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Abstra
t

It was re
ently shown that a family of exponentially stable linear systems whose matri
es gener-

ate a solvable Lie algebra possesses a quadrati
 
ommon Lyapunov fun
tion, whi
h implies that the


orresponding swit
hed linear system is exponentially stable for arbitrary swit
hing. In this paper we

prove that the same properties hold under the weaker 
ondition that the Lie algebra generated by given

matri
es 
an be de
omposed into a sum of a solvable ideal and a subalgebra with a 
ompa
t Lie group.

The 
orresponding lo
al stability result for nonlinear swit
hed systems is also established. Moreover,

we demonstrate that if a Lie algebra fails to satisfy the above 
ondition, then it 
an be generated by

a family of stable matri
es su
h that the 
orresponding swit
hed linear system is not stable. Relevant

fa
ts from the theory of Lie algebras are 
olle
ted at the end of the paper for easy referen
e.

1 Introdu
tion

A swit
hed system 
an be des
ribed by a family of 
ontinuous-time subsystems and a rule that or
hestrates

the swit
hing between them. Su
h systems arise, for example, when di�erent 
ontrollers are being pla
ed

in the feedba
k loop with a given pro
ess, or when a given pro
ess exhibits a swit
hing behavior 
aused

by abrupt 
hanges of the environment. For a dis
ussion of various issues related to swit
hed systems, see

the re
ent survey arti
le [13℄.

To de�ne more pre
isely what we mean by a swit
hed system, 
onsider a family ff

p

: p 2 Pg of

suÆ
iently regular fun
tions from R

n

to R

n

, parameterized by some index set P. Let � : [0;1) ! P be

a pie
ewise 
onstant fun
tion of time, 
alled a swit
hing signal. A swit
hed system is then given by the

following system of di�erential equations in R

n

:

_x = f

�

(x): (1)

We assume that the state of (1) does not jump at the swit
hing instants, i.e., the solution x(�) is everywhere


ontinuous. Note that in�nitely fast swit
hing (
hattering), whi
h 
alls for a 
on
ept of generalized solution,

is not 
onsidered in this paper. In the parti
ular 
ase when all the individual subsystems are linear (i.e.,

f

p

(x) = A

p

x where A

p

2 R

n�n

for ea
h p 2 P), we obtain a swit
hed linear system

_x = A

�

x: (2)

�
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This paper is 
on
erned with the following problem: �nd 
onditions on the individual subsystems

whi
h guarantee that the swit
hed system is asymptoti
ally stable for an arbitrary swit
hing signal �. In

fa
t, a somewhat stronger property is desirable, namely, asymptoti
 or even exponential stability that is

uniform over the set of all swit
hing signals. Clearly, all the individual subsystems must be asymptoti
ally

stable, and we will assume this to be the 
ase throughout the paper. Note that it is not hard to 
onstru
t

examples where instability 
an be a
hieved by swit
hing between asymptoti
ally stable systems (Se
tion 4


ontains one su
h example), so one needs to determine what additional requirements must be imposed.

This question has re
ently generated 
onsiderable interest, as 
an be seen from the work reported in

[9, 12, 16, 17, 18, 19, 21, 22℄.

Commutation relations among the individual subsystems play an important role in the 
ontext of

the problem posed above. This 
an be illustrated with the help of the following example. Consider the

swit
hed linear system (2), take P to be a �nite set, and suppose that the matri
es A

p


ommute pairwise:

A

p

A

q

= A

q

A

p

for all p; q 2 P. Then it is easy to show dire
tly that the swit
hed linear system is

exponentially stable, uniformly over all swit
hing signals. Alternatively, one 
an 
onstru
t a quadrati



ommon Lyapunov fun
tion for the family of linear systems

_x = A

p

x; p 2 P (3)

as shown in [18℄, whi
h is well known to lead to the same 
on
lusion.

In this paper we undertake a systemati
 study of the 
onne
tion between the behavior of the swit
hed

system and the 
ommutation relations among the individual subsystems. In the 
ase of the swit
hed

linear system (2), a useful obje
t that reveals the nature of these 
ommutation relations is the Lie algebra

g := fA

p

: p 2 Pg

LA

generated by the matri
es A

p

, p 2 P (with respe
t to the standard Lie bra
ket

[A

p

; A

q

℄ := A

p

A

q

�A

q

A

p

). The observation that the stru
ture of this Lie algebra is relevant to stability of

(2) goes ba
k to the paper by Gurvits [9℄. That paper studied the dis
rete-time 
ounterpart of (2) taking

the form

x(k + 1) = A

�(k)

x(k) (4)

where � is a fun
tion from nonnegative integers to a �nite index set P and A

p

= e

L

p

, p 2 P for some

matri
es L

p

. Gurvits 
onje
tured that if the Lie algebra fL

p

: p 2 Pg

LA

is nilpotent (whi
h means that

Lie bra
kets of suÆ
iently high order equal zero), then the system (4) is asymptoti
ally stable for any

swit
hing signal �. He was able to prove this 
onje
ture for the parti
ular 
ase when P = f1; 2g and the

third-order Lie bra
kets vanish: [L

1

; [L

1

; L

2

℄℄ = [L

2

; [L

1

; L

2

℄℄ = 0.

It was re
ently shown in [12℄ that the swit
hed linear system (2) is exponentially stable for arbitrary

swit
hing if the Lie algebra g is solvable (see Se
tion A.3 for the de�nition). The proof relied on the

fa
ts that matri
es in a solvable Lie algebra 
an be simultaneously put in the upper-triangular form (Lie's

Theorem) and that a family of linear systems with stable upper-triangularmatri
es has a quadrati
 
ommon

Lyapunov fun
tion. For the result to hold, the index set P does not need to be �nite (although a suitable


ompa
tness assumption is required). One 
an derive the 
orresponding result for dis
rete-time systems in

similar fashion, thereby 
on�rming and dire
tly generalizing the statement 
onje
tured by Gurvits (be
ause

every nilpotent Lie algebra is solvable).

In the present paper we 
ontinue the line of work initiated in the above referen
es. Our main theorem

is a dire
t extension of the one proved in [12℄. The new result states that one still has exponential stability

for arbitrary swit
hing if the Lie algebra g is a semidire
t sum of a solvable ideal and a subalgebra with a


ompa
t Lie group (whi
h amounts to saying that all the matri
es in this se
ond subalgebra have purely

imaginary eigenvalues). The 
orresponding lo
al stability result for the nonlinear swit
hed system (1) is

also established. Being formulated in terms of the original data, su
h Lie-algebrai
 stability 
riteria have

an important advantage over results that depend on a parti
ular 
hoi
e of 
oordinates, su
h as the one

reported in [16℄. Moreover, we demonstrate that the above 
ondition is in some sense the strongest one
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that 
an be given on the Lie algebra level. Loosely speaking, we show that if a Lie algebra does not satisfy

this 
ondition, then it 
ould be generated by a swit
hed linear system that is not stable.

More pre
isely, the main 
ontributions of the paper 
an be summarized as follows (see the appendix for

an overview of relevant de�nitions and fa
ts from the theory of Lie algebras). Given a matrix Lie algebra

^

g whi
h 
ontains the identity matrix, we are interested in the following question: Is it true that any set

of stable generators for

^

g gives rise to a swit
hed system that is exponentially stable, uniformly over all

swit
hing signals? We dis
over that this property depends only on the stru
ture of

^

g as a Lie algebra, and

not on the 
hoi
e of a parti
ular matrix representation of

^

g. The following equivalent 
hara
terizations of

the above property 
an be given:

1. The fa
tor algebra

^

g mod r, where r denotes the radi
al, is a 
ompa
t Lie algebra.

