s

p

1

t

1

B

p

1

(t

1

) = e

s

p

2

t

2

e

s

p

1

t

1

~

B

p

2

(t

2

)B

p

1

(t

1

)
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where

~

B

p

2

(t) := e

�s

p

1

t

1

B

p

2

(t)e

s

p

1

t

1

. We have

d

dt

~

B

p

2

(t) = e

�s

p

1

t

1

e

�s

p

2

t

r

p

2

e

s

p

2

t

B

p

2

(t)e

s

p

1

t

1

= e

�s

p

1

t

1

e

�s

p

2

t

r

p

2

e

s

p

2

t

e

s

p

1

t

1

e

�s

p

1

t

1

B

p

2

(t)e

s

p

1

t

1

= e

�s

p

1

t

1

e

�s

p

2

t

r

p

2

e

s

p

2

t

e

s

p

1

t

1

~

B

p

2

(t)

Thus we see that

�(t; 0) = e

s

p

2

t

2

e

s

p

1

t

1

�

�

B(t) (10)

where

�

B(t) is the transition matrix of a swithed/time-varying system generated by matries in

�

r, i.e.,

d

dt

�

B(t) =

�

A(t)

�

B(t) with

�

A(t) 2

�

r 8t � 0. The norm of the �rst term in the above produt is bounded by

ompatness, while the norm of the seond goes to zero exponentially by Theorem 1 (see also Remark 1),

and the statement of the theorem follows.

Remark 2. The fat that r is the radial, implying that s is semisimple, was not used in the proof. The

statement of Theorem 2 remains valid for any deomposition of g into the sum of a solvable ideal r and a

subalgebra s. Among all possible deompositions of this kind, the one onsidered above gives the strongest

result. If g is solvable, then s = 0 is of ourse ompat, and we reover Theorem 1 as a speial ase.

Example 1. Suppose that the matries A

p

, p 2 P take the form A

p

= ��

p

I + S

p

where �

p

> 0 and

S

T

p

= �S

p

for all p 2 P. These are automatially stable matries. Suppose also that spanfA

p

; p 2 Pg 3 I.

Then the ondition of Theorem 2 is satis�ed. Indeed, take r = f�I : � 2 Rg (salar multiples of the identity

matrix) and observe that the Lie algebra fS

p

: p 2 Pg

LA

is ompat beause skew-symmetri matries

have purely imaginary eigenvalues.

In [12℄ the global uniform exponential stability property was dedued from the existene of a quadrati

ommon Lyapunov funtion. In the present ase we found it more onvenient to obtain the desired result

diretly. However, under the hypothesis of Theorem 2 a quadrati ommon Lyapunov funtion for the

family of linear systems (3) an also be onstruted, as we now show. Let

�

V (x) = x

T

Qx be a quadrati

ommon Lyapunov funtion for the family of linear systems generated by matries in

�

r (whih exists

aording to [12℄). De�ne the funtion

V (x) :=

Z

S

�

V (Sx)dS = x

T

�

Z

S

S

T

QSdS � x

where S is the Lie group orresponding to s and the integral is taken with respet to the Haar measure

invariant under right translation on S (see Setion A.4). Using (10), it is straightforward to show that the

derivative of V along solutions of the swithed linear system (2) satis�es

d

dt

V (x(t)) =

d

dt

Z

S

�

V (S

�

B(t)x(0))dS

=

Z

S

x

T

(0)

�

B

T

(t)S

T

((S

�

A(t)S

�1

)

T

Q+QS

�

A(t)S

�1

)S

�

B(t)x(0)dS < 0:

The �rst equality in the above formula follows from the invariane of the measure, and the last inequality

holds beause S

�

A(t)S

�1

2

�

r for all t � 0 and all S 2 S.

Remark 3. It is now lear that the above results remain valid if pieewise onstant swithing signals are

replaed by arbitrary measurable funtions (f. Remark 1).

The existene of a quadrati ommon Lyapunov funtion will be used to prove Corollary 3 below. It

is also an interesting fat in its own right beause, although the onverse Lyapunov theorem proved in

[15℄ implies that global uniform exponential stability always leads to the existene of a ommon Lyapunov

funtion, in some ases it is not possible to �nd a quadrati one [4℄. Inidentally, this learly shows that the

ondition of Theorem 2 is not neessary for uniform exponential stability of the swithed linear system (2).

6



Another way to see this is to note that the property of uniform exponential stability is robust with respet

to small perturbations of the parameters of the system, whereas the ondition of Theorem 2 is not. In fat,

no Lie-algebrai ondition of the type onsidered here an possess the indiated robustness property. This

follows from the fat, proved in Setion A.6, that in an arbitrarily small neighborhood of any pair of n�n

matries there exists a pair of matries that generate the entire Lie algebra gl(n;R).

