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SUB-RIEMANNIAN METRICS: MINIMALITY

OF ABNORMAL GEODESICS VERSUS SUBANALYTICITY
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Abstract. We study sub-Riemannian (Carnot-Caratheodory) metrics defined by noninvolutive
distributions on real-analytic Riemannian manifolds. We establish a connection between regularity
properties of these metrics and the lack of length minimizing abnormal geodesics. Utilizing the results
of the previous study of abnormal length minimizers accomplished by the authors in [Annales IHP.
Analyse nonlinéaire 13, p. 635-690] we describe in this paper two classes of the germs of distributions
(called 2-generating and medium fat) such that the corresponding sub-Riemannian metrics are suban-
alytic. To characterize these classes of distributions we determine the dimensions of the manifolds on
which generic germs of distributions of given rank are respectively 2-generating or medium fat.

Résumé. On étudie des métriques sous-Riemanniennes (des Carnot-Carathéodory) définies par les
distributions non involutives sur les variétés Riemanniennes analytiques réelles. On établie la connexion
entre les propriétés de la régularité de ces métriques et l’absence des géodésiques anormales de longueur
minimale. En utilisant les résultats des études précédentes sur les minimiseurs anormaux accomplies
par les auteurs dans [Annales IHP. Analyse nonlinéaire 13, p. 635-690], on décrit dans cet article,
pour certains types des germes, des distributions (appelées 2-générées et d’une croissance moyenne)
telles que les métriques sous-Riemanniennes correspondantes sont sous-analytiques. Pour caractériser
la classe de ces types des distributions, on détermine les dimensions des variétés sur lesquelles les germes
génériques des distributions du rang donné sont 2-générées ou d’une croissance moyenne.
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Introduction

We study local properties of sub-Riemannian metrics on real-analytic manifolds.
Recall that a sub-Riemannian structure on a connected n-dimensional Riemannian manifold M is defined by

means of a distribution D on M . Recall that distribution is a subbundle of TM . Below we assume D to be
bracket generating. This means that for each point q ∈M there exists integer κq ≥ 1 such that the values of the
iterated Lie brackets of orders ≤ κq of the vector fields subject to D span the tangent space TqM . The minimal
integer κq ≥ 1 is called degree of nonholonomy of the distribution D at the point q.

Keywords and phrases: Sub-Riemannian metrics, subanalitycity, abnormal length minimizers.

1 Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina ul. 8, 117966 Moscow, Russia;
e-mail: andrei@agrachev.mian.su
2 SISSA, via Beirut 2-4, 34014 Trieste, Italy; e-mail: agrachev@sissa.it
3 Department of Mathematics, University of Aveiro 3810-193 Aveiro, Portugal; e-mail: ansar@mat.ua.pt

c© EDP Sciences, SMAI 1999



378 A.A. AGRACHEV AND A.V. SARYCHEV

Admissible or horizontal paths are Lipschitzian curves t 7→ q(t) which are tangent to the distribution at
(almost) each of their points: q̇(t) ∈ Dq(t). As far as D is bracket generating then according to Rashevsky-Chow

theorem (see Sect. 1.2) any two points q0, q1 ∈M can be connected by a Lipschitzian admissible path q(t).
According to classical existence results of optimal control theory (Filippov theorem; see [15]) for any pair of

points from a sufficiently small neighborhood of q0 there exists (possibly non unique) path of minimal length
in the set of admissible paths connecting these two points. Global existence can be asserted under standard
assumption of completeness.

Attributing to each couple of points the infimum of the lengths of admissible paths we obtain so-called
sub-Riemannian or Carnot-Caratheodory metric on the manifold M . The properties of the sub-Riemannian
metrics and of corresponding length minimizers (sub-Riemannian geodesics) were intensively studied during the
last decade not only for their own sake but also due to numerous applications to physics.

There are many similarities between Riemannian and sub-Riemannian metrics, and also some major
differences: i) the “exponential maps” in the sub-Riemannian case have singularity at the origin q0, since
all the geodesics are necessarily tangent to a proper subspace Dq0 ⊂ Tq0M ; ii) the conjugate locus of a point
q0 ∈M in the sub-Riemannian case may contain q0 in its closure, and due to it, iii) arbitrarily short geodesics
paths may fail to be length-minimizers, iv) small sub-Riemannian spheres may fail to be smooth, on the contrary
to the case of small Riemannian spheres which are Cω-diffeomorphic to Euclidean spheres.

In the sub-Riemannian case the set of admissible paths, connecting two given points, may fail to be a
Banach manifold (on the contrary to the Riemannian case). It may have singularities which correspond to an
interesting phenomenon discovered some years ago – an occurrence of so-called abnormal sub-Riemannian length-
minimizers or length minimizing abnormal sub-Riemannian geodesics. The first example has been constructed
by Montgomery [29], further examples, theoretical study of this phenomenon and bibliographic references can
be found in [8–10,27,30,35].

The abnormal sub-Riemannian geodesics do not depend on Riemannian metric and are determined by the
distribution D. As it has been just said they are singular “points” in the set of admissible paths on the manifold
connecting two given points. They may exhibit some exotic properties, like for example be rigid, i.e. isolated
in W1,∞-metric of Lipschitzian paths, in the above mentioned set. For an abnormal sub-Riemannian geodesic
the adjoint covector in the Hamiltonian form of geodesic equation is orthogonal to the distribution D along the
geodesic path.

It is clear that if one studies properties of sub-Riemannian metrics then some pathologies arise exactly when
abnormal sub-Riemannian minimizers appear. On the contrary if there are no abnormal length-minimizers one
can expect “more regularity” for the corresponding metrics.

To formulate more rigorously what we mean by regularity we have to recall that a sub-Riemannian ρ-sphere
– the set of points located at (Carnot-Caratheodory) distance ρ > 0 from the given point q0 – is a subset of the
image of the sub-Riemannian exponential map. (The whole image – the set of end-points of sub-Riemannian
geodesics of given length ρ – is called wave front.) This map is defined on a subset of T ∗M and is real analytic.
Therefore the “right” category of sets to which the sub-Riemannian spheres may belong is the one which includes
images of analytic and semianalytic sets under real analytic maps.

This category is the one of subanalytic sets (see [16,22,24]), which are exactly the images of semianalytic sets
under proper real analytic maps. The subanalytic sets form a wider class than the semianalytic ones, but still
share with them an important regularity property – they admit stratifications [22, 24].

The subanalytic sets have been utilized in control theory since the end of 70’s in order to construct optimal
synthesis and to study the structure of reachable sets of control systems [12,34]. It has been established that even
this large category is not enough to describe all control-theoretic objects. Thus Sussmann and Lojasiewicz Jr.
constructed [28] examples of control systems with non subanalytic reachable sets.

The sub-Riemannian spheres a priori could be expected to exhibit more regularity as far as they are parts of
reachable sets of symmetric control systems. They indeed are more regular when abnormal length-minimizers
are lacking.
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A good example of this kind is provided by a class of fat distributions. A distribution is called fat [13] at a
point q ∈M if for any vector field X with X(q) ∈ Dq, X(q) 6= 0, there holds

[X,D](q) = D(q) + span{[X,Y ](q) : Y ∈ D} = TqM.

It is easy to see that for a distribution which is fat at the point q0 ∈M , there are no abnormal sub-Riemannian
geodesic paths starting at q0. Sussmann [36] and Zhong Ge [18] studying the properties of sub-Riemannian fat
metrics have established their subanalyticity.

On the other hand it is known that occurrence of abnormal length-minimizers may destroy the regularity.
For example sub-Riemannian metric arising from Martinet distribution – first example in which abnormal
length-minimizers have been discovered – fails to be subanalytic, as has been established by Agrachev et al. [4].

In the present paper we make the next step studying some classes of sub-Riemannian structures which do
possess abnormal geodesics, but these latter are not length-minimizing. For some of these classes we manage
to prove that the corresponding sub-Riemannian metrics are subanalytic.

Before introducing these classes of distributions let us recall that earlier in [9] we derived necessary conditions
for rigidity and weak (= W1,∞-local) minimality of abnormal sub-Riemannian geodesics. These conditions are
counterparts of optimality conditions for singular extremals known in optimal control theory since 60’s. One
of them called Goh condition, appeared in [9] as necessary condition for rigidity of abnormal sub-Riemannian
geodesics (see [9], Prop. 4.3). For the sub-Riemannian length-minimization problems the Goh condition amounts
to existence of a Hamiltonian multiplier which is orthogonal to the Lie square D2(q) = (D + [D,D]) (q) of the
distribution along the abnormal geodesic. In [9] it has been also stated (Prop. 4.2) that the Goh condition
is necessary for weak minimality whenever abnormal geodesic path is strictly abnormal, i.e. when all possible
Hamiltonian multipliers corresponding to this path annihilate (or are orthogonal to) the distribution D. In the
present paper we will obtain this necessary condition on the basis of a more general result which relates Morse
index of a critical point of a smooth mapping to its local openness (Th. 3.4).

There are some classes of distributions for which abnormal geodesics do exist but can not satisfy the Goh
condition. For example, it happens when the Lie square D2(q) = (D + [D,D])(q) of the distribution D at the
point q ∈ M coincides with the tangent space TqM . In this case there may exist strictly abnormal geodesic
paths starting at q but due to the Goh necessary condition no one of them is weak length minimizer. We shall
call (following Sussmann) these distributions 2-generating at the point q ∈ M . Obviously all fat distributions
are 2-generating.

A larger class is formed by distributions D, which we call medium fat. They satisfy the condition that for
any vector field X ∈ D, X(q) 6= 0:

[X,D2](q) = D2(q) + span{[X,Y ](q) : Y ∈ D2} = TqM.

The class of medium fat distributions is bigger than the one of 2-generating distributions. It is also bigger than
the class of distributions with fat Lie square. Also for medium fat distributions we prove that there are no
strictly abnormal length-minimizers (Th. 3.8).

It turns out that the same conditions which determine weak length minimality or non minimality of strictly
abnormal geodesic paths also have crucial influence on the properties of the sub-Riemannian metrics.

The main results obtained in this paper include the following statements:

• if D is a germ at q0 of a 2-generating distribution then the germ of corresponding sub-Riemannian (Carnot-
Caratheodory) metric ρD(q, q′) is subanalytic (Th. 4.2)1;
• if D is a germ at q0 of a medium fat distribution then the germ of corresponding sub-Riemannian (Carnot-

Caratheodory) metric ρD(q, q′) is subanalytic outside the diagonal {q = q′} (Th. 4.1).

The proofs of these statements are based on a study of second variation along normal geodesics and on a
compactness result for the set of length minimizers (of given length) for the medium fat and 2-generating

1This result has been independently obtained by Jacquet in his PhD thesis, Savoie, 1998.
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distributions. Obviously the second statement refers to a bigger class of distributions, though there remains a
problem of studying the metric at the diagonal.

The following statements describe how large are these two classes of distributions:

• generic germ of rank r distribution on n-dimensional manifold with r ≤ n ≤ r(r+1)
2 is 2-generating

(Prop. 5.1);
• generic germ of rank r distribution on n-dimensional manifold with r ≤ n ≤ r + (r − 1)2 is medium fat

(Th. 5.2).

The following tables illustrate these results representing information about (low) dimensions for which the
properties of being 2-generating or medium fat are generic (evidently one assumes dimM ≥ dimD).