2. The Killing form is negative semide�nite on [

^

g;

^

g℄.

3. The Lie algebra

^

g does not 
ontain any subalgebras isomorphi
 to sl(2;R).

We will also show how the investigation of stability (in the above sense) of a swit
hed linear system in

R

n

, n > 2, whose asso
iated Lie algebra is low-dimensional, 
an be redu
ed to the investigation of stability

of a swit
hed linear system in R

2

. For example, take P = f1; 2g, and de�ne

~

A

i

:= A

i

�

1

n

tra
e(A

i

)I,

i = 1; 2. Assume that all iterated Lie bra
kets of the matri
es

~

A

1

and

~

A

2

are linear 
ombinations of

~

A

1

,

~

A

2

, and [

~

A

1

;

~

A

2

℄. This means that if we 
onsider the Lie algebra g = fA

1

; A

2

g

LA

and add to it the

identity matrix (if it is not already there), the resulting Lie algebra

^

g has dimension at most 4. In this


ase, the following algorithm 
an be used to verify that the swit
hed linear system generated by A

1

and

A

2

is uniformly exponentially stable or, if this is not possible, to 
onstru
t a se
ond-order swit
hed linear

system whose uniform exponential stability is equivalent to that of the original one.

Step 1. If [

~

A

1

;

~

A

2

℄ is a linear 
ombination of

~

A

1

and

~

A

2

, stop: the system is stable. Otherwise, write down

the matrix of the Killing form for the Lie algebra

~

g := f

~

A

1

;

~

A

2

g

LA

relative to the basis given by

~

A

1

,

~

A

2

, and [

~

A

1

;

~

A

2

℄. (This is a symmetri
 3� 3 matrix; see Se
tion A.4 for the de�nition of the Killing

form.)

Step 2. If this matrix is degenerate or negative de�nite, stop: the system is stable. Otherwise, 
ontinue.

Step 3. Find three matri
es h, e, and f in

~

g with 
ommutation relations [h; e℄ = 2e, [h; f ℄ = �2f , and

[e; f ℄ = h (this is always possible in the present 
ase). We 
an then write

~

A

i

= �

i

e+


i

f + Æ

i

h, where

�

i

; �

i

; 


i

are 
onstants, i = 1; 2.

Step 4. Compute the largest eigenvalue of h. It will be an integer; denote it by k. Then the given system

is stable if and only if so is the swit
hed linear system generated by the 2� 2 matri
es

^

A

1

:=

 

tra
e(A

1

)

nk

� Æ

1

��

1

�


1

tra
e(A

1

)

nk

+ Æ

1

!

;

^

A

2

:=

 

tra
e(A

2

)

nk

� Æ

2

��

2

�


2

tra
e(A

2

)

nk

+ Æ

2

!

:

All the steps in the above redu
tion pro
edure involve only elementary matrix operations (addition, multi-

pli
ation, and 
omputation of eigenvalues and eigenve
tors). Details and justi�
ation are given in Se
tion 4.

Before 
losing the Introdu
tion, we make one more remark to further motivate the work reported here

and point out its relationship to a more 
lassi
al bran
h of 
ontrol theory. Assume that P is a �nite set,

say, P = f1; : : : ;mg. The swit
hed system (1) 
an then be re
ast as

_x =

m

X

i=1

f

i

(x)u

i

(5)
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where the admissible 
ontrols are of the form u

k

= 1, u

i

= 0 8i 6= k (this 
orresponds to � = k). In

parti
ular, the swit
hed linear system (2) gives rise to the bilinear system

_x =

m

X

i=1

A

i

xu

i

:

It is intuitively 
lear that asymptoti
 stability of (1) for arbitrary swit
hing 
orresponds to la
k of 
ontrol-

lability for (5). Indeed, it means that for any admissible 
ontrol fun
tion the resulting solution traje
tory

must approa
h the origin. Lie-algebrai
 te
hniques have re
eived a lot of attention in the 
ontext of the


ontrollability problem for systems of the form (5). As for the literature on stability analysis of swit
hed

systems, despite the fa
t that it is vast and growing, Lie-algebrai
 methods do not yet seem to have

penetrated it. The present work 
an be 
onsidered as a step towards �lling this gap.

The rest of the paper is organized as follows. In Se
tion 2 we establish a suÆ
ient 
ondition for stability

(Theorem 2) and dis
uss its various impli
ations. In Se
tion 3 we prove a 
onverse result (Theorem 4).

Se
tion 4 
ontains a detailed analysis of swit
hed systems whose asso
iated Lie algebras are isomorphi
 to

the Lie algebra gl(2;R) of real 2� 2 matri
es. This leads, among other things, to the redu
tion algorithm

sket
hed above and to a di�erent (and arguably more illuminating) proof of Theorem 4. To make the paper

self-
ontained, in the appendix we provide an overview of relevant fa
ts from the theory of Lie algebras.

2 SuÆ
ient 
onditions for stability

The swit
hed system (1) is 
alled (lo
ally) uniformly exponentially stable if there exist positive 
onstants

M , 
 and � su
h that for any swit
hing signal � the solution of (1) with kx(0)k �M satis�es

kx(t)k � 
e

��t

kx(0)k 8t � 0: (6)

The term \uniform" is used here to des
ribe uniformity with respe
t to swit
hing signals. If there exist

positive 
onstants 
 and � su
h that the estimate (6) holds for any swit
hing signal � and any initial


ondition x(0), then the swit
hed system is 
alled globally uniformly exponentially stable. Similarly, one


an also de�ne the property of uniform asymptoti
 stability, lo
al or global. For swit
hed linear systems

all the above 
on
epts are equivalent (see [15℄). In fa
t, as shown in [1℄, in the linear 
ase global uniform

exponential stability is equivalent to the seemingly weaker property of asymptoti
 stability for any swit
hing

signal.

In the 
ontext of the swit
hed linear system (2), we will always assume that fA

p

: p 2 Pg is a 
ompa
t

(with respe
t to the usual topology in R

n�n

) set of real n � n matri
es with eigenvalues in the open left

half-plane. Let g be the Lie algebra de�ned by g = fA

p

: p 2 Pg

LA

as before. The following stability


riterion was established in [12℄. It will be 
ru
ial in proving Theorem 2 below.

Theorem 1 [12℄ If g is a solvable Lie algebra, then the swit
hed linear system (2) is globally uniformly

exponentially stable.

Remark 1. The proof of this result given in [12℄ relies on a 
onstru
tion of a quadrati
 
ommon Lyapunov

fun
tion for the family of linear systems (3). The existen
e of su
h a fun
tion a
tually implies global uniform

exponential stability of the time-varying system _x = A

�

x with � not ne
essarily pie
ewise 
onstant. This

observation will be used in the proof of Theorem 2.

The above 
ondition 
an always be 
he
ked dire
tly in a �nite number of steps if P is a �nite set.

Alternatively, one 
an use the standard 
riterion for solvability in terms of the Killing form. Similar


riteria exist for 
he
king the other 
onditions to be presented in this paper|see Se
tions A.3 and A.4 for

details.
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We now 
onsider a Levi de
omposition of g, i.e., we write g = r � s, where r is the radi
al and s is a

semisimple subalgebra (see Se
tion A.4). Our �rst result is the following generalization of Theorem 1.

Theorem 2 If s is a 
ompa
t Lie algebra, then the swit
hed linear system (2) is globally uniformly expo-

nentially stable.

