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Abstract. We relate some basic constructions of stochastic analysis to differential ge-
ometry, via random walk approximations. We consider walks on both Riemannian and
sub-Riemannian manifolds in which the steps consist of travel along either geodesics or
integral curves associated to orthonormal frames, and we give particular attention to
walks where the choice of step is influenced by a volume on the manifold. A primary
motivation is to explore how one can pass, in the parabolic scaling limit, from geodesics,
orthonormal frames, and/or volumes to diffusions, and hence their infinitesimal gener-
ators, on sub-Riemannian manifolds, which is interesting in light of the fact that there
is no completely canonical notion of sub-Laplacian on a general sub-Riemannian mani-
fold. However, even in the Riemannian case, this random walk approach illuminates the
geometric significance of Ito and Stratonovich stochastic differential equations as well as
the role played by the volume.
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1. Introduction

Consider a Riemannian or a sub-Riemannian manifold M and assume that {X1, . . . , Xk}
is a global orthonormal frame. It is well known that, under mild hypotheses, the solution
qt to the stochastic differential equation in Stratonovich sense

(1) dqt =
k∑
i=1

Xi(qt) ◦
(√

2 dwit
)

produces a solution to the heat-like equation

(2) ∂tϕ =
k∑
i=1

X2
i ϕ

by taking ϕt(q) = E (ϕ0(qt)|q0 = q), where ϕ0 gives the initial condition. (Here the driv-
ing processes wit are independent real Brownian motions, and

√
2 factor is there so that

the resulting sum-of-squares operator doesn’t need a 1/2, consistent with the convention
favored by analysts.) One can interpret (2) as the equation satisfied by a random walk
with parabolic scaling following the integral curves of the vector fields X1, . . . Xm, when
the step of the walk tends to zero. This construction is very general (works in Riemannian
and in the sub-Riemannian case) and does not use any notion of volume on the manifold.1

However the operator
∑k
i=1X

2
i is not completely satisfactory to describe a diffusion

process for the following reasons:
• the construction works only if a global orthonormal frame X1, . . . , Xk exists;
• it is not intrinsic in the sense that it depends on the choice of the orthonormal

frame;
• it is not essentially self-adjoint w.r.t. a natural volume and one cannot guaran-

tee a priori a “good” evolution in L2 (existence and uniqueness of a contraction
semigroup etc...).

In the Riemannian context a heat operator that is globally well defined, frame independent
and essentially self-adjoint w.r.t. the Riemannian volume (at least under the hypotheses
of completeness) is the Laplace-Beltrami operator ∆ = div ◦ grad. A heat-like equation

(3) ∂tϕ = ∆ϕ

has an associated diffusion given by the solution of the stochastic differential equation

(4) dqt =
k∑
i=1

Xi(qt)
(√

2 dwit
)

(in this case k = n is equal to the dimension of M)

in the Ito sense (for instance using the Bismut contruction on the bundle of orthonormal
frame or the Emery approach [9, 12]). Also, this equation can be interpreted as the
equation satisfied by the limit of a random walk that, instead of integral curves of the
vector fields of the orthonormal frame, follows geodesics. The geodesics starting from a
given point are weighted with a uniform probability given by the Riemannian metric on
the tangent space at the point.

The purpose of this paper is to extend this more invariant construction of random
walks to the sub-Riemannian context, to obtain a definition of an intrinsic Laplacian in
sub-Riemannian geometry and to compare it with the divergence of the horizontal gradient.

In Section 2, we introduce a general scheme of convergence of random walks of suffi-
ciently general class to include all our constructions.

1In the Riemannian case avoiding the use of a volume is not crucial since an intrinsic volume (the
Riemannian one) can always be defined. But in the sub-Riemannian case, how to define an intrinsic
volume is a subtle question, as discussed below.
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The task of determining the appropriate random walk is not obvious for several reasons.
First it is not obvious how to give a uniform measure on the space of geodesics starting
from a given point. Indeed in sub-Riemannian geometry geodesics starting from a given
point are always parameterized by a non-compact subset of the cotangent space at the
point, on which there is no canonical “uniform” probability measure. Second, in sub-
Riemannian geometry for every ε there exist geodesics of length ε that have already lost
their optimality, and one has to choose between a construction involving all geodesics
(including the non-optimal ones) or only those that are optimal. Third, one should decide
what to do with abnormal extremals. Finally, there is the problem of defining an intrinsic
volume in sub-Riemannian geometry, to compute the divergence.

It is not the first time that this problem has been attacked. In [15, 16, 10, 17, 18],
the authors compare the divergence of the gradient with the Laplacian corresponding to
a random walk induced by a splitting of the cotagent bundle (see [10, Section 1.4] for a
more detailed summary of this literature).

In this paper we use another approach, trying to induce a measure on the space of
geodesics, from the ambient space, using the idea of “sampling” the volume.

This idea works very well in the Riemannian case, permitting a random walk interpre-
tation of the divergence of the gradient also when the divergence is computed w.r.t. an
arbitrary volume. From these results one also recognizes a particular role played by the
Riemannian volume (see Section 3 and Corollary 9).

In the sub-Riemannian case the picture appears richer and more complicated. Even for
contact Carnot groups (see Section 4) the volume sampling procedure is non-trivial, as
one requires an explicit knowledge of the exponential map, and we get some surprising
results. In the 3D Heisenberg group one gets that the limit process is generated by the
divergence of the horizontal gradient if and only if at least one of the two conditions are
satisfied: (i) one is using the Popp volume; (ii) a suitable parameter used to realize the
“volume sampling” is equal to 1/2, evoking reminiscences of the Stratonovich integral.

In higher dimension one gets that in general the generator of the limit process is not the
expected divergence of the horizontal gradient (even the second-order terms are not the
expected ones); however, the generator will be the divergence of the horizontal gradient
with respect to a different metric on the same distribution, as shown in Section 4.4.1.

Motivated by these unexpected results and difficulties in manipulating the exponential
map in more general sub-Riemannian cases, in Section 5, we try an alternative construc-
tion in the general contact case (that we call the flow random walk with volume sampling),
inspired by the classical Stratonovich integration and including a volume sampling proce-
dure. This construction, a priori not-intrinsic (as it depends on the choice of some vector
fields), gives rise in the limit to an intrinsic operator showing the particular role played by
the Popp volume. This construction gives some interesting hints also in the Riemannian
case; unfortunately this construction cannot be easily generalized to situations of higher
step or corank.

In the process of developing the material just described, we naturally obtain an intu-
itively appealing description of the solution to a Stratonovich SDE on a manifold as a
randomized flow along the vector fields X1, . . . , Xk (as already outlined above) while the
solution to an Ito SDE is a randomized geodesic tangent to the vector fields X1, . . . , Xk.
This difference corresponds to the infinitesimal generator being based on second Lie deriva-
tives along the Xi versus second covariant derivatives. Of course, such an approximation
procedure by random walks yields nothing about the diffusions that is not contained in
standard stochastic calculus, but the the explicit connection to important geometric ob-
jects seems compelling and also something that has not been succinctly described before,
to the best of our knowledge. Further, it is then natural to round out this perspective
on the basic objects of stochastic calculus on manifolds by highlighting the way in which
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the volume sampling procedure can be viewed as a random walk approximation of the
Girsanov change of measure, at least in the Riemannian case (see Appendix A).

For the benefit of exposition, all the proofs are collected in Section 6.

2. Convergence of random walks

We recall some preliminaries in sub-Riemannian geometry (see [1], but also [24, 26, 20]).

Definition 1. A (sub-)Riemannian manifold is a triple (M,N,g) where M is smooth,
connected manifold, N ⊂ TM is a vector distribution of constant rank k ≤ n and g is a
smooth scalar product on N. We assume that N satisfies the Hörmander’s condition
(5) span{[Xi1 , [Xi2 , [. . . , [Xim−1 , Xim ]]] | m ≥ 0, Xi` ∈ Γ(N)}q = TqM, ∀q ∈M.

By the Chow-Rashevskii theorem, any two points in M can be joined by a Lipschitz
continuous curve whose velocity is a.e. in N. We call such curves horizontal. Horizontal
curves γ : I →M have a well-defined length, given by

(6) `(γ) =
∫
I
‖γ(t)‖dt,

where ‖ · ‖ is the norm induced by g. The sub-Riemannian distance between p, q ∈M is
(7) d(p, q) = inf{`(γ) | γ horizontal curve connecting q with p}.
This distance turns (M,N,g) into a metric space that has the same topology of M . A
sub-Riemannian manifold is complete if (M,d) is complete as a metric space.

Our definition of (sub-)Riemannian structures includes Riemannian ones, when k = n.
We use the term “sub-Riemannian” (without parenthesis) to denote structures that are
not Riemannian, i.e. k < n.

Definition 2. If M is a (sub-)Riemannian manifold, (following the basic construction of
Stroock and Varadhan [32]) let Ω(M) be the space of continuous paths from [0,∞) to M .
If γ ∈ Ω is such a curve on M (with γ(t) giving the position of the path at time t), then
the metric on M induces a metric on Ω by

dΩM

(
γ1, γ2

)
=
∞∑
i=1

1
2i

sup0≤t≤i dM
(
γ1(t), γ2(t)

)
1 + sup0≤t≤i dM (γ1(t), γ2(t))

making ΩM into a Polish space. We give ΩM its Borel σ-algebra. We are primarily
interested in the weak convergence of probability measures on ΩM .

A choice of probability measure P on ΩM determines a continuous, random process on
M , and we will generally denote the random position of the path at time t by qt. Moreover,
we will use the measure P and the process qt interchangeably.

One can consider families of random walks in varying degrees of generality. For our
purposes, we are interested in what one might call bounded-step-size, parabolically-scaled
families of random walks, which for simplicity in what follows, we will just call a family
of random walks. We will index our families by a “spatial parameter” ε > 0 (this will be
clearer below), and we let δ = ε2/(2k) be the corresponding time step (here k is again the
dimension of the distribution on M).

Definition 3. A family of random walks on a (sub-)Riemannian manifold M , indexed
by ε > 0 and starting from q ∈ M , is a family of probability measures P εq on Ω(M) with
P εq (qε0 = q) = 1 and having the following property. For every ε, and every q̃ ∈ M , there
exists a probability measure Πε

q̃ on continuous paths γ : [0, δ] → M with γ(0) = q̃ such
that for every m = 0, 1, 2, . . ., the distribution of qε[mδ,(m+1)δ] under P εq is given by Πε

qε
mδ

,
independently of the position of the path qεt prior to time mδ. Further, there exists some
constant κ, independent of q̃ and ε, such that the length of γ[0,δ] is almost surely less than
or equal to κε under Πε

q̃. (So the position of the path at times mδ for m = 0, 1, 2, . . . is a
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Markov chain, starting from q, with transition probabilities P εq
(
qε(m+1)δ ∈ A | q

ε
mδ = q̃

)
=

Πε
q̃ (γδ ∈ A) for any Borel A ⊂ M . That Πε

q̃ is a measure on the entire path γ[0,δ] means
that is also encodes the continuous interpolation between qεmδ and qε(m+1)δ.)