2-generating distributions

dimD 3 4 5 6 · · · r

dimM ≤ 6 ≤ 10 ≤ 15 ≤ 21 · · · ≤ r(r + 1)/2

Medium fat distributions

dimD 3 4 5 6 · · · r

dimM ≤ 7 ≤ 13 ≤ 21 ≤ 31 · · · ≤ r + (r − 1)2

The present paper has the following structure. Section 1 contains some basic definitions concerning analytic,
semianalytic and subanalytic sets, distributions on manifolds and formulae of chronological calculus for flows.
These formulae will be needed for computation of first and second variations along a geodesic. In Section 2 we in-
troduce the sub-Riemannian length-minimization problem and formulate the corresponding first-order necessary
minimality condition – Hamiltonian form of geodesic equation. We also introduce normal and abnormal sub-
Riemannian geodesics. In the Section 2.2 we introduce first and second variations for the length-minimization
problem. In Section 3 we formulate some necessary conditions of weak minimality for sub-Riemannian geodesics
in terms of their Morse index (Th. 3.3). These conditions are derived from a general result relating Morse in-
dex of a critical point of smooth mapping to stable local openness of this map at this point (Th. 3.4). The
Goh condition appears then as necessary condition for finiteness of Morse index and therefore for weak mini-
mality of strictly abnormal geodesic paths (Prop. 3.6 and Th. 3.7). Theorem 3.8 affirms absence of abnormal
length-minimizers for medium fat and 2-generating distributions. Section 4 contains main results of the pa-
per on subanalyticity: we prove subanalyticity of metrics for medium fat sub-Riemannian structures (Ths. 4.1
and 4.2). In Section 5 we evaluate the broadness of the classes of 2-generating and medium fat distributions
(Prop. 5.1 and Th. 5.2). Section 6 contains major proofs.

1. Preliminaries

In what follows the manifold M is supposed to be connected.

1.1. Analytic, semianalytic and subanalytic sets

Recall that a subset S of a real analytic manifold M is called analytic if ∀p ∈ S there exists a neighborhood U
of p in M such that U ∩S is defined by a finite system of equations ϕi(x) = 0, i = 1, . . . ,m, where ϕi : M → R
are real analytic functions.

A subset S of a real analytic manifold M is called semianalytic if ∀p ∈ S there exists a neighborhood U of p
in M such that U∩S is defined by a finite system of inequalities ϕi(x) ≥ 0, i = 1, . . . ,m, χi(x) > 0, i = 1, . . . , s,
where ϕi : M → R, χj : M → R, are real analytic functions.

An extension of the class of semianalytic sets has been introduced [16,22,24] in order to recover an important
property of “closeness under projection” which is valid for semialgebraic sets (Tarski-Seidenberg theorem) but
may fail for the semianalytic ones. The images of semianalytic sets under analytic maps do not in general belong
to the semianalytic category.



SUB-RIEMANNIAN METRICS: MINIMALITY OF ABNORMAL GEODESICS VERSUS SUBANALYTICITY 381

A subset S of a real analytic manifold M is called subanalytic if there exists a semianalytic subset T of a real
analytic manifold N and a real analytic map f : N → M , which is proper on closT , and such that f(T ) = S.
Recall that a map f is proper if the inverse images f−1(K) of the compact sets K are compact.

Proper analytic maps map subanalytic sets into subanalytic ones. The class of subanalytic sets is also closed
under the operations of taking finite unions, finite intersections, complements and under inverse images of
analytic maps.

The subanalytic sets though being much more general than the semianalytic ones share with them an im-
portant regularity property – they are stratifiable.

Stratum is an analytic connected embedded submanifold of M . Whitney stratification S in M is a set of
pairwise disjoint strata, such that:

i) S is locally finite, i.e. for any compact K ⊂ M only a finite number of elements of S have nonempty
intersections with K;

ii) for any S ∈ S the frontier FrS = closS \ S is a union of elements of S of dimension strictly less than
dimS;

iii) for any pair of strata (Sα, Sβ) such that Sα ⊂ closSβ , the following Whitney conditions hold: suppose that
sequences xi ∈ Sβ and yi ∈ Sα converge to one and the same point y ∈ Sα, and (in some local coordinates
on M) the secants li = xiyi converge to a straight line l and that the tangent spaces TxiSβ converge to a
subspace T then iv) TySα ⊂ T and v) l ⊂ T .

The Whitney stratifications enjoy some nice properties; in particular, they admit triangulations.
S is a stratification of A, if ∪S∈S = A.
The following fact is fundamental for the subanalytic subsets: any closed subanalytic subset admits Whitney

stratification; see [21] for details and references.
A map f : M → N between two Cω-manifolds is called subanalytic if its graph is a subanalytic subset of

M ×N .

1.2. Distributions and sub-Riemannian metrics

A distribution D on M is a subbundle of tangent bundle TM . A vector field X is subject to D if X(q)
∈ Dq ⊂ TqM for every q ∈M .

Generalizations of distributions are differential systems or distributions with singularities2 for which dimDq
may vary with q ∈M . A differential system can be viewed as C∞(M)-submodule of VectM ; then distributions
correspond to projective C∞−modules. Locally one may treat germ of distribution as a free module.

If D is a germ of differential system, then taking C∞−modules generated by the Lie brackets of order
≤ k, k = 1, . . . , of the vector fields, subject to D, one obtains an expanding sequence of differential systems:

D ⊆ D2 = [D,D] · · · ⊆ Dk = [D,Dk−1] ⊆ · · ·

For any q ∈M the sequence of subspaces

Dq ⊆ · · · ⊆ D
k
q ⊆ TqM

is called flag of the differential system D at the point q ∈ M , while the sequence n1(q) ≤ · · · ≤ nk(q) ≤ · · · ,
where ni(q) = dimDiq, is called vector of growth of the differential system D at the point q. Differential system is
called completely nonholonomic or having complete Lie rank or bracket generating at a point q ∈M if Dκq = TqM
for some κ. This κ is called degree of nonholonomy of the distribution at q.

A locally Lipschitzian path τ 7→ q(τ) on M is called admissible if its tangents belong to D for almost all
τ ∈ [0, T ].

A fundamental property of the bracket generating differential systems is established by the following theorem.

2Not to be mixed with the differential systems determined by the differential forms; those have different kind of singularities.
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Theorem 1.1 (Rashevsky-Chow theorem; see [14,31]). If a differential system is bracket generating on the ma-
nifold M , then any two points of M can be connected by an admissible path.

If one deals with distributions (dimDq = const) then from existence results of optimal control theory (Filippov
theorem) it follows (see [15]) that, locally, for any pair of points from a sufficiently small neighborhood of q0

there exists (possibly non unique) path of minimal length in the set of admissible paths connecting these two
points. Attributing to each couple of points the infimum of the lengths of admissible paths we obtain so-called
sub-Riemannian or Carnot-Caratheodory metric on the manifold M .

One can define in an obvious way a sub-Riemannian ρ-sphere and sub-Riemannian ρ-ball centered at q0 ∈M
as a set of points located at sub-Riemannian distance ρ (respectively ≤ ρ) from q0.

The following parallelepiped-like (see [23, 37]) lower, or interior, estimate is valid for the sub-Riemannian
balls. Let κ > 1 be the degree of nonholonomy of D at q0 and n1(q0) ≤ · · · ≤ nκ(q0) its vector of growth at
the same point. Let us define for i = 1, . . . , n, wi = j, if nj−1 < i ≤ nj. Consider the parallelepiped Πρ in
Rn : Πc,ρ = {(x1, . . . , xn)| |xi| ≤ cρwi}. The following statement is a corollary of the results of [7,19,23]: if Bρ
is sub-Riemannian ρ-ball centered at q0, then there exists local coordinate system and constants ρ0 > 0, c, C > 0
such that for all ρ < ρ0: Πc,ρ ⊂ Bρ ⊂ ΠC,ρ. An easy corollary of this estimate is the fact that for some constant
c′ > 0 and for all ρ < ρ0 the sub-Riemannian balls Bρ contain the Riemannian balls of the radius c′ρκ –
Riemannian distance from q0 a a sub-Riemannian ρ-sphere is estimated from below by c′ρκ.

Let us note that even if D is a distribution (n1(q) ≡ const), then still Dk may have non constant dimensions
– the growth vector of a distribution in general changes with q. A germ of distribution is called regular
if its growth vector is constant. For regular sub-Riemannian metrics associated with regular distributions
one can derive from the above mentioned estimates the following formula for the Hausdorff dimension of the
sub-Riemannian manifold:

dimHM = n1 +
κ∑
i=2

i(ni − ni−1).

Let us introduce some notions related to the growth vector of a germ of a distribution.
A distribution is called fat [13], if ∀X ∈ D:

X(q) 6= 0⇒ [X,D](q) = D(q) + span{[X,Y ](q) : Y ∈ D} = TqM.

A germ of distribution is called 2-generating at a point q ∈M if its degree of nonholonomy κ ≤ 2, i.e. D2
q = TqM .

We call distribution medium fat at q, if ∀X ∈ D:

[X,D2](q) = D2(q) + span{[X,Y ](q) : Y ∈ D2} = TqM.

The degree of nonholonomy of a medium fat distributions is ≤ 3.
Obviously this latter property is weaker than fatness and even weaker than the fatness of the Lie square D2.

The class of fat distributions is contained in the class of 2-generating distributions which is contained in the
class of distributions with fat Lie square which is contained in the class of medium fat distributions.

1.3. Exponential representation of flows: Some formulae

Here we introduce some notation and formulae of chronological calculus which will be utilized in the next
section to obtain expressions for the first and the second variations along a geodesic. The chronological calculus
has been developed in [6], one can find in [7] exposition of some part of it which is sufficient for our objectives.

A flow on M is an absolutely continuous (with respect to τ ∈ R) curve τ −→ Pτ in the group of diffeomor-
phisms Diff M , satisfying the condition P0 = I – the identity diffeomorphism. We assume all time-dependent
vector fields Xτ to be locally integrable with respect to τ , below they turn out to be real analytic. A time-
dependent vector field Xτ defines an ordinary differential equation q̇ = Xτ (q(τ)), q(0) = q0 on the manifold
M . If the solutions of this differential equation exist for all q0 ∈ M, τ ∈ R, then the vector field Xτ is called
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complete and defines a flow on M , which is the unique solution of the (operator) differential equation:

dPτ/dτ = Pτ ◦Xτ , P0 = I. (1.1)

This solution will be denoted by Pt =
−→
exp

∫ t
0
Xτdτ , and is called (see [6] or [7]) a right chronological exponential

of Xτ . If the vector field Xτ ≡ X is time-independent, then the corresponding flow is denoted by Pt = etX .
The chronological exponential admits Volterra expansion (see [6, 7]); we will need only its terms of zero-,

first- and second-order:

−→
exp

∫ t

0

Xτdτ � I +

∫ t

0

Xτdτ +

∫ t

0

dτ1

∫ τ1

0

dτ2(Xτ2 ◦Xτ1) + · · · (1.2)

One more tool from the chronological calculus is a “generalized variational formula” (see [6,7] for its drawing).
In this formula we use the notation AdP (where P is a diffeomorphism) for the following inner automorphism
of the Lie algebra of vector fields on M : AdPX = P ◦ X ◦ P−1 = P−1

∗ X. The last notation stands for the
result of translation of the vector field X by the differential of the diffeomorphism P−1.