Proof. For an arbitrary p 2 P, write A

p

= r

p

+ s

p

with r

p

2 r and s

p

2 s. Let us show that r

p

is a stable

matrix. Writing

e

(r

p

+s

p

)t

= e

s

p

t

B

p

(t) (7)

we have the following equation for B

p

(t):

_

B

p

(t) = e

�s

p

t

r

p

e

s

p

t

B

p

(t); B

p

(0) = I: (8)

To verify (8), di�erentiate the equality (7) with respe
t to t, whi
h gives

(r

p

+ s

p

)e

(r

p

+s

p

)t

= s

p

e

s

p

t

B

p

+ e

s

p

t

_

B

p

:

Using (7) again, we have

r

p

e

s

p

t

B

p

+ s

p

e

s

p

t

B

p

= s

p

e

s

p

t

B

p

+ e

s

p

t

_

B

p

hen
e (8) holds. De�ne 


p

(t) := e

�s

p

t

r

p

e

s

p

t

. Clearly, spe
(


p

(t)) = spe
(r

p

) for all t. It is well known that

for any two matri
es A and B one has

e

�A

Be

A

= e

adA

(B) = B + [A;B℄ +

1

2

[A; [A;B℄℄ + : : : (9)

hen
e we obtain the expansion




p

(t) = r

p

+ [s

p

t; r

p

℄ +

1

2

[s

p

t; [s

p

t; r

p

℄℄ + : : :

Sin
e [s; r℄ � r, we see that 


p

(t) 2 r. A

ording to Lie's Theorem, there exists a basis in whi
h all matri
es

from r are upper-triangular. Combining the above fa
ts, it is not hard to 
he
k that spe
(B

p

(t)) = e

tspe
(r

p

)

.

Now it follows from (8) that spe
(r

p

) lies in the open left half of the 
omplex plane. Indeed, as t!1 we

have e

(r

p

+s

p

)t

! 0 be
ause the matrix A

p

is stable. Sin
e s is 
ompa
t, there exists a 
onstant C > 0 su
h

that we have je

s

xj � Cjxj for all s 2 s and x 2 R

n

, thus we 
annot have e

s

p

t

x ! 0 for x 6= 0. Therefore,

B

p

(t)! 0, and so r

p

is stable.

Sin
e p 2 P was arbitrary, we see that all the matri
es r

p

, p 2 P are stable. Theorem 1 implies that the

swit
hed linear system generated by these matri
es is globally uniformly exponentially stable. Moreover, the

same property holds for matri
es in the extended set

�

r := f

�

A : 9 p 2 P and s 2 s su
h that

�

A = e

�s

r

p

e

s

g.

This is true be
ause the matri
es in this set are stable and be
ause they belong to r (the last statement

follows from the expansion (9) again sin
e [s; r℄ � r). Now, the transition matrix of the original swit
hed

linear system (2) at time t takes the form

�(t; 0) = e

(r

p

k

+s

p

k

)t

k

� � � e

(r

p

1

+s

p

1

)t

1

= e

s

p

k

t

k

B

p

k

(t

k

) � � � e

s

p

1

t

1

B

p

1

(t

1

)

where t

1

, t

1

+ t

2

, : : : , t

1

+ t

2

+ � � � + t

k�1

< t are swit
hing instants, t

1

+ � � � + t

k

= t, and as before

_

B

p

i

(t) = e

�s

p

i

t

r

p

i

e

s

p

i

t

B

p

i

(t), i = 1; : : : ; k. To simplify the notation, let k = 2 (in the general 
ase one 
an

adopt the same line of reasoning or use indu
tion on k). We 
an then write

�(t; 0) = e

s

p

2

t

2

e

s

p

1

t

1

e

�s

p

1

t

1

B

p

2

(t

2

)e

s

p

1

t

1

B

p

1

(t

1

) = e

s

p

2

t

2

e

s

p

1

t

1

~

B

p

2

(t

2

)B

p

1

(t

1

)

5



where

~

B

p

2

(t) := e

�s

p

1

t

1

B

p

2

(t)e

s

p

1

t

1

. We have

d

dt

~

B

p

2

(t) = e

�s

p

1

t

1

e

�s

p

2

t

r

p

2

e

s

p

2

t

B

p

2

(t)e

s

p

1

t

1

= e

�s

p

1

t

1

e

�s

p

2

t

r

p

2

e

s

p

2

t

e

s

p

1

t

1

e

�s

p

1

t

1

B

p

2

(t)e

s

p

1

t

1

= e

�s

p

1

t

1

e

�s

p

2

t

r

p

2

e

s

p

2

t

e

s

p

1

t

1

~

B

p

2

(t)

Thus we see that

�(t; 0) = e

s

p

2

t

2

e

s

p

1

t

1

�

�

B(t) (10)

where

�

B(t) is the transition matrix of a swit
hed/time-varying system generated by matri
es in

�

r, i.e.,

d

dt

�

B(t) =

�

A(t)

�

B(t) with

�

A(t) 2

�

r 8t � 0. The norm of the �rst term in the above produ
t is bounded by


ompa
tness, while the norm of the se
ond goes to zero exponentially by Theorem 1 (see also Remark 1),

and the statement of the theorem follows.

Remark 2. The fa
t that r is the radi
al, implying that s is semisimple, was not used in the proof. The

statement of Theorem 2 remains valid for any de
omposition of g into the sum of a solvable ideal r and a

subalgebra s. Among all possible de
ompositions of this kind, the one 
onsidered above gives the strongest

result. If g is solvable, then s = 0 is of 
ourse 
ompa
t, and we re
over Theorem 1 as a spe
ial 
ase.

Example 1. Suppose that the matri
es A

p

, p 2 P take the form A

p

= ��

p

I + S

p

where �

p

> 0 and

S

T

p

= �S

p

for all p 2 P. These are automati
ally stable matri
es. Suppose also that spanfA

p

; p 2 Pg 3 I.

Then the 
ondition of Theorem 2 is satis�ed. Indeed, take r = f�I : � 2 Rg (s
alar multiples of the identity

matrix) and observe that the Lie algebra fS

p

: p 2 Pg

LA

is 
ompa
t be
ause skew-symmetri
 matri
es

have purely imaginary eigenvalues.

In [12℄ the global uniform exponential stability property was dedu
ed from the existen
e of a quadrati



ommon Lyapunov fun
tion. In the present 
ase we found it more 
onvenient to obtain the desired result

dire
tly. However, under the hypothesis of Theorem 2 a quadrati
 
ommon Lyapunov fun
tion for the

family of linear systems (3) 
an also be 
onstru
ted, as we now show. Let

�

V (x) = x

T

Qx be a quadrati



ommon Lyapunov fun
tion for the family of linear systems generated by matri
es in

�

r (whi
h exists

a

ording to [12℄). De�ne the fun
tion

V (x) :=

Z

S

�

V (Sx)dS = x

T

�

Z

S

S

T

QSdS � x

where S is the Lie group 
orresponding to s and the integral is taken with respe
t to the Haar measure

invariant under right translation on S (see Se
tion A.4). Using (10), it is straightforward to show that the

derivative of V along solutions of the swit
hed linear system (2) satis�es

d

dt

V (x(t)) =

d

dt

Z

S

�

V (S

�

B(t)x(0))dS

=

Z

S

x

T

(0)

�

B

T

(t)S

T

((S

�

A(t)S

�1

)

T

Q+QS

�

A(t)S

�1

)S

�

B(t)x(0)dS < 0:

The �rst equality in the above formula follows from the invarian
e of the measure, and the last inequality

holds be
ause S

�

A(t)S

�1

2

�

r for all t � 0 and all S 2 S.