Remark 1. In what follows Πε
q̃ will, in most cases, be supported on paths of length exactly

ε (allowing us to take κ = 1). For example, on a Riemannian manifold, one might choose
a direction at qεmδ at random and then follow a geodesic in this direction for length ε (and
in time δ). Alternatively, on a Riemannian manifold with a global orthonormal frame, one
might choose a random linear combination of the vectors in the frame, still having length
1, and then flow along this vector field for length ε. In both of these cases, Πε

q̃ is itself
built on a probability measure on the unit sphere in Tq̃M according to a kind of scaling
by ε. These walks, and variations and sub-Riemannian versions thereof, form the bulk of
what we consider, and should be sufficient to illuminate the definition.

Further, while the introduction of the “next step” measure Πε
q̃ is suitable for the general

definition and accompanying convergence result, it is overkill for the geometrically natural
steps that we specifically consider. Instead, we will generally describe the steps of our
random walks in simpler geometric terms (as in the case of a choosing a random geodesic
segment of length ε just mentioned), and leave the specification of Πε

q̃ implicit, though in
a straightforward way.

We note that, for some constructions like that of solutions to a Stratonovich SDE, there
need not be a metric on M , but instead a smooth structure is sufficient. Unfortunately, the
machinery of convergence of random walks just discussed is formulated in terms of metrics,
and thus we will generally proceed by choosing some (Riemannian or sub-Riemannian)
metric on M when desired. However, note that if M is compact, any two Riemannian
metrics induce Lipschitz-equivalent distances on M , and thus the induced distances on
ΩM are comparable. This means that the resulting topologies on ΩM are the same, just
metrized differently, and thus statements about the convergence of probability measures
on ΩM (which is how we formalize the convergence of random walks) don’t depend on what
metric on M is chosen. This suggests that a more general framework could be developed,
avoiding the need to introduce a metric on M when the smooth structure should suffice,
but such an approach will not be pursued here.

Definition 4. Let ε > 0. To the family of random walks qεt (in our terminology, and with
the above notation), we associated the family of smooth operators

(8) (Lεφ)(q) := 1
δ
E[φ(qεδ)− φ(q) | qε0 = q], ∀q ∈M

Definition 5. Let L be a differential operator onM . We say that a family Lε of differential
operators converge to L if for any φ ∈ C∞(M) we have Lεφ→ Lφ uniformly on compact
sets. In this case, we write Lε → L.

Let L be a smooth second-order differential operator with no zeroth-order term. If
the principal symbol of L is also non-negative definite, then there is a unique diffusion
associated to L starting from any point q ∈M , at least up until a possible explosion time.
However, since our analysis in fundamentally local, we will assume that the diffusion does
not explode. In that case, this diffusion is given by the measure Pq on Ω that solves the
martingale problem for L, so that

φ(qt)−
∫ t

0
Lφ(qs) ds

is a martingale under Pq for any smooth, compactly supported φ, and Pq (q0 = q) = 1.

Theorem 6. Let M be a (sub-) Riemannian manifold, let P εq be the probability measures
on Ω(M) corresponding to a sequence of random walks qεt (in our terminology), with
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qε0 = q, and let Lε be the associated family of operators. Suppose that Lε → L0, where L0

is a smooth second-order operator with non-negative definite principal symbol and without
zeroth-order term. Further, suppose that the diffusion generated by L, which we call q0

t ,
does not explode, and let P 0

q be the corresponding probability measure on Ω(M) starting
from q. Then P εq → P 0

q as ε→ 0, in the sense of weak convergence of probability measures.

Proof. The theorem is a special case of Theorem 70 and Remark 26 of [10]. First note
that a random walk qεt as described here corresponds to a random walk Xh

t in the notation
of that paper under the change of variables h = ε2/2k, with each step being given either
by a continuous curve (which may or may not be a geodesic), as addressed in Remark 26.
Then all of the assumptions of that theorem are included in the hypotheses above and our
definition of the convergence Lε → L0, except the assumption that the random walks qεt
satisfy Eq. (19) of [10]. However, every random walk in our class has the property that,
during any step, the path never goes more than distance κε from the starting point of the
step for some fixed κ > 0, by construction. This immediately shows that every random
walk in our class satisfies this Eq. (19). But then the conclusion of Theorem 70 of [10],
namely P εq → P 0

q as ε→ 0 follows. �

3. Geodesic random walks in the Riemannian setting

3.1. Ito SDEs via geodesic random walks. Let (M,g) be a Riemannian manifold.
We consider a set of smooth vector fields, and since we are interested in local phenomena,
we are free to assume that the Vi have bounded lengths and that (M,g) is geodesically
complete. We now consider the Ito SDE

(9) dqt =
k∑
i=1

Vi (qt) dwit, q0 = q

for some q ∈ M , where w1
t , . . . , w

k
t are independent, one-dimensional Brownian motions2.

To construct a corresponding sequence of random walks, we choose a random vector V =
β1V1 + β2V2 + · · ·+ βkVk by choosing (β1, . . . , βk) uniformly from the unit sphere. Then,
we follow the geodesic γ(s) determined by γ(0) = q and γ′(0) = 2k

ε V for time δ = ε2/(2k).
Equivalently, we travel a distance of ε|V | in the direction of V (along a geodesic). This
determines the first step, qεt with t ∈ [0, δ], of a random walk (and thus, implicitly, the
measure Πε

q). Determining each additional step in the same way produces a family of
piecewise geodesic random walks qεt , t ∈ [0,∞), which we call the geodesic random walk
at scale ε associated with the SDE (9) (note that, in terms of definition 3, we can take
κ = supq,(β1,...,βk) V ).

We now study the convergence of this family of walks as ε → 0. Let x1, . . . , xn be
Riemannian normal coordinates around qε0 = q, and write the random vector V as

(10) V (x) =
k∑

m=1
βmVm(x) =

k∑
m=1

βi

n∑
i=1

V i
m∂i +O(r) =

n∑
i=1

Ai∂xi +O(r),

where r =
√
x2

1 + . . .+ x2
n. In normal coordinates, Riemannian geodesics correspond to

Euclidean geodesics up to second order, and thus γV (t) has i-th coordinate Ait + O(t3).
In particular, for any smooth function φ we have

(11) φ(γV (ε))− φ(q) =
n∑
i=1

Ai(∂iφ)(q)ε+ 1
2

n∑
i,j=1

AiAj(∂i∂jφ)(q)ε2 +O(ε3).

2One approach to interpreting and solving (9), as well as verifying that qt will be a martingale, is via
lifting it to the bundle of orthonormal frames; see the first two chapters of [19] for background on stochastic
differential geometry, connection-martingales, and the bundle of orthonormal frames. Alternatively, [12,
Chapter 7] gives a treatment of Ito integration on manifolds.
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Taking the average w.r.t. the uniform probability measure on the sphere β2
1 + . . .+β2

k = 1
we find that

1
δ
E [φ (qεδ)− φ(q) |qε0 = q ]→

k∑
m=1

n∑
i,j=1

V i
mV

j
m(∂i∂jφ)(q)

=
k∑

m=1
∇2
Vm,Vm(q) as ε→ 0,

(12)

where ∇2 denotes the Hessian, with respect to the Levi-Civita connection, and where we
recall that

∑n
j=1 V

j
m∂j is Vm(q) and the xi are a system of normal coordinates at q. Note

that right-hand side of (12) determines a second-order operator at q which is independent
of the choice of normal coordinates (and thus depends only on the Vi). Moreover, this
same construction works at any point, and thus we have a second-order operator L on all
of M . Because the Vi are smooth, so is L.

We see that the martingale problem associated to L has a unique solution (at least
until explosion, but since we are interested in local questions, we can assume that there
is no explosion). Further, this solution is the law of the process q0 that solves (9). If we
again let P ε and P 0 be the probability measures on Ω(M) corresponding to qεt and q0

t ,
respectively, Theorem 6 implies that P ε → P 0 (weakly) as ε→ 0.

Of course, we see that our geodesic random walks, as well as the diffusion q0 and thus the
interpretation of the SDE (9), depend on the Riemannian structure. This is closely related
to the fact that neither Ito SDEs, normal coordinates, covariant derivatives, nor geodesics
are preserved under diffeomorphisms, in general, and to the non-standard calculus of Ito’s
rule for Ito integrals, in contrast to Stratonovich integrals.

The most important special case of a geodesic random walk is when k = n and the
vector fields V1, . . . , Vn are an orthonormal frame. In that case, qεt is an isotropic random
walk, as described in [10] (see also [25] for a related family of processes) and

(13) Lε → ∆,

where ∆ = div ◦ grad is the Laplace-Beltrami operator (here the divergence is computed
with respect to the Riemannian volume). In particular q0

t is the Brownian motion on M .
If we further specialize to Euclidean space, we see that the convergence of the random

walk to Eucldiean Brownian motion is just a special case of Donsker’s invariance principle.
The development of Brownian motion on a Riemannian manifold via approximations is
also not new; one approach can be found in [31].

3.2. Volume sampling through the exponential map. Let (M,g) be a n-dimensional
Riemannian manifold equipped with general volume form ω, that might be different from
the Riemannian one R. This freedom is motivated by the forthcoming applications to sub-
Riemannian geometry, where there are several choices of intrinsic volumes and in principle
there is not a preferred one [2, 7]. Besides, also in the Riemannian case, one might desire
to study operators which are symmetric w.r.t. a generic weighted measure ω = ehR where
h ∈ C∞(M).