The generalized variational formula can be written as

−→
exp

∫ t

0

(X̂τ +Xτ )dτ =
−→
exp

∫ t

0

Ad

(
−→
exp

∫ τ

0

X̂θdθ

)
Xτdτ◦

−→
exp

∫ t

0

X̂τdτ. (1.3)

Applying the operator Ad
(
−→
exp

∫ τ
0 X̂θdθ

)
to a vector field Y and differentiating

Ad

(
−→
exp

∫ τ

0

X̂θdθ

)
Y =

(
−→
exp

∫ τ

0

X̂θdθ

)
◦ Y ◦

(
−→
exp

∫ τ

0

X̂θdθ

)−1

with respect to τ one comes to the equality (see [6, 7]):

d

dτ
Ad

(
−→
exp

∫ τ

0

X̂θdθ

)
Y = Ad

(
−→
exp

∫ τ

0

X̂θdθ

)
◦ ad X̂τY, (1.4)

which is of the same form as (1.1). Therefore Ad
(
−→
exp

∫ τ
0
X̂θdθ

)
can be represented as an operator chronological

exponential
−→
exp

∫ t
0

ad X̂θdθ. For a time-independent vector field X̂τ ≡ X̂ it can be written as etad X̂ . These
exponentials also admit Volterra expansions:

−→
exp

∫ t

0

adXτdτ � I +

∫ t

0

adXτdτ +

∫ t

0

dτ1

∫ τ1

0

dτ2(adXτ2 ◦ adXτ1) + · · · (1.5)

In this new notation the generalized variational formula (1.3) can be represented as:

−→
exp

∫ t

0

(X̂τ +Xτ )dτ =
−→
exp

∫ t

0

(
−→
exp

∫ τ

0

ad X̂θdθ

)
Xτdτ◦

−→
exp

∫ t

0

X̂τdτ. (1.6)

2. Sub-Riemannian problem of length minimization

2.1. Normal and abnormal sub-Riemannian geodesics. Weak minimality and rigidity

In this subsection we set a problem of sub-Riemannian length minimization (minimization of the
Carnot-Caratheodory length), define sub-Riemannian geodesics as extremals of this minimization problem,
introduce normal and abnormal geodesics and define rigidity.
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From now on we deal with a real-analytic sub-Riemannian structure on a connected Riemannian manifold M .
This structure is defined by means of a bracket generating distribution D on M . Given two points q0 and q1 we
set a problem of finding admissible path of minimal length connecting q0 with q1. According to Rashevsky-Chow
theorem the set of admissible paths connecting these two points is nonempty.

The problem we set is a generalization of the classical Riemannian length minimization problem, but in fact
there are essential differences. Thus the space of all locally Lipschitzian paths, which connect q0 and q1, has
natural structure of Banach manifold. Critical points of the length functional on this manifold are Riemannian
geodesics and all paths of minimal length are among them. On the contrary the space of admissible paths, which
connect q0 and q1, is not, in general, a manifold; it may have singularities. These singularities correspond to
abnormal sub-Riemannian geodesics, which do not depend on Riemannian structure on M and are determined
by the distribution D.

The term “abnormal” came from optimization theory, since the problem of finding minimal admissible path
can be formulated as a Lagrange problem of the Calculus of Variations. The extremals of this latter problem
are called sub-Riemannian geodesics and, in particular, abnormal extremals, with vanishing Lagrange multiplier
for the (length) functional, are called abnormal sub-Riemannian geodesics.

In spite of a lot of activity tended to elimination of abnormal sub-Riemannian geodesics from the candidates
to minimizers, they can be minimal. Preprint [29] of Montgomery contains first example of strictly abnormal
sub-Riemannian length-minimizer. Other examples and the corresponding theory of abnormal minimizers can
be found in [8–10,27,30,35].

The problem of finding minimal admissible path locally in a neighborhood of q0 can be represented as the
following Lagrange problem of the Calculus of Variations:

`1(u(·)) =

∫ 1

0

〈u(τ), u(τ)〉1/2dτ −→ min,

q̇ = G(q)u, q(0) = q0, u ∈ Rr, (2.1)

q(1) = q1. (2.2)

Here 〈·, ·〉 stays for the inner product in the tangent spaces TqM ; the “control parameter” u belongs to Rr; the
“controls” u(τ) are integrable; G(q) = (g1(q), . . . , gr(q)) is a r−tuple of smooth vector fields, which form an
orthonormal basis of the distribution D.

It is easy to prove that the length-minimization problem is equivalent to the minimization of the functional

`(u(·)) =

∫ 1

0

〈u(τ), u(τ)〉dτ −→ min . (2.3)

Indeed by virtue of Cauchy-Schwartz inequality

`1(u(·)) =

∫ 1

0

〈u(τ), u(τ)〉1/2dτ ≤

(∫ 1

0

〈u(τ), u(τ)〉dτ

)1/2

= (`(u(·)))1/2,

and the equality holds if and only if ‖u(τ)‖ ≡ const. As far as the functional of length `1 does not depend on
a parametrization of a curve, we may always assume that ‖u(τ)‖ ≡ const for a chosen parametrization. This
implies that the minimizers of the functional ` are the same as the minimizers of `1. At the same time we have
established that minimizers of the problem (2.1–2.3) have constant magnitude. This magnitude is equal to the
corresponding value of the functional `1 or, the same, to the sub-Riemannian length of q̂(τ), τ ∈ [0, 1].

To define W1,∞-local or weak minimality let us introduce first W1,∞-metric in the space of Lipschitzian paths
t 7→ q̂(t), (t ∈ [0, T ]) with fixed terminal points.

Let us consider the graph (t, q̂(t)) : [0, T ]→ [0, T ]×M of this path. In the sufficiently small neighborhood Ω
of this graph in R×M we can choose a basis Bt,q : TqM → Rn of TqM continuously depending on (t, q) ∈W .
Then any Lipschitzian path q(·) on M parametrized by [0, T ] corresponds to a Rn-valued vector function
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t 7→ Bt,q(t)q̇(t) defined almost everywhere on [0, T ]. We shall identify q̇(t) with Bt,q(t)q̇(t). Then we can define

a W1,∞-metric or norm in a small C0-neighborhood of q̂(·) in the space of paths with fixed terminal points by
putting:

‖q1(·)− q2(·)‖1,∞ = vraisupt∈[0,T ]‖q̇
1(t)− q̇2(t)‖.

Definition 2.1. An admissible path t 7→ q̂(t), t ∈ [0, T ] of the distribution D with the end-points q0 and q1 is
W1,∞-local or weak minimizer if, for some neighborhood of q̂(·)|[0,T ] in W1,∞[0, T ], the points q0 and q1 can not
be connected by a shorter admissible path t 7→ q̄(t), t ∈ [0, T ] belonging to this neighborhood.

Now we formulate first-order necessary weak minimality condition for the problem (2.1–2.3) – the Pontryagin
Maximum Principle for the Lagrange problem of the Calculus of Variations.

Theorem 2.2 (Pontryagin Maximum Principle). If û(·) is weak minimizer for the problem (2.1–2.3), i.e.
corresponding trajectory q̂(τ) (τ ∈ [0, 1]) of (2.1), satisfying the boundary conditions q̂(0) = q0, q̂(1) = q1,

is W 1
∞−locally minimal admissible path, then there exists a nonzero pair (ψ̂0, ψ̂(·)), where ψ̂0 is a nonpositive

constant and ψ̂(τ) is an absolutely continuous covector-function on [0, 1], such that ψ̂(τ) ∈ T ∗q̂(τ)M and the

quadruple (û(·), q̂(·), ψ̂0, ψ̂(·)):
1) satisfies Hamiltonian system associated with a Hamiltonian

H(u, q, ψ0, ψ) = ψ̂0〈u, u〉+ ψ ·G(q)u; (2.4)

in local coordinates on M this system has a form

q̇ = ∂H/∂ψ, (2.5)

ψ̇ = −∂H/∂q, (2.6)

2) meets stationarity condition for almost all τ ∈ [0, 1]:

∂H

∂u

∣∣∣∣
(û(τ),q̂(τ),ψ̂0,ψ̂(τ))

= 2ψ̂0û(τ) + ψ̂(τ)G(q̂(τ)) = 0, (2.7)

and for almost all τ ∈ [0, 1]

H(û(τ), q̂(τ), ψ̂0, ψ̂(τ)) = ψ̂0〈û(τ), û(τ)〉 + ψ̂(τ) ·G(q̂(τ))û(τ) = h0 = const. (2.8)

Definition 2.3. An extremal of the Lagrange problem (2.1–2.3), i.e. a quadruple
(
û(·), q̂(·), ψ̂0, ψ̂(·)

)
meeting

the conditions of the Theorem 2.2 is called sub-Riemannian geodesic. Sub-Riemannian geodesic is called normal,
if ψ̂0 < 0, and abnormal, if ψ̂0 = 0. The corresponding triple (û(·), q̂(·)) is called sub-Riemannian geodesic
path.

Remark 2.4. It follows immediately from the relations (2.7–2.8) of this theorem, that ψ̂0〈û(τ), û(τ)〉 = const.

Remark 2.5. Obviously any restriction
(
û(·)|[0,t], q̂(·)|[0,t], ψ̂0, ψ̂(·)|[0,t], t

)
of normal or abnormal sub-Riemannian

geodesic
(
û(·), q̂(·), ψ̂0, ψ̂(·)

)
onto a subinterval [0, t] ⊂ [0, 1] satisfies the equations (2.4–2.8) on [0, t] and is also

called normal or abnormal sub-Riemannian geodesic correspondingly.

Remark 2.6. A geodesic path (û(·), q̂(·)) may correspond to different geodesics with different ψ̂0, ψ̂(·).



386 A.A. AGRACHEV AND A.V. SARYCHEV

In normal case one may assume ψ̂0 = −1/2. Then (2.7) becomes

û(τ) = ψ̂(τ)G(q̂(τ)). (2.9)

Definition 2.7. A corank of a geodesic path (û(·), q̂(·)) is the dimension of the space of pairs (ψ̂0, ψ̂(·)), which
together with (û(·), q̂(·)) satisfy Theorem 2.2.

If a geodesic is abnormal, then the length functional ` does not appear in the minimality conditions, pro-
vided by the Theorem 2.2. No surprise that corresponding geodesic paths have not too much to do with
the sub-Riemannian metric and the minimality of length. They rather correspond to some extremality of the
distribution. It turns out that the abnormal geodesics “often” exhibit a phenomenon called in [38] rigidity.

Definition 2.8. An admissible path q(·) of the vector distribution D with end-points q0 and q1 is called rigid

if it is isolated up to a reparametrization in the metric of W1,∞ in the set Pq
1

q0 of all admissible paths, which

connect q0 and q1.

Rigid admissible paths are formally weakly minimal. Theorem 2.2 provides necessary conditions of weak
minimality. When it is applied to rigid paths then in addition one should take ψ̂0 = 0. This implies that if an
admissible path (û(·), q̂(·)) is rigid on [0, 1], then (û(·), q̂(·)) is an abnormal geodesic path.

We dealt with the rigidity in [8,9]; the readers may consult that paper for detailed study of the phenomenon.
To finish with the first-order condition given by the Theorem 2.2 let us note that in the abnormal case the

Hamiltonian (2.4) degenerates into an abnormal Hamiltonian

H = ψ ·G(q)u. (2.10)

The stationarity condition (2.7) for an abnormal geodesic amounts to the orthogonality of ψ̂(τ) to the distri-
bution D at every point q̂(τ):

ψ̂(τ) ·G(q̂(τ)) = 0, ∀τ ∈ [0, 1]. (2.11)

2.2. Second variation along normal and abnormal geodesics

In the previous subsection we have reduced the problem of finding minimal admissible path between given
points q0 and q1, to the Lagrange problem (2.1–2.3). We have formulated first-order necessary condition of weak
minimality and defined sub-Riemannian geodesics. The solutions of the length minimization problem should
be sought among geodesic paths. In this Section we are going to introduce first and second variation along a

geodesic
(
û(·), q̂(·), ψ̂0, ψ̂(·)

)
.

Let us introduce an input/state map Φt : R×Lr∞[0, 1] −→M, which maps an input u(·) into the point q(t) of
the trajectory q(·) of the system q̇ = G(q)u(τ), q(0) = q0. Obviously, Φt(û(·)) = q̂(t) and Φ1(û(·)) = q̂(1) = q1.