Remark 3. It is now 
lear that the above results remain valid if pie
ewise 
onstant swit
hing signals are

repla
ed by arbitrary measurable fun
tions (
f. Remark 1).

The existen
e of a quadrati
 
ommon Lyapunov fun
tion will be used to prove Corollary 3 below. It

is also an interesting fa
t in its own right be
ause, although the 
onverse Lyapunov theorem proved in

[15℄ implies that global uniform exponential stability always leads to the existen
e of a 
ommon Lyapunov

fun
tion, in some 
ases it is not possible to �nd a quadrati
 one [4℄. In
identally, this 
learly shows that the


ondition of Theorem 2 is not ne
essary for uniform exponential stability of the swit
hed linear system (2).
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Another way to see this is to note that the property of uniform exponential stability is robust with respe
t

to small perturbations of the parameters of the system, whereas the 
ondition of Theorem 2 is not. In fa
t,

no Lie-algebrai
 
ondition of the type 
onsidered here 
an possess the indi
ated robustness property. This

follows from the fa
t, proved in Se
tion A.6, that in an arbitrarily small neighborhood of any pair of n�n

matri
es there exists a pair of matri
es that generate the entire Lie algebra gl(n;R).

We 
on
lude this se
tion with a lo
al stability result for the nonlinear swit
hed system (1). Let f

p

:

D ! R

n

be 
ontinuously di�erentiable with f

p

(0) = 0 for ea
h p 2 P, where D is a neighborhood of the

origin in R

n

. Consider the linearization matri
es

F

p

:=

�f

p

�x

(0); p 2 P:

Assume that the matri
es F

p

are stable, that P is a 
ompa
t subset of some topologi
al spa
e, and that

�f

p

�x

(x) depends 
ontinuously on p for ea
h x 2 D. Consider the Lie algebra

~

g := fF

p

: p 2 Pg

LA

and its

Levi de
omposition

~

g =

~

r�

~

s. The following statement is a generalization of [12, Corollary 5℄.

Corollary 3 If

~

s is a 
ompa
t Lie algebra, then the swit
hed system (1) is uniformly exponentially stable.

Proof. This is a relatively straightforward appli
ation of Lyapunov's �rst method (see, e.g., [11℄). For

ea
h p 2 P we 
an write f

p

(x) = F

p

x+ g

p

(x)x. Here g

p

(x) =

�f

p

�x

(z) �

�f

p

�x

(0) where z is a point on the

line segment 
onne
ting x to the origin. We have g

p

(x) ! 0 as x ! 0. Under the present assumptions,

the family of linear systems _x = F

p

x, p 2 P has a quadrati
 
ommon Lyapunov fun
tion. Be
ause of


ompa
tness of P and 
ontinuity of

�f

p

�x

with respe
t to p, it is not diÆ
ult to verify that this fun
tion is

a 
ommon Lyapunov fun
tion for the family of systems _x = f

p

(x), p 2 P on a 
ertain neighborhood

�

D of

the origin. Thus the swit
hed system (1) is uniformly exponentially stable on

�

D.

An important problem for future resear
h is to investigate how the stru
ture of the Lie algebra generated

by the original nonlinear ve
tor �elds f

p

, p 2 P is related to stability properties of the swit
hed system (1).

Taking higher-order terms into a

ount, one may hope to obtain 
onditions that guarantee stability of

nonlinear swit
hed systems when the above linearization test fails. A �rst step in this dire
tion is the

observation made in [21℄ that a �nite family of 
ommuting nonlinear ve
tor �elds giving rise to exponentially

stable systems has a lo
al 
ommon Lyapunov fun
tion. Imposing 
ertain additional assumptions, it is

possible to obtain analogues of Lie's Theorem whi
h yield triangular stru
ture for families of nonlinear

systems generating nilpotent or solvable Lie algebras (see [3, 10, 14℄). However, the methods des
ribed in

these papers require that the Lie algebra have full rank, and so typi
ally they do not apply to families of

systems with 
ommon equilibria of the type treated here.

3 A 
onverse result

We already remarked that the 
ondition of Theorem 2 is not ne
essary for uniform exponential stability

of the swit
hed linear system (2). It is natural to ask whether this 
ondition 
an be improved. A more

general question that arises is to what extent the stru
ture of the Lie algebra 
an be used to distinguish

between stable and unstable swit
hed systems. The �ndings of this se
tion will shed some light on these

issues.

We �nd it useful to introdu
e a possibly larger Lie algebra

^

g by adding to g the s
alar multiples of the

identity matrix if ne
essary. In other words, de�ne

^

g := fI;A

p

: p 2 Pg

LA

. The Levi de
omposition of

^

g

is given by

^

g =

^

r� s with

^

r � r (be
ause the subspa
e RI belongs to the radi
al of

^

g). Thus

^

g satis�es the

hypothesis of Theorem 2 if and only if g does.

7



Our goal in this se
tion is to show that if this hypothesis is not satis�ed, then

^

g 
an be generated by

a family of stable matri
es (whi
h might in prin
iple be di�erent from fA

p

: p 2 Pg) with the property

that the 
orresponding swit
hed linear system is not stable. Su
h a statement 
ould in some sense be

interpreted as a 
onverse of Theorem 2. It would imply that by working just with

^

g it is not possible to

obtain a stronger result than the one given in the previous se
tion.

We will also see that there exists another set of stable generators for

^

g whi
h does give rise to a uniformly

exponentially stable swit
hed linear system. In fa
t, we will show that both generator sets 
an always be


hosen in su
h a way that they 
ontain the same number of elements as the original set that was used to

generate

^

g. Thus, if the Lie algebra does not satisfy the hypothesis of Theorem 2, this Lie algebra alone

(even together with the knowledge of how many stable matri
es were used to generate it) does not provide

enough information to determine whether or not the original swit
hed linear system is stable.

Let fA

1

; A

2

; : : : ; A

m

g be any �nite set of stable generators for

^

g (if the index set P is in�nite, a suitable

�nite subset 
an always be extra
ted from it). Then the following holds.

Theorem 4 Suppose that s is not a 
ompa
t Lie algebra. Then there exists a set of m stable generators

for

^

g su
h that the 
orresponding swit
hed linear system is not uniformly exponentially stable. There also

exists another set of m stable generators for

^

g su
h that the 
orresponding swit
hed linear system is globally

uniformly exponentially stable.

Proof. To prove the se
ond statement of the theorem, we simply subtra
t �I from ea
h of the generators

A

1

, A

2

, : : : , A

m

, where � > 0 is large enough. Namely, take � to be any number larger than the largest

eigenvalue of (A

i

+ A

T

i

)=2 for all i = 1; : : : ;m. Then it is easy to 
he
k that the linear systems de�ned

by the matri
es A

1

� �I, A

2

� �I, : : : , A

m

� �I all share the 
ommon Lyapunov fun
tion V (x) = x

T

x.

To prove that these matri
es indeed generate

^

g, it is enough to show that the span of these matri
es and

their iterated Lie bra
kets 
ontains the identity matrix I. We know that I 
an be written as a linear


ombination of the matri
es A

1

, A

2

, : : : , A

m

, and their suitable Lie bra
kets. Repla
ing ea
h A

i

in this

linear 
ombination by A

i

� �I, we obtain a s
alar multiple of I. If it is nonzero, we are done; otherwise,

we just have to in
rease � by an arbitrary amount.

We now turn to the �rst statement of the theorem. Sin
e s is not 
ompa
t, it 
ontains a subalgebra that

is isomorphi
 to sl(2;R). Su
h a subalgebra 
an be 
onstru
ted as shown in Se
tion A.5. The existen
e of

this subalgebra is the key property that we will explore.

