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Abstract

It was recently shown that a family of exponentially stable linear systems whose matrices gener-
ate a solvable Lie algebra possesses a quadratic common Lyapunov function, which implies that the
corresponding switched linear system is exponentially stable for arbitrary switching. In this paper we
prove that the same properties hold under the weaker condition that the Lie algebra generated by given
matrices can be decomposed into a sum of a solvable ideal and a subalgebra with a compact Lie group.
The corresponding local stability result for nonlinear switched systems is also established. Moreover,
we demonstrate that if a Lie algebra fails to satisfy the above condition, then it can be generated by
a family of stable matrices such that the corresponding switched linear system is not stable. Relevant
facts from the theory of Lie algebras are collected at the end of the paper for easy reference.

1 Introduction

A switched system can be described by a family of continuous-time subsystems and a rule that orchestrates
the switching between them. Such systems arise, for example, when different controllers are being placed
in the feedback loop with a given process, or when a given process exhibits a switching behavior caused
by abrupt changes of the environment. For a discussion of various issues related to switched systems, see
the recent survey article [13].

To define more precisely what we mean by a switched system, consider a family {f, : p € P} of
sufficiently regular functions from R™ to R™, parameterized by some index set P. Let o : [0,00) — P be
a piecewise constant function of time, called a switching signal. A switched system is then given by the
following system of differential equations in R™:

i::f(r(x)' (1)

We assume that the state of (1) does not jump at the switching instants, i.e., the solution z(-) is everywhere
continuous. Note that infinitely fast switching (chattering), which calls for a concept of generalized solution,
is not considered in this paper. In the particular case when all the individual subsystems are linear (i.e.,
fp(x) = Apx where A, € R for each p € P), we obtain a switched linear system

T=A,z. (2)
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This paper is concerned with the following problem: find conditions on the individual subsystems
which guarantee that the switched system is asymptotically stable for an arbitrary switching signal o. In
fact, a somewhat stronger property is desirable, namely, asymptotic or even exponential stability that is
uniform over the set of all switching signals. Clearly, all the individual subsystems must be asymptotically
stable, and we will assume this to be the case throughout the paper. Note that it is not hard to construct
examples where instability can be achieved by switching between asymptotically stable systems (Section 4
contains one such example), so one needs to determine what additional requirements must be imposed.
This question has recently generated considerable interest, as can be seen from the work reported in
9, 12, 16, 17, 18, 19, 21, 22].

Commutation relations among the individual subsystems play an important role in the context of
the problem posed above. This can be illustrated with the help of the following example. Consider the
switched linear system (2), take P to be a finite set, and suppose that the matrices A, commute pairwise:
ApAy = A4A, for all p,g € P. Then it is easy to show directly that the switched linear system is
exponentially stable, uniformly over all switching signals. Alternatively, one can construct a quadratic
common Lyapunov function for the family of linear systems

= Apx, peEP (3)

as shown in [18], which is well known to lead to the same conclusion.

In this paper we undertake a systematic study of the connection between the behavior of the switched
system and the commutation relations among the individual subsystems. In the case of the switched
linear system (2), a useful object that reveals the nature of these commutation relations is the Lie algebra
g = {4, : p € P}ra generated by the matrices Ay, p € P (with respect to the standard Lie bracket
(A, Ay] = ApAy — AyA,). The observation that the structure of this Lie algebra is relevant to stability of
(2) goes back to the paper by Gurvits [9]. That paper studied the discrete-time counterpart of (2) taking
the form

z(k +1) = Aygyw(k) (4)

where o is a function from nonnegative integers to a finite index set P and A4, = elr, p € P for some
matrices L,. Gurvits conjectured that if the Lie algebra {L, : p € P} is nilpotent (which means that
Lie brackets of sufficiently high order equal zero), then the system (4) is asymptotically stable for any
switching signal 0. He was able to prove this conjecture for the particular case when P = {1,2} and the
third-order Lie brackets vanish: [Ly,[L1, Lo]] = [Le, [L1, L2]] = 0.

It was recently shown in [12] that the switched linear system (2) is exponentially stable for arbitrary
switching if the Lie algebra g is solvable (see Section A.3 for the definition). The proof relied on the
facts that matrices in a solvable Lie algebra can be simultaneously put in the upper-triangular form (Lie’s
Theorem) and that a family of linear systems with stable upper-triangular matrices has a quadratic common
Lyapunov function. For the result to hold, the index set P does not need to be finite (although a suitable
compactness assumption is required). One can derive the corresponding result for discrete-time systems in
similar fashion, thereby confirming and directly generalizing the statement conjectured by Gurvits (because
every nilpotent Lie algebra is solvable).

In the present paper we continue the line of work initiated in the above references. Our main theorem
is a direct extension of the one proved in [12]. The new result states that one still has exponential stability
for arbitrary switching if the Lie algebra g is a semidirect sum of a solvable ideal and a subalgebra with a
compact Lie group (which amounts to saying that all the matrices in this second subalgebra have purely
imaginary eigenvalues). The corresponding local stability result for the nonlinear switched system (1) is
also established. Being formulated in terms of the original data, such Lie-algebraic stability criteria have
an important advantage over results that depend on a particular choice of coordinates, such as the one
reported in [16]. Moreover, we demonstrate that the above condition is in some sense the strongest one



that can be given on the Lie algebra level. Loosely speaking, we show that if a Lie algebra does not satisfy
this condition, then it could be generated by a switched linear system that is not stable.

More precisely, the main contributions of the paper can be summarized as follows (see the appendix for
an overview of relevant definitions and facts from the theory of Lie algebras). Given a matrix Lie algebra
g which contains the identity matrix, we are interested in the following question: Is it true that any set
of stable generators for g gives rise to a switched system that is exponentially stable, uniformly over all
switching signals? We discover that this property depends only on the structure of g as a Lie algebra, and
not on the choice of a particular matrix representation of g. The following equivalent characterizations of
the above property can be given:

1. The factor algebra § mod t, where t denotes the radical, is a compact Lie algebra.
2. The Killing form is negative semidefinite on [g, g].