We recall that the gradient grad(φ) of a smooth function depends only on the Riemann-
ian structure, while the divergence divω(X) of a smooth vector field depends on the choice
of the volume. In this setting we introduce an intrinsic diffusion operator, symmetric in
L2(M,ω), with domain C∞c (M) as the divergence of the gradient:

(14) ∆ω := divω ◦ grad =
n∑
i=1

X2
i + divω(Xi)Xi,

where in the last equality, that holds locally, X1, . . . , Xn is a orthonormal frame.
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If one would like to define a random walk converging to (the law of) ∆ω, one should
make a construction in such a way that the choice of the volume enters in the definition
of the walk. One way to do this is to “sample the volume along the walk”. For all s ≥ 0,
consider the Riemannian exponential map
(15) expq(s; ·) : SqM →M, q ∈M,

where SqM ⊂ TqM is the Riemannian tangent sphere. In particular, for v ∈ SqM , then
γv(s) = expq(s; v) is the unit-speed geodesic starting at q with initial vector v. Then
|ιγ̇v(s)ω| is a density3 on the Riemannian sphere of radius s. By pulling this back through
the exponential map, we obtain a probability measure that “gives more weight to geodesics
arriving where there is more volume”.
Definition 7. For any q ∈M , and ε > 0, we define the family of densities µεq on SqM

(16) µεq(v) := 1
N(q, ε)

∣∣∣(expq(ε; ·)∗ιγ̇v(ε)ω)(v)
∣∣∣ , ∀v ∈ SqM,

where N(q, ε) is such that
∫
SqM

µεq = 1. For ε = 0, we set µ0
q to be the standard normalized

Riemannian density form on SqM .
Remark 2. Observe that for small ε > 0 the Jacobian determinant of expq(ε; ·) does not
change sign, hence the absolute value in the definition above is not strictly necessary
to obtain a well defined probability measure on SqM . By assuming that the sectional
curvature Sec ≤ K is bounded from above, we can get rid globally of the need for the
absolute value. Since our concerns are local, this would not be much of a loss of generality.

Thus, we define a random walk bεt as follows:
(17) bε(i+1)δ := expbε

iδ
(ε; v), v ∈ SqM with probability µεq.

(see Definition 3 and Remark 1). Let P εω (we drop a q from the notation as the starting
point is fixed) be the probability measure on the space of continuous paths on M starting
at q, associated with bεt and consider the associated family of operators

(Lεωφ)(q) := 1
δ
E[φ(bεδ)− φ(q) | bε0 = q](18)

:= 1
δ

∫
SqM

[φ(expq(ε; v))− φ(q)]µεq(v), ∀q ∈M,(19)

(see Definition 5), for any φ ∈ C∞(M). A special case of Theorem 8 gives
lim
ε→0

Lεω = ∆R + grad(h)︸ ︷︷ ︸
∆ω

+ grad(h),(20)

where grad(h) is understood as a derivation. By Theorem 6, P εω converges to a well-defined
diffusion generated by r.h.s. of (20). This result is not satisfactory, as one would expect
Lεω → ∆ω. Indeed, in (20), we observe that the correction 2 grad(h) provided by the
volume sampling construction is twice the expected one.

To address this problem we introduce a parameter c ∈ [0, 1] and consider, instead, the
family µcεq . This corresponds to sampling the volume not at the final point of the geodesic
segment, but at an intermediate point. We define a discrete process as follows:
(21) bε(i+1)δ,c := expqε

iδ,c
(ε, v), v ∈ SqM with probability µcεq ,

that we call Ito random walk with volume sampling (with volume ω and sampling ratio c).
Remark 3. The case c = 0 does not depend on the choice of ω and correspond to the
construction of Section 3.1, while the case c = 1 corresponds to the process of Equation 17.

3If η is an m-form on an m-dimensional manifold, the symbol |η| denotes the associated density, in the
sense of tensors.
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Figure 1. Geodesic random walk with sampling of the volume ω and ratio
c. The case c = 0 corresponds to a geodesic random walk with no volume
sampling. For each ε, the paths of the walk are piece-wise smooth geodesics.

For ε > 0, let P εω,c be the probability measure on the space of continuous paths on M
associated with the process bεt,c, and consider the family of operators

(Lεc,ωφ)(q) := 1
δ
E[φ(bεδ)− φ(q) | bε0 = q](22)

:= 1
δ

∫
SqM

[φ(expq(ε; v))− φ(q)]µcεq (v), ∀q ∈M,(23)

for any φ ∈ C∞(M). Our first result is that the family of Riemannian geodesic random
walk with volume sampling converges to a well-defined diffusion.

Theorem 8. Let (M,g) be a Riemannian manifold with a volume ω = ehR, where R is
the Riemannian volume and h ∈ C∞(M). Let c ∈ [0, 1]. Then Lεc,ω → Lω,c, where

(24)
Lω,c = ∆R + 2c grad(h)

= ∆ω + (2c− 1) grad(h).
Moreover, if (M,g) is complete, then P εω,c → Pω,c weakly, where Pω,c is the law of the
process associated with Lω,c.

Remark 4. We have these alternative forms of (24), obtained by unraveling the definitions:
Lω,c = ∆e(2c−1)hω(25)

= ∆e2chR(26)

=
n∑
i=1

X2
i + (2cdivω(Xi) + (1− 2c) divR(Xi))Xi,(27)

where, in the last line, X1, . . . , Xn is a local orthonormal frame.

As a simple consequence of (24) or its alternative formulations, we have the following
statement, which appears to be new even in the Riemannian case.

Corollary 9. Let (M,g) be a complete Riemannian manifold. The operator Lω,c with
domain C∞c (M) is essentially self-adjoint on L2(M,ω) if and only at least one of the
following two conditions hold:

(i) c = 1/2;
(ii) ω is proportional to the Riemannian volume (i.e. h is constant).

The previous discussion stresses the particular role played by the Riemannian volume.
Not only does it coincide with the Hausdorff measure, but according to the above con-
struction, it is the only volume (up to constant rescaling) that gives the correct self-adjoint
operator for any choice of the parameter c.

Remark 5. If we want the volume-sampling scheme to produce the Laplacian with respect
to the general volume being sampled ω, we should take c = 1/2. With hindsight, this
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might not be surprising. By linearity, we see that sampling with c = 1/2 is equivalent
to sampling the volume along the entire step, uniformly with respect to time (recall that
the geodesics of the steps are traversed with constant speed), rather than privileging any
particular point along the path.

Remark 6. One can prove that the limit operator corresponding to the geodesic random
walk with volume sampling ratio c = 1 is equal, up to a constant (given by the ratio of
the area of the euclidean unit sphere and the volume of the unit ball in dimension n),
to the limit operator corresponding to a more general class of random walk where we
jump to points of the metric ball Bq(ε) of radius ε, uniformly with respect to normalized
measure ω/ω(Bq(ε)). This kind of random walk for the Riemannian measure has also been
considered in [23], in relation with the study of its spectral properties.

4. Geodesic random walks in the sub-Riemannian setting

We want to define a sub-Riemannian version of the geodesic random walk with volume
sampling, extending the Riemannian construction of the previous section. Recall the
definition of (sub-)Riemannian manifold in Section 2.

4.1. Geodesics and exponential map. As in Riemannian geometry, geodesics are hor-
izontal curves that have constant speed and locally minimize the length between their
endpoints. Define the sub-Riemannian Hamiltonian H : T ∗M → R as

(28) H(λ) := 1
2

k∑
i=1
〈λ,Xi〉2,

for any local orthonormal frame X1, . . . , Xk ∈ Γ(N). Let σ be the natural symplectic
structure on T ∗M , and π : T ∗M → M . The Hamiltonian vector field ~H is the unique
vector field on T ∗M such that dH = σ(·, ~H). Then the Hamilton equations are

(29) λ̇(t) = ~H(λ(t)).
Solutions of (29) are smooth curves on T ∗M called extremals, and their projections
γ(t) := π(λ(t)) on M are geodesics. In the Riemannian setting, all geodesics can be
recovered uniquely in this way. In the sub-Riemannian one, this is no longer true, as
abnormal geodesics can appear. These are minimizing trajectories that might not follow
the Hamiltonian dynamics of (29).

For any λ ∈ T ∗M we consider the geodesic γλ(t), obtained as the projection of the
solution of (29) with initial condition λ(0) = λ. Observe that the Hamiltonian function,
which is constant on λ(t), measures the speed of the associated geodesic:

(30) 2H(λ) = ‖γ̇λ(t)‖2, λ ∈ T ∗M.

Since H is fiber-wise homogeneous of degree 2, we have the following rescaling property:
(31) γαλ(t) = γλ(αt), α > 0.
This justifies the restriction to the subset of initial covectors lying in the level set 2H = 1.

Definition 10. The unit cotangent bundle is the set of initial covectors such that the
associated geodesic has unit speed, namely
(32) := {λ ∈ T ∗M | 2H(λ) = 1} ⊂ T ∗M.

For any λ ∈ , the geodesic γλ(t) is parametrized by arc-length, namely `(γ|[0,T ]) = T .

Remark 7. We stress that, in the genuinely sub-Riemannian case, H|T ∗
qM is a degenerate

quadratic form. It follows that the fibers q are non-compact cylinders, in sharp contrast
with the Riemannian case (where the fibers q are spheres).
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For any λ ∈ , the cut time tc(λ) is defined as the time where γλ(t) loses optimality
(33) tc(λ) := sup{t > 0 | d(γλ(0), γλ(t)) = t}.
In particular, for a fixed ε > 0 we define
(34) ε

q := {λ ∈ q | tc(λ) ≥ ε} ⊂ q,

as the set of unit covector such that the associated geodesic is optimal up to time ε.

Definition 11. Let Dq ⊆ [0,∞) × T ∗qM the set of the pairs (t, λ) such that γλ is well
defined up to time t. The exponential map at q ∈ M is the map expq : Dq → M that
associates with (t, λ) the point γλ(t).

Even if is not compact, all arc-length parametrized geodesics are well defined for
a sufficiently small time. The next lemma is a consequence of the form of Hamilton’s
equations and the compactness of small balls (see [1]).

Lemma 12. For any compact K ⊂M , there exists ε̄(K) > 0 such that, for any ε < ε̄(K)
we have [0, ε) × q ⊆ Dq. In other words all arc-length parametrized normal geodesics
γλ(t) are well defined on the interval [0, ε).

4.2. Sub-Laplacians. For any function φ ∈ C∞(M), the horizontal gradient grad(φ) ∈
Γ(N) is, at each point, the horizontal direction of steepest slope of φ, that is
(35) g(grad(φ), X) = 〈dφ,X〉, ∀X ∈ Γ(N).
Since in the Riemannian case this coincides with the usual gradient, this notation will
cause no confusion. If X1, . . . , Xk is a local orthonormal frame, we have

(36) grad(φ) =
k∑
i=1

Xi(φ)Xi.

For any fixed volume form ω ∈ ΛnM (or density if M is not orientable), the divergence of
a smooth vector field X is defined by the relation LXω = divω(X), where L denotes the
Lie derivative. Notice that the sub-Riemannian structure does not play any role in the
definition of divω. Following [24, 3], the sub-Laplacian on (M,N,g) associated with ω is
(37) ∆ωφ := divω(grad(φ)), ∀φ ∈ C∞(M).
The sub-Laplacian is symmetric on the space C∞c (M) of smooth functions with compact
support with respect to the L2(M,ω) product. If (M,d) is complete and there are no
non-trivial abnormal minimizers, then ∆ω is essentially self-adjoint on C∞c (M) and has a
smooth positive heat kernel [29, 30].