It follows from basi
 properties of solutions to di�erential in
lusions that if a family of matri
es gives

rise to a uniformly exponentially stable swit
hed linear system, then all 
onvex linear 
ombinations of

these matri
es are stable (this fa
t is easily seen to be true from the 
onverse Lyapunov theorems of [15, 4℄,

although in [15℄ it was a
tually used to prove the result; see also Remark 5 below). To prove the theorem,

we will �rst �nd a pair of stable matri
es B

1

; B

2

that lie in the subalgebra isomorphi
 to sl(2;R) and have

an unstable 
onvex 
ombination, and then use them to 
onstru
t a desired set of generators for

^

g. (An

alternative method of proof will be presented in the next se
tion.)

Sin
e every matrix representation of sl(2;R) is a dire
t sum of irredu
ible ones, there is no loss of

generality in 
onsidering only irredu
ible representations. Their 
omplete 
lassi�
ation in all dimensions

(up to equivalen
e indu
ed by linear 
oordinate transformations) is available. In parti
ular, it is known

that any irredu
ible representation of sl(2;R) 
ontains two matri
es of the following form:

~

B

1

=

0

B

B

B

B

�

0 �

1

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

r

0 � � � � � � 0

1

C

C

C

C

A

and

~

B

2

=

0

B

B

B

B

�

0 � � � � � � 0

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � 1 0

1

C

C

C

C

A

8



(
f. Se
tion A.2). The matrix

~

B

1

has positive entries �

1

; : : : ; �

r

immediately above the main diagonal and

zeros elsewhere, and the matrix

~

B

2

has ones immediately below the main diagonal and zeros elsewhere.

It is not hard to 
he
k that the nonnegative matrix

~

B := (

~

B

1

+

~

B

2

)=2 is irredu
ible

1

, and as su
h

satis�es the assumptions of the Perron-Frobenius Theorem (see, e.g., [6, Chapter XIII℄). A

ording to that

theorem,

~

B has a positive eigenvalue. Then for a small enough � > 0 the matrix B :=

~

B � �I also has a

positive eigenvalue. We have B = (

~

B

1

� �I +

~

B

2

� �I)=2. This implies that a desired pair of matri
es in

the given irredu
ible matrix representation of sl(2;R) 
an be de�ned by B

1

:=

~

B

1

� �I and B

2

:=

~

B

2

� �I.

Indeed, these matri
es are stable, but their average B is not.

For � � 0, de�ne A

1

(�) := B

1

+ �A

1

and A

2

(�) := B

2

+ �A

2

. If � is small enough, then A

1

(�) and

A

2

(�) are stable matri
es, while (A

1

(�)+A

2

(�))=2 is unstable. Thus the matri
es A

1

(�); A

2

(�); A

3

; : : : ; A

m

yield a swit
hed system that is not uniformly exponentially stable. Moreover, it is not hard to show that

for � small enough these matri
es generate

^

g. Indeed, 
onsider a basis for

^

g formed by A

1

; : : : ; A

m

, and

their suitable Lie bra
kets. Repla
ing A

1

and A

2

in these expressions by A

1

(�) and A

2

(�) and writing the


oordinates of the resulting elements relative to this basis, we obtain a square matrix �(�). Its determinant

is a polynomial in � whose value tends to 1 as �!1, and therefore it is not identi
ally zero. Thus �(�)

is nondegenerate for all but �nitely many values of �; in parti
ular, we will have a basis for

^

g if we take �

suÆ
iently small. This 
ompletes the proof.

Remark 4. Given the matri
es B

1

and B

2

as in the above proof, it is of 
ourse quite easy to 
onstru
t

a set of stable generators for

^

g giving rise to a swit
hed linear system that is not uniformly exponentially

stable: just take any set of generators for

^

g 
ontaining �I, B

1

and B

2

, and make them into stable ones by

means of subtra
ting positive multiples of the identity if ne
essary. The above more 
areful 
onstru
tion

has the advantage of produ
ing a set of generators with the same number of elements as in the original

generating set for

^

g.

Remark 5. The existen
e of an unstable 
onvex 
ombination a
tually leads to more spe
i�
 
on
lusions

than simply la
k of uniform exponential stability. Namely, one 
an �nd a sequen
e of solutions of the

swit
hed system that 
onverges in a suitable sense to a traje
tory of the unstable linear system asso
iated

with su
h a 
onvex 
ombination. This is a 
onsequen
e of the so-
alled relaxation theorem whi
h in our


ase says that the set of solutions to the di�erential in
lusion _x 2 fA

p

x : p 2 Pg is dense in the set of

solutions to the di�erential in
lusion _x 2 
ofA

p

x : p 2 Pg, where 
o(K) denotes the 
onvex hull of a set

K � R

n

. For details, see [2, 5℄.

The results that we have obtained so far reveal the following important fa
t: the property of

^

g whi
h

is being investigated here, namely, global uniform exponential stability of any swit
hed system whose

asso
iated Lie algebra is

^

g, depends only on the stru
ture of

^

g (i.e., on the 
ommutation relations between

its matri
es) and is independent of the 
hoi
e of a parti
ular representation.

4 Swit
hed linear systems with low-dimensional Lie algebras

In the proof of Theorem 4 in the previous se
tion, we needed to 
onstru
t a pair of stable matri
es in a

representation of sl(2;R) whi
h give rise to an unstable swit
hed system. To a
hieve this, we relied on the

fa
t that a swit
hed system de�ned by two matri
es is not stable if these matri
es have an unstable 
onvex


ombination. However, even if all 
onvex 
ombinations are stable, stability of the swit
hed system is not

guaranteed. As a simple example that illustrates this, 
onsider the swit
hed system in R

2

de�ned by the

matri
es A

1

:=

~

A

1

� �I and A

2

:=

~

A

2

� �I, where

~

A

1

:=

�

0 k

�1 0

�

;

~

A

2

:=

�

0 1

�k 0

�

1

A matrix is 
alled irredu
ible if it has no proper invariant subspa
es spanned by 
oordinate ve
tors.
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with � > 0 and k > 1. It is easy to 
he
k that all 
onvex 
ombinations of A

1

and A

2

are stable. When

� = 0, the traje
tories of the 
orresponding individual systems look as shown in Figure 1 (left) and Figure 1

(
enter), respe
tively. It is not hard to �nd a swit
hing signal � : [0;1)! f1; 2g that makes the swit
hed

system _x =

~

A

�

x unstable: simply let � = 1 when xy > 0 and � = 2 otherwise. For an arbitrary initial

state, this results in the swit
hed system _x =

~

A

�(t)

x whose solutions grow exponentially. Therefore, the

original swit
hed system _x = A

�

x will also be destabilized by the same swit
hing signal, provided that �

is suÆ
iently small.

PSfrag repla
ements

y

y

y

x x

x

Figure 1: Unstable swit
hed system in the plane

As a step towards understanding the behavior of swit
hed systems in higher dimensions, in view of the

�ndings of this paper it is natural to investigate the 
ase when given matri
es generate a Lie algebra that

is isomorphi
 to the one generated by 2� 2 matri
es. This is the goal of the present se
tion.