3. The Lie algebra g does not contain any subalgebras isomorphic to si(2, R).

We will also show how the investigation of stability (in the above sense) of a switched linear system in
R™, n > 2, whose associated Lie algebra is low-dimensional, can be reduced to the investigation of stability
of a switched linear system in R?. For example, take P = {1,2}, and define A = A — %trace(Ai)I ,
1 = 1,2. Assume that all iterated Lie brackets of the matrices [11 and flz are linear combinations of
Ay, Ay, and [A}, Ay]. This means that if we consider the Lie algebra g = {A1, A2} 4 and add to it the
identity matrix (if it is not already there), the resulting Lie algebra g has dimension at most 4. In this
case, the following algorithm can be used to verify that the switched linear system generated by A; and
Ao is uniformly exponentially stable or, if this is not possible, to construct a second-order switched linear
system whose uniform exponential stability is equivalent to that of the original one.

Step 1. If [/Nll, /12] is a linear combination of A; and /ng, stop: the system is stable. Otherwise, write down
the matrix of the Killing form for the Lie algebra g := {A1, Ao} 14 relative to the basis given by Aj,
Ao, and [A;, Ag]. (This is a symmetric 3 X 3 matrix; see Section A.4 for the definition of the Killing
form.)

Step 2. If this matrix is degenerate or negative definite, stop: the system is stable. Otherwise, continue.

Step 3. Find three matrices h, e, and f in g with commutation relations [h,e] = 2e, [h, f] = —2f, and

[e, f] = h (this is always possible in the present case). We can then write A; = B¢+, f + 0;h, where
«;, Bi, i are constants, ¢ = 1, 2.

Step 4. Compute the largest eigenvalue of h. It will be an integer; denote it by k. Then the given system
is stable if and only if so is the switched linear system generated by the 2 x 2 matrices

dm (PR LR ) A= (R L3R )
BT R L5 S

All the steps in the above reduction procedure involve only elementary matrix operations (addition, multi-
plication, and computation of eigenvalues and eigenvectors). Details and justification are given in Section 4.

Before closing the Introduction, we make one more remark to further motivate the work reported here
and point out its relationship to a more classical branch of control theory. Assume that P is a finite set,
say, P = {1,...,m}. The switched system (1) can then be recast as



where the admissible controls are of the form uy = 1, u; = 0 Vi # k (this corresponds to o = k). In
particular, the switched linear system (2) gives rise to the bilinear system

m
T = E Azxul
1=1

It is intuitively clear that asymptotic stability of (1) for arbitrary switching corresponds to lack of control-
lability for (5). Indeed, it means that for any admissible control function the resulting solution trajectory
must approach the origin. Lie-algebraic techniques have received a lot of attention in the context of the
controllability problem for systems of the form (5). As for the literature on stability analysis of switched
systems, despite the fact that it is vast and growing, Lie-algebraic methods do not yet seem to have
penetrated it. The present work can be considered as a step towards filling this gap.

The rest of the paper is organized as follows. In Section 2 we establish a sufficient condition for stability
(Theorem 2) and discuss its various implications. In Section 3 we prove a converse result (Theorem 4).
Section 4 contains a detailed analysis of switched systems whose associated Lie algebras are isomorphic to
the Lie algebra gl(2,R) of real 2 x 2 matrices. This leads, among other things, to the reduction algorithm
sketched above and to a different (and arguably more illuminating) proof of Theorem 4. To make the paper
self-contained, in the appendix we provide an overview of relevant facts from the theory of Lie algebras.

2 Sufficient conditions for stability

The switched system (1) is called (locally) uniformly exponentially stable if there exist positive constants
M, ¢ and p such that for any switching signal o the solution of (1) with ||z(0)|| < M satisfies

lz(®)]] < ce”[lz(0)]| vt > 0. (6)

The term “uniform” is used here to describe uniformity with respect to switching signals. If there exist
positive constants ¢ and p such that the estimate (6) holds for any switching signal o and any initial
condition z(0), then the switched system is called globally uniformly exponentially stable. Similarly, one
can also define the property of uniform asymptotic stability, local or global. For switched linear systems
all the above concepts are equivalent (see [15]). In fact, as shown in [1], in the linear case global uniform
exponential stability is equivalent to the seemingly weaker property of asymptotic stability for any switching
signal.

In the context of the switched linear system (2), we will always assume that {4, : p € P} is a compact
(with respect to the usual topology in R™*™) set of real n x n matrices with eigenvalues in the open left
half-plane. Let g be the Lie algebra defined by g = {4, : p € P}ra as before. The following stability
criterion was established in [12]. It will be crucial in proving Theorem 2 below.

Theorem 1 [12] If g is a solvable Lie algebra, then the switched linear system (2) is globally uniformly
exponentially stable.

REMARK 1. The proof of this result given in [12] relies on a construction of a quadratic common Lyapunov
function for the family of linear systems (3). The existence of such a function actually implies global uniform
exponential stability of the time-varying system & = A,z with ¢ not necessarily piecewise constant. This
observation will be used in the proof of Theorem 2.

The above condition can always be checked directly in a finite number of steps if P is a finite set.
Alternatively, one can use the standard criterion for solvability in terms of the Killing form. Similar
criteria exist for checking the other conditions to be presented in this paper—see Sections A.3 and A.4 for
details.



We now consider a Levi decomposition of g, i.e., we write g = v @ s, where t is the radical and s is a
semisimple subalgebra (see Section A.4). Our first result is the following generalization of Theorem 1.

Theorem 2 If s is a compact Lie algebra, then the switched linear system (2) is globally uniformly expo-
nentially stable.