Let P̂t be the flow generated by the reference vector field f̂t(q) = G(q)û(t). Let us define a “pull-backed”

input/state map Ft(u(·)) = P̂−1
t (Φt(u(·)) and put F (u(·)) = F1(u(·)). Obviously F (û(·)) = q0.

We put

`(u(·)) =

∫ 1

0

〈u(τ), u(τ)〉dτ ; ` : Lr∞[0, 1]→ R.

A well known fact is that for û(·) ∈ Lr∞ to be a weak minimizer for the Lagrange problem (2.1–2.3) it must be
a critical point of the map (`, F ). Indeed otherwise the Implicit Function Theorem implies existence (locally, in
a L∞-neighborhood of û(·)) of solutions of the system of equations

`(u(·)) = `(û(·)) − ε, F (u(·)) = q0,
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for any sufficiently small ε > 0. This means that q0 and q1 can be connected by an admissible path of length
`(û(·))− ε < `(û(·)).

If û(·) is a critical point for the map (`, F ), i.e. the differential (`′, F ′)|û(·) : Lr∞ → R × Tq0M is not onto,

then there exists a pair (ψ̂0, ψ̂T ) ∈ R× T ∗q0M, which annihilates the image of (`′, F ′)|(û(·)):

ψ̂0`
′ + ψ̂TF

′ ≡ 0. (2.12)

This equality is equivalent to the statement of the Theorem 2.2 with ψ̂T being the initial value ψ̂(0) for the

solution of the adjoint equation (2.6). If ψ̂0 = 0, then the functional ` appears neither in (2.12) nor in the
Theorem 2.2. In this case û(·) is a critical point of the map F , or equivalently is an abnormal geodesic control

corresponding to the geodesic (û(·), q̂(·), 0, ψ̂(·)).
To study the geodesics – the critical points of (`, F ) – we have to invoke initial terms of Taylor expansion

for F. Let us present F (u(·)) as a composition of chronological exponentials (see Sect. 2 for the notation):

−→
exp

∫ 1

0

Gu(τ)dτ ◦

(
−→
exp

∫ 1

0

Gû(τ)dτ

)−1

,

acting on the point q0. Putting u(τ) = û(τ) + v(τ) and applying the variational formula (1.3) to the first of the
chronological exponentials we obtain

−→
exp

∫ 1

0

G (û(τ) + v(τ)) dτ =
−→
exp

∫ 1

0

Yτv(τ)dτ◦
−→
exp

∫ 1

0

Gû(τ)dτ,

where

Yτv = Ad
−→
exp

∫ τ

0

Gû(ξ)dξGv.

Therefore

F (u(·)) =
−→
exp

∫ 1

0

Yτv(τ)dτ(q0). (2.13)

Invoking the Volterra expansion of the chronological exponential (2.13) we obtain the following expression for
the first differential of F at û(·):

F ′|û(·)(u(·)) =

∫ 1

0

Yτ (q0)u(τ)dτ. (2.14)

If û(·) is a critical point of (`, F ), then Im(`′, F ′)|û(·) 6= R×Tq0M, and there exists a nonzero covector (ψ̂0, ψ̂T )
∈ T ∗q0M, which annihilates Im(`′, F ′)|û(·):∫ 1

0

(
2ψ̂0û(τ) + ψ̂T · Yτ (q0)

)
u(τ)dτ = 0,

for all u(·) ∈ Lr∞[0, 1]. The latter equality implies:

2ψ̂0û(τ) + ψ̂T · Yτ (q0) = 0, for almost all τ ∈ [0, T ]. (2.15)

This condition is equivalent to the condition (2.7) of the Theorem 2.2. Namely if one chooses the solution ψ̂(·)
of the adjoint equation (2.6) with the initial value ψ̂(0) = ψ̂T , then ψ̂(·) satisfies the stationarity condition (2.7).
One defines corank of the geodesic path (û(·), q̂(·)) as the corank of (`′, F ′)|û(·).
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Definition 2.9. The first differential (`′, F ′)|û(·) : Lr∞ → Tq0M, at a critical “point” û(·) is called first variation
along the geodesic path (û(·), q̂(·)) . It is computed according to the formula (2.14).

In what follows we assume either ψ̂0 = −1/2 or ψ̂0 = 0.

Now we introduce the second variation along a geodesic
(
û(·), q̂(·), ψ̂(·)

)
. It is the Hessian, or quadratic

differential of (`, F ), at the critical point û(·) ∈ Lr∞ (see [11]). Choosing a function χ : M −→ R, such that

dχ|q0 = ψ̂T , let us consider a function φ(u(·)) = ψ̂0` (u(·)) + χ(F (u(·))) . Since the pair (ψ̂0, ψ̂T ) annihilates
Im(`′, F ′)|û(·), then û(·) is a critical point for this function.

Let us compute the quadratic term of Taylor expansion for Φ(u(·)) at û(·). Appealing to the Volterra
expansion (1.2) for the right chronological exponential (2.13), we obtain

φ′′|û(·)(u(·)) = ψ̂0

∫ 1

0

〈u(τ), u(τ)〉dτ +

(∫ 1

0

Yτu(τ) ◦

∫ τ

0

Yξu(ξ)dξ)dτχ)(q0

)
. (2.16)

When restricting the quadratic form (2.16) to the kernel of (`′, F ′)|û(·), determined by the equalities∫ 1

0

û(τ)u(τ)dτ = 0,

∫ 1

0

Yτ (q0)u(τ)dτ = 0, (2.17)

we are able to subtract from (2.16) a vanishing value of

1

2

(∫ 1

0

Yτu(τ)dτ

)
◦

((∫ 1

0

Yτu(τ)dτ

)
χ

)
(q0),

and transform (2.16) into

ψ̂0

∫ 1

0

〈u(τ), u(τ)〉dτ +
1

2

((∫ 1

0

[∫ τ

0

Yξu(ξ)dξ, Yτu(τ)

]
dτ

)
χ

)
(q0).

The last expression does not depend on a choice of χ but only on ψ̂T = dχ|q0 and therefore we may introduce
the following definition.

Definition 2.10. The second variation along the geodesic
(
û(·), q̂(·), ψ̂(·)

)
is the quadratic form

Q[ψ̂0, ψ̂T ](u(·)) = ψ̂0

∫ 1

0

〈u(τ), u(τ)〉dτ + ψ̂T ·

∫ 1

0

[∫ τ

0

Yξu(ξ)dξ, Yτu(τ)

]
(q0)dτ, (2.18)

whose domain is subspace of Lr∞ defined by the conditions (2.17), and either ψ̂0 = −1/2 (normal case) or ψ̂0 = 0
(abnormal case).

3. Morse index and necessary conditions for weak minimality

In this section we define an important invariant of a geodesic – Morse index. Then we establish its interrelation
with weak minimality of geodesics and provide necessary condition for finiteness of index for abnormal geodesics.

Definition 3.1. Morse index of the geodesic
(
û(·), q̂(·), ψ̂0, ψ̂(·)

)
is positive index of the quadratic form

(2.18–2.17), i.e. maximal among the dimensions of the subspaces in its domain, on which the quadratic form is
positive definite.
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Definition 3.2. Morse index of the geodesic path (û(·), q̂(·)) is minimum of Morse indices of the geodesics(
û(·), q̂(·), ψ̂0, ψ̂(·)

)
, which correspond to this geodesic path, or minimum of the positive indices of quadratic

forms Q|û(·)[ψ̂0, ψ̂T ] for all possible (ψ̂0, ψ̂T ) ⊥ ImF ′|û(·).

We now formulate second-order necessary weak minimality condition for corank k geodesics paths.

Theorem 3.3 (Morse Index and Weak Minimality of Geodesic Paths). Morse index of a weakly minimal corank
m geodesic path (û(·), q̂(·)) must be ≤ m− 1.

This theorem is a corollary of a general result on stable local openness of a smooth map – Theorem 3.4, which
provides sufficient condition for the stable local openness at a critical point of the map (stable local openness
of a map at its regular point is corollary of the Implicit Function Theorem).

Let a map G : X → Rk be twice Frechet differentiable at a point x̂ which is critical point of G. Let us
introduce the Hessian of G at the point x̂ , which is the quadratic map G′′(x̂) : kerG′|x̂ → coker G′|x̂ (see [11]).
One can represent it as a bundle of quadratic forms

λ 7→ λG′′(x̂)(ξ, ξ), ξ ∈ kerG′|x̂, λ ⊥ ImG′|x̂.

We define index and nullity of (x̂, λ) as positive index and dimension of the kernel of the quadratic form
λG′′(x̂)(ξ, ξ). We define index of critical point x̂ as

min{indλG′′|λ ⊥ ImG′|x̂}·

Theorem 3.4 (Morse Index and Stable Local Openness of a Smooth Map). Let X be a Banach space and
x̂ ∈ X be a corank m critical point for the map G : X → Rk, which is twice Frechet differentiable at x̂. If
the Morse index of x̂ is ≥ m, then the map G is locally open in a stable way i.e. for any neighborhood U of
x̂ ∈ X there exists a C0-neighborhood V of G such that for any Ḡ ∈ V : G(x̂) ∈ int Ḡ(U).

Some version of this result has been proved in [3]. As far as this source is not very accessible we provide in
Section 6.1 a sketch of the proof.

Now basing on this result we provide

Proof of the Theorem 3.3. Let us consider the Banach space X = Lr∞[0, 1] and the map G = (`, F ) :
L∞ −→ R × M , where `, F are as defined above. If û(·) is a geodesic control, i.e. a critical point of G
of corank m, and the Morse index of this geodesic control is ≥ m, then, according to the Theorem 3.4,
G (û(·)) ∈ intG(U) for any neighborhood U of û(·) in L∞. Therefore there exists ū(·) ∈ U such that
` (ū(·)) < ` (û(·)) , F (ū(·)) = F (û(·)) = q1. i.e. the path generated by the control ū(·) connects q0 with
q1 and is strictly shorter then the reference path.

From the Theorem 3.3 it follows, that finiteness of Morse index is necessary for weak minimality of a geodesic
path. There is a classical result which claims that Morse index of normal geodesics is finite. We are going to
introduce a necessary condition for the finiteness of index for abnormal geodesics.

Definition 3.5. An abnormal geodesic satisfies Goh condition if for all τ ∈ [0, 1]

ψ̂(τ) · [Gv,Gw](q̂(τ)) = 0, ∀v, w ∈ Rr, (3.1)

i.e. ψ̂(τ) annihilates the Lie square D2(q̂(τ)) of the distribution D at every point of the geodesic path q̂(·).

For singular extremals of optimal control problems this condition has been introduced by Goh in [20]. One
can find in [9] the proof of the following result for abnormal geodesics corresponding to arbitrary measurable
bounded geodesic control û(·).

Proposition 3.6 (Goh Condition and Finiteness of Morse Index for Abnormal Geodesics). For index of an
abnormal geodesic to be finite the Goh condition must hold along it.
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Now we are able to formulate a condition of weak minimality for strictly abnormal geodesic paths, i.e. such
that all the corresponding geodesics are abnormal.

Theorem 3.7 (Necessity of Goh Condition for Abnormal Weak Minimality). Let (û(·), q̂(·)) be strictly
abnormal geodesic path. If this path is weak length minimizer then the Goh condition (3.1) must hold for

some of the corresponding (abnormal) geodesics, i.e. for some choice of ψ̂(·).