We onlude this setion with a loal stability result for the nonlinear swithed system (1). Let f

p

:

D ! R

n

be ontinuously di�erentiable with f

p

(0) = 0 for eah p 2 P, where D is a neighborhood of the

origin in R

n

. Consider the linearization matries

F

p

:=

�f

p

�x

(0); p 2 P:

Assume that the matries F

p

are stable, that P is a ompat subset of some topologial spae, and that

�f

p

�x

(x) depends ontinuously on p for eah x 2 D. Consider the Lie algebra

~

g := fF

p

: p 2 Pg

LA

and its

Levi deomposition

~

g =

~

r�

~

s. The following statement is a generalization of [12, Corollary 5℄.

Corollary 3 If

~

s is a ompat Lie algebra, then the swithed system (1) is uniformly exponentially stable.

Proof. This is a relatively straightforward appliation of Lyapunov's �rst method (see, e.g., [11℄). For

eah p 2 P we an write f

p

(x) = F

p

x+ g

p

(x)x. Here g

p

(x) =

�f

p

�x

(z) �

�f

p

�x

(0) where z is a point on the

line segment onneting x to the origin. We have g

p

(x) ! 0 as x ! 0. Under the present assumptions,

the family of linear systems _x = F

p

x, p 2 P has a quadrati ommon Lyapunov funtion. Beause of

ompatness of P and ontinuity of

�f

p

�x

with respet to p, it is not diÆult to verify that this funtion is

a ommon Lyapunov funtion for the family of systems _x = f

p

(x), p 2 P on a ertain neighborhood

�

D of

the origin. Thus the swithed system (1) is uniformly exponentially stable on

�

D.

An important problem for future researh is to investigate how the struture of the Lie algebra generated

by the original nonlinear vetor �elds f

p

, p 2 P is related to stability properties of the swithed system (1).

Taking higher-order terms into aount, one may hope to obtain onditions that guarantee stability of

nonlinear swithed systems when the above linearization test fails. A �rst step in this diretion is the

observation made in [21℄ that a �nite family of ommuting nonlinear vetor �elds giving rise to exponentially

stable systems has a loal ommon Lyapunov funtion. Imposing ertain additional assumptions, it is

possible to obtain analogues of Lie's Theorem whih yield triangular struture for families of nonlinear

systems generating nilpotent or solvable Lie algebras (see [3, 10, 14℄). However, the methods desribed in

these papers require that the Lie algebra have full rank, and so typially they do not apply to families of

systems with ommon equilibria of the type treated here.

3 A onverse result

We already remarked that the ondition of Theorem 2 is not neessary for uniform exponential stability

of the swithed linear system (2). It is natural to ask whether this ondition an be improved. A more

general question that arises is to what extent the struture of the Lie algebra an be used to distinguish

between stable and unstable swithed systems. The �ndings of this setion will shed some light on these

issues.

We �nd it useful to introdue a possibly larger Lie algebra

^

g by adding to g the salar multiples of the

identity matrix if neessary. In other words, de�ne

^

g := fI;A

p

: p 2 Pg

LA

. The Levi deomposition of

^

g

is given by

^

g =

^

r� s with

^

r � r (beause the subspae RI belongs to the radial of

^

g). Thus

^

g satis�es the

hypothesis of Theorem 2 if and only if g does.

7



Our goal in this setion is to show that if this hypothesis is not satis�ed, then

^

g an be generated by

a family of stable matries (whih might in priniple be di�erent from fA

p

: p 2 Pg) with the property

that the orresponding swithed linear system is not stable. Suh a statement ould in some sense be

interpreted as a onverse of Theorem 2. It would imply that by working just with

^

g it is not possible to

obtain a stronger result than the one given in the previous setion.

We will also see that there exists another set of stable generators for

^

g whih does give rise to a uniformly

exponentially stable swithed linear system. In fat, we will show that both generator sets an always be

hosen in suh a way that they ontain the same number of elements as the original set that was used to

generate

^

g. Thus, if the Lie algebra does not satisfy the hypothesis of Theorem 2, this Lie algebra alone

(even together with the knowledge of how many stable matries were used to generate it) does not provide

enough information to determine whether or not the original swithed linear system is stable.

Let fA

1

; A

2

; : : : ; A

m

g be any �nite set of stable generators for

^

g (if the index set P is in�nite, a suitable

�nite subset an always be extrated from it). Then the following holds.

Theorem 4 Suppose that s is not a ompat Lie algebra. Then there exists a set of m stable generators

for

^

g suh that the orresponding swithed linear system is not uniformly exponentially stable. There also

exists another set of m stable generators for

^

g suh that the orresponding swithed linear system is globally

uniformly exponentially stable.