PROOF. For an arbitrary p € P, write A, =, + s, with , € v and s, € 5. Let us show that r, is a stable
matrix. Writing

o)t = e By (1) (7)
we have the following equation for B)(t):
By(t) = e e By(8),  B,(0) = 1. 8)
To verify (8), differentiate the equality (7) with respect to ¢, which gives
(rp + sp)e(”’"'sp)t = 5,¢°"' B, + ¢**' B,
Using (7) again, we have '
rpe®? By + s,e*P' B, = s,e**' B, + ' B,

hence (8) holds. Define ¢,(t) := e~Srlryesrt. Clearly, spec(c,(t)) = spec(r,) for all ¢. It is well known that
for any two matrices A and B one has

1
e 4 Be = ¢*4(B) = B + [4, B] + S A B+ (9)
hence we obtain the expansion
1
cp(t) = rp + [spt, p] + 5[3pta [spt,rp]] + - ..

Since [s, t] C t, we see that ¢,(t) € r. According to Lie’s Theorem, there exists a basis in which all matrices
from t are upper-triangular. Combining the above facts, it is not hard to check that spec(B,(t)) = etsPec(me),
Now it follows from (8) that spec(ry) lies in the open left half of the complex plane. Indeed, as t — oo we
have e("»5p)t 5 0 because the matrix A, is stable. Since s is compact, there exists a constant C' > 0 such
that we have |e’z| > C|z| for all s € s and z € R", thus we cannot have e’*’x — 0 for z # 0. Therefore,
By(t) = 0, and so 7, is stable.

Since p € P was arbitrary, we see that all the matrices 7, p € P are stable. Theorem 1 implies that the
switched linear system generated by these matrices is globally uniformly exponentially stable. Moreover, the
same property holds for matrices in the extended set T := {A : 3p € P and s € 5 such that A = e *rpe’}.
This is true because the matrices in this set are stable and because they belong to t (the last statement
follows from the expansion (9) again since [s,t] C t). Now, the transition matrix of the original switched
linear system (2) at time ¢ takes the form

(I)(t7 0) = e(TPk +sp )tk .. 6(7"171 +spy )t eSprth Bpk (tk) .oedmt Bp1 (tl)

vyhere t, t1 +to, ..., t1 +to+ -+ tx_1 < t are switching instants, t; + --- + t; = ¢, and as before
By, (t) = e Sritr, e’ B, (t), i = 1,...,k. To simplify the notation, let k¥ = 2 (in the general case one can
adopt the same line of reasoning or use induction on k). We can then write

(I)(tv 0) = 68p2t2€sp1t1€_sp1tl sz (t2)€spltl Bpl (t1> = espztzespltl sz (tQ)Bpl (tl)



where By, (t) := e *n B, (t)e’r1"t. We have

d ~
__—Sp b1, —Spyt Spot Spit1 __ _—Sp;t1 _—Sp,t Spot Spit1 ., —Sp,t1 Spit1
_dthz (1) = e e frtp, "2t By (t)e’r1™t = e *mitle” *r2ty e’r2le’mitle *n B (t)e’r

— ¢~ 5m1 tle—sp2trp2 eSpatespitl sz (t)
Thus we see that
B(1,0) = eSr2t2esmt . B(1) (10)

where B(t) is the transition matrix of a switched/time-varying system generated by matrices in t, i.e.,
4 B(t) = A(t)B(t) with A(t) € t V¢ > 0. The norm of the first term in the above product is bounded by
compactness, while the norm of the second goes to zero exponentially by Theorem 1 (see also Remark 1),
and the statement of the theorem follows. O

REMARK 2. The fact that v is the radical, implying that s is semisimple, was not used in the proof. The
statement of Theorem 2 remains valid for any decomposition of g into the sum of a solvable ideal ¢ and a
subalgebra s. Among all possible decompositions of this kind, the one considered above gives the strongest
result. If g is solvable, then s = 0 is of course compact, and we recover Theorem 1 as a special case.

EXAMPLE 1. Suppose that the matrices A4,, p € P take the form A, = —\,I + S, where A\, > 0 and
SpT = -5, for all p € P. These are automatically stable matrices. Suppose also that span{A4,,p € P} > I.
Then the condition of Theorem 2 is satisfied. Indeed, take t = {AI : A € R} (scalar multiples of the identity
matrix) and observe that the Lie algebra {S, : p € P}pa is compact because skew-symmetric matrices
have purely imaginary eigenvalues.

In [12] the global uniform exponential stability property was deduced from the existence of a quadratic
common Lyapunov function. In the present case we found it more convenient to obtain the desired result
directly. However, under the hypothesis of Theorem 2 a quadratic common Lyapunov function for the
family of linear systems (3) can also be constructed, as we now show. Let V(z) = 7' Qz be a quadratic
common Lyapunov function for the family of linear systems generated by matrices in t (which exists
according to [12]). Define the function

V(x) ::/S‘_/(Sx)dS:xT-/SSTQSdS-x

where S is the Lie group corresponding to s and the integral is taken with respect to the Haar measure
invariant under right translation on S (see Section A.4). Using (10), it is straightforward to show that the
derivative of V' along solutions of the switched linear system (2) satisfies

%V(m(t)) = %/S‘_/(SB(t)x(O))dS

= / 2T (0)BT (1)ST((SA()S H)TQ + QSA(t)S 1)SB(t)x(0)dS < 0.
S

The first equality in the above formula follows from the invariance of the measure, and the last inequality
holds because SA(t)S~! €t for allt > 0 and all S € S.

REMARK 3. It is now clear that the above results remain valid if piecewise constant switching signals are
replaced by arbitrary measurable functions (cf. Remark 1).