The sub-Laplacian will be intrinsic if we choose an intrinsic volume. See [10, Sec. 3]
for a discussion of intrinsic volumes in sub-Riemannian geometry. A natural choice, at
least in the equiregular setting, is Popp volume [7, 24], that is smooth. Other choices are
possible, for example the Hausdorff or the spherical Hausdorff volume that, however, are
not always smooth [2]. For the moment we let ω be a general smooth volume.

4.3. The sub-Riemannian geodesic random walk with volume sampling. In con-
trast with the Riemannian case, where SqM has a well defined probability measure induced
by the Riemannian structure, we have no such a construction on q. Thus, it is not clear
how to define a simple geodesic random walk in the sub-Riemannian setting.

For ε > 0, consider the sub-Riemannian exponential map
(38) expq(ε; ·) : q →M, q ∈M.

For λ ∈ q, then γλ(ε) = expq(ε;λ) is the associated unit speed geodesic starting at q.
One might be tempted to repeat Definition 7, using the exponential map to induce a

density on q, through the formula µεq(λ) ∝ |(expq(ε; ·)∗iγ̇λ(ε)ω)(λ)|. However, there are
non-trivial difficulties arising in the genuine sub-Riemannian setting.
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• The exponential map is not a local diffeomorphism at ε = 0, and Riemannian
normal coordinates are not available. This tool is used for proving the convergence
of walks in the Riemannian setting;
• Due to the presence of zeroes in the Jacobian determinant of expq(ε; ·) for arbi-

trarily small ε, the absolute value in the definition of µεq is strictly necessary (in
contrast with the Riemannian case, see Remark 2.
• Since q is not compact, there is no guarantee that

∫
q
µεq < +∞;

Assuming that
∫

q
µεq < +∞, we generalize Definition 7 as follows.

Definition 13. For any q ∈M , and ε > 0, we define the family of densities µεq on q

(39) µεq(λ) := 1
N(q, ε)

∣∣∣(expq(ε; ·)∗iγ̇λ(ε)ω)(λ)
∣∣∣ , ∀λ ∈ q,

where N(q, ε) is fixed by the condition
∫

q
µεq = 1.

As we did in Section 3.2, and for c ∈ (0, 1], we build a random walk

(40) bε(i+1)δ,c := expbε
iδ,c

(ε;λ), λ ∈ q with probability µcεq .

Let P εω,c be the associated probability measure on the space of continuous paths on M
starting from q, and consider the corresponding family of operators, which in this case is

(41)
(Lεc,ωφ)(q) = 1

δ
E[φ(bεδ,c)− φ(q) | bε0,c = q]

= 1
δ

∫
q

[φ(expq(ε;λ))− φ(q)]µcεq (λ), ∀q ∈M,

for any φ ∈ C∞(M). Clearly when k = n, (41) is the same family of operators associated
with a Riemannian geodesic random walk with volume sampling discussed in Section 3.2,
and this is why - without risk of confusion - we used the same symbol.

The problem of convergence is extremely complicated in general sub-Riemannian setting
(k < n), due to the difficulties outlined above. We treat in detail the case of contact Carnot
groups, where we find some surprising results. This class of structures is particularly
important as they arise as Gromov-Hausdorff tangent cones of contact sub-Riemannian
structures [8], and play the same role that Euclidean space plays in Riemannian geometry.

Remark 8. As we anticipated, in sub-Riemannian geometry abnormal geodesics may ap-
pear. More precisely, strictly abnormal geodesics do not arise as projections of solutions of
(29). The class of processes that we defined never walk along these trajectories, but can
walk along abnormal segments that are not strictly abnormal.

The (minimizing) Sard conjecture states that the set of endpoints of strictly abnormal
(minimizing) geodesics starting from a given point has measure zero in M . However, this
remains an hard open problem in sub-Riemannian geometry [5]. See also [22, 27, 4] for
recent progresses on the subject.

4.4. Contact Carnot groups. Let M = R2d+1, with coordinates (x, z) ∈ R2d × R.
Consider the following global vector fields

(42) Xi = ∂xi −
1
2(Ax)i∂z, i = 1, . . . , 2d,

where

(43) A =

α1J
. . .

αdJ

 , J =
(

0 −1
1 0

)
,
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is a skew-symmetric, non-degenerate matrix with singular values 0 < α1 ≤ . . . ≤ αd.
A contact Carnot group is the sub-Riemannian structure on M = R2d+1 such that N =
span{X1, . . . , X2d} and g(Xi, Xj) = δij . Notice that

(44) [Xi, Xj ] = Aij∂z.

Set g1 := span{X1, . . . , X2d} and g2 := span{∂z}. The algebra g generated by the Xi’s
and ∂z admits a nilpotent stratification of step 2, that is

(45) g = g1 ⊕ g2, g1, g2 6= {0},

with

(46) [g1, g1] = g2, and [g1, g2] = [g2, g2] = {0}.

There is a unique connected, simply connected Lie group G such that g is its Lie algebra
of left-invariant vector fields. The group exponential map,

(47) expG : g→ G,

associates with v ∈ g the element γ(1), where γ : [0, 1] → G is the unique integral line of
the vector field v such that γ(0) = 0. Since G is simply connected and g is nilpotent, expG
is a smooth diffeomorphism. Thus we can identify G ' R2d+1 with a polynomial product
law ? given by

(48) (x, z) ? (x′, z′) =
(
x+ x′, z + z′ + 1

2x
∗Ax′

)
.

Denote by Lq the left-translation Lq(p) := q ? p. The field Xi are left-invariant, and
as a consequence also the sub-Riemannian distance is left-invariant, in the sense that
d(Lq(p1), Lq(p2)) = d(p1, p2).

Remark 9. As consequence of left-invariance, contact Carnot groups are complete as metric
spaces. Moreover all abnormal minimizers are trivial. Hence, for each volume ω, the
symmetric operator ∆ω with domain C∞c (M) is also essentially self-adjoint in L2(M,ω).

Example 1. The 2d + 1 dimensional Heisenberg group H2d+1, for d ≥ 1, is the contact
Carnot group where α1 = . . . = αd = 1. The term Heisenberg group usually denotes the
simplest 3D case, that is H3.

Example 2. The bi-Heisenberg group is the 5-dimensional contact Carnot group with 0 <
α1 < α2. That is, A has two distinct singular values.

A natural volume is the Popp volume P. It turns out that that, up to constant scaling
(see [7]), it coincides with the Lebesgue volume of R2d+1, that is

(49) P = 1
2
∑d
i=1 α

2
i

dx1 ∧ . . . ∧ dx2d ∧ dz,

and coincides also with the left-invariant Haar volume. One can check that divP(Xi) = 0
hence the sub-Laplacian w.r.t. P is the sum of squares4:

(50) ∆P =
2d∑
i=1

X2
i ,

In this setting, we are able to prove the convergence of the sub-Riemannian random walk
with volume sampling, with fixed volume P.

4This is the case for any sub-Riemannian left-invariant structure on unimodular Lie group [3, 6].
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Theorem 14. Let H2d+1 be the Heisenberg group, with a general volume ω = ehP. Then
Lεω,c → Lω,c, where

(51) Lω,c = σ(c)
( 2d∑
i=1

X2
i + 2cXi(h)

)
= σ(c) (divω ◦ grad +(2c− 1) grad(h)) ,

and σ(c) is a constant (see Remark 10).

In particular Lω,c it is essentially self-adjoint in L2(M,ω) if and only if c = 1/2 or ω = P
(i.e. h is constant). The proof of the above theorem is omitted, as it is a consequence
of the next, more general, result. In the general case, the picture is different, and quite
surprising, since not even the principal symbol is the expected one.

Theorem 15. Let (R2d+1,N,g) be a contact Carnot group, equipped with a volume ω =
ehP and let c ∈ (0, 1]. Then Lεω,c → Lω,c, where

(52) Lω,c =
d∑
i=1

σi(c)
(
X2

2i−1 +X2
2i

)
+ 2c

d∑
i=1

σi(c) (X2i−1(h)X2i−1 +X2i(h)X2i) ,

where σ1(c), . . . , σd(c) ∈ R are

(53) σi(c) = cd

(d+ 1)
∑d
i=1

∫+∞
−∞ |gi(y)|dy

d∑
`=1

(1 + δ`i)
∫ +∞

−∞
|g`(cpz)|

sin(αipz2 )2

(αipz/2)2 dpz,

and, for i = 1, . . . , d

(54) gi(y) =

∏
j 6=i

sin
(αjy

2
)2

sin
(αiy

2
) (αiy

2 cos
(αiy

2
)
− sin

(αiy
2
))

(y/2)2d+2 .

Moreover, P εω,c → Pω,c weakly, where Pω,c is the law of the process associated with Lω,c.

Remark 10. If α1 = . . . = αd = 1 (Heisenberg), the functions gi = g are equal and

(55) σ(c) := σi(c) = c∫
R |g(y)|dy

∫
R
|g(cy)|sin(y/2)2

(y/2)2 ,

does not depend on i. In general, however, σi 6= σj (see Figure 2).

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0
σ

σ1

σ2

σ3

Figure 2. Values of σi(c) for a contact Carnot group with d = 3 and
α1 = 1, α2 = 2 and α3 = 3.
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4.4.1. An intrinsic formula. We rewrite the operator of Theorem 15 in a more intrinsic
form. Define a new contact Carnot group structure (R2d+1,N,g′), by defining

(56) X ′2i−1 :=
√
σi(c)X2i−1, X ′2i :=

√
σi(c)X2i, i = 1, . . . , d,

to be a new orthonormal frame. Observe that this construction does not depend on the
choice of ω. Let grad and grad′ denote the horizontal gradients w.r.t. the sub-Riemannian
metrics g and g′, respectively.

Lemma 16. The limit operator Lω,c of Theorem 15 is

(57) Lω,c = divω ◦ grad′+(2c− 1) grad′(h),

where grad′(h) =
∑2d
i=1X

′
i(h)X ′i is understood as a derivation.

Again Lω,c it is essentially self-adjoint in L2(M,ω) if and only if c = 1/2 or ω = P
(i.e. h is constant). In both cases it is a “divergence of the gradient”, i.e. a well defined,
intrinsic and symmetric operator but, surprisingly, not the expected one. In particular,
the behavior of associated heat kernel (e.g. its asymptotics) depend not on the original
sub-Riemannian metric g, but the new one g′.

4.4.2. On the symbol. We recall that the (principal) symbol of a smooth differential oper-
ator D on a smooth manifold M can be seen as a function Σ(D) : T ∗M → R. The symbol
associated with the sub-Riemannian geodesic random walk with volume sampling is

(58) Σ(Lω,c)(λ) =
d∑
i=1

σi(c)(〈λ,X2i−1〉2 + 〈λ,X2i〉2), λ ∈ T ∗M,

and does not depend on ω. On the other hand, the principal symbol of ∆ω is

(59) Σ(∆ω)(λ) =
2d∑
i=1
〈λ,Xi〉2 = 2H(λ), λ ∈ T ∗M.