Proof. To prove the seond statement of the theorem, we simply subtrat �I from eah of the generators

A

1

, A

2

, : : : , A

m

, where � > 0 is large enough. Namely, take � to be any number larger than the largest

eigenvalue of (A

i

+ A

T

i

)=2 for all i = 1; : : : ;m. Then it is easy to hek that the linear systems de�ned

by the matries A

1

� �I, A

2

� �I, : : : , A

m

� �I all share the ommon Lyapunov funtion V (x) = x

T

x.

To prove that these matries indeed generate

^

g, it is enough to show that the span of these matries and

their iterated Lie brakets ontains the identity matrix I. We know that I an be written as a linear

ombination of the matries A

1

, A

2

, : : : , A

m

, and their suitable Lie brakets. Replaing eah A

i

in this

linear ombination by A

i

� �I, we obtain a salar multiple of I. If it is nonzero, we are done; otherwise,

we just have to inrease � by an arbitrary amount.

We now turn to the �rst statement of the theorem. Sine s is not ompat, it ontains a subalgebra that

is isomorphi to sl(2;R). Suh a subalgebra an be onstruted as shown in Setion A.5. The existene of

this subalgebra is the key property that we will explore.

It follows from basi properties of solutions to di�erential inlusions that if a family of matries gives

rise to a uniformly exponentially stable swithed linear system, then all onvex linear ombinations of

these matries are stable (this fat is easily seen to be true from the onverse Lyapunov theorems of [15, 4℄,

although in [15℄ it was atually used to prove the result; see also Remark 5 below). To prove the theorem,

we will �rst �nd a pair of stable matries B

1

; B

2

that lie in the subalgebra isomorphi to sl(2;R) and have

an unstable onvex ombination, and then use them to onstrut a desired set of generators for

^

g. (An

alternative method of proof will be presented in the next setion.)

Sine every matrix representation of sl(2;R) is a diret sum of irreduible ones, there is no loss of

generality in onsidering only irreduible representations. Their omplete lassi�ation in all dimensions

(up to equivalene indued by linear oordinate transformations) is available. In partiular, it is known

that any irreduible representation of sl(2;R) ontains two matries of the following form:

~

B

1

=

0

B

B

B

B

�

0 �

1

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

r

0 � � � � � � 0

1

C

C

C

C

A

and

~

B

2

=

0

B

B

B

B

�

0 � � � � � � 0

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � 1 0

1

C

C

C

C

A
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(f. Setion A.2). The matrix

~

B

1

has positive entries �

1

; : : : ; �

r

immediately above the main diagonal and

zeros elsewhere, and the matrix

~

B

2

has ones immediately below the main diagonal and zeros elsewhere.

It is not hard to hek that the nonnegative matrix

~

B := (

~

B

1

+

~

B

2

)=2 is irreduible

1

, and as suh

satis�es the assumptions of the Perron-Frobenius Theorem (see, e.g., [6, Chapter XIII℄). Aording to that

theorem,

~

B has a positive eigenvalue. Then for a small enough � > 0 the matrix B :=

~

B � �I also has a

positive eigenvalue. We have B = (

~

B

1

� �I +

~

B

2

� �I)=2. This implies that a desired pair of matries in

the given irreduible matrix representation of sl(2;R) an be de�ned by B

1

:=

~

B

1

� �I and B

2

:=

~

B

2

� �I.

Indeed, these matries are stable, but their average B is not.

For � � 0, de�ne A

1

(�) := B

1

+ �A

1

and A

2

(�) := B

2

+ �A

2

. If � is small enough, then A

1

(�) and

A

2

(�) are stable matries, while (A

1

(�)+A

2

(�))=2 is unstable. Thus the matries A

1

(�); A

2

(�); A

3

; : : : ; A

m

yield a swithed system that is not uniformly exponentially stable. Moreover, it is not hard to show that

for � small enough these matries generate

^

g. Indeed, onsider a basis for

^

g formed by A

1

; : : : ; A

m

, and

their suitable Lie brakets. Replaing A

1

and A

2

in these expressions by A

1

(�) and A

2

(�) and writing the

oordinates of the resulting elements relative to this basis, we obtain a square matrix �(�). Its determinant

is a polynomial in � whose value tends to 1 as �!1, and therefore it is not identially zero. Thus �(�)

is nondegenerate for all but �nitely many values of �; in partiular, we will have a basis for

^

g if we take �

suÆiently small. This ompletes the proof.

Remark 4. Given the matries B

1

and B

2

as in the above proof, it is of ourse quite easy to onstrut

a set of stable generators for

^

g giving rise to a swithed linear system that is not uniformly exponentially

stable: just take any set of generators for

^

g ontaining �I, B

1

and B

2

, and make them into stable ones by

means of subtrating positive multiples of the identity if neessary. The above more areful onstrution

has the advantage of produing a set of generators with the same number of elements as in the original

generating set for

^

g.