Proof of the Theorem 3.7. It has been established in ([9] Appendix 1) (see also proof of the Lem. 6.7 below)
that if Goh condition is not satisfied along an abnormal geodesic than Morse index of this geodesic is infinite.
If all geodesics corresponding to the weakly minimal geodesic path (û(·), q̂(·)) are abnormal, then according to
the Theorem 3.3 Morse index of at least one of them must be finite and therefore the Goh condition (3.1) must
hold along this abnormal geodesic.

An immediate corollary of this theorem is that if a germ of distribution is 2-generating, i.e. D2(q0) = Tq0M ,
then there are no weakly minimal strictly abnormal geodesic paths starting at q0.

It turns out that the same is true for a bigger class of medium fat distributions.

Theorem 3.8 (Lack of Abnormal Weak Minimizers for Medium Fat Distributions). If a germ of distribution
is medium fat, i.e.

∀X ∈ D, X(q0) 6= 0 : [X,D2](q0) +D2(q0) = Tq0M,

then there are no weakly minimal strictly abnormal geodesic paths starting at q0.

The proof of this result is provided in the Section 6.3.

4. Subanalyticity of sub-Riemannian metrics for medium fat

and 2-generating distributions

It turns out that the same conditions which rule out existence of abnormal weak length minimizers for
some classes of distributions guarantee subanalyticity of germs of sub-Riemannian metrics for these classes of
distributions.

Theorem 4.1 (Subanalyticity of sub-Riemannian Metrics for Medium Fat Distributions). Let D be a germ at
q0 ∈ M of distribution which is medium fat at this point. Then small sub-Riemannian ρ-spheres
{q ∈ M | ρD(q0, q) = ρ > 0} are subanalytic subsets of M for all sufficiently small ρ > 0. Moreover the
sub-Riemannian metric ρD(q, q′) is subanalytic in a small neighborhood of (q0, q0) in M ×M outside the diago-
nal {(q, q)}.

One can say more if the distribution D is 2-generating.

Theorem 4.2 (Subanalyticity of sub-Riemannian Metrics for 2-generating Distributions). Let D be a germ at
q0 ∈ M of a distribution which is 2-generating at this point. Then the sub-Riemannian metric ρD(q, q′) is
subanalytic in a small neighborhood of (q0, q0) in M ×M.

The crucial fact for establishing the subanalyticity is the one that the length-minimizing geodesics(
û(·), q̂(·), ψ̂0, ψ̂(·)

)
can be parametrized by a compact set.

Let us recall that according to the Pontryagin Maximum Principle (Th. 2.2) any normal (with ψ̂0 = −1/2)

geodesic control û(·) is computed as û(t) = ψ̂(t)G(q̂(t)). Assume that all geodesics are parametrized by the

interval [0, 1]. Then the constant value h of the Hamiltonian (2.4) along this geodesic equals ‖ψ̂(t)G(q̂(t))‖2/2.

Hence û(·) has constant magnitude ‖û(t)‖ ≡
√

2h on [0, 1] and the length of the geodesic path equals ρ =
√

2h
as well.

Obviously each geodesic is determined by the initial value ψ̂T = ψ̂(0) of ψ̂(·). As far as for a geodesic of fixed

length ρ one has ‖ψ̂(t)G(q̂(t))‖ ≡ ρ, then we may think that all initial values ψ̂T have horizontal component of
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norm ρ. Thus the space of ψ̂T can be identified with the cylinder Sr−1 × Rn−r. Our goal is proving that the
length-minimizing geodesics are parametrized by ψ̂T from a compact part K of the cylinder.

We shall also need the asymptotic dependence of this compact part on the value of ρ, as ρ→ +0.

Theorem 4.3 (Compactness of the Set of Minimal Geodesics for 2-Generating and Medium Fat Distributions).
Assume that the geodesics are parametrized by the interval [0, 1]. Then for some ρ0 > 0:

i) if D is a germ at q0 of medium fat distribution then for any q from the sub-Riemannian ρ0-neighborhood
of q0 the set of minimal geodesics, starting at q, of given length ρ < ρ0 is compact (parametrized by a

compact set of ψ̂T , the same for all q);
ii) if this germ is 2-generating then there exists A > 0 such that for all the length-minimizers of length ρ < ρ0

there holds ‖ψ̂T ‖ ≤ A;
iii) if the germ is medium fat then for any α > 3 there exists Ā > 0 such that for all the length-minimizers of

positive length ρ ≤ ρ0 there holds ‖ψ̂T ‖ ≤ Āρ−α−2.

The subanalyticity claimed in the Theorems 4.1 and 4.2 follows from this latter theorem by a standard reasoning.
We shall prove subanalyticity of the square of the sub-Riemannian length ρ2

D, which immediately implies the
subanalyticity of the sub-Riemannian length ρD.

Proof of the Theorems 4.1 and 4.2. Let us consider the sub-Riemannian exponential map E(q, ψ̂T ) which maps

the pair (q, ψ̂T ) into the final point q̂(1) of the corresponding geodesic path; this map is obviously analytic. For

given geodesic path defined by (q, ψ̂T ) the square of its length equals to 2h(q, ψ̂T ) – the doubled value of the
(analytic) Hamiltonian along this geodesic. Then we may calculate ρ2

D(q, q′) as

ρ2
D(q, q′) = min{2h(q, ψ̂T ) : E(q, ψ̂T ) = q′}·

According to the Theorem 4.3 one can assume in the 2-generating case that ψ̂T ∈ T ∗q0M satisfies ‖ψ̂T‖ ≤ A

provided that ρ2
D(q, q′) ≤ ρ2

0. In the medium fat case if 0 < δ2 ≤ ρ2
D(q, q′) ≤ ρ2

0, then ‖ψ̂T ‖ ≤ Āδ−α−2 for some

α > 3. In both cases ψ̂T ∈ K, K – compact.
Consider the set of triples (q, q′, ψ̂T ) from M ×M ×K determined by the relation E(q, ψ̂T ) = q′. This set

is obviously subanalytic, and the image of this set under the analytic map (q, q′, ψ̂T ) 7→
(
q, q′, ψ̂T , 2h(q, ψ̂T )

)
is subanalytic as well. The image of the latter set under the projection (q, q′, ψ̂T , c) 7→ (q, q′, c) is subanalytic.
Here is where the compactness of K plays crucial role3. This image is the epigraph of the function ρ2

D(q, q′).
Therefore both this function and the sub-Riemannian metric are subanalytic.

5. Generic 2-generating and medium fat distributions

In the previous section we established subanalyticity of sub-Riemannian metrics for the classes of 2-generating
and medium fat distributions. These classes are substantially larger than the class of fat distributions. Here we
discuss in what dimensions the properties of medium fatness or of being 2-generated are generic.

Let us start with the class of fat distributions for which subanalyticity of sub-Riemannian metrics has been
established earlier by Sussmann [36] and Zhong Ge [18]. This class is relatively poor; if we restrict ourselves to
generic distributions then it basically involves germs of corank 1 distributions on odd-dimensional manifolds.

Indeed if we choose a basis X1, . . . ,X2k of the 2k-distribution D on a (2k + 1)-dimensional manifold, and
a (unique up to multiplication by a scalar) covector ψ ∈ T ∗qM which annihilates Dq, then for generic D the

even-dimensional skew-symmetric matrix C = (cψij) =
〈
ψ, [Xj,Xi](q)

〉
, i, j = 1, . . . , 2k is nonsingular. Hence

for X =
∑2k
i=1 X

ivi the condition

[X,D](q) ⊂ D(q)⇔ 〈ψ, [X,D](q)〉 = 0,

3Indeed let S be a subanalytic subset of X × Y (X, Y − Cω-manifolds). Let π : X × Y → X be the projection onto X. If for
any compact C ⊂ X there exists compact C′ ⊂ Y such that ∀x ∈ C : π−1(x) ⊆ C′, then π(S) is subanalytic.
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is equivalent to the equality Cv = 0 where C is defined above and v = (v1, . . . , v2k). This equality is only
satisfied when v = 0.

If one considers a corank 1 distribution D on odd-dimensional manifold, then repeating the same argument
one comes to an odd-dimensional skew-symmetric matrix C, which is always singular and therefore always has
a nontrivial vector v = (v1, . . . , vn) in its kernel. Then

〈
ψ, [
∑n
i=1 X

ivi,D](q)
〉

= 0 and hence the distribution
D is not fat.

It is easy to see that in a class of distributions of given corank > 1 there exists open (in C1-metric) subset
consisting of nonfat distributions. Indeed let us take a pair of linearly-independent covectors ψ1, ψ2 from the

annihilator D⊥ of a distribution and construct the matrices Cψ
1

, Cψ
2

as above. If there is a stable intersection at

the “point” C0 = α0C
ψ1

+(1−α0)Cψ
2

of the pencil αCψ
1

+(1−α)Cψ
2

(α ∈ R) with the cone {C : |detC = 0},

then taking any vector v from the kernel of C0, we construct, as above, the vector field X =
∑2k
i=1X

ivi such
that (D + [X,D]) (q) is annihilated by the covector α0ψ

1 + (1− α0)ψ2.
Still in some classes of germs of corank c > 1 distributions there are open subsets consisting of fat distributions.

The corresponding pairs (c, n) (with n being a dimension of manifold) have been characterized by Rayner ([32];
see also [30]).

The class of 2-generating distributions is essentially bigger.
It is known (see [37], and Sect. 1.2) that for a generic germ of r-distribution on n-dimensional manifold the

initial segment of the vector of growth n1 ≤ n2 ≤ · · · is:

n1 = r, n2 = min{n, r(r + 1)/2}, . . .

We are going to prove this result for the manifolds of dimension n ≤ r(r + 1)/2.
Let us take any germ D of distribution at q ∈M and introduce an adapted coordinate system (x, y) : O → Rn

such that:

i) (x, y)(q) = 0Rn ;
ii) (x, y)∗|qfi(q) (i = 1, . . . , r) coincide with the first r elements ei, i = 1, . . . , r, of the standard basis of Rn;
iii) the subspace ∆2

q = span{Dq, [f i, f j ](q), |i < j}, is mapped isomorphically by the differential x∗|q onto a

subspace of Rn, while y∗|q∆2
q = 0.

Denote by Γ̄ a minimal subset of Γ = {(ij)|i < j} such that ∆2
q is spanned by Dq and {[f i, f j](q), | (ij) ∈ Γ̄}.

Let y = (y1, . . . , ys); s = codim ∆2
q. Obviously

s = corankDq − ]Γ̄ ≤ r(r − 1)/2− ]Γ̄ = ](Γ \ Γ̄).

Let us choose an arbitrary injection σ : {1, . . . , s} → Γ \ Γ̄. Denote by π the projection (ij) 7→ i defined on Γ
and introduce vector fields

f̃j = fj +
s∑

α=1

εαxπ(σ(α))∂/∂yα, (εα ∈ R, α = 1, . . . , s).

For these vector field we establish by direct computation that

[f̃i, f̃j](q) =

{
[fi, fj](q), if (ij) 6∈ σ({1, . . . , s}), in particular if (ij) ∈ Γ̄,
[fi, fj](q) + εσ−1(ij)(∂/∂yσ−1(ij))|q otherwise.

Thus we constructed a distribution D̃ generated by f̃1, . . . , f̃r which is 2-generating and is arbitrarily close to
D in C∞ topology if |εα|, α = 1, . . . , s are sufficiently small.

Therefore we may formulate the following conclusion.

Theorem 5.1 (Generic 2-Generating Distributions). Generic germ of rank r distribution on n-dimensional

manifold with r ≤ n ≤ r(r+1)
2 is 2-generating.
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The class of generic medium fat distributions is yet bigger.

Theorem 5.2 (Generic Medium Fat Distributions). Generic germ of rank r distribution on n-dimensional
manifold with r ≤ n ≤ r + (r − 1)2 is medium fat.