The existence of a quadratic common Lyapunov function will be used to prove Corollary 3 below. It
is also an interesting fact in its own right because, although the converse Lyapunov theorem proved in
[15] implies that global uniform exponential stability always leads to the existence of a common Lyapunov
function, in some cases it is not possible to find a quadratic one [4]. Incidentally, this clearly shows that the
condition of Theorem 2 is not necessary for uniform exponential stability of the switched linear system (2).



Another way to see this is to note that the property of uniform exponential stability is robust with respect
to small perturbations of the parameters of the system, whereas the condition of Theorem 2 is not. In fact,
no Lie-algebraic condition of the type considered here can possess the indicated robustness property. This
follows from the fact, proved in Section A.6, that in an arbitrarily small neighborhood of any pair of n x n
matrices there exists a pair of matrices that generate the entire Lie algebra gl(n, R).

We conclude this section with a local stability result for the nonlinear switched system (1). Let f, :
D — R" be continuously differentiable with f,(0) = 0 for each p € P, where D is a neighborhood of the
origin in R". Consider the linearization matrices

d
F, = 8—‘)2)(0), peP.

Assume that the matrices F}, are stable, that P is a compact subset of some topological space, and that

0 ~ .

a—fp(.r) depends continuously on p for each = € D. Consider the Lie algebra g := {F}, : p € P}pa and its
fis

Levi decomposition g = t @ §. The following statement is a generalization of [12, Corollary 5].
Corollary 3 Ifs is a compact Lie algebra, then the switched system (1) is uniformly exponentially stable.

Proor. This is a relatively straightforward application of Lyapunov’s first method (see, e.g., [11]). For

Oy .y Ol

line segment connecting x to the origin. We have g,(z) — 0 as # — 0. Under the present assumptions,
the family of linear systems # = F,z, p € P has a quadratic common Lyapunov function. Because of

each p € P we can write fy(x) = Fpx + gp(z)x. Here g,(x) = (0) where z is a point on the

compactness of P and continuity of a—fp with respect to p, it is not difficult to verify that this function is
z

a common Lyapunov function for the family of systems & = f,(«), p € P on a certain neighborhood D of
the origin. Thus the switched system (1) is uniformly exponentially stable on D. O

An important problem for future research is to investigate how the structure of the Lie algebra generated
by the original nonlinear vector fields f,, p € P is related to stability properties of the switched system (1).
Taking higher-order terms into account, one may hope to obtain conditions that guarantee stability of
nonlinear switched systems when the above linearization test fails. A first step in this direction is the
observation made in [21] that a finite family of commuting nonlinear vector fields giving rise to exponentially
stable systems has a local common Lyapunov function. Imposing certain additional assumptions, it is
possible to obtain analogues of Lie’s Theorem which yield triangular structure for families of nonlinear
systems generating nilpotent or solvable Lie algebras (see [3, 10, 14]). However, the methods described in
these papers require that the Lie algebra have full rank, and so typically they do not apply to families of
systems with common equilibria of the type treated here.

3 A converse result

We already remarked that the condition of Theorem 2 is not necessary for uniform exponential stability
of the switched linear system (2). It is natural to ask whether this condition can be improved. A more
general question that arises is to what extent the structure of the Lie algebra can be used to distinguish
between stable and unstable switched systems. The findings of this section will shed some light on these
issues.

We find it useful to introduce a possibly larger Lie algebra g by adding to g the scalar multiples of the
identity matrix if necessary. In other words, define g := {1, 4, : p € P}ra. The Levi decomposition of g
is given by g = t @ s with t D t (because the subspace RI belongs to the radical of g). Thus g satisfies the
hypothesis of Theorem 2 if and only if g does.



Our goal in this section is to show that if this hypothesis is not satisfied, then g can be generated by
a family of stable matrices (which might in principle be different from {4, : p € P}) with the property
that the corresponding switched linear system is not stable. Such a statement could in some sense be
interpreted as a converse of Theorem 2. It would imply that by working just with g it is not possible to
obtain a stronger result than the one given in the previous section.

We will also see that there exists another set of stable generators for g which does give rise to a uniformly
exponentially stable switched linear system. In fact, we will show that both generator sets can always be
chosen in such a way that they contain the same number of elements as the original set that was used to
generate g. Thus, if the Lie algebra does not satisfy the hypothesis of Theorem 2, this Lie algebra alone
(even together with the knowledge of how many stable matrices were used to generate it) does not provide
enough information to determine whether or not the original switched linear system is stable.

Let {41, Ag,..., A} be any finite set of stable generators for g (if the index set P is infinite, a suitable
finite subset can always be extracted from it). Then the following holds.

Theorem 4 Suppose that s is not a compact Lie algebra. Then there exists a set of m stable generators
for g such that the corresponding switched linear system is not uniformly exponentially stable. There also
exists another set of m stable generators for g such that the corresponding switched linear system is globally
uniformly exponentially stable.

PRrROOF. To prove the second statement of the theorem, we simply subtract Al from each of the generators

Ay, Ao, ..., Ap, where A > 0 is large enough. Namely, take A to be any number larger than the largest
eigenvalue of (A; + A7)/2 for all i = 1,...,m. Then it is easy to check that the linear systems defined
by the matrices Ay — A, Ay — M, ..., Ay, — A all share the common Lyapunov function V(z) = 27z.

To prove that these matrices indeed generate g, it is enough to show that the span of these matrices and
their iterated Lie brackets contains the identity matrix I. We know that I can be written as a linear
combination of the matrices Ay, Ao, ..., Ay, and their suitable Lie brackets. Replacing each A; in this
linear combination by A; — AI, we obtain a scalar multiple of I. If it is nonzero, we are done; otherwise,
we just have to increase A by an arbitrary amount.

We now turn to the first statement of the theorem. Since s is not compact, it contains a subalgebra that
is isomorphic to s/(2,R). Such a subalgebra can be constructed as shown in Section A.5. The existence of
this subalgebra is the key property that we will explore.