Remark 5. The existene of an unstable onvex ombination atually leads to more spei� onlusions

than simply lak of uniform exponential stability. Namely, one an �nd a sequene of solutions of the

swithed system that onverges in a suitable sense to a trajetory of the unstable linear system assoiated

with suh a onvex ombination. This is a onsequene of the so-alled relaxation theorem whih in our

ase says that the set of solutions to the di�erential inlusion _x 2 fA

p

x : p 2 Pg is dense in the set of

solutions to the di�erential inlusion _x 2 ofA

p

x : p 2 Pg, where o(K) denotes the onvex hull of a set

K � R

n

. For details, see [2, 5℄.

The results that we have obtained so far reveal the following important fat: the property of

^

g whih

is being investigated here, namely, global uniform exponential stability of any swithed system whose

assoiated Lie algebra is

^

g, depends only on the struture of

^

g (i.e., on the ommutation relations between

its matries) and is independent of the hoie of a partiular representation.

4 Swithed linear systems with low-dimensional Lie algebras

In the proof of Theorem 4 in the previous setion, we needed to onstrut a pair of stable matries in a

representation of sl(2;R) whih give rise to an unstable swithed system. To ahieve this, we relied on the

fat that a swithed system de�ned by two matries is not stable if these matries have an unstable onvex

ombination. However, even if all onvex ombinations are stable, stability of the swithed system is not

guaranteed. As a simple example that illustrates this, onsider the swithed system in R

2

de�ned by the

matries A

1

:=

~

A

1

� �I and A

2

:=

~

A

2

� �I, where

~

A

1

:=

�

0 k

�1 0

�

;

~

A

2

:=

�

0 1

�k 0

�

1

A matrix is alled irreduible if it has no proper invariant subspaes spanned by oordinate vetors.
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with � > 0 and k > 1. It is easy to hek that all onvex ombinations of A

1

and A

2

are stable. When

� = 0, the trajetories of the orresponding individual systems look as shown in Figure 1 (left) and Figure 1

(enter), respetively. It is not hard to �nd a swithing signal � : [0;1)! f1; 2g that makes the swithed

system _x =

~

A

�

x unstable: simply let � = 1 when xy > 0 and � = 2 otherwise. For an arbitrary initial

state, this results in the swithed system _x =

~

A

�(t)

x whose solutions grow exponentially. Therefore, the

original swithed system _x = A

�

x will also be destabilized by the same swithing signal, provided that �

is suÆiently small.

PSfrag replaements

y

y

y

x x

x

Figure 1: Unstable swithed system in the plane

As a step towards understanding the behavior of swithed systems in higher dimensions, in view of the

�ndings of this paper it is natural to investigate the ase when given matries generate a Lie algebra that

is isomorphi to the one generated by 2� 2 matries. This is the goal of the present setion.

Consider the Lie algebra g := fA

p

: p 2 Pg

LA

, and assume that g = RI

n�n

� sl(2;R). Here sl(2;R)

means an n-dimensional matrix representation, whih we take to be irreduible (as before, this will not

introdue a loss of generality beause every matrix representation of sl(2;R) is a diret sum of irreduible

ones). Then for eah p 2 P we an write

A

p

= (n� 1)�

p

I

n�n

+ �

p

�(e) + 

p

�(f) + Æ

p

�(h) (11)

where �

p

; 

p

; Æ

p

are onstants, � is the standard representation of sl(2;R) onstruted in Setion A.2 (n

here orresponds to k+1 there), fe; h; fg is the anonial basis for sl(2;R), and �

p

=

1

n(n�1)

trae(A

p

). For

eah p 2 P, de�ne the following 2� 2 matrix:

^

A

p

:= �

p

I

2�2

� �

p

e� 

p

f � Æ

p

h: (12)

We now demonstrate that the task of investigating stability of the swithed system generated by the

matries A

p

, p 2 P redues to that of investigating stability of the two-dimensional swithed system

generated by the matries

^

A

p

, p 2 P.

Proposition 5 The swithed linear system (2) with A

p

given by (11) is globally uniformly exponentially

stable if and only if the swithed linear system _x =

^

A

�

x with

^

A

p

given by (12) is globally uniformly

exponentially stable.

Proof. The transition matrix of the swithed system (2) for any partiular swithing signal takes the

form

�(t; 0) = e

(n�1)(�

p

k

t

k

+���+�

p

1

t

1

)I

e

(�

p

k

�(e)+

p

k

�(f)+Æ

p

k

�(h))t

k

� � � e

(�

p

1

�(e)+

p

1

�(f)+Æ

p

1

�(h))t

1

:

Consider the (n-dimensional) linear spae P

n�1

[x; y℄ of polynomials in x and y, homogeneous of degree

n� 1, with the basis hosen as in Setion A.2. Denote the elements of this basis by p

1

, : : : , p

n

(these are

monomials in x and y). Fix an arbitrary polynomial p 2 P

n�1

[x; y℄, and let a

1

, : : : , a

n

be its oordinates

10



relative to the above basis. As an immediate onsequene of the alulations given in Setion A.2, for any

values of x and y we have

�

a

1

� � � a

n

�

�(t; 0)

0

B

�

p

1

.