Consider the Lie algebra g := fA

p

: p 2 Pg

LA

, and assume that g = RI

n�n

� sl(2;R). Here sl(2;R)

means an n-dimensional matrix representation, whi
h we take to be irredu
ible (as before, this will not

introdu
e a loss of generality be
ause every matrix representation of sl(2;R) is a dire
t sum of irredu
ible

ones). Then for ea
h p 2 P we 
an write

A

p

= (n� 1)�

p

I

n�n

+ �

p

�(e) + 


p

�(f) + Æ

p

�(h) (11)

where �

p

; 


p

; Æ

p

are 
onstants, � is the standard representation of sl(2;R) 
onstru
ted in Se
tion A.2 (n

here 
orresponds to k+1 there), fe; h; fg is the 
anoni
al basis for sl(2;R), and �

p

=

1

n(n�1)

tra
e(A

p

). For

ea
h p 2 P, de�ne the following 2� 2 matrix:

^

A

p

:= �

p

I

2�2

� �

p

e� 


p

f � Æ

p

h: (12)

We now demonstrate that the task of investigating stability of the swit
hed system generated by the

matri
es A

p

, p 2 P redu
es to that of investigating stability of the two-dimensional swit
hed system

generated by the matri
es

^

A

p

, p 2 P.

Proposition 5 The swit
hed linear system (2) with A

p

given by (11) is globally uniformly exponentially

stable if and only if the swit
hed linear system _x =

^

A

�

x with

^

A

p

given by (12) is globally uniformly

exponentially stable.

Proof. The transition matrix of the swit
hed system (2) for any parti
ular swit
hing signal takes the

form

�(t; 0) = e

(n�1)(�

p

k

t

k

+���+�

p

1

t

1

)I

e

(�

p

k

�(e)+


p

k

�(f)+Æ

p

k

�(h))t

k

� � � e

(�

p

1

�(e)+


p

1

�(f)+Æ

p

1

�(h))t

1

:

Consider the (n-dimensional) linear spa
e P

n�1

[x; y℄ of polynomials in x and y, homogeneous of degree

n� 1, with the basis 
hosen as in Se
tion A.2. Denote the elements of this basis by p

1

, : : : , p

n

(these are

monomials in x and y). Fix an arbitrary polynomial p 2 P

n�1

[x; y℄, and let a

1

, : : : , a

n

be its 
oordinates
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relative to the above basis. As an immediate 
onsequen
e of the 
al
ulations given in Se
tion A.2, for any

values of x and y we have

�

a

1

� � � a

n

�

�(t; 0)

0

B

�

p

1

.

.

.

p

n

1

C

A

= p

�

^

�(t; 0)

�

x

y

�

�

where

^

�(t; 0) = e

(�

p

k

t

k

+���+�

p

1

t

1

)I

e

(��

p

1

e�


p

1

f�Æ

p

1

h)t

1

� � � e

(��

p

k

e�


p

k

f�Æ

p

k

h)t

k

:

Sin
e the polynomial p was arbitrary, it is 
lear that �(t; 0) approa
hes the zero matrix as t!1, uniformly

over the set of all swit
hing signals, if and only if so does

^

�(t; 0). But

^

�(t; 0) is the transition matrix of the

swit
hed system _x =

^

A

�

x, 
orresponding to the \reversed" swit
hing signal on [0; t℄. We 
on
lude that this

swit
hed system is globally asymptoti
ally stable, uniformly over �, if and only if the same property holds

for the original system (2). The statement of the proposition now follows from the fa
t that for swit
hed

linear systems, uniform asymptoti
 stability is equivalent to uniform exponential stability.

We are now in position to justify the redu
tion pro
edure outlined in the Introdu
tion. Assume that

^

g

has dimension at most 4. We know from Se
tion A.5 that any non
ompa
t semisimple Lie algebra 
ontains

a subalgebra isomorphi
 to sl(2;R). Thus

^

g 
ontains a non
ompa
t semisimple subalgebra if only if its

dimension exa
tly equals 4 and the Killing form is nondegenerate and sign-inde�nite on

~

g = f

~

A

1

;

~

A

2

g

LA

=

^

g mod RI (see Se
tion A.4). In this 
ase ~g is isomorphi
 to sl(2;R). An sl(2)-triple fh; e; fg 
an be


onstru
ted as explained in Se
tion A.5 (the pro
edure given there for a general non
ompa
t semisimple

Lie algebra 
ertainly applies to sl(2;R) itself). Spe
i�
ally, as h we 
an take any element of the subspa
e

on whi
h the Killing form is positive de�nite, normalized in su
h a way that the eigenvalues of adh equal

2 and �2. The 
orresponding eigenve
tors yield e and f . The resulting representation of sl(2;R) is not

ne
essarily irredu
ible; the dimension of the largest invariant subspa
e is equal to k + 1, where k is the

largest eigenvalue of h. If the swit
hed linear system restri
ted to this invariant subspa
e is globally

uniformly exponentially stable, then the same property holds for the swit
hed linear system restri
ted to

any other invariant subspa
e. This is true be
ause, in view of the role of the s
alar k = n�1 in the 
ontext

of Proposition 5, the matri
es of the redu
ed (se
ond-order) system asso
iated with the system evolving on

the largest invariant subspa
e are obtained from those of the redu
ed system asso
iated with the system

evolving on another invariant subspa
e by subtra
ting positive multiples of the identity matrix, and this


annot introdu
e instability (to see why this last statement is true, one 
an appeal to the existen
e of a


onvex 
ommon Lyapunov fun
tion [15℄). Note that we do not need to identify the invariant subspa
es; we

only need to know the dimension of the largest one. Thus the out
ome of the algorithm depends on the

matrix representation of

^

g and not just on the stru
ture of

^

g as a Lie algebra, but it does so in a rather

weak way.

As another appli
ation of Proposition 5, we 
an obtain an alternative proof of Theorem 4. Indeed,

let the matri
es

~

B

1

and

~

B

2

be as in the proof of Theorem 4 given in the previous se
tion (the existen
e

of a subalgebra isomorphi
 to sl(2;R) remains 
ru
ial). De�ne the matri
es B

1

:= �k

~

B

1

+

~

B

2

� �I and

B

2

:= �

~

B

1

+ k

~

B

2

� �I, where � > 0 and k > 1. Then the swit
hed system

_x = B

�

x; � : [0;1)! f1; 2g (13)

is not stable for � small enough (even though all 
onvex 
ombinations of B

1

and B

2

are stable). This

follows from Proposition 5 and from the example presented at the beginning of this se
tion; in fa
t, a

spe
i�
 (periodi
) destabilizing swit
hing signal for the system (13) 
an be 
onstru
ted with the help of

that example. Interestingly, it appears to be diÆ
ult to establish the same result by a dire
t analysis of

(13). The rest of the proof of Theorem 4 
an now pro
eed exa
tly as before.

It was shown by Shorten and Narendra in [22℄ that two stable two-dimensional linear systems _x = A

1

x

and _x = A

2

x possess a quadrati
 
ommon Lyapunov fun
tion if and only if all pairwise 
onvex 
ombinations

11



of matri
es from the set fA

1

; A

2

; A

�1

1

; A

�1

2

g are stable. Combined with Proposition 5, this yields the

following result.

Corollary 6 Let P = f1; 2g. Suppose that all pairwise 
onvex 
ombinations of matri
es from the set

f

^

A

1

;

^

A

2

;

^

A

�1

1

;

^

A

�1

2

g, with A

1

and A

2

given by (12), are stable. Then the swit
hed linear system (2), with

A

p

given by (11), is globally uniformly exponentially stable.

The above 
orollary only provides suÆ
ient and not ne
essary 
onditions for global uniform exponential

stability of (2). This is due to the fa
t that, as we already mentioned earlier, it may happen that a swit
hed

linear system is globally uniformly exponentially stable while there is no quadrati
 
ommon Lyapunov

fun
tion for the individual subsystems (see the example in [4℄).