The two symbols are different, for any value of the sampling ratio c > 0. The reason
behind this discrepancy is that the family of operators Lεω,c keeps track of the different
eigenspace associated with the generically different singular values αi 6= αj , through the
Jacobian determinant of the exponential map.

4.5. Alternative constructions for the sub-Riemannian random walk. An alter-
native construction of the sub-Riemannian random walk of Section 4 is the following. For
any fixed step length ε > 0, one follows only minimizing geodesics segments, that is λ ∈ ε

q

(the latter is defined in 34). In other words, for ε > 0, and c ∈ (0, 1], we consider the
restriction of µcεq to ε

q (which we renormalize in such a way that
∫

ε
q
µcεq = 1).

Remark 11. In the the original construction the endpoints of the first step of the walk
lie on the front of radius ε centered at q, that is the set Fq(ε) = expq(ε; q). With this
alternative construction, the endpoints lie on the metric sphere of radius ε, centered at q,
that is the set Sq(ε) = expq(ε; ε

q).

Remark 12. In the Riemannian setting, locally, for ε > 0 sufficiently small, all geodesics
starting from q are optimal at least up to length ε, and the two constructions coincide.

This construction requires the explicit knowledge of ε
q. For contact Carnot groups this

is known [2]. We obtain the following convergence theorem, whose proof is similar to the
one of Theorem 15, and thus omitted.
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Theorem 17. Consider the geodesic sub-Riemannian random walk with volume sampling,
with volume ω and ratio c, defined according to the alternative constructions. Then the
statement of Theorem 15 holds, replacing the constants σ1(c), . . . , σd(c) ∈ R with

(60) σalti (c) = cd

(d+ 1)
∑d
i=1

∫ 2π/αdc
−2π/αdc |gi(y)|dy

d∑
`=1

(1 + δ`i)
∫ 2π/αd

−2π/αd
|g`(cpz)|

sin(αipz2 )2

(αipz/2)2 dpz.

We call Laltω,c the corresponding operator.

Remark 13 (The case c = 0). In the Riemannian setting the case c = 0 represents the
geodesic random walk with no volume sampling of Section 3.1. In fact, by Theorem 8

(61) Lω,0 = lim
c→0+

Lω,c = divR ◦ grad, (Riemannian geodesic RW),

is the Laplace-Beltrami operator, for any choice of the initial volume ω. In the sub-
Riemannian setting the case c = 0 is not defined, but we can still consider the limit for
c→ 0+ of the operator. In the original construction, limc→0+ σi(c) = 0 and by Theorem 15
we have:

(62) lim
c→0+

Lω,c = 0, (sub-Riemannian geodesic RW).

For the alternative sub-Riemannian geodesic RW discussed above, we have:

(63) lim
c→0+

σalti (c) = d

4π(d+ 1)

(
1 + α2

i∑d
`=1 α

2
`

)∫ 2π

−2π
sinc

(
αix

2αd

)2
dx, ∀i = 1, . . . , d.

In particular from Lemma 16 and the change of volume formula, by Theorem 17 we have:

(64) Laltω,0 := lim
c→0+

Laltω,c = divP ◦ grad′, (alternative sub-Riemannian geodesic RW).

This is a non-zero operator, symmetric w.r.t. Popp volume, independently on the choice
of the initial volume ω. Here grad′ is the horizontal gradient defined w.r.t. the metric g′
discussed in Section 4.4.1, with the coefficients σalti (0) := limc→0+ σalti (c) > 0. Unless all
αi are equal, in general σalti (0) 6= σaltj (0) and grad′ is not proportional to grad.

Notice that Laltω,0 6= 0 and it does not depend on the choice of the volume ω. This
makes Laltω,0 (and the corresponding diffusion) an intriguing candidate for an intrinsic
sub-Laplacian (and an intrinsic Brownian motion) for contact Carnot groups. For the
Heisenberg group H2d+1, where αi = 1 for all i, by Theorem 14 we have:

(65) Laltω,0 = σalt(0) divP ◦ grad, where σalt(0) = 1
4π

∫ 2π

−2π
sinc(x)2dx.

Remark 14 (Signed measures). A further alternative construction is the one in which we
remove the absolute value in the definition 13 of µεq on q. In this case we lose the
probabilistic interpretation, and we deal with signed measure. We still have an analogue
of Theorem 15 for the operators, replacing the constants σ1(c), . . . , σd(c) ∈ R with

(66) σ̃i(c) = cd

(d+ 1)
∑d
i=1

∫+∞
−∞ gi(y)dy

d∑
`=1

(1 + δ`i)
∫ +∞

−∞
g`(cpz)

sin(αipz2 )2

(αipz/2)2 dpz.

We observe the same qualitative behavior of the initial construction highligthed in Sec-
tion 4.4.1 and 4.4.2.
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ε = .4

ε = 1

Figure 3. Measures on the cylinder for c = 1 in the Heisenberg group H3
for the original construction. Each zero corresponds to a conjugate point.

4.6. The 3D Heisenberg group. We give more details for the sub-Riemannian geodesic
random walk in the 3D Heisenberg group. This is a contact Carnot group with d = 1 and
α1 = 1. The origin of the group is (x, z) = 0. In coordinates (px, pz) ∈ T ∗0M we have

0 = {(px, pz) ∈ R2 × R | ‖px‖2 = 1},(67)
ε
0 = {(px, pz) ∈ R2 × R | ‖px‖2 = 1, |pz| ≤ 2π/ε}.(68)

see [2]. For instance, we set ω equal to the Lebesgue volume. From the proof of Theo-
rem 15, we obtain, in cylindrical coordinates (θ, pz) ∈ S1 × R ' T ∗0M

(69) µcε0 =


cε|g(cεpz)|

2π
∫∞
−∞ |g(y)|dydθ ∧ dpz original construction,

cε|g(cεpz)|
2π
∫ 2πc
2πc |g(y)|dy

dθ ∧ dpz alternative construction,

where

(70) g(y) =
sin
(y

2
) (y

2 cos
(y

2
)
− sin

(y
2
))

(y/2)4 .

The normalizations are determined by the conditions

(71)
{∫

0
|µcε0 | = 1 original construction,∫

ε
0
|µcε0 | = 1 alternative construction.

The density corresponding to µcε0 , in coordinates (px, pz) depends only on pz. For any
fixed c > 0, the density has larger and larger tails for ε→ 0, thus the probability to follow
a geodesic with large pz increases (see Fig. 3).

5. Flow random walks

The main difficulties to deal with convergence in the sub-Riemannian geodesic random
walk with volume sampling scheme were related to the non-compactness of q, and the
lack of a general asymptotics for µεq. To overcome these difficulties, we discuss a different
class of walks. This approach is inspired by the classical integration of a Stratonovich
SDE, and can be implemented on Riemannian and sub-Riemannian structures alike (the
only requirement being a set of vector fields X1, . . . , Xk on a smooth manifold M , and a
volume ω for volume sampling).
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5.1. Stratonovich SDEs via flow random walks. Let M be a smooth n-dimensional
manifold, and let V1, . . . , Vk be smooth vector fields on M . Since SDEs are fundamentally
local objects (at least in the case of smooth vector fields, where the SDE has a unique,
and thus Markov, solution), we don’t worry about the global behavior of the Vi, and
thus we can assume, without loss of generality, that the flow along any vector field V =
β1V1 + β2V2 + · · ·+ βkVk for any constants βi exists for all time. Further, we can assume
that there exists a Riemannian metric g on M such that the Vi all have bounded length.

We consider the Stratonovich SDE

(72) dqt =
k∑
i=1

Vi (qt) ◦ dwit, q0 = q,

for some q ∈ M , where w1
t , . . . , w

k
t are independent, one-dimensional Brownian motions.

We recall that solving this SDE is essentially equivalent to solving the martingale prob-
lem for the operator

∑k
i=1 V

2
i . (See [21, Chapter 5] for the precise relationship between

solutions to SDEs and solutions to martingale problems, although in this case, because of
strong uniqueness of the solution to the (72), the situation is relatively simple.) We also
assume that the solution to (72), which we denote q0

t , does not explode.
The sequence of random walks which we associate to (72) is as follows. We take ε > 0.

Consider the k-dimensional vector space of all linear combinations β1V1+β2V2+· · ·+βkVk.
Then we can naturally identify Sk−1 with the set

∑k
i=1 β

2
i = 1, and thus choose a k-tuple

(β1, . . . , βk) from the sphere according to the uniform probability measure. This gives
a random linear combination V = β1V1 + β2V2 + · · · + βkVk. Now, starting from q, we
flow along the vector field 2k

ε V for time δ = ε2/(2k), traveling a curve of length ε‖V ‖g.
This determines the first step, qεt with t ∈ [0, δ], of a random walk (and the measure Πε

q).
Determining each additional step in the same way produces a family of random walks qεt ,
that we call flow random walk at scale ε associated with the SDE (72).

We associate to each process qεt and q0
t the corresponding probability measures P ε and

P 0 on Ω(M). Then Theorem 6 shows that P ε converges to P 0 weakly as ε → 0. Note
that since this holds for any metric g as described above, this is really a statement about
processes on M as a smooth manifold, and the occurrence of g is just an artifact of the
formalism of Theorem 6.

The relationship of Stratonovich integration to ODEs, and thus flows of vector fields, is
not new. Approximating the solution to a Stratonovich SDE by an ODE driven by an ap-
proximation to Brownian motion is considered in [11] and [33]. Here, we have tried to give
a simple, random walk approach emphasizing the geometry of the situation. Nonetheless,
because M is locally diffeomorphic to Rn (or a ball around the origin in Rn, depending
on one’s preferences) and the entire construction is preserved by diffeomorphism, there is
nothing particularly geometric about the above, except perhaps the observation that the
construction is coordinate independent.

5.2. Volume sampling through the flow. The random walk defined in the previous
section, which depends only on the choice of k smooth, complete, vector field X1, . . . , Xk

fits in the general class of walks of Section 2. Moreover, the construction can be generalized
to include a volume sampling technique, as we now describe.

Here X1, . . . , Xk are a fixed set of global orthonormal fields of a (sub-)Riemannian
structure, and all our definitions will depend on this choice. We will discuss in which cases
the limit diffusion does not depend on such a choice.

Definition 18. For any q ∈ M , and ε > 0, the end-point map Eq,ε : Rk → M gives the
point Eq,ε(u) at time ε of integral curve of the vector field Xu :=

∑k
i=1 uiXi starting from

q ∈M . Moreover, let Sq,ε := Eq,ε(Sk−1).
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Remark 15. For small ε ≥ 0, Eq,ε : Sk−1 → Sq,ε is a diffeomorphism, and for any unit
u ∈ Sk−1, then γu(ε+ τ) := Eq,ε+τ (u) is a segment of flow line transverse to Sq,ε.