.

.

p

n

1

C

A

= p

�

^

�(t; 0)

�

x

y

�

�

where

^

�(t; 0) = e

(�

p

k

t

k

+���+�

p

1

t

1

)I

e

(��

p

1

e�

p

1

f�Æ

p

1

h)t

1

� � � e

(��

p

k

e�

p

k

f�Æ

p

k

h)t

k

:

Sine the polynomial p was arbitrary, it is lear that �(t; 0) approahes the zero matrix as t!1, uniformly

over the set of all swithing signals, if and only if so does

^

�(t; 0). But

^

�(t; 0) is the transition matrix of the

swithed system _x =

^

A

�

x, orresponding to the \reversed" swithing signal on [0; t℄. We onlude that this

swithed system is globally asymptotially stable, uniformly over �, if and only if the same property holds

for the original system (2). The statement of the proposition now follows from the fat that for swithed

linear systems, uniform asymptoti stability is equivalent to uniform exponential stability.

We are now in position to justify the redution proedure outlined in the Introdution. Assume that

^

g

has dimension at most 4. We know from Setion A.5 that any nonompat semisimple Lie algebra ontains

a subalgebra isomorphi to sl(2;R). Thus

^

g ontains a nonompat semisimple subalgebra if only if its

dimension exatly equals 4 and the Killing form is nondegenerate and sign-inde�nite on

~

g = f

~

A

1

;

~

A

2

g

LA

=

^

g mod RI (see Setion A.4). In this ase ~g is isomorphi to sl(2;R). An sl(2)-triple fh; e; fg an be

onstruted as explained in Setion A.5 (the proedure given there for a general nonompat semisimple

Lie algebra ertainly applies to sl(2;R) itself). Spei�ally, as h we an take any element of the subspae

on whih the Killing form is positive de�nite, normalized in suh a way that the eigenvalues of adh equal

2 and �2. The orresponding eigenvetors yield e and f . The resulting representation of sl(2;R) is not

neessarily irreduible; the dimension of the largest invariant subspae is equal to k + 1, where k is the

largest eigenvalue of h. If the swithed linear system restrited to this invariant subspae is globally

uniformly exponentially stable, then the same property holds for the swithed linear system restrited to

any other invariant subspae. This is true beause, in view of the role of the salar k = n�1 in the ontext

of Proposition 5, the matries of the redued (seond-order) system assoiated with the system evolving on

the largest invariant subspae are obtained from those of the redued system assoiated with the system

evolving on another invariant subspae by subtrating positive multiples of the identity matrix, and this

annot introdue instability (to see why this last statement is true, one an appeal to the existene of a

onvex ommon Lyapunov funtion [15℄). Note that we do not need to identify the invariant subspaes; we

only need to know the dimension of the largest one. Thus the outome of the algorithm depends on the

matrix representation of

^

g and not just on the struture of

^

g as a Lie algebra, but it does so in a rather

weak way.

As another appliation of Proposition 5, we an obtain an alternative proof of Theorem 4. Indeed,

let the matries

~

B

1

and

~

B

2

be as in the proof of Theorem 4 given in the previous setion (the existene

of a subalgebra isomorphi to sl(2;R) remains ruial). De�ne the matries B

1

:= �k

~

B

1

+

~

B

2

� �I and

B

2

:= �

~

B

1

+ k

~

B

2

� �I, where � > 0 and k > 1. Then the swithed system

_x = B

�

x; � : [0;1)! f1; 2g (13)

is not stable for � small enough (even though all onvex ombinations of B

1

and B

2

are stable). This

follows from Proposition 5 and from the example presented at the beginning of this setion; in fat, a

spei� (periodi) destabilizing swithing signal for the system (13) an be onstruted with the help of

that example. Interestingly, it appears to be diÆult to establish the same result by a diret analysis of

(13). The rest of the proof of Theorem 4 an now proeed exatly as before.

It was shown by Shorten and Narendra in [22℄ that two stable two-dimensional linear systems _x = A

1

x

and _x = A

2

x possess a quadrati ommon Lyapunov funtion if and only if all pairwise onvex ombinations
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of matries from the set fA

1

; A

2

; A

�1

1

; A

�1

2

g are stable. Combined with Proposition 5, this yields the

following result.

Corollary 6 Let P = f1; 2g. Suppose that all pairwise onvex ombinations of matries from the set

f

^

A

1

;

^

A

2

;

^

A

�1

1

;

^

A

�1

2

g, with A

1

and A

2

given by (12), are stable. Then the swithed linear system (2), with

A

p

given by (11), is globally uniformly exponentially stable.