It follows from basic properties of solutions to differential inclusions that if a family of matrices gives
rise to a uniformly exponentially stable switched linear system, then all convex linear combinations of
these matrices are stable (this fact is easily seen to be true from the converse Lyapunov theorems of [15, 4],
although in [15] it was actually used to prove the result; see also Remark 5 below). To prove the theorem,
we will first find a pair of stable matrices By, By that lie in the subalgebra isomorphic to sl(2,R) and have
an unstable convex combination, and then use them to construct a desired set of generators for g. (An
alternative method of proof will be presented in the next section.)

Since every matrix representation of s/(2,R) is a direct sum of irreducible ones, there is no loss of
generality in considering only irreducible representations. Their complete classification in all dimensions
(up to equivalence induced by linear coordinate transformations) is available. In particular, it is known
that any irreducible representation of s/(2,R) contains two matrices of the following form:

~ .. . ~ 1 .
Bl— and BQZ .
Hr :

0 0 0 1 0



(cf. Section A.2). The matrix B ‘has positive entries up,. .., g, immediately above the main diagonal and
zeros elsewhere, and the matrix By has ones immediately below the main diagonal and zeros elsewhere.

It is not hard to check that the nonnegative matrix B := (B) 4+ By)/2 is irreducible!, and as such
satisfies the assumptions of the Perron-Frobenius Theorem (see, e.g., [6, Chapter XIII]). According to that
theorem, B has a positive eigenvalue. Then for a small enough € > 0 the matrix B := B — €I also has a
positive eigenvalue. We have B = (B; — eI 4+ By — eI)/2. This implies that a desired pair of matrices in
the given irreducible matrix representation of s/(2,R) can be defined by B; := By — el and By := By —el.
Indeed, these matrices are stable, but their average B is not.

For a > 0, define A;(«) := By + @A and As(«a) := By + aAy. If « is small enough, then A;(«) and
Ay () are stable matrices, while (A; («)+A2(c))/2 is unstable. Thus the matrices A; (), A2(a), As, ..., An
yield a switched system that is not uniformly exponentially stable. Moreover, it is not hard to show that
for o small enough these matrices generate g. Indeed, consider a basis for g formed by Aq,..., A, and
their suitable Lie brackets. Replacing A; and As in these expressions by A;(«) and Az(«) and writing the
coordinates of the resulting elements relative to this basis, we obtain a square matrix A(«). Its determinant
is a polynomial in o whose value tends to 0o as & — 0o, and therefore it is not identically zero. Thus A(«)
is nondegenerate for all but finitely many values of «; in particular, we will have a basis for g if we take «
sufficiently small. This completes the proof. O

REMARK 4. Given the matrices By and By as in the above proof, it is of course quite easy to construct
a set of stable generators for g giving rise to a switched linear system that is not uniformly exponentially
stable: just take any set of generators for g containing —/, B; and Bs, and make them into stable ones by
means of subtracting positive multiples of the identity if necessary. The above more careful construction
has the advantage of producing a set of generators with the same number of elements as in the original
generating set for g.

REMARK 5. The existence of an unstable convex combination actually leads to more specific conclusions
than simply lack of uniform exponential stability. Namely, one can find a sequence of solutions of the
switched system that converges in a suitable sense to a trajectory of the unstable linear system associated
with such a convex combination. This is a consequence of the so-called relazation theorem which in our
case says that the set of solutions to the differential inclusion # € {Ayx : p € P} is dense in the set of
solutions to the differential inclusion & € co{A,z : p € P}, where co(K) denotes the convex hull of a set
K C R". For details, see [2, 5].

The results that we have obtained so far reveal the following important fact: the property of g which
is being investigated here, namely, global uniform exponential stability of any switched system whose
associated Lie algebra is g, depends only on the structure of g (i.e., on the commutation relations between
its matrices) and is independent of the choice of a particular representation.

4 Switched linear systems with low-dimensional Lie algebras

In the proof of Theorem 4 in the previous section, we needed to construct a pair of stable matrices in a
representation of sl/(2,R) which give rise to an unstable switched system. To achieve this, we relied on the
fact that a switched system defined by two matrices is not stable if these matrices have an unstable convex
combination. However, even if all convex combinations are stable, stability of the switched system is not
guaranteed. As a simple example that illustrates this, consider the switched system in R? defined by the
matrices A := A; — el and A := Ay — el, where

~ 0 k ~ 0 1
=0 0) a=(5)

LA matrix is called irreducible if it has no proper invariant subspaces spanned by coordinate vectors.




with € > 0 and k£ > 1. It is easy to check that all convex combinations of 4; and As are stable. When
e = 0, the trajectories of the corresponding individual systems look as shown in Figure 1 (left) and Figure 1
(center), respectively. It is not hard to find a switching signal o : [0,00) — {1,2} that makes the switched
system & = A 2 unstable: simply let ¢ = 1 when zy > 0 and o = 2 otherwise. For an arbitrary initial
state, this results in the switched system = = flg(t)a; whose solutions grow exponentially. Therefore, the
original switched system & = A,x will also be destabilized by the same switching signal, provided that e
is sufficiently small.

/' \ fl lw ’l —
N

Figure 1: Unstable switched system in the plane

As a step towards understanding the behavior of switched systems in higher dimensions, in view of the
findings of this paper it is natural to investigate the case when given matrices generate a Lie algebra that
is isomorphic to the one generated by 2 x 2 matrices. This is the goal of the present section.