The next step is to induce a probability measure µεq on Sk−1 via volume sampling
through the endpoint map. We start with the Riemannian case.

5.3. Flow random walks with volume sampling in the Riemannian setting. In
this case k = n and the choice for the volume sampling scheme is quite natural.
Definition 19. Let (M,g) be a Riemannian manifold. For any q ∈ M and ε > 0, we
defined the family of densities on µεq on Sn−1

(73) µεq(u) := 1
N(q, ε)

∣∣∣E∗q,ειγ̇u(ε)ω)(u)
∣∣∣ , ∀u ∈ Sn−1.

where N(q, ε) is fixed by the condition
∫
Sn−1 µεq = 1. For ε = 0, we set µ0

q the standard
normalized density on Sn−1.

Then, we define a random walk by choosing u ∈ Sk−1 according to µεq, and following
the corresponding integral line. That is, for ε > 0
(74) rε(i+1)δ,c := Erε

iδ,c
,ε(u), u ∈ Sn−1 with probability µcεq ,

where we also introduced the parameter c ∈ [0, 1] in the volume sampling. This class of
walks include the one described in the above section (by setting c = 0).

Let P εω,c be the probability measure on the space of continous paths on M associated
with rεt,c and consider the associated family of operators that, in this case are

(75) (Lεω,cφ)(q) := 1
δ

∫
Sn−1

[φ(Eq,ε(u))− φ(q)]µcεq (u), ∀q ∈M,

for any φ ∈ C∞(M).
Theorem 20. Let (M,g) be a Riemannian manifold and X1, . . . , Xn be a global set of
orthonormal vector fields. Let c ∈ [0, 1] and ω = ehR be a fixed volume on M , for some
h ∈ C∞(M). Then Lεc,ω → Lc,ω, where

Lω,c = ∆ω + c grad(h) + (c− 1)
n∑
i=1

divω(Xi)Xi.(76)

Moreover, if (M,g) is complete, P εω,c → Pω,c weakly, where Pω,c is the law of the process
associated with Lω,c.

The limit operator is not intrinsic in general, as it clearly depends on the choice of the
orthonormal frame. However, thanks to the explicit formula, we have the following.
Corollary 21. The operator Lω,c does not depend on the choice of the orthonormal frame
if and only if c = 1. In this case

Lω,1 = ∆ω + grad(h) = ∆ehω = ∆e2hR.(77)
Once again, we get a surprising result. In fact, even if Lω,1 is intrinsic and depends

only on the Riemannian structure and on the volume ω, it is not symmetric on L2(M,ω)
unless we choose h to be constant.
Corollary 22. The operator Lω,c with domain C∞c (M) is essentially self-adjoint on
L2(M,ω) if and only if c = 1 and ω is proportional to the Riemannian volume.

The natural request of independence on the choice of the orthonormal frame and sym-
metry on L2(M,ω) leaves no choice and, in particular, selects a preferred volume ω = R,
up to a proportionality constant.

On the other hand, by setting c = 0, we recover the “sum of squares” generator of the
solution of the Stratonovich SDE (72).
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Corollary 23. The operator Lω,0 depends on the choice of the vector fields X1, . . . , Xn,
but not on the choice of the volume ω, in particular

Lω,0 =
n∑
i=1

X2
i .(78)

5.4. Flow random walks with volume sampling in the sub-Riemannian setting.
To extend the flow random walk construction to the sub-Riemannian setting we need
Z1, . . . , Zn−k vector fields on M , transverse to N, in such a way that ιZ1,...,Zn−kω is a well
defined k-form that we can use to induce a measure on Sk−1 as in Definition 19.

In general there is no natural choice of these Z1, . . . , Zn−k. We explain the construction
in detail for contact sub-Riemannian structures, where such a natural choice exists. Indeed
this class contains contact Carnot groups.

5.4.1. Contact sub-Riemannian structures. A sub-Riemannian structure (M,N,g) is con-
tact if there exists a global one-form η such that N = ker η. This forces dim(M) = 2d+ 1
and rankN = 2d, for some d ≥ 1. Consider the skew-symmetric contact endomorphism
J : Γ(N)→ Γ(N), defined by the relation
(79) g(X, JY ) = dη(X,Y ), ∀X,Y ∈ Γ(N).
We assume that J is non-degenerate. Multiplying η by a non-zero smooth function f gives
the same contact structure, with contact endomorphism fJ . We fix η up to sign by taking
(80) Tr(JJ∗) = 1.
The Reeb vector field is defined as the unique vector X0 such that
(81) η(X0) = 1, ιX0dη = 0.
In this case (see [7]), the Popp density is the unique density such that P(X0, X1, . . . , X2d) =
1 for any orthonormal frame X1, . . . , X2d of N.

The flow random walk with volume sampling construction, with volume ω and sampling
ratio c, can be implemented as follows.

Definition 24. Let (M,N,g) be a contact sub-Riemannian structure with Reeb vector
field X0. For any q ∈M and ε > 0 we define the family of densities µεq on Sk−1

(82) µεq(u) := 1
N(q, ε)

∣∣∣(E∗q,ε ◦ iX0,γ̇u(ε)ω)(u)
∣∣∣ , ∀u ∈ Sk−1,

where N(q, ε) is fixed by the condition
∫
Sk−1 µεq = 1. For ε = 0, we set µ0

q the standard
normalized density on Sk−1.

We define a random walk rεt,c as in (74), with sampling ratio c ∈ [0, 1], and we call the
associated family of operators Lεω,c as in (75), with no risk of confusion.

Theorem 25. Let (M,N,g) be a contact sub-Riemannian manifold and X1, . . . , X2d be a
global set of orthonormal vector fields. Let c ∈ [0, 1] and ω = ehP be a fixed volume on
M , for some h ∈ C∞(M). Then Lεc,ω → Lc,ω, where

Lω,c = ∆ω + c grad(h) + (c− 1)
k∑
i=1

divω(Xi)Xi.(83)

Moreover, if (M,g) is complete, P εω,c → Pω,c weakly, where Pω,c is the law of the process
associated with Lω,c.

This construction, in the contact sub-Riemannian case, has the properties of the Rie-
mannian one, where the Riemannian volume is replaced by Popp one. In particular we
have the following analogues of Corollaries 21 22 and 23.
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Corollary 26. The operator Lω,c does not depend on the choice of the orthonormal frame
if and only if c = 1. In this case

Lω,1 = ∆ω + gradH(h) = ∆ehω = ∆e2hP .(84)

Corollary 27. The operator Lω,c with domain C∞c (M) is essentially self-adjoint on
L2(M,ω) if and only if c = 1 and ω is proportional to the Popp volume.

Corollary 28. The operator Lω,0 depends on the choice of the vector fields X1, . . . , Xk,
but not on the choice of the volume ω, in particular

Lω,0 =
k∑
i=1

X2
i .(85)

6. Proof of the results

6.1. Proof of Theorem 8. Let q ∈ M , and fix normal coordinates (x1, . . . , xn) on a
compact neighborhood K of q. In these coordinates, length parametrized geodesics are
straight lines εv, with v ∈ SqM ' Sn−1. In particular

(86) φ(expq(ε, v))− φ(q) = ε
n∑
i=1

vi∂iφ+ 1
2ε

2
n∑

i,j=1
vivj∂

2
ijφ+ ε3Oq,

where all the derivatives are computed at q, and the remainder term Oq is uniformly
bounded on K by a constant MK . When ω = R is the Riemannian volume, a well known
asymptotics (see, for instance, [14]) gives

(87) µcεq (v) = (1 + ε2Oq)dΩ,

where dΩ is the normalized euclidean measure on Sn−1. When ω = ehR, the above formula
is multiplied by a factor eh(expq(cε,v)), and taking in account the normalization we obtain

(88) µcεq (v) = (1 + εcvi∂ih+ ε2Oq)dΩ.

Then, for the operator Lεω,cφ, evaluated at q, we obtain

(Lεω,cφ)|q = 2n
ε2

∫
SqM

[φ(expq(ε, v))− φ(q)]µcεq (v)(89)

= 2n
ε

n∑
i=1

∂iφ

∫
Sn−1

vidΩ + 2n
n∑

i,j=1

(
c∂ih∂jφ+ 1

2∂
2
ijφ

)∫
Sn−1

vjvidΩ + εOq.(90)

The first integral is zero, while
∫
Sn−1 vivjdΩ = δij/n. Thus we obtain

(91) (Lεω,cφ)|q =
n∑
i=1

∂2
iiφ+ 2c(∂ih)(∂iφ) + εOq.

The first term is the Laplace-Beltrami operator applied to φ, written in normal coordinates,
while the second term coincides with the action of the derivation 2c grad(h) on φ, evaluated
at q. Since the l.h.s. is invariant by changes of coordinates, we have Lεω,c → Lω,c, where

(92) Lω,c = ∆R + 2c grad(h).

The alternative forms of the statement follow from the change of volume formula ∆ehω =
∆ω + grad(h). The weak convergence P εω,c → Pω,c follows from Theorem 6. �
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6.2. Proof of Theorem 15. We start with the case h = 0 and q = 0. Hamilton equations
for a contact Carnot groups are readily solved, and the geodesic with initial covector
(px, pz) ∈ T ∗0M ' R2d × R is

(93) x(t) =
∫ t

0
espzApxds, z(t) = −1

2

∫ t

0
ẋ∗(s)Ax(s)ds.

It is convenient to split px = (p1
x, . . . , p

d
x), where pix = (px2i−1 , px2i) ∈ R2 is the projection

of px in the real eigenspace of A corresponding to the singular value αi. We get

(94) exp0(t; px, pz) =


B(t;α1pz)p1

x
...

B(t;αdpz)pdx∑d
i=1 b(t;αipz)αi‖pix‖2

 ,
where

(95) B(t; y) := sin(ty)
y

I + cos(ty)− 1
y

J, b(t; y) := ty − sin(ty)
2y2 .

If pz = 0, the equations above must be understood in the limit, thus exp0(t; px, 0) =
(tpx, 0). The Jacobian determinant is computed in [2] (see also [28] for the more general
case of a corank 1 Carnot group with a notation closer to the one of this paper):

(96) det(dpx,pz exp0(t; ·)) = t2d+3

4α2

d∑
i=1

gi(tpz)‖pix‖2,

where α =
∏d
i=1 αi and

(97) gi(y) :=

∏
j 6=i

sin
(αjy

2
)2

sin
(αiy

2
) (αiy

2 cos
(αiy

2
)
− sin

(αiy
2
))

(y/2)2d+2 .