The above orollary only provides suÆient and not neessary onditions for global uniform exponential

stability of (2). This is due to the fat that, as we already mentioned earlier, it may happen that a swithed

linear system is globally uniformly exponentially stable while there is no quadrati ommon Lyapunov

funtion for the individual subsystems (see the example in [4℄).

A Basi fats about Lie algebras

In this appendix we give an informal overview of basi properties of Lie algebras. Only those fats that

diretly play a role in the developments of the previous setions are disussed. Most of the material is

adopted from [8, 20℄, and the reader is referred to these and other standard referenes for more details.

A.1 Lie algebras and their representations

A Lie algebra g is a �nite-dimensional vetor spae equipped with a Lie braket, i.e., a bilinear, skew-

symmetri map [�; �℄ : g � g ! g satisfying the Jaobi identity [a; [b; ℄℄ + [b; [; a℄℄ + [; [a; b℄℄ = 0. Any Lie

algebra g an be identi�ed with a tangent spae at the identity of a Lie group G (an analyti manifold

with a group struture). If g is a matrix Lie algebra, then the elements of G are given by produts of

the exponentials of the matries from g. In partiular, eah element A 2 g generates the one-parameter

subgroup fe

At

; t 2 Rg in G. For example, if g is the Lie algebra gl(n;R) of all real n � n matries with

the standard Lie braket [A;B℄ = AB � BA, then the orresponding Lie group is given by the invertible

matries.

Given an abstrat Lie algebra g, one an onsider its (matrix) representations. A representation of g

on an n-dimensional vetor spae V is a homomorphism (i.e., a linear map that preserves the Lie braket)

� : g! gl(V ). It assigns to eah element g 2 g a linear operator �(g) on V , whih an be desribed by an

n�n matrix. A representation � is alled irreduible if V ontains no nontrivial subspaes invariant under

the ation of all �(g), g 2 g. A partiularly useful representation is the adjoint one, denoted by `ad'. The

vetor spae V in this ase is g itself, and for g 2 g the operator adg is de�ned by adg(a) := [g; a℄, a 2 g.

There is also Ado's Theorem whih says that every Lie algebra is isomorphi to a subalgebra of gl(V ) for

some �nite-dimensional vetor spae V (ompare this with the adjoint representation whih is in general

not injetive).

A.2 Example: sl(2;R) and gl(2;R)

The speial linear Lie algebra sl(2;R) onsists of all real 2 � 2 matries of trae 0. A anonial basis for

this Lie algebra is given by the matries

h :=

�

1 0

0 �1

�

; e :=

�

0 1

0 0

�

; f :=

�

0 0

1 0

�

: (14)

They satisfy the relations [h; e℄ = 2e, [h; f ℄ = �2f , [e; f ℄ = h, and form what is sometimes alled an sl(2)-

triple. One an also onsider other representations of sl(2;R). Although all irreduible representations of

sl(2;R) an be lassi�ed by working with the Lie algebra diretly (see [20, p. 27{30℄), for our purposes it

12



is more useful to exploit the orresponding Lie group SL(2;R) = fS 2 R

n�n

: detS = 1g. Let P

k

[x; y℄

denote the spae of polynomials in two indeterminates x and y that are homogeneous of degree k (where

k is a positive integer). A homomorphism � that makes SL(2;R) at on P

k

[x; y℄ an be de�ned as follows:

�(S)p

�

�

x

y

�

�

= p

�

S

�1

�

x

y

�

�

where S 2 SL(2;R) and p 2 P

k

[x; y℄. The orresponding representation of the Lie algebra sl(2;R), whih

we denote also by � with slight abuse of notation, is obtained by onsidering the one-parameter subgroups

of SL(2;R) and di�erentiating the ation de�ned above at t = 0. For example, for e as in (14) we have

�(e)p

�

�

x

y

�

�

=

d

dt

�

�

�

t=0

p

�

e

�et

�

x

y

�

�

=

d

dt

�

�

�

t=0

p

�

�

1 �t

0 1

��

x

y

�

�

= �y

�

�x

p

�

�

x

y

�

�

Similarly, �(f)p = �x

�

�y

p and �(h)p = (�x

�

�x

+ y

�

�y

)p. With respet to the basis in P

k

[x; y℄ given by

the monomials y

k

;�ky

k�1

x; k(k � 1)y

k�2

x

2

; : : : ; (�1)

k

k!x

k

, the orresponding di�erential operators are

realized by the matries

h 7!

0

B

B

B

B

�

k � � � � � � 0

.

.

. k � 2

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � � � � �k

1

C

C

C

C

A

; e 7!

0

B

B

B

B

�

0 �

1

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

k

0 � � � � � � 0

1

C

C

C

C

A

; f 7!