Consider the Lie algebra g := {4, : p € P}, and assume that g = Rl,, ., ® sl(2,R). Here sl(2,R)
means an n-dimensional matrix representation, which we take to be irreducible (as before, this will not
introduce a loss of generality because every matrix representation of s/(2,R) is a direct sum of irreducible
ones). Then for each p € P we can write

Ap = (n = Doplnxn + Bpd(e) +1pd(f) + dpd(h) (11)

where (3,,7p, 0, are constants, ¢ is the standard representation of sl(2,R) constructed in Section A.2 (n
here corresponds to k41 there), {e, h, f} is the canonical basis for s{(2,R), and o, = ﬁtrace(flp). For
each p € P, define the following 2 x 2 matrix:

Ap = aplago — Bpe — Ypf — Oph. (12)

We now demonstrate that the task of investigating stability of the switched system generated by the
matrices A,, p € P reduces to that of investigating stability of the two-dimensional switched system
generated by the matrices A,, p € P.

Proposition 5 The switched linear system (2) with A, given by (11) is globally uniformly exponentially
stable if and only if the switched linear system & = Asx with A, giwven by (12) is globally uniformly
exponentially stable.

PROOF. The transition matrix of the switched system (2) for any particular switching signal takes the

form
O(t,0) = e(n=1)(apy ti+Fap t1)I o (Bpy, () +7p), ¢(F)+0p, (At . .. o(Bpy B€)+7py d(f)+0py d(R))E1

Consider the (n-dimensional) linear space P™ [z, y] of polynomials in z and y, homogeneous of degree
n — 1, with the basis chosen as in Section A.2. Denote the elements of this basis by pi, ..., p, (these are
monomials in 2 and y). Fix an arbitrary polynomial p € P" [x,y], and let a1, ..., a, be its coordinates
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relative to the above basis. As an immediate consequence of the calculations given in Section A.2, for any
values of x and y we have

Pn

where
i)(t7 0) — e(al’k lp+tap, tl)le(*ﬁplef'ym ffaplh)tl . e(fﬁpkef'YPk ff‘spk h)t .

Since the polynomial p was arbitrary, it is clear that ®(¢,0) approaches the zero matrix as ¢ — oo, uniformly
over the set of all switching signals, if and only if so does ®(t,0). But ®(¢,0) is the transition matrix of the
switched system & = Az, corresponding to the “reversed” switching signal on [0, ¢]. We conclude that this
switched system is globally asymptotically stable, uniformly over o, if and only if the same property holds
for the original system (2). The statement of the proposition now follows from the fact that for switched
linear systems, uniform asymptotic stability is equivalent to uniform exponential stability. O

We are now in position to justify the reduction procedure outlined in the Introduction. Assume that g
has dimension at most 4. We know from Section A.5 that any noncompact semisimple Lie algebra contains
a subalgebra isomorphic to si(2,R). Thus § contains a noncompact semisimple subalgebra if only if its
dimension exactly equals 4 and the Killing form is nondegenerate and sign-indefinite on g = {Al, [12} LA=
g mod RI (see Section A.4). In this case g is isomorphic to sl(2,R). An si(2)-triple {h,e, f} can be
constructed as explained in Section A.5 (the procedure given there for a general noncompact semisimple
Lie algebra certainly applies to sl(2,R) itself). Specifically, as h we can take any element of the subspace
on which the Killing form is positive definite, normalized in such a way that the eigenvalues of adh equal
2 and —2. The corresponding eigenvectors yield e and f. The resulting representation of sl(2,R) is not
necessarily irreducible; the dimension of the largest invariant subspace is equal to k + 1, where k is the
largest eigenvalue of h. If the switched linear system restricted to this invariant subspace is globally
uniformly exponentially stable, then the same property holds for the switched linear system restricted to
any other invariant subspace. This is true because, in view of the role of the scalar £k = n—1 in the context
of Proposition 5, the matrices of the reduced (second-order) system associated with the system evolving on
the largest invariant subspace are obtained from those of the reduced system associated with the system
evolving on another invariant subspace by subtracting positive multiples of the identity matrix, and this
cannot introduce instability (to see why this last statement is true, one can appeal to the existence of a
convex common Lyapunov function [15]). Note that we do not need to identify the invariant subspaces; we
only need to know the dimension of the largest one. Thus the outcome of the algorithm depends on the
matrix representation of § and not just on the structure of g as a Lie algebra, but it does so in a rather
weak way.

As another application of Proposition 5, we can obtain an alternative proof of Theorem 4. Indeed,
let the matrices By and B be as in the proof of Theorem 4 given in the previous section (the existence
of a subalgebra isomorphic to sI(2,R) remains crucial). Define the matrices By := —kB; 4+ By — el and
By := —B; + kB, — el, where ¢ > 0 and k£ > 1. Then the switched system

& = Bz, o:[0,00) — {1,2} (13)

is not stable for e small enough (even though all convex combinations of B; and By are stable). This
follows from Proposition 5 and from the example presented at the beginning of this section; in fact, a
specific (periodic) destabilizing switching signal for the system (13) can be constructed with the help of
that example. Interestingly, it appears to be difficult to establish the same result by a direct analysis of
(13). The rest of the proof of Theorem 4 can now proceed exactly as before.

It was shown by Shorten and Narendra in [22] that two stable two-dimensional linear systems & = A;x
and & = A,x possess a quadratic common Lyapunov function if and only if all pairwise convex combinations
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of matrices from the set {Al,Az,Al_l,Az_ 1 are stable. Combined with Proposition 5, this yields the
following result.

Corollary 6 Let P = {1,2}. Suppose that all pairwise convexr combinations of matrices from the set
{Ay, Ag, ATYASMY, with Ay and Ay given by (12), are stable. Then the switched linear system (2), with
A, given by (11), is globally uniformly exponentially stable.

The above corollary only provides sufficient and not necessary conditions for global uniform exponential
stability of (2). This is due to the fact that, as we already mentioned earlier, it may happen that a switched
linear system is globally uniformly exponentially stable while there is no quadratic common Lyapunov
function for the individual subsystems (see the example in [4]).

A Basic facts about Lie algebras

In this appendix we give an informal overview of basic properties of Lie algebras. Only those facts that
directly play a role in the developments of the previous sections are discussed. Most of the material is
adopted from [8, 20], and the reader is referred to these and other standard references for more details.