The proof of the latter result is more technically involved; it can be found in Section 6.4.

6. Proofs

6.1. Theorem 3.4 on stable local openness: Sketch of the proof

We assume without loss of generality, that x̂ coincides with the origin of X. We denote by D and h,
correspondingly, the differential and the Hessian of the map F at the origin. Suppose, that for any λ ∈ (ImD)⊥

index of the quadratic form λh on kerD is ≥ m. We are going to prove that then F is locally open at x̂ and
this property is stable, i.e. persists under small perturbations of F in C0-metric.

For any w ∈ Rk the equation F (x) = w can be represented as a system of equations f(y, z) = u, g(y, z) = v,
where (y, z) = x, (u, v) = w are such splittings of x and w, that: i) u coordinatizes ImD; ii) v cordinatizes
a complementary space to ImD; iii) z coordinatizes kerD, and ∂F/∂z = 0; iv) dim f = dim y = dimu =
rankD = k −m, rank∂F/∂y|0 = rank∂f/∂y|0 = rankD.

By virtue of Implicit Function Theorem the equation f(y, z) = u can be resolved w.r.t. y : y = y(z, u).
The function y(z, u) is continuous locally and y(0, 0) = 0. Substituting y(z, u) into the equation g(y, z) = v
we obtain an equation g(y(z, u), z) = 0. Obviously local openness of F at the origin is equivalent to local
openness of the map (u, z) 7→ (u, g(y(z, u), z)). To establish this local openness it is enough to prove that the
map ϕ(z) = g(y(z, 0), z) covers the origin of Rk substantially, i.e. for any closed neighborhood U of the origin
in X there exists δ > 0 such that

‖ϕ̄− ϕ‖C0(U) < δ ⇒ 0 ∈ int ϕ̄(U).

We are dealing now with the map ϕ, whose differential vanishes at the origin: ϕ′(0) = 0. To avoid additional
notation we will assume, instead of it, that D = F ′|0 = 0, and then h = F ′′|0 is a quadratic map of X into Rm.
Again we assume, that for any nonzero λ ∈ Rm∗ index of the quadratic form λh is ≥ m.

First we get rid of infinite-dimensional space X, proving that under the conditions of the Theorem 3.4 there
exists a finite-dimensional subspace W ⊂ X, such that for any nonzero λ ∈ Rm∗ index of the quadratic form
λh|W is ≥ m.

Indeed for any unit covector λ̄ ∈ Rm
∗

, there exists a m−dimensional subspace Wλ̄ ⊂ X, such that the
restriction λ̄h|Wλ̄

is positive definite. For all λ’s from some small neighborhood Ωλ̄ of λ̄ the quadratic forms
λh|Wλ̄

are also positive definite. Choosing a finite covering of the sphere ‖λ‖ = 1 by corresponding neighborhoods
Ωλ̄1 , . . .Ωλ̄s we may take W = Wλ̄1 + · · ·Wλ̄s .

From now on we consider W in place of X or, all the same, assume dimX <∞.
The following statement enables us to study the quadratic map h instead of F .

Lemma 6.1. If the cone h−1(0) contains a regular point of the quadratic map h : X → Rm, then F is locally
open in a stable way.

Proof. If y ∈ h−1(0) is a regular point of h, then there exists a m-dimensional subspace Z ⊂ X, such that
h|y+Z : (y +Z)→ Rm is local diffeomorphism at y. Since h is homogeneous, then the same holds for all points
ηy, η 6= 0.

Consider the map φε(z) = h(y + εz), where z belongs to the unit sphere Sm−1 ⊂ Z. Obviously h(ηy + ηεz)
= η2φε(z) and, for all sufficiently small ε > 0, the topological degree of the map φε/‖φε‖ : Sm−1 → Sm−1 is +1
or −1. Since the differentials of h at the points ηy are nondegenerate, then ∃a > 0, such that for small enough
ε > 0 and ∀z ∈ Sn−1: ‖h(ηy + ηεz)‖ ≥ aη2ε. Also for any w with ‖w‖ < aη2ε there exist ζ with ‖ζ‖ ≤ 1 such
that h(ηy + ηεζ) = w. On the other side

‖F (ηy + ηεz)− h(ηy + ηεz)‖ = o(η2), as η → +0,
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and therefore for some ε > 0 and small enough η > 0 the topological degree of the map

z −→ F (ηy + ηεz)/‖F (ηy + ηεz)‖

is +1 or −1. Hence one can choose small enough η > 0 such that say for ‖w‖ < (ε/2)aη2 the equation
F (ηy + ηεz) = w has a solution zη(w) belonging to the unit ball B ⊂ Z. As far as we apply the topological
degree argument the same will be true for any map F̄ which is sufficiently close to F in C0-metric.

This Lemma allows us to deal with the quadratic map h instead of F . The conclusion of the Theorem 3.4
follows from the following

Lemma 6.2. Let P : X → Rm be quadratic map, such that indλP ≥ m, ∀λ ∈ Rm∗ \ 0. Then P−1(0) contains
regular point of the map P .

Proof of this Lemma can be found in ([9] Appendix 1, Lem. 9).

6.2. Proof of the Theorem 4.3 on compactness of the set of minimal geodesics
of given length

Proof. Assume all length-minimizers, we consider, to be of positive length ρ < 1. It will be convenient for
us to parametrize them by the length of arc. We assume that the vector fields gi(q), i = 1, . . . , r, form an
orthonormal basis in TqM for all q from a small neighborhood of q0. Hence the corresponding minimizing
controls have constant magnitude 1.

As we already know length-minimizing geodesic paths of medium fat sub-Riemannian structures are not
strictly abnormal. (The proof of this fact can be found in the next subsection.) We choose a fixed normal

geodesic path of length ρ > 0 and normal pair (−1/2, ψ̂(·)) of Hamiltonian multipliers and consider (multiplied
by 2) second variation along the corresponding geodesic. This is a quadratic form (compare with (2.18–2.17)):

Q(u(·)) = −

∫ ρ

0

〈u(τ), u(τ)〉dτ + ψ̂T

∫ ρ

0

[∫ τ

0

Yξu(ξ)dξ, Yτu(τ)

]
(q0)dτ, (6.1)

defined on the set of u(·)’s which satisfy∫ ρ

0

û(τ)u(τ)dτ = 0,

∫ ρ

0

Yτ (q0)u(τ)dτ = 0. (6.2)

Recall that ψ̂T coincides with the initial value ψ̂(0) of the adjoint covector function ψ̂(t) and

Yτ = (Y 1
τ . . . Y

r
τ ), Y iτ = Ad

−→
exp

∫ τ

0

Gû(ξ)dξgi, i = 1, . . . , r.

Due to real analyticity of any normal extremal control û(·) the vector fields Y iτ are real analytic. For any small
compact neighborhood K of q0 their C1-norms ‖Y iτ ‖1,K have a uniform (with respect to û(·) and τ ∈ [0, ρ])
upper estimate B.

Our first goal is establishing that for given ρ > 0

∃B such that if ‖ψ̂T ‖ ≥ B, then the corresponding geodesic path fails to be a length-minimizer.

We shall also estimate the asymptotic dependence of B on ρ as ρ→ +0.
The proof is rather technical and before proceeding with it we shall provide its sketch in very general terms.
Let us first introduce the covector-functions ψ1(t), ψ2(t) with the components:

ψ1
i (t) = ψ̂(t)gi(q̂(t)), i = 1, . . . , r;

ψ2
ij(t) = ψ̂(t)[gi, gj](q̂(t)), i, j = 1, . . . , r. (6.3)
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According to the Pontryagin Maximum Principle (Th. 2.2) û(t) = ψ̂(t)G(q̂(t)) = ψ1(t) and hence ‖ψ1(t)‖
= ‖û(t)‖ ≡ 1. Also ψ2

ij(t) = ψ̂T [Y it , Y
j
t ](q0).

Consider the second variation Q(u(·)), defined by (6.1–6.2) for the u(·)’s which vanish outside a small interval
[t0, t0 + ∆] ⊂ [0, ρ). Assume also for the moment that ψ2(t) “does not oscillate too fast”, e.g. there exists an
estimate Varψ2(·) ≤ C‖ψ2(·)‖L1 . Then one may substitute the second addend of (6.1) by its principal term

ψ̂T

∫ t0+∆

t0

[
Yt0

∫ τ

t0

u(ξ)dξ, Yt0u(τ)

]
dτ. (6.4)

which depends (linearly) only on ψ2(t0).
Choosing sufficiently small δ ∈ (0, 1) and taking ∆ = δρ in the 2-generating case and ∆ = δρα (α > 3), in

the medium fat case, we manage to prove that in both cases there exists a pair of linear subspaces L+
N , L

−
N of

arbitrarily large dimension N such that the quadratic form (6.4) is positive definite on one L+
N and negative

definite on L−N . On L+
N it admits a lower estimate bN and on L−N it admits an upper estimate −bN . These

estimates are bN = ANρ
2α+3‖ψ̂T ‖‖u(·)‖2L∞ in the medium fat case and bN = ANρ

2‖ψ̂T ‖‖u(·)‖2L∞ in the
2-generating case.

The first addend of (6.1) has order of smallness O(ρ) as ρ → 0. Therefore the second addend of (6.1) will

dominate the first addend for sufficiently small ρ > 0 if ‖ψ̂T ‖ > Cρ−1 in the 2-generating case, or in the

medium fat case ‖ψ̂T ‖ > Cρ−α−3 with C > 0 (depending on N) sufficiently large. This will imply that the
second variation has both positive and negative indices large enough (greater than corank!) for all the geodesics

with ψ̂T satisfying the latter inequalities and hence according to the Theorem 3.4 all these geodesics fail to be
length minimizers.

Remark 6.3. When talking about indices we may ignore the conditions (6.2) , as far as their imposition merely
diminishes the value of indices at most by n+ 1 (n = dimM).

The above reasoning is valid provided that ψ2(t) “does not oscillate too fast”. This assumption holds
(uniformly) for all geodesics in the 2-generating case. However in the medium fat case it may fail. Indeed
differentiating ψ1(t), ψ2(t) we obtain

ψ̇1
i (t) = ψ̂(t)[Gû(t), gi](q̂(t)), ψ̇2

ij(t) = ψ̂(t)[Gû(t), [gi, gj ]](q̂(t)), i, j = 1, . . . , r, (6.5)

that shows that ψ2(t) can be “fast oscillating” if ‖ψ̇2‖ � ‖ψ2‖ and û(t) is fast oscillating. This may happen if

the projection of ψ̂T onto the directions orthogonal to D2 is large and if the derivative of û(t) = ψ1(t) defined
by the first of the equation (6.5) is large. A more thorough analysis, which will not be used in the further proof

shows that there exists a family of geodesics with ‖ψ2(0)‖ ∼ N, ‖ψ̂T ‖ ∼ N2 for which Varψ2(t)/‖ψ2(·)‖L1

∼ N, as N → ∞. Fortunately for large N these geodesics can not attain the ρ-sphere (ρ > 0), because “too
fast oscillating” geodesic controls can not drive the point from the origin far enough. So there is no need to
consider them.

We start now the detailed proof of the Theorem 4.3 with the explanation of what is meant by fast oscillation
and why too fast oscillating controls do not correspond to length minimizers. After it we proceed to the more
technically involved part of arranging estimates for the second variation (Lem. 6.7).

To evaluate the rate of oscillation we introduce the following norm, which is useful for studying fast oscillating
and relaxed controls.