0

B

B

B

B

�

0 � � � � � � 0

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � 1 0

1

C

C

C

C

A

where �

i

= i(k � i + 1), i = 1; : : : ; k. It turns out that any irreduible representation of sl(2;R) of

dimension k+1 is equivalent (under a linear hange of oordinates) to the one just desribed. An arbitrary

representation of sl(2;R) is a diret sum of irreduible ones.

When working with gl(2;R) rather than sl(2;R), one also has the 2 � 2 identity matrix I

2�2

. It

orresponds to the operator x

�

�x

+y

�

�y

on P

k

[x; y℄, whose assoiated matrix is kI

(k+1)�(k+1)

. One an thus

naturally extend the above representation to gl(2;R). The omplementary subalgebras RI and sl(2;R) are

invariant under the resulting ation.

A.3 Nilpotent and solvable Lie algebras

If g

1

and g

2

are linear subspaes of a Lie algebra g, one writes [g

1

; g

2

℄ for the linear spae spanned by

all the produts [g

1

; g

2

℄ with g

1

2 g

1

and g

2

2 g

2

. Given a Lie algebra g, the sequene g

(k)

is de�ned

indutively as follows: g

(1)

:= g, g

(k+1)

:= [g

(k)

; g

(k)

℄ � g

(k)

. If g

(k)

= 0 for k suÆiently large, then g is

alled solvable. Similarly, one de�nes the sequene g

k

by g

1

:= g, g

k+1

:= [g; g

k

℄ � g

k

, and alls g nilpotent

if g

k

= 0 for k suÆiently large. For example, if g is a Lie algebra generated by two matries A and

B, we have: g

(1)

= g

1

= g = spanfA;B; [A;B℄; [A; [A;B℄℄; : : : g, g

(2)

= g

2

= spanf[A;B℄; [A; [A;B℄℄; : : : g,

g

(3)

= spanf[[A;B℄; [A; [A;B℄℄℄; : : : g � g

3

= spanf[A; [A;B℄℄; [B; [A;B℄℄; : : : g, and so on. Every nilpotent

Lie algebra is solvable, but the onverse is not true.

The Killing form on a Lie algebra g is the symmetri bilinear form K given by K(a; b) := tr(ada Æ adb)

for a; b 2 g. Cartan's 1st riterion says that g is solvable if and only if its Killing form vanishes identially

on [g; g℄. Let g be a solvable Lie algebra over an algebraially losed �eld, and let � be a representation of

g on a vetor spae V . Lie's Theorem states that there exists a basis for V with respet to whih all the

matries �(g), g 2 g are upper-triangular.

A.4 Semisimple and ompat Lie algebras

A subalgebra

�

g of a Lie algebra g is alled an ideal if [g; �g℄ 2

�

g for all g 2 g and �g 2

�

g. Any Lie algebra

has a unique maximal solvable ideal r, the radial. A Lie algebra g is alled semisimple if its radial is 0.

13



Cartan's 2nd riterion says that g is semisimple if and only if its Killing form is nondegenerate (meaning

that if for some g 2 g we have K(g; a) = 0 8a 2 g, then g must be 0.)

A semisimple Lie algebra is alled ompat if its Killing form is negative de�nite. A general ompat

Lie algebra is a diret sum of a semisimple ompat Lie algebra and a ommutative Lie algebra (with the

Killing form vanishing on the latter). This terminology is justi�ed by the fats that the tangent algebra

of any ompat Lie group is ompat aording to this de�nition, and that for any ompat Lie algebra g

there exists a onneted ompat Lie group G with tangent algebra g. Compatness of a semisimple matrix

Lie algebra g amounts to the property that the eigenvalues of all matries in g lie on the imaginary axis. If

G is a ompat Lie group, one an assoiate to any ontinuous funtion f : G ! R a real number

R

G

f(G)dG

so as to have

R

G

1dG = 1 and

R

G

f(AGB)dG =

R

G

f(G)dG 8A;B 2 G (left and right invariane). The

measure dG is alled the Haar measure.

An arbitrary Lie algebra g an be deomposed into the semidiret sum g = r� s, where r is the radial,

s is a semisimple subalgebra, and [s; r℄ � r beause r is an ideal. This is known as a Levi deomposition.

To ompute r and s, swith to a basis in whih the Killing form K is diagonalized. The subspae on whih

K is not identially zero orresponds to s � (r mod n), where n is the maximal nilpotent subalgebra of r.

Construt the Killing form

�

K for the fator algebra s � (r mod n). This form will vanish identially on

(r mod n) and will be nondegenerate on s. The subalgebra s identi�ed in this way is ompat if and only

if

�

K is negative de�nite on it. For more details on this onstrution and examples, see [7, pp. 256{258℄.