Lemma 29. For any λ ∈ T ∗qM and t > 0, we have (up to the normalization)

(98) (expq(t; ·)∗iγ̇λ(t)ω)(λ) = 1
t
iλ(expq(t; ·)∗ω)(λ).

Proof. It follows from the homogeneity property expq(t;αλ) = expq(αt;λ), for all α ∈ R:

(99) γ̇λ(t) = d

dτ

∣∣∣∣
τ=0

expq(t+ τ ;λ) = 1
t

d

dτ

∣∣∣∣
τ=0

expq(t; (1 + τ)λ) = 1
t
dλ expq(t; ·)λ,

where we used the standard identification Tλ(T ∗qM) = T ∗qM . �

The cylinder is 0 = {(px, pz) | ‖px‖2 = 1} ⊂ T ∗0M and λ ' pz∂pz + px∂px . The
Lebesgue volume is L = dx ∧ dz. By Lemma 29 and reintroducing the normalization
factor, we obtain that the restriction to 0 of µt0 is

(100) µt0 = 1
N(t)

d∑
i=1
|gi(pzt)|‖pix‖2|dΩ ∧ dpz|,

where dΩ is the normalized volume of S2d−1. Observe that each |gi| ∈ L1(R). Thus

(101) N(t) =
d∑
i=1

∫
S2d−1

‖pix‖2dΩ
∫
R
dpz|gi(pzt)| =

1
dt

d∑
i=1

∫
R
dy|gi(y)|.
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To compute E[φ(expq(ε;λ))− φ(q)], we can assume φ(q) = 0. Hence

∫
0
φ(exp0(ε;λ))µcε0 (λ) = 1

N(cε)

d∑
i=1

∫
S2d−1

dΩ
∫
R
dpz|gi(pzcε)|‖pix‖2φ(exp0(ε; px, pz))

(102)

= c

εN(ε)

d∑
i=1

∫
S2d−1

‖pix‖2dΩ
∫
R
dy|gi(cy)|φ(exp0(ε; px, y/ε))(103)

= cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
S2d−1

‖pix‖2dΩ
∫
R
dpz|gi(cpz)|φ(exp0(1; εpx, pz)),(104)

where we used the rescaling property of the exponential map. From (94) we get

(105) exp0(1; εpx, pz) =


B(α1pz)

. . .
B(αdpz)

 εpx, d∑
i=1

b(αipz)αi‖pix‖2ε2

 ,
where, with a slight abuse of notation

(106) B(y) = sin(y)
y

I + cos(y)− 1
y

J, b(y) = y − sin(y)
2y2 .

We observe here that

(107) B(y)B(y)∗ = sin(y/2)2

(y/2)2 I.

It is convenient to rewrite
(108) exp0(1; εpx, pz) = (B(pz)εpx, ε2p∗xb(pz)px),
where B(pz) is a block-diagonal 2d × 2d matrix, whose blocks are B(αipz), and b is a
2d × 2d diagonal matrix. Notice that exp0(1; εpx, pz) is contained in the compact metric
ball of radius ε. Hence, we have

(109)
φ(exp0(ε; tpx, pz)) = (∂xφ)(B(pz)εpx) + (∂zφ)p∗xb(pz)pxε2

+ 1
2ε

2(B(pz)px)∗(∂2
xφ)(B(pz)px) + ε3R(px,pz)(ε).

The derivatives of φ are computed at 0. If ε ≤ ε0, the remainder is uniformly bounded
by the derivatives, up to order three, of φ on the compact metric ball of radius ε0, that
is |R(px,pz)(φ)| ≤ M0. When plugging (109) back in (104), we observe that the term
proportional to

(110)
∫
S2d−1

‖pix‖2dΩ
∫
R
dpz|gi(cpz)|(∂xφ)B(pz)εpx

vanishes, as the integral of any odd-degree monomial in px on the sphere is zero. Further-
more, the term proportional to

(111)
∫
S2d−1

‖pix‖2dΩ
∫
R
dpz|gi(cpz)|(∂zφ)p∗xb(pz)pxt2

vanishes, as the integrand is an odd function of pz. The last second order (in ε) term is

(112) cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
S2d−1

‖pix‖2dΩ
∫
R
dpz|gi(cpz)|

1
2ε

2(B(pz)px)∗(∂2
xφ)(B(pz)px).

If all the αi are equal, then all gi = g, and (112) the sum
∑d
i=1 ‖pix‖2 = ‖px‖2 = 1

simplifies. In this case we have a simple average of a quadratic form on S2d−1. When the
αi are distinct, we need the following results.
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Lemma 30 (see [13]). Let P (x) = xa1
1 . . . xann a monomial in Rn, with ai, . . . , an ∈

{0, 1, 2, . . .}. Set bi := 1
2(ai + 1) Then

(113)
∫
Sn−1

P (x)dΩ = Γ(n/2)
2πn/2

{
0 if some aj is odd,
2Γ(b1)Γ(b2)···Γ(bn)
Γ(b1+b2+···+bn) if all aj are even,

where dΩ is the normalized measure on the sphere Sn−1 ⊂ Rn.

Lemma 31. Let Q(x) = x∗Qx and R(x) = x∗Rx be two quadratic forms on Rn, such that
QR = RQ. Then

(114)
∫
Sn−1

Q(x)R(x)dΩ = 2 Tr(QR) + Tr(Q) Tr(R)
n(n+ 2) .

If R = I, we recover the usual formula
∫
Sn−1 QdΩ = 1

n Tr(Q).

Proof. Up to an orthogonal transformation, we can assume that Q and R are diagonal.
Hence (for brevity we omit the domain of integration and the measure)

(115)
∫
Q(x)R(x) =

n∑
i,j=1

QiiRjj

∫
x2
ix

2
j .

By Lemma 30

(116)
∫
x2
ix

2
j =


3

n(n+2) i = j,
1

n(n+2) i 6= j.

Thus ∫
Q(x)R(x) =

n∑
i,j=1

QiiRjj

∫
x2
ix

2
j (δij + (1− δij))(117)

= 1
n(n+ 2)

n∑
i,j

QiiRjj(3δij + (1− δij)) = 2 Tr(QR) + Tr(Q) Tr(R)
n(n+ 2) .(118)

If Q and R do not commute we cannot expect such a simple expression, that in general
depends on the whole set of invariants of the pair of quadratic forms. �

We can write (112), as the sum of integrals of products of quadratic forms over S2d−1

(119) 1
2ε

2 cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
R
dpz|gi(cpz)|

∫
S2d−1

Qi(px)R(px)dΩ,

where the quadratic forms are (we omit the explicit dependence on pz)

(120) Qi(px) := ‖pix‖2, R(px) := (B(pz)px)∗(∂2
xφ)(B(pz)px).

A direct check shows that Q and R are commuting, block diagonal matrices. Thus,
applying Lemma 31 to (119), we obtain

1
2ε

2 cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
R
dpz|gi(cpz)|

∫
S2d−1

Qi(px)R(px)dΩ(121)

= 1
2ε

2 cd∑d
i=1

∫
R |gi(y)|dy

d∑
i=1

∫
R
dpz|gi(cpz)|

2 Tr(QiR) + Tr(Qi) Tr(R)
2d(2d+ 2) .(122)

Observe that Tr(Qi) = 2, and
∑d
`=1Q` = I. Therefore we rewrite (122) as

(123) ε2 c∑d
i=1

∫
R |gi(y)|dy

d∑
i,`=1

∫
R
dpz|gi(cpz)|

(1 + δi`) Tr(Q`R)
4(d+ 1) .
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To compute Tr(Q`R) denote, for ` = 1, . . . , d

(124) D2
`φ :=

(
∂2
x2`−1φ ∂x2`−1∂x2`φ

∂x2`∂x2`−1φ ∂2
x2`φ

)
, B` := B(α`pz).

We obtain thus

(125) Tr(Q`R) = Tr(B∗` (D2
`φ)B`) = Tr(B`B∗` (D2

`φ)) =
sin(α`pz2 )2

(α`pz/2)2 (∂2
x2`−1φ+ ∂2

x2`φ),

where we used (107). Thus (123) becomes

(126) ε2

4d

d∑
i=1

σi(c)(∂x2i−1φ+ ∂x2iφ),

where the constants σi(c) are

(127) σi(c) = dc

(d+ 1)
∑d
i=1

∫
R |gi(y)|dy

d∑
`=1

(1 + δ`i)
∫
R
|g`(cpz)|

sin(αipz2 )2

(αipz/2)2 ,

Taking in account also the remainder term, we obtain

(128) 4d
t2

∫
0
φ(exp0(ε; px, pz))µcε0 (px, pz) =

d∑
i=1

σi(c)(∂2
x2i−1φ+ ∂2

x2iφ)|0 + 4dεO0(1),

where O0(1) ≤M0 is a remainder term that, when ε ≤ ε0, is bounded by a constant that
depends only on the derivatives of φ in a compact metric ball of radius ε0 centered in 0.
A straightforward left-invariance argument shows that, for any other q ∈M

(129) 4d
ε2

∫
q

[f(expq(ε;λ))− f(q)]µcεq (λ) =
d∑
i=1

σi(c)(X2
2i−1φ+X2

2iφ)|q + 4dεOq(1),

where Oq(1) ≤ Mq is a remainder term bounded by a constant that depends only on the
derivatives of φ in a compact metric ball of radius ε0 centered in q. Thus

(130) (Lc,L φ)|q = lim
ε→0

4d
ε2

∫
q

[φ(expq(ε;λ))− φ(q)]µcεq (λ) =
d∑
i=1

σi(c)(X2i−1φ+X2iφ)|q,

and the convergence is uniform on compact sets. This completes the proof for ω = L .
Let, instead, ω = ehL for some h ∈ C∞(M). This leads to an extra factor eh(expq(cε;λ))

in front of µcεq (λ) (up to re-normalization). After a moment of reflection one realizes that

(131) (Lεω,cφ)|q = (LεL ,cφ̃)|q + εOq(1), with φ̃ = ec(h−h(q))(φ− φ(q)).

This observation yields the general statement, after noticing that

(132) X2
i (φ̃) = X2

i (φ) + 2cXi(h)Xi(φ), ∀i = 1, . . . , 2d,

where everything is evaluated at the fixed point q. �

6.3. Proof of Theorem 20. We expand the function φ along the path γu(ε) = Eq,ε(u):

(133) φ(Eq,ε(u))− φ(q) = εXu(φ) + 1
2ε

2Xu(Xu(φ)) +O(ε3),

where everything on the r.h.s. is computed at q (as a convention, in the following when
the evaluation point is not explicitly displayed, we understand evaluation at q).