A Basi
 fa
ts about Lie algebras

In this appendix we give an informal overview of basi
 properties of Lie algebras. Only those fa
ts that

dire
tly play a role in the developments of the previous se
tions are dis
ussed. Most of the material is

adopted from [8, 20℄, and the reader is referred to these and other standard referen
es for more details.

A.1 Lie algebras and their representations

A Lie algebra g is a �nite-dimensional ve
tor spa
e equipped with a Lie bra
ket, i.e., a bilinear, skew-

symmetri
 map [�; �℄ : g � g ! g satisfying the Ja
obi identity [a; [b; 
℄℄ + [b; [
; a℄℄ + [
; [a; b℄℄ = 0. Any Lie

algebra g 
an be identi�ed with a tangent spa
e at the identity of a Lie group G (an analyti
 manifold

with a group stru
ture). If g is a matrix Lie algebra, then the elements of G are given by produ
ts of

the exponentials of the matri
es from g. In parti
ular, ea
h element A 2 g generates the one-parameter

subgroup fe

At

; t 2 Rg in G. For example, if g is the Lie algebra gl(n;R) of all real n � n matri
es with

the standard Lie bra
ket [A;B℄ = AB � BA, then the 
orresponding Lie group is given by the invertible

matri
es.

Given an abstra
t Lie algebra g, one 
an 
onsider its (matrix) representations. A representation of g

on an n-dimensional ve
tor spa
e V is a homomorphism (i.e., a linear map that preserves the Lie bra
ket)

� : g! gl(V ). It assigns to ea
h element g 2 g a linear operator �(g) on V , whi
h 
an be des
ribed by an

n�n matrix. A representation � is 
alled irredu
ible if V 
ontains no nontrivial subspa
es invariant under

the a
tion of all �(g), g 2 g. A parti
ularly useful representation is the adjoint one, denoted by `ad'. The

ve
tor spa
e V in this 
ase is g itself, and for g 2 g the operator adg is de�ned by adg(a) := [g; a℄, a 2 g.

There is also Ado's Theorem whi
h says that every Lie algebra is isomorphi
 to a subalgebra of gl(V ) for

some �nite-dimensional ve
tor spa
e V (
ompare this with the adjoint representation whi
h is in general

not inje
tive).

A.2 Example: sl(2;R) and gl(2;R)

The spe
ial linear Lie algebra sl(2;R) 
onsists of all real 2 � 2 matri
es of tra
e 0. A 
anoni
al basis for

this Lie algebra is given by the matri
es

h :=

�

1 0

0 �1

�

; e :=

�

0 1

0 0

�

; f :=

�

0 0

1 0

�

: (14)

They satisfy the relations [h; e℄ = 2e, [h; f ℄ = �2f , [e; f ℄ = h, and form what is sometimes 
alled an sl(2)-

triple. One 
an also 
onsider other representations of sl(2;R). Although all irredu
ible representations of

sl(2;R) 
an be 
lassi�ed by working with the Lie algebra dire
tly (see [20, p. 27{30℄), for our purposes it

12



is more useful to exploit the 
orresponding Lie group SL(2;R) = fS 2 R

n�n

: detS = 1g. Let P

k

[x; y℄

denote the spa
e of polynomials in two indeterminates x and y that are homogeneous of degree k (where

k is a positive integer). A homomorphism � that makes SL(2;R) a
t on P

k

[x; y℄ 
an be de�ned as follows:

�(S)p

�

�

x

y

�

�

= p

�

S

�1

�

x

y

�

�

where S 2 SL(2;R) and p 2 P

k

[x; y℄. The 
orresponding representation of the Lie algebra sl(2;R), whi
h

we denote also by � with slight abuse of notation, is obtained by 
onsidering the one-parameter subgroups

of SL(2;R) and di�erentiating the a
tion de�ned above at t = 0. For example, for e as in (14) we have

�(e)p

�

�

x

y

�

�

=

d

dt

�

�

�

t=0

p

�

e

�et

�

x

y

�

�

=

d

dt

�

�

�

t=0

p

�

�

1 �t

0 1

��

x

y

�

�

= �y

�

�x

p

�

�

x

y

�

�

Similarly, �(f)p = �x

�

�y

p and �(h)p = (�x

�

�x

+ y

�

�y

)p. With respe
t to the basis in P

k

[x; y℄ given by

the monomials y

k

;�ky

k�1

x; k(k � 1)y

k�2

x

2

; : : : ; (�1)

k

k!x

k

, the 
orresponding di�erential operators are

realized by the matri
es

h 7!

0

B

B

B

B

�

k � � � � � � 0

.

.

. k � 2

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � � � � �k

1

C

C

C

C

A

; e 7!

0

B

B

B

B

�

0 �

1

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

k

0 � � � � � � 0

1

C

C

C

C

A

; f 7!

0

B

B

B

B

�

0 � � � � � � 0

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � 1 0

1

C

C

C

C

A

where �

i

= i(k � i + 1), i = 1; : : : ; k. It turns out that any irredu
ible representation of sl(2;R) of

dimension k+1 is equivalent (under a linear 
hange of 
oordinates) to the one just des
ribed. An arbitrary

representation of sl(2;R) is a dire
t sum of irredu
ible ones.

When working with gl(2;R) rather than sl(2;R), one also has the 2 � 2 identity matrix I

2�2

. It


orresponds to the operator x

�

�x

+y

�

�y

on P

k

[x; y℄, whose asso
iated matrix is kI

(k+1)�(k+1)

. One 
an thus

naturally extend the above representation to gl(2;R). The 
omplementary subalgebras RI and sl(2;R) are

invariant under the resulting a
tion.

A.3 Nilpotent and solvable Lie algebras

If g

1

and g

2

are linear subspa
es of a Lie algebra g, one writes [g

1

; g

2

℄ for the linear spa
e spanned by

all the produ
ts [g

1

; g

2

℄ with g

1

2 g

1

and g

2

2 g

2

. Given a Lie algebra g, the sequen
e g

(k)

is de�ned

indu
tively as follows: g

(1)

:= g, g

(k+1)

:= [g

(k)

; g

(k)

℄ � g

(k)

. If g

(k)

= 0 for k suÆ
iently large, then g is


alled solvable. Similarly, one de�nes the sequen
e g

k

by g

1

:= g, g

k+1

:= [g; g

k

℄ � g

k

, and 
alls g nilpotent

if g

k

= 0 for k suÆ
iently large. For example, if g is a Lie algebra generated by two matri
es A and

B, we have: g

(1)

= g

1

= g = spanfA;B; [A;B℄; [A; [A;B℄℄; : : : g, g

(2)

= g

2

= spanf[A;B℄; [A; [A;B℄℄; : : : g,

g

(3)

= spanf[[A;B℄; [A; [A;B℄℄℄; : : : g � g

3

= spanf[A; [A;B℄℄; [B; [A;B℄℄; : : : g, and so on. Every nilpotent

Lie algebra is solvable, but the 
onverse is not true.

The Killing form on a Lie algebra g is the symmetri
 bilinear form K given by K(a; b) := tr(ada Æ adb)

for a; b 2 g. Cartan's 1st 
riterion says that g is solvable if and only if its Killing form vanishes identi
ally

on [g; g℄. Let g be a solvable Lie algebra over an algebrai
ally 
losed �eld, and let � be a representation of

g on a ve
tor spa
e V . Lie's Theorem states that there exists a basis for V with respe
t to whi
h all the

matri
es �(g), g 2 g are upper-triangular.

A.4 Semisimple and 
ompa
t Lie algebras

A subalgebra

�

g of a Lie algebra g is 
alled an ideal if [g; �g℄ 2

�

g for all g 2 g and �g 2

�

g. Any Lie algebra

has a unique maximal solvable ideal r, the radi
al. A Lie algebra g is 
alled semisimple if its radi
al is 0.