A.1 Lie algebras and their representations

A Lie algebra g is a finite-dimensional vector space equipped with a Lie bracket, i.e., a bilinear, skew-
symmetric map [-,-] : g X g — g satisfying the Jacobi identity [a, [b, ¢]] + [b, [c, a]] + [¢, [a,b]] = 0. Any Lie
algebra g can be identified with a tangent space at the identity of a Lie group G (an analytic manifold
with a group structure). If g is a matrix Lie algebra, then the elements of G are given by products of
the exponentials of the matrices from g. In particular, each element A € g generates the one-parameter
subgroup {eA',t € R} in G. For example, if g is the Lie algebra gl(n,R) of all real n x n matrices with
the standard Lie bracket [A, B] = AB — BA, then the corresponding Lie group is given by the invertible
matrices.

Given an abstract Lie algebra g, one can consider its (matrix) representations. A representation of g
on an n-dimensional vector space V' is a homomorphism (i.e., a linear map that preserves the Lie bracket)
¢ :g— gl(V). It assigns to each element g € g a linear operator ¢(g) on V', which can be described by an
n X n matrix. A representation ¢ is called irreducible if V' contains no nontrivial subspaces invariant under
the action of all ¢(g), g € g. A particularly useful representation is the adjoint one, denoted by ‘ad’. The
vector space V' in this case is g itself, and for g € g the operator adg is defined by adg(a) := [g,a], a € g.
There is also Ado’s Theorem which says that every Lie algebra is isomorphic to a subalgebra of gl(V') for
some finite-dimensional vector space V' (compare this with the adjoint representation which is in general
not injective).

A.2 Example: si(2,R) and ¢l(2,R)

The special linear Lie algebra sl(2,R) consists of all real 2 x 2 matrices of trace 0. A canonical basis for
this Lie algebra is given by the matrices

S S R (]

They satisty the relations [h, €] = 2e, [h, f] = —2f, [e, f] = h, and form what is sometimes called an si(2)-
triple. One can also consider other representations of s/(2,R). Although all irreducible representations of
sl(2,R) can be classified by working with the Lie algebra directly (see [20, p. 27-30]), for our purposes it
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is more useful to exploit the corresponding Lie group SL(2,R) = {S € R™ " : det S = 1}. Let P¥[x,y]
denote the space of polynomials in two indeterminates x and y that are homogeneous of degree k (where
k is a positive integer). A homomorphism ¢ that makes SL(2,R) act on P*[z,y] can be defined as follows:

osn{(5) -+l ()

where S € SL(2,R) and p € P¥[z,y]. The corresponding representation of the Lie algebra si(2,R), which
we denote also by ¢ with slight abuse of notation, is obtained by considering the one-parameter subgroups
of SL(2,R) and differentiating the action defined above at t = 0. For example, for e as in (14) we have

won((5) = ol C) =l (( 1) 6) =zl ()

Similarly, ¢(f)p = —J:a%p and ¢(h)p (—x% + ya%)p. With respect to the basis in P*[z,y] given by

k—2,2

the monomials y¥, —ky* 1o, k(k — 1)y*=222,.. ., (—1)¥kl2*, the corresponding differential operators are
realized by the matrices
E v o 0 0 p - 0 0 -+ - 0
h— k=2 , € R = L
: o : g : S
0 v oo —k 0 -« - 0 0 --- 1 0

where p; = i(k—i+1), ¢ = 1,...,k. It turns out that any irreducible representation of sl(2,R) of
dimension k+1 is equivalent (under a linear change of coordinates) to the one just described. An arbitrary
representation of sl(2,R) is a direct sum of irreducible ones.

When working with gl(2,R) rather than si(2,R), one also has the 2 x 2 identity matrix Iyxo. It
corresponds to the operator :Ea% +ya% on P¥[z,y], whose associated matrix is KIgi1)x(k+1)- One can thus
naturally extend the above representation to g/(2,R). The complementary subalgebras RI and s{(2,R) are
invariant under the resulting action.

A.3 Nilpotent and solvable Lie algebras

If g, and gy are linear subspaces of a Lie algebra g, one writes [g1, g2] for the linear space spanned by
all the products [g1, g2] with g1 € g1 and g2 € go. Given a Lie algebra g, the sequence g®) is defined
inductively as follows: g) := g, gtD) .= [g(k),g(k)] c g®. 1f g) = 0 for k sufficiently large, then g is
called solvable. Similarly, one defines the sequence g* by g' := g, g*! := [g, g*] C g¥, and calls g nilpotent
if g¥ = 0 for k sufficiently large. For example, if g is a Lie algebra generated by two matrices A and
B, we have: g(V) = g!' = g = span{A4, B,[A,B],[4,[4,B]],... }, ¢® = g®> = span{[4, B],[4,[A4, B]],... },
a® = span{[[4, B],[A,[A, B]]],... } C g® = span{[A,[A, B]],[B,[A, B]],... }, and so on. Every nilpotent
Lie algebra is solvable, but the converse is not true.

The Killing form on a Lie algebra g is the symmetric bilinear form K given by K (a,b) := tr(ada o adb)
for a,b € g. Cartan’s 1st criterion says that g is solvable if and only if its Killing form vanishes identically
on [g,g]. Let g be a solvable Lie algebra over an algebraically closed field, and let ¢ be a representation of
g on a vector space V. Lie’s Theorem states that there exists a basis for V' with respect to which all the
matrices ¢(g), g € g are upper-triangular.

A.4 Semisimple and compact Lie algebras

A subalgebra g of a Lie algebra g is called an ideal if [g,g] € g for all ¢ € g and g € §. Any Lie algebra
has a unique maximal solvable ideal t, the radical. A Lie algebra g is called semisimple if its radical is 0.
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Cartan’s 2nd criterion says that g is semisimple if and only if its Killing form is nondegenerate (meaning
that if for some g € g we have K(g,a) =0 Va € g, then g must be 0.)