Lemma 6.4. The expression

‖u(·)‖o = sup
t′,t′′∈[0,ρ]

∥∥∥∥∥
∫ t′′

t′
u(τ)dτ

∥∥∥∥∥
defines a norm in the space of integrable functions (the corresponding topology is obviously weaker then the one
of Lr1[0, ρ]).
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The subindex “o” stays for “oscillating”. Indeed fast oscillating controls are small in this norm. For example
‖ sinNt‖o as well as ‖N sinN2t‖o are O(N−1) as N → ∞. One can find in [17] examples of using this norm,
e.g. a theorem on continuous, with respect to this norm, dependence of solutions of ODE on right-hand side.
What follows is a much more particular result which proves that the fast oscillating controls “do not drive far”.
This result is local and we provide its formulation for a germ at 0Rn of distribution D = span{G(x)u | u ∈ Rr}
in Rn in place of M .

Lemma 6.5 (compare with Chap. 4 of [17]). For any sufficiently small ρ0 > 0 there exists a constant C > 0,
such that for any ρ < ρ0 and for all u(·) ∈ Lr∞[0, ρ] such that ‖u(·)‖L∞ ≤ 1, the corresponding trajectories of
the distribution satisfy

ẋ(t) = G(x(t))u(t), x(0) = 0 ⇒ x(ρ) ≤ C‖u(·)‖o. (6.6)

It has been already mentioned in Section 1.2 that for a sub-Riemannian structure determined by a distribution
of degree of nonholonomy κ the Riemannian distance from the center q0 to the sub-Riemannian ρ-sphere admits
(for ρ < ρ0) a lower estimate cρκ with c > 0 depending continuously on q0.

Therefore coming back to the germ of distribution D at q0 ∈ M of degree of nonholonomy κ we conclude
with the following

Corollary 6.6. For some ρ0 > 0 there exists a constant c > 0 such that ∀ρ < ρ0 and for any control u(·)
leading from q0 to a point of sub-Riemannian ρ-sphere there holds ‖u(·)‖o ≥ cρκ.

Proof of the Lemma 6.5. Let ‖G(0)‖ = L0 and L ≥ 0 be a Lipschitz constant for the restriction of G(x) on some
compact neighborhood of 0. If x(t) stays inside this compact neighborhood then transforming the differential
equation (6.6) into an integral one:

x(t) =

∫ t

0

G(x(τ))u(τ)dτ (6.7)

we conclude

‖x(t)‖ ≤

∫ t

0

‖G(x(τ))u(τ)‖dτ ≤

∫ t

0

(L‖x(τ)‖+ L0)dτ,

and using the Gronwall inequality obtain

‖x(t)‖ ≤ L0L
−1(eLt − 1), if L > 0, and ‖x(t)‖ ≤ L0t, if L = 0.

Proceeding with the integration by parts in (6.7) we obtain

x(t) = G(x(t))

∫ t

0

u(τ)dτ −

∫ t

0

((G(x(τ))u(τ)) ◦G) (x(τ))

∫ τ

0

u(ξ)dξdτ.

As long as supτ |
∫ τ

0 u(ξ)dξ| ≤ ‖u(·)‖o and ‖u(·)‖L∞ ≤ 1, then ‖x(t)‖ ≤ C‖u(·)‖o, where the constant C is
calculated via ‖G(·)‖C1 .

The rest of our proof is based on the following technical result.

Lemma 6.7. i) If the distribution D is 2-generating at a point q0 ∈ M , then there exist constants δ ∈
(0, 1/2), A > 0, ρ0 > 0, C > 0 such that for all geodesics of length ρ ≤ ρ0:

‖ψ̂T ‖ ≥ A⇒ ‖ψ
2(t0)‖ ≥ Cδ‖ψ̂T ‖

at some point t0 of the interval [0, ρ];
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ii) if the distribution D is medium fat at a point q ∈ M , then there exist constants δ ∈ (0, 1/2), A >

0, ρ0 > 0 such that for all geodesics (û(·)|[0,ρ], q̂(·)|[0,ρ], ψ0, ψ̂(·)|[0,ρ]), whose end-point q̂(ρ) belongs to the ρ-sphere
(0 < ρ < ρ0), there holds:

‖ψ̂T ‖ ≥ A⇒ ‖ψ
2(t0)‖ ≥ Cδρ3‖ψ̂T‖, (6.8)

at some point t0 of the interval [0, ρ].

Remark 6.8. In both statements the point t0 may depend on geodesic, but the constants k, δ, ρ0, C can be
chosen in a uniform way.

Proof of the Lemma 6.7. Proof of i) is immediate. Indeed, if D is 2-generating, then the vector fields gi, [gi,

gj ], i, j ∈ {1, . . . , r}, span the space TqM and therefore ‖ψ̂(t)‖ ≤ µ(‖ψ1(t)‖+ ‖ψ2(t)‖). Then

A ≤ ‖ψ̂T ‖ = ‖ψ̂(0)‖ ≤ µ(‖ψ1(0)‖+ ‖ψ2(0)‖),

and

‖ψ2(0)‖ ≥ µ−1‖ψ̂T ‖ − 1 ≥ (µ−1 − 1/A)‖ψ̂T ‖.

Proof of ii). Recall that we deal with a geodesic of positive length ρ ≤ ρ0 (some conditions on ρ0 will be imposed
later). Introduce the covector-function ψ3(t):

ψ3
ijk(t) = ψ̂(t)[gi, [gj , gk]](q̂(t)), i, j, k = 1, . . . , r.

As long as the degree of nonholonomy of medium fat sub-Riemannian distributions is ≤ 3, then

‖ψ̂(t)‖ ≤ µ(‖ψ1(t)‖+ ‖ψ2(t)‖+ ‖ψ3(t)‖).

Differentiating the functions ψ1(t), ψ2(t), ψ3(t) with respect to t we obtain

ψ̇3
ijk(t) = ψ̂(t)[Gû(t), [gi, [gj , gk]]](q̂(t)), i, j, k = 1, . . . , r.

Using the notation ψ(t) for the triple (ψ1(t), ψ2(t), ψ3(t)) we conclude that for geodesics of length ρ < ρ0 there
exists a constant B > 0 depending only on the distribution D (and on ρ0) such that

‖ψ̇(t)‖ ≤ B‖ψ(t)‖.

Using the Gronwall inequality we obtain ∀t̄ ≥ t:

‖ψ(t̄)‖ ≤ ‖ψ(t)‖eB(t̄−t), (6.9)

and also

‖ψ(t̄)− ψ(t)‖ ≤ ‖ψ(t)‖

∫ t̄

t

BeB(τ−t)dτ = ‖ψ(t)‖(eB(t̄−t) − 1), ‖ψ(t̄)‖ ≥ ‖ψ(t)‖(1− (eB(t̄−t) − 1)). (6.10)

If ρ > 0 is fixed and t, t0 ∈ [0, ρ], then we may derive from the inequalities (6.9–6.10) (increasing B if necessary)
the estimate:

‖ψ(t)‖ ≥ ‖ψ(t0)‖(1−B|t− t0|).
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In a similar way we derive ∀t̄ ≥ t:

‖ψ2(t̄)− ψ2(t)‖ ≤ ‖ψ(t̄)‖B(t̄− t), (6.11)

‖ψ2(t̄)‖ ≥ ‖ψ2(t)‖ − ‖ψ(t)‖B(t̄− t)) (6.12)

with (probably different) constant B depending on D but neither depending on geodesic nor on ρ < ρ0. In what
follows we assume Bρ0 < 1.

As far as medium fat distribution has degree of nonholonomy (at most) 3, then according to the Corollary 6.6
any geodesic control û(·), which drives us from q0 to a point of ρ-sphere, must satisfy the condition ‖û(·)‖o ≥ cρ3,

that means that for some t0, t1 ∈ [0, ρ] : ‖
∫ t1
t0
û(τ)dτ‖ ≥ cρ3. Obviously t1 − t0 > cρ3.

Coming back to the proof of the Lemma 6.7 let us choose some δ ∈ (0, 1/2); some additional restrictions on
δ will be imposed later.

Take the point t0. If
‖ψ2(t0)‖ ≥ Bδρ3‖ψ(t0)‖ ≥ µ−1(1−Bρ0)Bδρ3‖ψT ‖,

then the statement ii) of the lemma is proved.
Let now ‖ψ2(t0)‖ ≤ Bδρ3‖ψ(t0)‖. Without loss of generality one may assume (provided A in (6.8) is big

enough)
‖ψ3(t0)‖ ≥ 2−1‖ψ(t0)‖.

From the second one of the differential equations (6.5) we derive

ψ2
ij(t1)− ψ2

ij(t0) =

∫ t1

t0

ψ̂(τ)
[
Gû(τ), [gi, gj]

]
(q̂(τ))dτ = ψ̂(t0)

[
G

∫ t1

t0

û(τ)dτ, [gi, gj ]

]
(q̂(t0)) (6.13)

+

∫ t1

t0

ψ̂(τ)

[
Gû(τ), [G

∫ t1

τ

û(ξ)dξ, [gi, gj ]]

]
(q̂(τ))dτ.

As far as the distribution is medium fat then for some i0, j0 ∈ {1, . . . , r} there holds

ψ̂(t0)

[
G

∫ t1

t0

û(τ)dτ, [gi0 , gj0 ]

]
(q̂(t0)) ≥ b‖ψ3(t0)‖

∥∥∥∥∫ t1

t0

û(τ)dτ

∥∥∥∥ ≥ 2−1b‖ψ(t0)‖ ·

∥∥∥∥∫ t1

t0

û(τ)dτ

∥∥∥∥ .
For any i, j the norm of the second addend at the right-hand side of (6.13) admits an upper estimate

CρeBρ‖ψ(t0)‖

∥∥∥∥∫ t1

t0

û(τ)dτ

∥∥∥∥ .
Without loss of generality we may assume Cρ0e

Bρ0 < 2−2b thus coming to the lower estimate

|ψ2
i0j0

(t1)− ψ2
i0j0

(t0)| ≥ 2−2b‖ψ(t0)‖

∥∥∥∥∫ t1

t0

û(τ)dτ

∥∥∥∥ ≥ 2−2bc‖ψ(t0)‖ρ3.

Now recalling that ‖ψ2(t0)‖ ≤ Bδρ3‖ψ(t0)‖ we obtain

|ψ2
i0j0

(t1)| ≥ −Bδρ3‖ψ(t0)‖+ 2−2bcρ3‖ψ(t0)‖.

Choosing δ < bc/8B we conclude

ψ2
i0j0

(t1) ≥ 2−3bcρ3‖ψ(t0)‖ ≥ Bδρ3‖ψ(t0)‖ ≥ Bδρ3(1−Bρ0)µ−1‖ψ̂T ‖.
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Now we may complete the proof of the Theorem.
Integrating the second addend of (6.1) by parts we transform the second variation into

−

∫ ρ

0

〈u(τ), u(τ)〉dτ + ψ̂T

∫ ρ

0

[
Yτ

∫ τ

0

u(ξ)dξ, Yτu(τ)

]
(q0)dτ − ψ̂T

∫ ρ

0

[∫ τ

0

Ẏξ

∫ ξ

0

u(θ)dθdξ, Yτu(τ)

]
(q0)dτ.

Let us take the point t0 whose existence has been established by the Lemma 6.7. Take a subinterval of length
δρα joining (for example beginning at) this point. Put α = 1, when dealing with a 2-generating distribution,
and choose any α > 3, when dealing with a medium fat distribution.