A.5 Subalgebras isomorphi to sl(2;R)

Let g be a real, nonompat, semisimple Lie algebra. Our goal here is to show that g has a subalgebra

isomorphi to sl(2;R). To this end, onsider a Cartan deomposition g = k � p, where k is a maximal

ompat subalgebra of g and p is its orthogonal omplement with respet to K. The Killing form K is

negative de�nite on k and positive de�nite on p. Let a be a maximal ommuting subalgebra of p. Then it

is easy to hek using the Jaobi identity that the operators ada, a 2 a are ommuting. These operators

are also symmetri with respet to a suitable inner produt on g (for a; b 2 g this inner produt is given by

�K(a;�b), where � is the map sending k+p, with k 2 k and p 2 p, to k�p), hene they are simultaneously

diagonalizable. Thus g an be deomposed into a diret sum of subspaes invariant under ada, a 2 a, on

eah of whih every operator ada has exatly one eigenvalue. The unique eigenvalue of ada on eah of these

invariant subspaes is given by a linear funtion � on a, and aordingly the orresponding subspae is

denoted by g

�

. Sine p 6= 0 (beause g is not ompat) and sine K is positive de�nite on p, the subspae

g

0

assoiated with � being identially zero annot be the entire g. Summarizing, we have

g = g

0

�

�

L

�2�

g

�

�

where � is a �nite set of nonzero linear funtions on a (whih are alled the roots) and g

�

= fg 2 g :

ada(g) = �(a)g 8a 2 ag. Using the Jaobi identity, one an show that [g

�

; g

�

℄ is a subspae of g

�+�

if

� + � 2 � [ f0g, and equals 0 otherwise. This implies that the subspaes g

�

and g

�

are orthogonal with

respet to K unless � + � = 0 (f. [20, p. 38℄). Sine K is nondegenerate on g, it follows that if � is

a root, then so is ��. Moreover, the subspae [g

�

; g

��

℄ of g

0

has dimension 1, and � is not identially

zero on it (f. [20, pp. 39{40℄). This means that there exist some elements e 2 g

�

and f 2 g

��

suh that

h := [e; f ℄ 6= 0. It is now easy to see that, multiplying e, f and h by onstants if neessary, we obtain

an sl(2)-triple. Alternatively, we ould �nish the argument by noting that if g 2 g

�

for some � 2 �, then

the operator adg is nilpotent (beause it maps eah g

�

to g

�+�

to g

�+2�

and eventually to 0 sine � is a

�nite set), and the existene of a subalgebra isomorphi to sl(2;R) is guaranteed by the Jaobson-Morozov

Theorem.
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A.6 Generators for gl(2;R)

This subsetion is devoted to showing that in an arbitrarily small neighborhood of any pair of n�nmatries

one an �nd another pair of matries that generate the entire Lie algebra gl(n;R). This fat demonstrates

that Lie-algebrai stability onditions onsidered in the previous setions are never robust with respet to

small perturbations of the matries that de�ne the swithed system. Construtions like the one presented

here have ertainly appeared in the literature, but we are not aware of a spei� referene.

We begin by �nding some matries B

1

, B

2

that generate gl(n;R). Let B

1

be a diagonal matrix

B

1

= diag(b

1

; b

2

; : : : ; b

n

) satisfying the following two properties:

1. b

i

� b

j

6= b

k

� b

l

if (i; j) 6= (k; l)

2.

P

n

i=1

b

i

6= 0

Denote by od(n;R) the spae of matries with zero elements on the main diagonal. Let B

2

be any matrix

in od(n;R) suh that all its o�-diagonal elements are nonzero. It is easy to hek that if E

i;j

is a matrix

whose ij-th element is 1 and all other elements are 0, where i 6= j, then [B

1

; E

i;j

℄ = (b

i

� b

j

)E

i;j

. Thus it

follows from property 1 above that B

2

does not belong to any proper subspae of od(n;R) that is invariant

with respet to the operator adB

1

. Therefore, the linear spae spanned by the iterated brakets ad

k

B

1

(B

2

)

is the entire od(n;R). Taking brakets of the form [E

i;j

; E

�i;�j

℄, we generate all traeless diagonal matries

(f. the example [e; f ℄ = h in Setion A.2). Sine B

1

has a nonzero trae by property 2 above, we onlude

that fB

1

; B

2

g

LA

= gl(n;R).

Now, let A

1

and A

2

be two arbitrary n� n matries. Using the matries B

1

and B

2

just onstruted,

we an de�ne A

1

(�) := A

1

+ �B

1

and A

2

(�) := A

2

+ �B

2

, where � � 0. The two matries A

1

(�) and

A

2

(�) generate gl(n;R) for any suÆiently small �, as an be shown by using the same argument as the

one employed at the end of the proof of Theorem 4. Thus one an take (A

1

(�); A

2

(�)) as a desired pair of

matries in a neighborhood of (A

1

; A

2

).
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