A semisimple Lie algebra is called compact if its Killing form is negative definite. A general compact
Lie algebra is a direct sum of a semisimple compact Lie algebra and a commutative Lie algebra (with the
Killing form vanishing on the latter). This terminology is justified by the facts that the tangent algebra
of any compact Lie group is compact according to this definition, and that for any compact Lie algebra g
there exists a connected compact Lie group G with tangent algebra g. Compactness of a semisimple matrix
Lie algebra g amounts to the property that the eigenvalues of all matrices in g lie on the imaginary axis. If
G is a compact Lie group, one can associate to any continuous function f : G — R a real number fg f(@daG
so as to have fg 1dG = 1 and fgf(AGB)dG = fgf(G)dG VA,B € G (left and right invariance). The

measure dG is called the Haar measure.

An arbitrary Lie algebra g can be decomposed into the semidirect sum g = t & s, where v is the radical,
s is a semisimple subalgebra, and [s,t] C ¢ because t is an ideal. This is known as a Levi decomposition.
To compute v and s, switch to a basis in which the Killing form K is diagonalized. The subspace on which
K is not identically zero corresponds to s @ (v mod n), where n is the maximal nilpotent subalgebra of t.
Construct the Killing form K for the factor algebra s @ (r mod n). This form will vanish identically on
(v mod n) and will be nondegenerate on s. The subalgebra s identified in this way is compact if and only
if K is negative definite on it. For more details on this construction and examples, see [7, pp. 256-258].

A.5 Subalgebras isomorphic to si(2,R)

Let g be a real, noncompact, semisimple Lie algebra. Our goal here is to show that g has a subalgebra
isomorphic to sl(2,R). To this end, consider a Cartan decomposition g = € @ p, where £ is a maximal
compact subalgebra of g and p is its orthogonal complement with respect to K. The Killing form K is
negative definite on € and positive definite on p. Let a be a maximal commuting subalgebra of p. Then it
is easy to check using the Jacobi identity that the operators ada, a € a are commuting. These operators
are also symmetric with respect to a suitable inner product on g (for a,b € g this inner product is given by
—K(a, ©b), where O is the map sending k+p, with k € € and p € p, to k—p), hence they are simultaneously
diagonalizable. Thus g can be decomposed into a direct sum of subspaces invariant under ada, a € a, on
each of which every operator ada has exactly one eigenvalue. The unique eigenvalue of ada on each of these
invariant subspaces is given by a linear function A on a, and accordingly the corresponding subspace is
denoted by gy. Since p # 0 (because g is not compact) and since K is positive definite on p, the subspace
go associated with A being identically zero cannot be the entire g. Summarizing, we have

g=00® (Dyex 02)

where ¥ is a finite set of nonzero linear functions on a (which are called the roots) and gy = {g € g :
ada(g) = Aa)g Va € a}. Using the Jacobi identity, one can show that [gx,g,] is a subspace of gy, if
A+ p € X U{0}, and equals 0 otherwise. This implies that the subspaces gy and g, are orthogonal with
respect to K unless A + u = 0 (cf. [20, p. 38]). Since K is nondegenerate on g, it follows that if X is
a root, then so is —A. Moreover, the subspace [gy,g_)] of go has dimension 1, and X is not identically
zero on it (cf. [20, pp. 39-40]). This means that there exist some elements e € gy and f € g_, such that
h = [e, f] # 0. It is now easy to see that, multiplying e, f and h by constants if necessary, we obtain
an sl(2)-triple. Alternatively, we could finish the argument by noting that if g € gy for some A € X, then
the operator adg is nilpotent (because it maps each g, to g,y to gu4on and eventually to 0 since X is a
finite set), and the existence of a subalgebra isomorphic to s/(2, R) is guaranteed by the Jacobson-Morozov
Theorem.
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A.6 Generators for gl(2,R)

This subsection is devoted to showing that in an arbitrarily small neighborhood of any pair of n X n matrices
one can find another pair of matrices that generate the entire Lie algebra gl(n,R). This fact demonstrates
that Lie-algebraic stability conditions considered in the previous sections are never robust with respect to
small perturbations of the matrices that define the switched system. Constructions like the one presented
here have certainly appeared in the literature, but we are not aware of a specific reference.

We begin by finding some matrices By, Bo that generate gl(n,R). Let Bj be a diagonal matrix
B, = diag(by, be, ..., by) satisfying the following two properties:

L. by —bj # bg — by if (i,7) # (k,1)

Denote by od(n,R) the space of matrices with zero elements on the main diagonal. Let By be any matrix
in od(n,R) such that all its off-diagonal elements are nonzero. It is easy to check that if F;; is a matrix
whose ij-th element is 1 and all other elements are 0, where i # j, then [By, E; ;] = (b; — b;)E; j. Thus it
follows from property 1 above that By does not belong to any proper subspace of od(n,R) that is invariant
with respect to the operator adB;. Therefore, the linear space spanned by the iterated brackets ad® By (Bg)
is the entire od(n,R). Taking brackets of the form [F; j, E_; _;], we generate all traceless diagonal matrices
(cf. the example [e, f] = h in Section A.2). Since B; has a nonzero trace by property 2 above, we conclude
that {Bl, BQ}LA == gl(n, R).

Now, let A1 and Ay be two arbitrary n x n matrices. Using the matrices B; and Bs just constructed,
we can define A;(a) := A; + aB; and Ay(«) := Ay + @By, where a > 0. The two matrices A;(«) and
As(ar) generate gl(n,R) for any sufficiently small «, as can be shown by using the same argument as the
one employed at the end of the proof of Theorem 4. Thus one can take (A;(«), A2(a)) as a desired pair of
matrices in a neighborhood of (A;, 4s).
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