We restrict our consideration to controls u(·) of magnitudes ≤ 1 with supports in the subinterval [t0, t0 +δρα].
Then the second variation takes form

−

∫ t0+δρα

t0

〈u(τ), u(τ)〉dτ + ψ̂T

∫ t0+δρα

t0

[
Yτ

∫ τ

t0

u(ξ)dξ, Yτu(τ)

]
(q0)dτ

− ψ̂T

∫ t0+δρα

t0

[∫ τ

t0

Ẏξ

∫ ξ

t0

u(θ)dθdξ, Yτu(τ)

]
(q0)dτ. (6.14)

Let us note that for fixed ψ̂T and ρ→ +0 each integration in (6.14) adds a factor ρα to the order of smallness.
The norm of the first addend admits an upper4 estimate C̄ρα. The last addend admits an upper estimate

C̄‖ψ̂T ‖ρ3α. According to the formula (6.11)

∀t ∈ [t0, t0 + δρα] :
∣∣∣ψ̂T [Ytv, Ytu](q0)− ψ̂T [Yt0v, Yt0u

]
(q0)

∣∣∣ ≤ C̄‖ψ̂T ‖ρα
and hence the second addend in (6.14) can be represented as

ψ̂T

∫ t0+δρα

t0

[
Yt0

∫ τ

t0

u(ξ)dξ, Yt0u(τ)

]
(q0)dτ +R(‖ψ̂T ‖ρ

3α),

where again R(‖ψ̂T ‖ρ3α) ≤ C̄‖ψ̂T ‖ρ3α.

Here ψ̂T [Y it0 , Y
j
t0

](q0) are the components of the covector ψ2(t0). According to the conclusion of the Lemma 6.7,

‖ψ2(t0)‖ can be estimated from below by Cδ‖ψ̂T ‖ for a 2-generating distribution, or, by Cδρ3‖ψ̂T ‖ for a medium
fat distribution.

Let us consider the quadratic form

G(u(·)) = ψ̂T

∫ t0+δρα

t0

[
Yt0

∫ τ

t0

u(ξ)dξ, Yt0u(τ)

]
(q0)dτ. (6.15)

The values of this quadratic form depend only on ψ2(t0) (linearly) and on the length of the interval. Introducing
a function w(θ) = u(t0 + θδρα), θ ∈ [0, 1], we arrive to the equality

G(u(·)) = δ2ρ2αψ̂T

∫ 1

0

[
Yt0

∫ τ

0

w(ξ)dξ, Yt0w(τ)

]
(q0)dτ.

The latter quadratic form possesses a symmetry: the involution J : w(θ) 7→ w(1 − θ) changes the signs of
its values. This implies that for any subspace on which the form is positive definite there exists a subspace

4We can choose common constant C̄ > 0 in this and the subsequent upper estimates. This constant does not depend on geodesic.
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of the same dimension on which the form is negative definite. As long as the kernel of this form has infinite
codimension both of those dimensions must be infinite.

It follows from the aforesaid (see also [9] Appendix 2), that

• in the medium fat case for each integer N > 0 there exist N -dimensional subspaces L+
N (respectively L−N )

and constants AN > 0 such that the quadratic form (6.15) is positive (respectively negative) definite on

L+
N (respectively on L−N) and admit a lower estimate bN = ANρ

2α+3‖ψ̂T ‖‖u(·)‖2L∞ (respectively an upper
estimate −bN);

• in the 2 -generating case these estimates change to ±ANρ2‖ψ̂T‖‖u(·)‖2L∞.

Therefore if ‖ψ̂T ‖ → +∞ then the values of (6.15) grow at least as ‖ψ̂T ‖ρ2α+3 or, respectively in the

2-generating case, as ‖ψ̂T ‖ρ2. Hence we may choose ρ0 in such a way that this principal term dominates

the terms which grow at most as ‖ψ̂T ‖ρ3α, as ρ→ +0. Also for sufficiently large ‖ψ̂T ‖ (larger than cρ−α−3 in
the medium fat case, or larger than cρ−1 in the 2-generating case) this principal term will dominate the addend

−
∫ t0+δρα

t0
〈u(τ), u(τ)〉dτ which is O(ρα). In this case the second variation will have large positive and negative

indices and hence corresponding geodesic path would not be length minimizer.
Therefore for length minimizers of 2-generating sub-Riemannian structures there must hold ‖ψ̂T ‖ = O(ρ−1)

as ρ→ 0, while for medium fat distribution there must hold ‖ψ̂T ‖ = O(ρ−α−3), as ρ→ 0 for any α > 3.
To obtain the respective results for the geodesics parametrized by the interval [0, 1] instead of length we

only need to introduce a time substitution t 7→ ρ−1t which results in the transformation of other variables
u 7→ ρu, ψ 7→ ρψ.

6.3. Proof of the Theorem 3.8 on lack of strictly abnormal minimizers for medium fat
distributions

Proof. Let us consider an abnormal geodesic
(
û(·), q̂(·), ψ̂(·)

)
and the absolutely continuous covector-function

ψ2(t) introduced by (6.3). It can not vanish identically. Indeed if ψ2(t0) = 0, and in addition t0 is a

Lebesgue point of the function t 7→ û(t) then according to (6.5) the components of the derivative ψ̇2(t0) equal

ψ̂(t0)[Gû(t0), [gi, gj ]](q̂(t0)). Due to the medium fatness of the distribution this derivative is non vanishing.
Therefore ‖ψ2(t)‖ 6= 0 on some interval [t0, t0 + ν], i.e. Goh condition fails for the abnormal extremal. Then
according to the Theorem 3.7 this strictly abnormal geodesic path (û(·), q̂(·)) can not be a length minimizer.

6.4. Proof of the Theorem 5.2 on generic medium fat distributions

Proof. For a generic germ of r-distribution we may assume dimD2
q = r(r+1)

2 (see Sect. 6, the proof of the
Prop. 5.2).

Let f1, . . . , fr be a basis of the distribution. Let us enumerate the pairs (i, j) with 1 ≤ i < j ≤ r, by

means of one-to-one map n : (i, j) 7→ nij , nij ∈ {1, . . . , r(r − 1)/2}. Now we introduce a ( r(r−1)
2 × r)-matrix

C = (cks) : cks = [fs[f i, f j ]], where (i, j) = n−1(k).
Obviously a germ of distribution fails to be medium fat if and only if for some covector ψ from the annihilator

of D2 in T ∗qM the matrix Cψ = (cψks) = (〈ψ, [fs[f i, f j ]]〉) has rank < r. Indeed in this case there exists a nonzero

vector v = (v1, . . . , vr) such that Cψv = 0 what means that for X =
∑r
i=1 f

ivi the covector ψ annihilates also
[X,D2](q).

The codimension of the (maximal stratum of the stratified) manifold S of ( r(r−1)
2 × r)-matrices of rank < r

equals r(r−1)
2 − (r − 1) = (r−2)(r−1)

2 . The codimension of D2
q in TqM is ≤ r + (r − 1)2 − r(r+1)

2 = (r−2)(r−1)
2 .

These codimensions coincide and were the entries of the matrix C independent, then we could say that for a
generic distribution D there is no nonzero ψ ∈ (D2

q)
⊥ for which the corresponding matrix Cψ has rank < r (due

to homogeneity we may think that ψ belongs to the unit sphere in (D2
q)
⊥).

Clearly the 3rd-order iterated Lie brackets which appear in the matrix C are not independent, since for
example they must satisfy the Jacobi identities which will implicate the equality relations for the elements of
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each Cψ. This means that the range of the map ψ 7→ Cψ is not the whole space R
r(r−1)

2 ×r but some linear
subspace L of this space. This change would not affect our reasoning if we could prove that the codimension

of S
⋂
L in L coincides with the codimension of S in R

r(r−1)
2 ×r. To do this it is enough to verify that L is

transversal to S in R
r(r−1)

2 ×r.
To establish the transversality we will have to describe the relations between the elements of the matrices Cψ

(the relations which determine L). To proceed with it we consider a Hall basis (see [33]) in the free Lie algebra
generated by f1, . . . , fr and select from this basis the subbasis consisting of third-order iterated Lie brackets.
If we put in order the generators f1 ≺ f2 ≺ · · · ≺ fr; then one may think that this subbasis consists of all Lie
brackets [fs[f i, f j]] for which i ≤ s and i < j.

Each Lie bracket of this latter form is involved into Jacobi identity [fs[f i, f j]]− [f j [f i, fs]] + [f i[f j , fs]] = 0.
This identity degenerates into a trivial relation of antisymmetry (i.e. does not provide a true relation) if i = s
or j = s. Otherwise the first and the second summands are elements of the Ph.Hall basis. The third summand,
written the way it is, if j < s, or written as −[f i[fs, f j]], if s < j, is a linear combination of the first and the
second summands.

Let us consider a maximal stratum of S (consisting of rank-(r-1) matrices) and assume, not loosing generality
that, this stratum consists of the matrices C whose left upper (r−1)× (r−1)-minor is non vanishing: detAr−1

6= 0. Then

C =

(
Ar−1 a
B b

)
and the subcolumn b is determined by the other elements of the matrix as b = BA−1

r−1a.

The elements of this subcolumn correspond to the iterated Lie brackets [f r[f i, f j]] with all (i, j) ∈ Γ

⊂ n−1({r, . . . , r(r−1)
2 }), and all these brackets are the elements of the Ph.Hall basis. Therefore they are linearly

independent as elements of free Lie algebra, but we have to prove that for a generic germ of distribution the
linear span of their values at q is transversal to D2

q .
To this end let us choose an adapted coordinate system (x, y) : O → Rn such that:

i) (x, y)(q) = 0Rn ;
ii) (x, y)∗|qfi(q) (i = 1, . . . , r) coincide with the first r elements ei, i = 1, . . . , r, of the standard basis of Rn;
iii) (x, y)∗|q[fi, fj ](q)(1 ≤ i < j ≤ r) coincide with the next r(r − 1)/2 elements eij (i < j) of this standard

basis. (Obviously (x, y)∗|qD2
q = Rr ⊕ Rr(r−1)/2.)

iv) ∆3
q = span{D2

q , [f
r, [f i, f j ]](q), |(ij) ∈ Γ} is mapped isomorphically by the differential x∗|q onto a subspace

of Rn, while y∗|q∆3
q = 0.

Evidently if ∆3
q = TqM , this would mean that {[fr, [f i, f j]](q)| (ij) ∈ Γ} span a subspace transversal to D2

q

in TqM and then we are done. Otherwise choose any minimal subset Γ̄ ⊆ Γ such that ∆3
q is spanned by

{[fr, [f i, f j]](q), |(ij) ∈ Γ̄} and D2
q . Let y = (y1, . . . , ys); s = codim ∆3

q . Obviously

s = codim D2
q − ]Γ̄ ≤ (r − 1)(r − 2)/2− ]Γ̄ = ](Γ \ Γ̄).

Let us choose an arbitrary injection σ : {1, . . . , s} → Γ \ Γ̄ and define vector field

f̃r = fr −
s∑

α=1

εαxσ(α)∂/∂yα, (εα ∈ R, α = 1, . . . , s).

Direct computation gives us [f̃r, [f i, f j]] = [fr, [f i, f j ]], if (ij) 6∈ σ({1, . . . , s}), in particular if (ij) ∈ Γ̄. Hence
the values (modD2

q) at q of these iterated Lie brackets span ∆3
q/D

2
q . For the pairs (ij) ∈ σ({1, . . . , s}) we

obtain [f̃r, [f i, f j]] = [fr, [f i, f j]] + εσ−1(ij)∂/∂yσ−1(ij). As we know [fr, [f i, f j]](q) ∈ ∆3
q and the span of

∂/∂yα|q, α = 1, . . . , s is transversal (in fact complement) to ∆3
q. Therefore we constructed a distribution
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D̃ generated by f1, . . . , fr−1, f̃r which meets the transversality property and is arbitrarily close to D in C∞

topology provided |εα| α = 1, . . . , s are sufficiently small.
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