Lemma 32. For any one-form ν ∈ T ∗qM and any vector v ∈ TuSn−1

(134) (E∗q,εν)|u(v) = εν(Xv) + 1
2ε

2ν([Xv, Xu]) +O(ε3).
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Proof of Lemma 32. The differential of the endpoint map (with constant controls) is

(135) duEq,ε(v) = eεXu∗

∫ ε

0
e−τXu∗ Xvdτ, v ∈ Rn,

where eεY is the flow of the field Y (see [1]). By definition of Lie derivative L we get
d

dε
(E∗q,εν)|u(v) = d

dε
(eεXu∗ν)|q

(∫ ε

0
e−τXu∗ Xvdτ

)
(136)

= (eεXu∗LXuν)|q
(∫ ε

0
e−τXu∗ Xvdτ

)
+ (eεXu∗ν)|q

(
e−εXu∗ Xv

)
.(137)

Taking another derivative, and evaluating at t = 0, we get

d2

dε2

∣∣∣∣∣
ε=0

(E∗q,εν)|u(v) = 2(LXuν)|q(Xv) + ν|q(LXu(Xv)) = ν([Xv, Xu]),(138)

d

dε

∣∣∣∣
ε=0

(E∗q,εν)|u(v) = ν|q(Xv). �

Lemma 33. We have the following Taylor expansion for the measure

(139) µεq(u) =
(

1 + ε

2 divR(Xu) + εXu(h) +O(ε2)
)

Ω(u),

where Ω is the normalized Euclidean measure on Sn−1.

Proof of Lemma 33. Let ν1, . . . , νn be the dual frame to X1, . . . , Xn, that is νi(Xj) = δij .
Since ω = ehR = ehν1 ∧ . . . ∧ νn, we obtain (ignoring normalization factors)

µεq(u) ∝ Dq(ε)eh(γu(ε))Ω(u), u ∈ Sn−1,(140)

where Dq(ε) is the determinant of the matrix (E∗q,ενi)(ej), for i, j = 1, . . . , n. Using
Lemma 32, since Xej = Xj , we obtain

(E∗q,ενi)(ej) = ενi(Xj) + ε2

2 νi([Xj , Xu]) +O(ε3)(141)

where everything is computed at q. Since det(I + εM) = 1 + εTr(M) + O(ε2) for any
matrix M , we get

Dq(ε) = εn
(

1 + ε

2

n∑
i=1

νi([Xi, Xu]) +O(ε2)
)

(142)

= εn

1 + ε

2

n∑
i,j=1

ujc
i
ij +O(ε2)

 = εn
(

1 + ε

2 divR(Xu) +O(ε2)
)
.(143)

Plugging this in (140), and expanding the function eh(γu(ε)), we get

µεq ∝ εn
(

1 + ε

2 divR(Xu) +O(ε2)
)
eh(q)

(
1 + εXu(h) +O(ε2)

)
Ω(144)

∝ εneh(q)
(

1 + ε

2 divR(Xu) + tXu(h) +O(ε2)
)

Ω.(145)

Taking in account the normalization (recall that
∫
Sn−1 Xu = 0), we obtain the result. �

We are ready to compute the expectation value

(146)
∫
Sn−1

[φ(Eq,ε(u))− φ(q)]µcεq =
∫
Sn−1

[
εXu(φ) + 1

2ε
2Xu(Xu(φ)) +O(ε3)

]
×

×
[
1 + cε

2 divR(Xu) + cεXu(h) +O(ε2)
]

Ω.
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Since
∫
Sn−1 Xu = 0 and

∫
Sn−1 Qijuiuj = Tr(Q)/n, we get

(Lω,cφ)(q) = lim
ε→0+

2n
ε2

(
cε2

2n divR(Xi)Xi(φ) + cε2

n
Xi(φ)Xi(h) + ε2

2nX
2
i (φ) +O(ε3)

)

=
n∑
i=1

X2
i (φ) + cdivR(Xi)Xi(φ) + 2cXi(φ)Xi(h).

From the last equation we obtain the different forms of the statements using the change
of volume formula divω(Xi) = divehR(Xi) = divR(Xi)+Xi(h). The covergence is uniform
on compact set since the domain of integration Sn−1 is compact and smoothness of all
objects. �

6.4. Proof of Theorem 25. The proof follows the same lines of the one of Theorem 20.
The expansion of the function φ along the path γu(ε) = Eq,ε(u) remains unchanged:

(147) φ(Eq,ε(u))− φ(q) = εXu(φ) + 1
2ε

2Xu(Xu(φ)) +O(ε3).

where, this time Xu =
∑k
i=1 uiXi. Also Lemma 32 remains unchanged, replacing n with

k. The following contact version of Lemma 33 also holds.

Lemma 34. We have the following Taylor expansion for the measure

(148) µεq(u) =
(

1 + ε

2 divP(Xu) + εXu(h) +O(ε2)
)

Ω(u),

where Ω is the normalized Euclidean measure on Sk−1.

Proof of the Lemma. Since ω = ehP = ehν0 ∧ ν1 ∧ . . . νk, we have iX0ω = ehν1 ∧ . . . ∧ νk.
Hence the proof is similar to proof of Lemma 33, with n replaced by k. In fact, up to
normalization
(149) µεq(u) ∝ (E∗ε,qiγ̇u(ε),X0ω) = Dq(ε)eh(γu(ε))Ω, u ∈ Sk−1,

where Dq(ε) is the determinant of the matrix (E∗q,ενi)(Xj), for i, j = 1, . . . , k. This is a
k × k matrix. With a computation analogue to the one of the proof of Lemma 33, we
obtain Dq(ε) = εk(1 + εTr(M) +O(ε2)), with

(150) Tr(M) = 1
2

k∑
i=1

νi([Xi, Xu]) = 1
2

k∑
i,j=1

ujc
i
ij = 1

2

k∑
j=1

uj

k∑
i=0

ciij = 1
2 divP(Xu),

where we have been able to complete the sum, including the index 0 since, in the contact
case, c0

0j = η([X0, Xj ]) = −dη(X0, Xj) = 0 for all j = 1, . . . , k. From here, we conclude
proof as in the one of Lemma 33. �

The computation of the limit operator is analogue to the one of the proof of Theorem 20,
replacing the Riemannian volume R with the Popp volume P. �

Appendix A. Volume sampling as Girsanov-type change-of-measure

In both the geodesic and flow random walks defined in Sections 3.1 and 5.1, the proba-
bility measure used to select the vector V =

∑
βiVi was the uniform probability measure

on the unit sphere with respect to the covariance structure of the wit (which gives an inner
product on the vector space of such V ). In the volume sampling scheme just discussed
for the geodesic random walk with respect to an orthonormal frame on a Riemannian
manifold, that is, for the isotropic random walk that approximates Brownian motion, the
probability measure on the sphere is replaced by a different probability measure, abso-
lutely continuous with respect to the uniform one. In terms of the random walk, the
volume-sampled walk is supported on the same set of paths as the original walk, with a
different probability measure, absolutely continuous with respect to the original. In the
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scaling limit as ε → 0, this change in measure produces a drift in the limiting diffusion,
and we recognize this as a Girsanov-type phenomenon. We now take a moment to explore
this interpretation in a bit more detail.

The standard finite-dimensional model for Girsanov’s theorem, as given at the beginning
of [21, Section 3.5], is as follows. With slightly loose notation, we let N(0, In) denote the
centered (multivariate) normal distribution on Rn with covariance structure given by the
identity matrix (that is, the n Euclidean coordinates are i.i.d. normals with expectation 0
and variance 1). Let Z be a random variable (on some probability space with probability
denoted P ) with distribution N(0, In), and let µ ∈ Rn. We have a new probability measure
P̃ , absolutely continuous with respect to P , given by

P̃ (dλ) = e〈µ,Z(λ)〉− 1
2 〈µ,µ〉P (dλ),

where 〈·, ·〉 is the standard inner product on Rn. Then the random variable Z − µ has
distribution N(0, In) under P̃ . So adjusting the measure in this way compensates for
the translation, which equivalently means that one can create a translation by adjusting
the measure. The infinite-dimensional version of this (for Brownian motion on Euclidean
space) is Girsanov’s theorem.

Next, we rephrase this. Another way of determining P̃ is to say that it comes from
adjusting the “likelihood ratios” for P by

(151) P̃ (dλ2)
P̃ (dλ1)

= e〈µ,Z(λ2)〉−〈µ,Z(λ1)〉P (dλ2)
P (dλ1) .

The accounts for the e〈µ,Z(λ)〉 factor in the Radon-Nikodym derivative above, which is
the important part; the e−

1
2 〈µ,µ〉 is just the normalizing constant that turns P̃ into a

probability measure.
For the isotropic random walk, we have that P is µ0

q , the uniform probability measure
on the sphere of radius

√
n in TqM , with respect to the Riemannian inner product. (Here

we choose to normalize the sphere to include the
√
n factor in order to make the connection

to Girsanov’s theorem clearer.) Of course, µ0
q is not a multivariate normal on TqM ' Rn.

However, µ0
q has expectation 0 and covariance matrix In, so that µ0

q has the same first two
moments as N(0, In). In light of Donsker’s invariance principle, it is not surprising that
“getting the first two moments right” is enough. Now µcεq is absolutely continuous with
respect to µ0

q , and, as we will see in the proof of Theorem 8, the relationship is given by

µcεq (dλ2)
µcεq (dλ1) =

1
vol(Sn−1)

(
1 + cε 〈grad(h), λ2〉+O

(
ε2))

1
vol(Sn−1) (1 + cε 〈grad(h), λ1〉+O (ε2))

·
µ0
q (dλ2)
µ0
q (dλ1)

= ecε(〈grad(h),λ2〉−〈grad(h),λ1〉)+O(ε2) ·
µ0
q (dλ2)
µ0
q (dλ1) .

Note that, as we have developed things, the random variable that has distribution µ0
q ,

which is analogous to Z above, is implicitly just the identity on the sphere. (Also, µcεq is a
probability measure by construction, so there’s no need for a normalizing factor, partially
explaining our focus on the likelihood ratio.)

Comparing this to (151), we see that the role of µ is played by the quantity cε grad(h)+
O(ε2). To take into account the parabolic scaling limit (taking in account the analysts
normalization), note that this non-centered measure on the sphere of radius

√
n (namely

µcεq ) is mapped onto geodesics of length ε, and that this step takes place in time δ =
2n/ε2, so that the difference quotient (expected spatial displacement over elapsed time) is
2c grad(h)+O(ε). Thus, in the limit as ε→ 0, we expect an infinitesimal translation given
by the tangent vector 2c grad(h), which is exactly what we see in Theorem 8 (appearing
as a first-order differential operator). Namely, the random walk corresponding to µ0

q has
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infinitesimal generator ∆R in the limit, while the random walk corresponding to µcεq has
infinitesimal generator ∆R + 2c grad(h) in the limit. Thus, this volume sampling gives a
natural random walk version of the Girsanov change of measure.
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