13



Cartan's 2nd 
riterion says that g is semisimple if and only if its Killing form is nondegenerate (meaning

that if for some g 2 g we have K(g; a) = 0 8a 2 g, then g must be 0.)

A semisimple Lie algebra is 
alled 
ompa
t if its Killing form is negative de�nite. A general 
ompa
t

Lie algebra is a dire
t sum of a semisimple 
ompa
t Lie algebra and a 
ommutative Lie algebra (with the

Killing form vanishing on the latter). This terminology is justi�ed by the fa
ts that the tangent algebra

of any 
ompa
t Lie group is 
ompa
t a

ording to this de�nition, and that for any 
ompa
t Lie algebra g

there exists a 
onne
ted 
ompa
t Lie group G with tangent algebra g. Compa
tness of a semisimple matrix

Lie algebra g amounts to the property that the eigenvalues of all matri
es in g lie on the imaginary axis. If

G is a 
ompa
t Lie group, one 
an asso
iate to any 
ontinuous fun
tion f : G ! R a real number

R

G

f(G)dG

so as to have

R

G

1dG = 1 and

R

G

f(AGB)dG =

R

G

f(G)dG 8A;B 2 G (left and right invarian
e). The

measure dG is 
alled the Haar measure.

An arbitrary Lie algebra g 
an be de
omposed into the semidire
t sum g = r� s, where r is the radi
al,

s is a semisimple subalgebra, and [s; r℄ � r be
ause r is an ideal. This is known as a Levi de
omposition.

To 
ompute r and s, swit
h to a basis in whi
h the Killing form K is diagonalized. The subspa
e on whi
h

K is not identi
ally zero 
orresponds to s � (r mod n), where n is the maximal nilpotent subalgebra of r.

Constru
t the Killing form

�

K for the fa
tor algebra s � (r mod n). This form will vanish identi
ally on

(r mod n) and will be nondegenerate on s. The subalgebra s identi�ed in this way is 
ompa
t if and only

if

�

K is negative de�nite on it. For more details on this 
onstru
tion and examples, see [7, pp. 256{258℄.

A.5 Subalgebras isomorphi
 to sl(2;R)

Let g be a real, non
ompa
t, semisimple Lie algebra. Our goal here is to show that g has a subalgebra

isomorphi
 to sl(2;R). To this end, 
onsider a Cartan de
omposition g = k � p, where k is a maximal


ompa
t subalgebra of g and p is its orthogonal 
omplement with respe
t to K. The Killing form K is

negative de�nite on k and positive de�nite on p. Let a be a maximal 
ommuting subalgebra of p. Then it

is easy to 
he
k using the Ja
obi identity that the operators ada, a 2 a are 
ommuting. These operators

are also symmetri
 with respe
t to a suitable inner produ
t on g (for a; b 2 g this inner produ
t is given by

�K(a;�b), where � is the map sending k+p, with k 2 k and p 2 p, to k�p), hen
e they are simultaneously

diagonalizable. Thus g 
an be de
omposed into a dire
t sum of subspa
es invariant under ada, a 2 a, on

ea
h of whi
h every operator ada has exa
tly one eigenvalue. The unique eigenvalue of ada on ea
h of these

invariant subspa
es is given by a linear fun
tion � on a, and a

ordingly the 
orresponding subspa
e is

denoted by g

�

. Sin
e p 6= 0 (be
ause g is not 
ompa
t) and sin
e K is positive de�nite on p, the subspa
e

g

0

asso
iated with � being identi
ally zero 
annot be the entire g. Summarizing, we have

g = g

0

�

�

L

�2�

g

�

�

where � is a �nite set of nonzero linear fun
tions on a (whi
h are 
alled the roots) and g

�

= fg 2 g :

ada(g) = �(a)g 8a 2 ag. Using the Ja
obi identity, one 
an show that [g

�

; g

�

℄ is a subspa
e of g

�+�

if

� + � 2 � [ f0g, and equals 0 otherwise. This implies that the subspa
es g

�

and g

�

are orthogonal with

respe
t to K unless � + � = 0 (
f. [20, p. 38℄). Sin
e K is nondegenerate on g, it follows that if � is

a root, then so is ��. Moreover, the subspa
e [g

�

; g

��

℄ of g

0

has dimension 1, and � is not identi
ally

zero on it (
f. [20, pp. 39{40℄). This means that there exist some elements e 2 g

�

and f 2 g

��

su
h that

h := [e; f ℄ 6= 0. It is now easy to see that, multiplying e, f and h by 
onstants if ne
essary, we obtain

an sl(2)-triple. Alternatively, we 
ould �nish the argument by noting that if g 2 g

�

for some � 2 �, then

the operator adg is nilpotent (be
ause it maps ea
h g

�

to g

�+�

to g

�+2�

and eventually to 0 sin
e � is a

�nite set), and the existen
e of a subalgebra isomorphi
 to sl(2;R) is guaranteed by the Ja
obson-Morozov

Theorem.

14



A.6 Generators for gl(2;R)

This subse
tion is devoted to showing that in an arbitrarily small neighborhood of any pair of n�nmatri
es

one 
an �nd another pair of matri
es that generate the entire Lie algebra gl(n;R). This fa
t demonstrates

that Lie-algebrai
 stability 
onditions 
onsidered in the previous se
tions are never robust with respe
t to

small perturbations of the matri
es that de�ne the swit
hed system. Constru
tions like the one presented

here have 
ertainly appeared in the literature, but we are not aware of a spe
i�
 referen
e.

We begin by �nding some matri
es B

1

, B

2

that generate gl(n;R). Let B

1

be a diagonal matrix

B

1

= diag(b

1

; b

2

; : : : ; b

n

) satisfying the following two properties:

1. b

i

� b

j

6= b

k

� b

l

if (i; j) 6= (k; l)

2.

P

n

i=1

b

i

6= 0

Denote by od(n;R) the spa
e of matri
es with zero elements on the main diagonal. Let B

2

be any matrix

in od(n;R) su
h that all its o�-diagonal elements are nonzero. It is easy to 
he
k that if E

i;j

is a matrix

whose ij-th element is 1 and all other elements are 0, where i 6= j, then [B

1

; E

i;j

℄ = (b

i

� b

j

)E

i;j

. Thus it

follows from property 1 above that B

2

does not belong to any proper subspa
e of od(n;R) that is invariant

with respe
t to the operator adB

1

. Therefore, the linear spa
e spanned by the iterated bra
kets ad

k

B

1

(B

2

)

is the entire od(n;R). Taking bra
kets of the form [E

i;j

; E

�i;�j

℄, we generate all tra
eless diagonal matri
es

(
f. the example [e; f ℄ = h in Se
tion A.2). Sin
e B

1

has a nonzero tra
e by property 2 above, we 
on
lude

that fB

1

; B

2

g

LA

= gl(n;R).

Now, let A

1

and A

2

be two arbitrary n� n matri
es. Using the matri
es B

1

and B

2

just 
onstru
ted,

we 
an de�ne A

1

(�) := A

1

+ �B

1

and A

2

(�) := A

2

+ �B

2

, where � � 0. The two matri
es A

1

(�) and

A

2

(�) generate gl(n;R) for any suÆ
iently small �, as 
an be shown by using the same argument as the

one employed at the end of the proof of Theorem 4. Thus one 
an take (A

1

(�); A

2

(�)) as a desired pair of

matri
es in a neighborhood of (A

1

; A

2

).
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